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ABSTRACT

With the prevailing of machine learning (ML), researchers have shown that ML
models are also vulnerable to various privacy and security attacks. As one of
the representative attacks, the property inference attack aims to infer the pri-
vate/sensitive properties of the training data (e.g., race distribution) given the out-
put of ML models. In this paper, we present a new side channel for property
inference attacks, i.e., t-SNE plots, which are widely used to show feature dis-
tribution or demonstrate model performance. We show for the first time that the
private/sensitive properties of the data that are used to generate the plot can be
successfully predicted. Briefly, we leverage the publicly available model as the
shadow model to generate ¢-SNE plots with different properties. We use those
plots to train an attack model, which is a simple image classifier, to infer the spe-
cific property of a given ¢-SNE plot. Extensive evaluation on four datasets shows
that our proposed attack can effectively infer the undisclosed property of the data
presented in the ¢-SNE plots, even when the shadow model is different from the
target model used to generate the ¢-SNE plots. We also reveal that the attacks
are robust in various scenarios, such as constructing the attack with fewer ¢-SNE
plots/different density settings and attacking ¢-SNE plots generated by fine-tuned
target models. The simplicity of our attack method indicates that the potential risk
of leaking sensitive properties in ¢-SNE plots is largely underestimated. As pos-
sible defenses, we observe that adding noise to the image embeddings or ¢-SNE
coordinates effectively mitigates attacks but can be bypassed by adaptive attacks,
which prompts the need for more effective defenses.

1 INTRODUCTION

Machine learning (ML) models are becoming powerful and can be used as a feature extractor to gen-
erate representations (also known as embeddings) for the input data (He et al., 2016} [Sandler et al.,
2018} [Huang et al.| 2017). However, such representations are still in high-dimensional space (e.g.,
512 dimensions for the ResNet-18). To better understand the representations of data or demonstrate
the model’s performance, people usually use dimension reduction techniques such as t-SNE (van der
Maaten & Hinton, [2008)) (abbreviation for t-distributed stochastic neighbor embedding) to reduce
high-dimensional representations into a 2-dimensional space for visualization.

Despite being powerful, ML models are also shown to be vulnerable to various privacy attacks
that aim to reveal the sensitive information of the training dataset given access to the target model.
Property inference attack (Ganju et al., 2018 Zhou et al.| 2022 Mahloujifar et al.,[2022) is one of
the representative attacks whereby the adversary aims to infer the sensitive global properties of the
training dataset (e.g., the race distribution) from the representations generated from the target model.

t-SNE plots, on the other hand, are condensations of data representations. Such plots are usually
considered to be safe and shared with the public via scientific papers or blogs. However, it is unclear
whether such plots would leak sensitive property information about the data as well.

Our Work. In this paper, we take the first step toward understanding the privacy leakage from ¢-
SNE plots through the lens of the property inference attack against such plots. Here, we consider the
general property as the macro-level information of the dataset, e.g., race distributions. Note that this
property is not necessarily related to the {-SNE plots, for instance, the ¢-SNE plot is used to show
how distinguishable the gender distribution is, and the adversary can infer the race distribution of
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the data used to generate the plot. A successful attack may cause severe consequences as it provides
additional information to the adversary, which is often sensitive and should be protected. Also, it
can be used to audit the fairness of the dataset (Buolamwini & Gebrul, [2018)).

In this work, we first systematize the threat model and attack methodology, which is straightforward.
We assume that the adversary can access the victim’s £-SNE plot and may have knowledge of the
distribution of the target dataset, but they do not necessarily have access to the target model. To
infer the general property of the samples in the ¢-SNE plot, the adversary first samples groups of
images from a shadow dataset with different properties (e.g. different proportions of males). Then,
those groups of images will be used to query the shadow model to get representations and generate
groups of ¢-SNE plots. An attack model is trained based on the <plot, property> pairs, which is an
image classifier that can distinguish between ¢-SNE plots with different labels. Once well trained,
the attack model can then be used to infer the property of public ¢-SNE plots.

Our evaluations on both classification and regression tasks show that the proposed attack can achieve
high accuracy, on some of the datasets like CelebA and LFW. For instance, the accuracy for pre-
dicting the proportion of males on CelebA ¢-SNE plots reaches 0.92, and the average regression
error of predicting precise proportions is 0.02. We also study the reason for the relatively poor at-
tack performance on the other datasets (e.g. FairFace) or attributes (e.g. Oval Face). We discover
that this is due to the less distinguishable representations generated by the target model over these
datasets/attributes. Also, we observe that the attack is still effective even when the shadow model is
different from the target model. We further demonstrate that our attack is robust with fewer train-
ing plots and transferable to different ¢-SNE density settings. For instance, the regression attack
model trained on ¢-SNE plots with 750 sample points can reach a low error of 0.04 on ¢-SNE plots
with 1,000 or 500 sample points. We additionally show that, by mixing only a small number of
t-SNE plots from a new dataset, our attack can transfer to the new dataset. and we reveal the va-
lidity of our attack when the target and shadow models are fine-tuned, which is common in practice

(see for details).

To mitigate the attack, we perturb the image embeddings/t-SNE coordinates and discover that it
indeed reduces the attack performance to a large extent, e.g., by adding Gaussian noise to the t-SNE
coordinates, the inference error of regression attack model increases significantly from 0.02 to 0.48.
However, such defenses can still be bypassed by an adaptive attacker (see also[Section 5.4). In short,
our work demonstrates that the published ¢-SNE plots can be a valid side-channel for the property
inference attacks. We appeal to our community’s attention to the privacy protection of publishing
t-SNE plots.

2 BACKGROUND AND RELATED WORK

t-SNE Plots. Generally, ¢t-SNE (van der Maaten & Hinton, [2008) is used to transform high-
dimensional data to low-dimensional (e.g. 2D) data while preserving their relationship, i.e., sim-
ilar data are mapped to the near space and dissimilar data are projected more distant. To analyze
how separable some specific characteristics of the data are, one common practice is to leverage the
pre-trained ML models as feature extractors to generate representations for the data and use ¢-SNE
to reduce the high dimensional representations into 2D space for visualization, i.e., with {-SNE
plots (see as an example). Also, t-SNE plots can be used to show the performance of
fine-tuned ML models (see as an example).

Property Inference Attack. Property inference intends to gain insights into the global properties
of training datasets, which are unconsciously leaked. This poses a threat to the intellectual property
of the data owner. In addition, property inference can audit the fairness of datasets, e.g. the gender
fairness in benchmark datasets (Buolamwini & Gebru, [2018)). Previous work has shown the vul-
nerability of property inference against machine learning models, including discriminative models
and generative models. |Ateniese et al.| (2015) proposes inference attack against shallow machine
learning models, e.g. Hidden Markov Models and Support Vector Machines. |Ganju et al.| (2018)
proposes the first property inference attack against fully connected neural networks. Both of the
work assumes that the adversary has white-box access to the machine learning models. Concretely,
the adversary first trains shadow models on datasets with different properties, then leverages the pa-
rameters of shadow models to train the meta classifier to identify the property of the training dataset.
Mahloujifar et al.| (2022) conducts the property inference attack by injecting poisonous data into
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the training dataset and then querying the target model in a black-box fashion. |Zhou et al.|(2022)
reveals the first set of training property attacks against GANs, where the adversary also has only
black-box access to the target model. These previous works focus on the training data of machine
learning models, and many assume that the adversary has white-box access to the model. Our work
concentrates on both the white-box and black-box property inference attack against t-SNE plots, the
safety and privacy of which are paid less attention to when published. Also, our proposed attack
trains a regression model to precisely infer the property.

Note that in this paper, we consider the adversary is interested in the property of the data points
that are used to generate the ¢-SNE plots.

3 THREAT MODEL AND ATTACK METHODOLOGY

3.1 THREAT MODEL

t-SNE plots are usually leveraged to show the feature distribution of the data or demonstrate the
representation ability of a machine learning model. Such plots are commonly published on websites
or in scientific papers. In this work, we propose the first property inference attack against published
t-SNE plots where anyone observing the plots could be the attacker. The t-SNE plot may only
present insensitive information, but other sensitive information of the dataset could also be inferred.
For instance, a model owner publishes a ¢t-SNE plot of human face images, labeled by age, which
is intended to show the effectiveness of the age classification ML model. However, the attacker can
infer the proportion of males in the samples that are used to draw the ¢-SNE.

Adversary’s Goal. An adversary aims to infer the sensitive property Piqrge¢ Of the data samples
that are used to generate a t-SNE plot. And the property is not directly shown by the ¢t-SNE plot. To
be specific, the property we consider in this paper is the distribution of a certain attribute, e.g. the
proportion of males.

Adversary’s Background Knowledge. We make the following assumptions about the adversary’s
background knowledge. First, the adversary has access to the ¢-SNE plot and can make adjustments
to the plots, e.g. removing axes, labels, plot titles, and changing the color. Second, the adversary
is aware of the dataset distribution but does not know which subset of images are used to generate
the ¢-SNE plots. This means that the adversary can obtain a shadow dataset and generate {-SNE
plots with subsets of images that have different property values, e.g., different proportions of males.
We later show that even if the shadow dataset comes from a different distribution, with only a few
numbers of t-SNE plots that share the same data distribution as the target ¢-SNE plot, our attack can
successfully infer the property of the data used to generate the ¢-SNE plots. Third, the adversary has
a shadow model to embed the images. We first assume the shadow model is the same as the target
model. We later show that the attacks are still effective when the shadow model is different from the

target model (Figure 2] and [Table 4)).

3.2 ATTACK METHODOLOGY

Briefly, the attack consists of two parts: t-SNE generation and attack model training.

t-SNE Generation. To correctly infer the target property Prqrge+ from the given ¢-SNE plot, one
possible solution is to construct a set of -SNE plots that have different values of the target property,
e.g., different proportions of males in the plot data. Concretely, the adversary first samples many
subsets of data from a shadow dataset, each with a different value of the target property. Then, they
use each subset of images to query the shadow model and get the image embeddings (output from
the second-to-the-last layer of the shadow model). The adversary then projects the embeddings into
2D space and generates a t-SNE plot for each subset. The ¢-SNE plots are labeled by the property
value of the image subset. Note that if the adversary has white-box access to the target model, they
can directly apply the target model as the shadow model to generate ¢-SNE plots.

Attack Model Training. With the generated ¢-SNE plots, the adversary trains an ML model to
predict the property values of the plots. Note that in this paper, we consider both classification and
regression tasks, while previous property inference attacks (Ateniese et al., 2015} |Ganju et al.,|2018;
Mahloujifar et al., [2022) only consider the classification task. The input is the generated {-SNE



Under review as a conference paper at ICLR 2023

plots, and the output is the property value of the ¢-SNE plots. Once the attack model is trained, it
can be used to infer the properties of public £-SNE plots.

4 EXPERIMENTAL SETUP

Datasets and Models. We consider 4 face datasets in our evaluation, including CelebA (Liu et al.,
2015), LFW (Huang et al.,|2008), UTKFace (Zhang et al.,|2017), and FairFace (Karkkédinen & Joo,
2021). Regarding the model architectures, we use the ResNet18 (He et al.l 2016), ResNet34 (He
et al.,|2016) and the small version of MobileNetV3 (Howard et al.,2019) pre-trained on ImageNet1k
as the target and shadow models’ architectures. Also, we use the pre-trained DenseNet121 (Huang
et al., 2017) as the attack model’s architecture. More details of the datasets and models are in
[tion A.1|and[Section A.2| Each dataset is first randomly divided into two equal patrts, i.e., the shadow
dataset and the target dataset, without overlapping. In our experiment, the shadow dataset is used to
generate ¢-SNEs for training the attack model, while the target dataset is used to generate t-SNEs
with different property values for the testing.

Target/Shadow Model and Two Experiment Settings. To show the effectiveness of the attack, we
conduct experiments on both multi-class classification and regression tasks. For both of the tasks,
we consider two settings. Setting 1 is called same shadow model where the adversary has white-box
access to the target model and can directly leverage the target model as the shadow model. Setting 2
is called different shadow model where the adversary has to construct the shadow model themselves.
By default, we set the shadow model as pre-trained ResNet18. It means that, for setting 1, the target
model is pre-trained ResNet18 as well. For setting 2, the target model is pre-trained ResNet34 or
MobileNetV3.

t-SNE Generation. To generate a t-SNE plot, we first sample 1,000 images with a specific pro-
portion of a certain attribute from the shadow (target) dataset. Specifically, we query the shadow
(target) model with these sampled images and take the output of the second-to-the-last layer as the
samples’ embeddings to generate the t-SNEs. Since we assume the adversary can adjust the color of
the target model’s ¢-SNE (e.g. using image editing tools), we conduct our attack in a more uniform
(and more difficult) setting with no label and color information in ¢-SNEs (see as an
example of the ¢-SNE plots we use). And the figure size of 300 pixels * 300 pixels.

For multi-class classification, we set five proportions as labels to infer, ie. Pigrger €
{0.3,0.4,0.5,0.6,0.7} following (Zhou et al., 2022). For each label, we generate 150 ¢-SNE plots
using the shadow model for attack model training, and 50 ¢-SNE plots using the target model for
testing. For regression tasks, the proportions range from 0.0 to 1.0, with a stride of 0.01. The attack
model’s training set contains 40 ¢-SNEs for each label (4,040 in total), while the testing set consists
of 10 ¢t-SNEs for each label (1,010 in total).

To investigate our attack’s transferability, we also evaluate the case where the target ¢-SNEs are
generated from the unseen dataset (see[Table 1]and [Table 2J).

Attack Model Training. By default, we use the ImageNet pre-trained DenseNet121 with the Adam
optimizer as the attack model. For classification, we set the training batch size to 64, the learning
rate to 0.0001, the cross-entropy as the loss function, and the training epoch to 30. For regression,
we set the training batch size to 128, the learning rate to 0.0001, the MSE as the loss function, and
the training epoch to 100.

5 EVALUATION RESULTS

5.1 RESULTS OF MULTI-CLASS CLASSIFICATION TASKS

We first consider setting 1 where the adversary has white-box access to the target model. We conduct
experiments on different datasets, different target properties, and different model architectures.

Different Datasets. From we observe that our attack can successfully reveal the pro-
portion of males in some of the datasets. For instance, in CelebA, our attack reaches 0.92 accuracy
while the baseline accuracy is only 0.20. Another finding is that the inference accuracy varies across
different datasets, e.g., 0.92, 0.56, 0.41, and 0.22 on CelebA, LFW, UTKFace, and FairFace, re-
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Figure 1: Multi-classification results under setting 1 for different datasets, target properties and
models. The testing data is from the same distribution as the training data. For (a) and (b), both the
target model and shadow model are pre-trained ResNet18.

Table 1: Multi-classification transfer study under
setting 1. The accuracy values are in bold for the
testing data that is from the same distribution as

Table 2: Regression transfer study under setting
1. The error values are in bold for the testing data
that is from the same distribution as the training

the training data. data.

Training Data | Target Property | Cel. | UTK. | Fair. | LFW Training Data | Target Property | Cel. | UTK. | Fair. | LFW
CelebA Male 092 | 028 | 0.21 | 0.29 CelebA Male 0.02 | 038 | 035 | 0.27
UTKFace Male 0.24 | 041 | 0.19 | 0.22 UTKFace Male 032 ] 0.08 | 0.36 | 0.38
FairFace Male 0.20 | 022 | 0.22 | 0.21 Fairface Male 021 | 022 | 017 | 0.24

LFW Male 0.11 | 0.21 | 0.20 | 0.56 LFW Male 0.32 | 037 | 041 | 0.07

spectively. We credit this to the distinguishability of overall image embedding distribution when the
proportion of males changes. To confirm this, for each ¢-SNE plot, we calculate the average em-
bedding of all image embeddings that are used to generate the plot. Then we use ¢-SNE to project
these average embeddings of all 750 ¢-SNEs (150 per class) and color them by the property, i.e.
proportion of males, to show the distinguishability of different classes. exhibits the results.
shows five clear dense clusters, indicating that the five classes of ¢-SNEs from CelebA
are well distinguishable. The ¢-SNEs of different classes from UTKFace and LFW
(Figure 5(d)) are also clustering well, but slightly sparser than CelebA for each cluster. However,
in stark contrast to the other three datasets, the average embeddings of ¢-SNEs of different classes
from FairFace are evenly distributed across the plot, in[Figure 5(c)] indicating that they are difficult
to distinguish.

Different Target Properties. We further conduct the experiments on different target properties of
CelebA, shown in[Figure 1(b)] We observe that the attack performs well at inferring the proportions
of Male (0.92) and Big Nose (0.57) but worse at inferring the proportions of Smiling (0.30) and
Oval Face (0.26) in CelebA. We impute this to the bad performance of the feature extractor when
distinguishing Smiling faces and Oval Face faces. To verify this, with a pre-trained ResNet18 as
the target model, for each attribute, we randomly select 1,000 face images with half of the images
having the attribute (e.g., 500 male and 500 female images) and query the target model to obtain the
embeddings and generate a t-SNE. We mark the two groups with different colors, e.g. half of the
images are male, colored by yellow while the other half are female, colored by purple. The results
are shown in [Figure 6| From [Figure 6(a)] and [Figure 6(b)] the two clusters are more discernible
than [Figure 6(c)|and|Figure 6(d)} This suggests that the pre-trained ResNet18 cannot separate Smil-
ing (Oval Face) faces from not Smiling (Oval Face) faces well, which further makes the ¢-SNE plots
with different proportions of Smiling (Oval Face) faces indistinguishable.

Different Models. We also find that our attack is effective across different target model architec-
tures. As shown in[Figure T(c)] the attack accuracy are 0.92, 0.91, and 0.82, on ResNet18, ResNet34,
and MobileNetV3, respectively, which is significantly higher than the baseline accuracy (0.2). Also,
MobileNetV3 has lower inference performance compared to ResNets. We suspect the reason is that
MobileNetV3 is smaller and has a lower representation ability than ResNets and thus makes the
t-SNEs less separable.

Transfer Study. In a more difficult scenario when the target ¢-SNEs are generated from different
datasets (see [Table TJ), we observe that the attack fails with an accuracy of around 0.2 (random
guess baseline). This is expected as the difference across datasets may result in huge changes to



Under review as a conference paper at ICLR 2023

Table 3: Multi-classification results under setting Table 4: Regression results under setting 2. The

2. The shadow model is pre-trained ResNet18. shadow model is pre-trained ResNet18.
Target Model | Training Data | Target Property | Test Acc. Target Model | Training Data | Target Property | Test Acc.
ResNet34 CelebA Male 0.86 ResNet34 CelebA Male 0.03
MobileNetV3 CelebA Male 0.46 MobileNetV3 CelebA Male 0.13

the ¢-SNEs, making the inference more difficult. We later show in that the attack can
transfer to ¢-SNEs generated from other datasets by introducing a small number of {-SNEs from
those datasets to further train the attack model (similar to few-shot learning).

Different Shadow Model. For setting 2, the shadow model architecture is different from the target
model. We use the pre-trained ResNet34 and the small version of MobileNetV3 as the target model,
and the pre-trained ResNetl8 as the shadow model to infer the proportion of males on CelebA.
Results are exhibited in Overall, the inference accuracy decreases, compared to setting
1. For instance, the accuracy on male proportion of CelebA is 0.86 under setting 2 with ResNet34
the target model, which, under setting 1, is 0.92. However, the accuracy is still much better than
random guessing (0.20). When the target model is MobileNetV3, the inference accuracy severely
drops to 0.46. This is because ResNet34 shares similar modules with ResNet18, and thus the image
embeddings extracted by ResNet34 (target model), compared to MobileNetV3, are more similar to
ResNet18 (shadow model). This will lead to similar ¢-SNE patterns and higher inference accuracy.

To conclude, our results show that the same attribute of different datasets does not equally suffer
from the attack, and proportions of some attributes such as Male and Big Nose are more easily
inferred than other attributes. We visualize the ¢t-SNEs with different proportions of males using
Grad-CAM (Selvaraju et al.,[2017) in the appendix (see[Section A.3). Also, when the shadow model
is different from the target model, the attack is more effective when the shadow model shares similar
architectures with the target model (e.g., ResNet18 vs. ResNet34).

5.2 RESULTS OF REGRESSION TASKS

To generalize the attack and infer the property more precisely, we frame our attack as regression
tasks on different datasets, target properties, and model architectures. The evaluation metric is the
average error between the predicted proportion and the ground truth value in the regression setting.
For instance, if the predicted proportion is 0.10 and the ground truth is 0.15, the error for this ¢-SNE
plot is [0.15 — 0.10| = 0.05. If there are n ¢-SNE plots in the testing dataset, the average error is
calculated over the n t-SNE plots.

0.17

Attack Error
Attack Error
Attack Error

0.1 0.08 0.07 0.1 0.1
0.05 0.04
0.02 0.02 0.02 0.02
0.0 L . . 0.0 — 0.0 — — -
CelebA  UTKFace FairFace LFW Male Smiling  Big Nose Oval Face ResNet18 ResNet34 MobileNetV3
(a) Regression error on male pro- (b) Regression error on propor- (c) Regression error on male pro-
portion of different datasets. tion of different target properties portion of CelebA with different

of CelebA. models.

Figure 2: Regression results under setting 1 for different datasets, different target properties and
different models. The testing data is from the same distribution as the training data. For (a) and (b),
both the target model and shadow model are pre-trained ResNet18.

Different Datasets. We first conduct experiments with the target and shadow models being identical.
reveals the effectiveness of the attack on the male proportion inference on different
datasets. The highest average error is 0.17, on FairFace, while the average errors on the other three
datasets are all lower than 0.10. When inferring the proportion of males on CelebA, the attack
model reaches the lowest error of 0.02. Note that the average error of random guessing is 0.34.
These results are consistent with those in[Figure 1(a)} where the target property from FairFace is also
difficult to infer. The results show that, after learning from the training ¢-SNE plots with sufficient
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different properties (from 0.00 to 1.00 in our experiments), the attack model can precisely infer the
continuous proportion.

Different Target Properties. Similar to the multi-classification tasks, the attribute affects the per-
formance of the attack in regression tasks. From the inference performance on the
proportion of Oval Face has the highest error of 0.16. The inference accuracy on Oval Face also lags
behind in the multi-classification task.

Different Models. shows that the attack is effective when the model are ResNet34
or MobileNetV3. For example, when the target model and shadow model are MobileNetV3, the
inference error on the male proportion of CelebA is 0.04. Although this is still slightly worse than
ResNet18 and ResNet34, it is much more precise than the multi-classification case.

Transfer Study. shows the results of transfer study on regression tasks under setting 1.
Consistent with the results of multi-classification (see[Table TJ), the attack performance on an unseen
dataset is poor, with the average errors ranging from 0.21 to 0.41, most of which are worse than
random guessing. However, adding a small number of £-SNEs from the new dataset can boost the

performance of our attack significantly (see[Section 5.5|for details).

Different Shadow Model. When the target model (ResNet34 or MobileNetV3) is different from the
shadow model (ResNet18), our attack still works well (see [Table 4). For ResNet34, the inference
error on male proportion of CelebA marginally increases compared to setting 1, from 0.02 to 0.03,
while the error increases to 0.13 for MobileNetV3, but still much better than random guessing.

In summary, the results of regression tasks are in accord with those of multi-classification tasks. The
attack performs well on the testing data that are from the same distribution as the training data, while
performs worse on unseen datasets. However, it is still valid across different properties and target
models. The precision of regression tasks further demonstrates the potential severity of information
leakage from ¢-SNE plots is underestimated.

5.3 ABLATION STUDY: DIFFERENT ¢-SNE SETTINGS

In this section, we investigate whether our attack is effective with: (1) fewer training ¢-SNE plots
for each label, and (2) fewer sample points in each ¢-SNE. All the experiments are conducted on
CelebA, and the target property is the proportion of males. For all the experiments, the shadow
model is pre-trained ResNet18. The target model can be ResNet18 (setting 1) or ResNet34 (setting
2), denoted by the legend in the figures.

Number of ¢-SNE Plots for Each Class. shows the performance of multi-classification
and regression tasks. Generally, with more ¢-SNE plots for each class, the accuracy of multi-
classification increases and the error of regression decreases, for both setting 1 and setting 2. For the
multi-classification case, 50 ¢-SNE plots for each class (250 plots in total) can achieve an accuracy
of almost 0.80, even if the target model is not the same as the shadow model. And the regression
error is lower than 0.10 with only 10 ¢-SNE plots for each class (1,010 plots in total). This further
demonstrates the vulnerability of ¢-SNE plots against the property inference attack.

Density Settings. Density denotes the number of sample points (images) represented in a t-SNE
plot, which may change the geometric features of ¢-SNE plots and subsequently affects the perfor-
mance (see [Figure 10). We additionally generate ¢-SNE plots, each with 500 and 750 sample points
from CelebA (CelebA_500 and CelebA_750 for short), for multi-classification tasks and regression
tasks. The number of training plots and testing plots is the same as the default setting. and
Figure 9| exhibit the inference performance of attack models trained on different density settings.
The inference performance is the best when the attack model is trained on the plots with the same
density setting as the testing plots. However, when the training set is CelebA_750, the inference
performance is good on both CelebA_500 and CelebA_1000, under both setting 1 and setting 2. For
example, in|Figure 9(a)|and|Figure 9(c)] the regression error trained on CelebA_750 is less than 0.04
and less than 0.15 respectively, for both of the lines in each figure.

5.4 POSSIBLE DEFENSES AND ADAPTIVE ATTACKS

To mitigate the attacks, we investigate defense approaches based on disturbance, including nois-
ing, rounding, and thresholding. The experiments are conducted over regression tasks on CelebA.
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Table 5: Inference errors with different defense strate-

gies. The successful defenses are in bold. Table 6: Adaptive attack performance

against the successful defense methods.

Defense Methods \ Inference Error \ Defense Methods \ Inference Error
No defense 0.02 E-RINT 0.03

Defense Methods | Adaptive Err. | Non-adaptive Err.

E-N 2*STD 0.48 C-RO.1 0.02 E-N 2*STD 0.15 0.48
E-N 1*STD 0.30 C-RINT 0.05 E-N 1*STD 0.04 0.30
C-N 5%*STD 0.48 E-T 50% 0.03 C-N 5%*STD 0.25 0.48
C-N 2%*STD 0.48 E-T 75% 0.02 C-N2%*STD 0.24 0.48
E-RO.1 0.02

Both the target model and shadow model are pre-trained ResNet18 and the target property is the
proportion of males. Note that we consider this setting as the most challenging one for defenses as
it achieves the highest attack performance in previous experiments.

Gaussian Noise in Embeddings (E-N) and Coordinates (C-N). We first test the defense of adding
Gaussian noise to embeddings and the ¢-SNE coordinates. For the E-N, we add the Gaussian noise
to each image embedding before fitting the ¢-SNE. The mean of the noise is set to 0, and the standard
deviation is set to a percentage of the current embedding values’ standard deviation. For the C-N,
the Gaussian noise is added to t-SNE coordinates. Concretely, in the current ¢-SNE plot, the stan-
dard deviation of the noise added to x coordinates is set to a percentage of all x coordinates’ standard
deviation. The noise is added to y coordinates in the same way. Results in[Table 5|show the effective-
ness of such defense methods. With Gaussian noise of 1 and 2 times the original standard deviation
added to the embedding values (E-N), the inference error increases by 0.28 and 0.46 respectively,
compared to the no defense (0.02). With Gaussian noise of 2% and 5% original standard deviation
added to the coordinates (C-N), the inference error increases by 0.46. To evaluate the effect on the
visual utility of such defense methods, we draw example ¢-SNE plots in[Figure T1] Visually, t-SNE

protected by E-N-1 still shows two clear clusters, while E-N-2 (Figure T1(c)) severely
jeopardizes the visual utility. In C-N-2% and C-N-5% (Figure 11(e)), sample points

of two colors are slightly blended, suggesting that they also influences the visual utility of £-SNEs.

Rounding Embedding Values (E-R) and Coordinates (C-R). Rounding is to round embedding
values or t-SNE coordinates to a specified number of decimal places, reducing the precision of the
embedding values and ¢-SNE plots. We observe that when we round the values to 0.1 or integer,
neither E-R nor C-R can defend the ¢-SNE plots from the attack, with the inference error almost
unchanged.

Threshold Embedding Values (E-T). For this defense, in each embedding, only the largest k per-
centage of values are retained, while other values are set to 0. From[Table 5] the defense both fails
when £ is set to 50 and 75, indicating that it is not effective to simply drop some values in the em-
bedding. We suspect that the important information remains in the largest 50% values and can still
be captured by the ¢-SNE.

Adaptive Attack. We then consider an adaptive adversary who is aware of the defenses and can
add those defended ¢-SNE plots into the training datasets. Specifically, the training ¢t-SNE plots are
processed in the same way as the effective defenses, i.e. the training ¢-SNE plots are generated with
noised embeddings, or noise is added to the coordinates in the plots, which are the two effective
defenses. The results are exhibited in With the adaptive attack, all the attack errors drasti-
cally decrease. For instance, the E-N 1*STD adaptive attack achieves a low error of 0.04, while the
error non-adaptive attack on the defended ¢-SNE plots is 0.30. The error of the adaptive attacks on
C-N 5%*STD is 0.25 and on C-N 2%*STD is 0.24, which both maintain relatively high. This result
demonstrates the effectiveness of the C-N defense method. However, as we observe in
C-N decreases the visual utility of £-SNE, which calls for more effective and harmless defenses.

5.5 OPEN-WORLD SETTINGS

In this section, we investigate the robustness of our attack under more realistic settings. The adver-
sary can train the attack model with mixed datasets and infer properties of ¢-SNE plots generated by
fine-tuned models.

Mixed Datasets. Previously, we observe that the attack model trained on the data with only 5 ¢-
SNE plots for each class does not have good inference performance (see|Figure 7(b)). Now for each
proportion in the training dataset, we mix the 40 ¢-SNE plots generated from UTKFace with only
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a small number of CelebA ¢t-SNE plots, to evaluate our attack. For both setting 1 and setting 2,
the shadow model is pre-trained ResNet18. For setting 2, the target model is pre-trained ResNet34.
From by mixing only 5 CelebA plots for each class, the inference error on the testing
CelebA decreases significantly, from more than 0.30 to 0.05, under both target model settings. This
performance is almost identical to the performance of the attack model only trained on CelebA (0.02
and 0.03, see [Figure 2(a)]and[Table 4). However, the performance on the UTKFace dataset does not
improve, by adding CelebA plots to training data. These results suggest that some datasets (e.g.
CelebA) may be more susceptible to such attack and can be accurately inferred even if the training
t-SNE plots are mostly from another distribution.

Attack on ¢-SNE Plots Generated by Fine-tuned Models. In practice, the model owner may
fine-tune a pre-trained model on a specific target task, e.g. classifying the gender. Then, they may
consider generating ¢t-SNE plots colored by the task label (e.g. the gender or the race, see
[ure 13(a)land [Figure 13(b)) using the embeddings extracted by the fine-tuned model to showcase the
performance of the model. Besides the information that we assume the adversary to have in
the adversary also has knowledge of the target task. The adversary then fine-tunes another
pre-trained model on the same task, using the shadow dataset. We conduct the attack with regression
tasks in this scenario. The target model is pre-trained ResNet18 fine-tuned on the target task. We
randomly sample 10,000 images from the target (shadow) dataset to fine-tune the target (shadow)
model, 8,000 for training and 2,000 for testing. Note that we here train the shadow model and target
model under the same hyperparameters, with training epochs 8, batch size 64, learning rate le-4,
and Adam the optimizer. In the fine-tune task accuracy is shown in the Target Acc. and
Shadow Acc. column.

From the results in[Table 7, we observe that the inference performance is good even when the shadow
model (ResNet18) is different than the target model. The inference error for ResNet34 is 0.10 while
for MobileNetV3 is 0.13. These results reveal that our attack remains valid when the shadow model
does not share parameters with the target model, as they are fine-tuned on non-overlapping data,
which demonstrates that the threat to data privacy is underestimated in this practical scenario.

6 LIMITATIONS

Limited Scenarios. Note that our attack infers the property of the data that are in the ¢-SNE plot.
One of the possible scenarios of our attack is to audit the ML model fairness. For instance, a model
owner may claim the “good” performance of its model by a t-SNE plot with a specific property, e.g.
100% light-skinned people, as the “good” performance may be biased toward them (Buolamwini
& Gebru, [2018). Our attack can uncover such unfairness by inferring the property of the ¢-SNE.
However, if the data owner publishes a ¢-SNE plot with a property that is not presented in the
original dataset (e.g. the proportion of males is not the same), without any performance bias, the
attack may be not be useful. This is one limitation of the attack.

Embedding Layer Specification. In this paper, we assume that it is a common practice to use the
outputs of the second-to-the-last layer as image emebeddings. For instance, Vision Transformer
(ViT) (Dosovitskiy et al., 2021) uses the output of the classification token (the second to the last
layer) to feed in the linear classifier (the last layer) for classification. However, the outputs from
other layers can also be used for the ¢-SNE generation, which may render our attack invalid, as the
attacker is unware of which layer to use. This is a limitation of our work and we leave the exploration
for the future.

7 CONCLUSION

In this paper, we perform the first property inference attack through ¢-SNE plots. Experiments
show that our attack is effective in inferring undisclosed properties of data in a t-SNE plot, i.e. the
distribution of a certain attribute in the ¢t-SNE plots, and even precisely with regression models.
To mitigate the attack, we evaluate several defense mechanisms. Our evaluation result shows that
adding noise to the embeddings or the {-SNE coordinates can defend against the attack. However,
the defense of adding noise to coordinates can affect the utility of the ¢-SNE plots or can be nullified
if the adversary adaptively conducts the attack. In the future, we plan to investigate the vulnerability
of different attributes and datasets, as well as the effective transfer attack and defense methods.
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A APPENDIX

A.1 DATASETS

CelebA. CelebA (Liu et al., 2015) is a large-scale face attributes dataset. There are more than 202K
face images, each with 40 attribute annotations. We focus on the following attributes of CelebA:
Male, Smiling, Big Nose, Oval Face. These attributes not only include some whole facial features
(Gender, Oval Face), but also local detailed features (Big Nose, Smiling). The attack model will
infer the proportion of each attribute of the samples used to generate the ¢-SNEs.

LFW. LFW (Huang et al.| |2008) were originally provided for face verification, also known as pair
matching under both restricted and unrestricted settings. The 13K images were further labeled with
73 attributes by attribute classifiers from [Kumar et al.| (2009). Many of the attributes overlap with
CelebA. We use the deep-funneled version (Huang et al., 2012)) of the data to infer the proportion of
the same attributes as CelebA for the ablation study.

UTKFace. UTKFace dataset (Zhang et al.,[2017)) contains 23,708 face images with a long age span
from 0 to 116 years old. Each image is labeled with age, gender, and ethnicity. In our experiments,
we will infer the proportion of males and white people.

FairFace. FairFace dataset (Kirkkdinen & Joo, [2021) was constructed to mitigate the race bias
problem in common datasets. A total of 108,501 images labeled with gender, race and age are
collected from the YFCC-100M Flickr dataset and balanced on 7 race groups, i.e. White, Black,
Indian, East Asian, Southeast Asian, Middle Eastern, and Latino. The images were split into training
set and validation set in the original work. In this paper, we use the training set with 86K images.
For the ablation study purpose, we will infer the proportion of males and white people as UTKFace.

A.2 MODELS

ResNet. ResNet (He et al.| 2016)) is a deep learning model family, which utilizes residual learning
to ease the training of deep networks. In this paper, we use the pre-trained ResNet18 and ResNet34
as the target model and the shadow model.

DenseNet. DenseNet (Huang et al.| 2017) adds connections between each layer and every other
layer. It mitigates the vanishing-gradient problem and reuses features between layers. We use the
pre-trained DenseNet121 as the attack model for all the experiments to infer the dataset property of
t-SNE:s.

MobileNet. MobileNet (Howard et al., [2017) uses depthwise separable convolutions to reduce the
calculation during convolution. In this paper, we use MobileNetV3_small (Howard et al.| 2019) as
the target model and the shadow model.

A.3 GRAD-CAM VISUALIZATION

We try to apply Grad-CAM heatmaps (Selvaraju et al.,[2017) to ¢-SNE plots of different proportions
of males from CelebA to show the characteristics that the attack model pays attention to. The attack
model is trained on ¢-SNE plots generated by ResNet18 for multi-classification, and we randomly
select three plots for each proportion (0.3, 0.4, 0.5, 0.6, 0.7) from the CelebA test data, which are
also generated by ResNet18.

In[Figure 3] the first row presents the original plots for the second row, which are hard to distinguish
by human eyes. However, from the heatmaps, we notice that the most concentrated part of plots
with label 0.3 is the pivotal characteristic, while for 0.4, the attack model attends to detect a more
diffuse part. For 0.5, the model focuses on the most sparsest part, and for 0.7, the focal characterstic
is the sparse points between two groups of dense points. These different patterns are distinguishable
for the attack model, but not that visually clear.

A.4 ADDITIONAL RESULTS

12
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(a) 0.3. (b) 0.4. (c) 0.5. (d) 0.6. (e) 0.7.

Figure 3: Grad-CAM heatmaps of ¢-SNE plots of different proportions of males from CelebA. There
are 1000 data points in each plot. The first row are the original plots of the second row.

(a) Without colors and labels. (b) With labels, colored by gender.

Figure 4: t-SNE plots of the same proportion (0.0) of Big Nose faces from CelebA. The images are
embedded by pre-trained ResNet18.

Table 7: Attack in the fine-tune scenario. The target (shadow) accuracy is the accuracy of the target
(shadow) model on the target task. We then use the fine-tuned target (shadow) model to generate
testing (training) ¢-SNE plots. The shadow model is fine-tuned ResNet18.

Target Task | Target Model | Target Acc. | Shadow Acc. | Target Property | Test Err.
CelebA Male Classification (binary) ResNet18 0.98 0.97 Smiling 0.08
CelebA Male Classification (binary) ResNet34 0.96 0.97 Smiling 0.10
CelebA Male Classification (binary) | MobileNetV3 0.96 0.97 Smiling 0.13
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(a) CelebA.

(b) UTKFace.

(c) FairFace.

(d) LFW.

Figure 5: t-SNE plots of average embeddings of ¢-SNEs from different datasets, clustered by the
proportion of males in the ¢-SNEs, scaled to [0, 1]. The average embedding of a ¢-SNE is the average
embedding of all the image embeddings in this -SNE. The image embeddings here are generated
by pre-trained ResNet18.

(a) Male.

(b) Big Nose.

(c) Oval Face.

(d) Smiling.

Figure 6: t-SNE plots of different attributes, with the same proportion (0.5) of faces with this

attribute, sampled from CelebA, colored by the attribute.

ResNet18.
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Figure 9: Regression inference performance at different density settings on CelebA.

(a) 1000 sample points. (b) 750 sample points. (c) 500 sample points.

Figure 10: t-SNEs of face images (50% males) from CelebA with different density settings, colored
by gender.

*

(a) Original. (b) E-N-1. (c) E-N-2. (d) C-N-2%. (e) C-N-5%.

Figure 11: ¢-SNEs of face images (50% males) from CelebA, colored by gender, perturbed by
different defense methods.
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Figure 12: Regression inference performance on male proportion with mixed training ¢-SNE plots.
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(a) Fine-tuned on CelebA Male classification task. (b) Fine-tuned on UTKFace Race classification

Sample points are from CelebA, colored by gender, task, colored by the race. Sample points are from

50% of which are Smiling faces. UTKFace, colored by the race, 50% of which are
Male faces.

Figure 13: ¢-SNE plots generated from fine-tuned models. There are 1000 sample points in each
t-SNE plot.

16



	Introduction
	Background and Related Work
	Threat Model and Attack Methodology
	Threat Model
	Attack Methodology

	Experimental Setup
	Evaluation Results
	Results of Multi-class Classification Tasks
	Results of Regression Tasks
	Ablation Study: Different t-SNE Settings
	Possible Defenses and Adaptive Attacks
	Open-world Settings

	Limitations
	Conclusion
	Appendix
	Datasets
	Models
	Grad-CAM Visualization
	Additional Results


