

000 001 002 003 004 005 006 RELIABLE POISONED SAMPLE DETECTION AGAINST 007 BACKDOOR ATTACKS ENHANCED BY SHARPNESS 008 AWARE MINIMIZATION 009 010 011 012

006 **Anonymous authors**
 007 Paper under double-blind review
 008
 009
 010
 011
 012

ABSTRACT

013 This work investigates Poisoned Sample Detection (PSD), a promising defense
 014 approach against backdoor attacks. However, we observe that the effectiveness of
 015 many advanced PSD methods degrades significantly under weak backdoor attacks
 016 (*e.g.*, low poisoning ratios or weak trigger patterns). To substantiate this obser-
 017 vation, we conduct a statistical analysis across various attacks and PSD methods,
 018 revealing a strong correlation between the strength of the backdoor effect and the
 019 detection performance. Inspired by this, we propose amplifying the backdoor effect
 020 through training with Sharpness-Aware Minimization (SAM). Both theoretical
 021 insights and empirical evidence validate that SAM enhances the activations of top
 022 Trigger Activation Change (TAC) neurons while suppressing others. Based on this,
 023 we introduce SAM-enhanced PSD, a simple yet effective framework that seamlessly
 024 improves existing PSD methods by extracting detection features from the SAM-
 025 trained model rather than the conventionally trained model. Extensive experiments
 026 across multiple benchmarks demonstrate that our approach significantly improves
 027 detection performance under both strong and weak backdoor attacks, achieving an
 028 average True Positive Rate (TPR) gain of +34.3% over conventional PSD methods.
 029 Overall, we believe that the revealed correlation between the backdoor effect and
 030 detection performance could inspire future research advancements.
 031

1 INTRODUCTION

032 Deep Neural Networks (DNNs), while achieving remarkable success across a wide range of appli-
 033 cations (Yatbaz et al., 2023; Panagoulias et al., 2024; Shu et al., 2024), are vulnerable to *backdoor*
 034 attacks (Wu et al., 2025). In such attacks, adversaries inject a small number of poisoned samples
 035 into the training dataset (Gu et al., 2019), enabling the model to produce targeted malicious outputs
 036 when a hidden trigger is present. This poses safety risks in security domains such as autonomous
 037 driving, where even a single malicious prediction can cause catastrophic consequences. Consequently,
 038 accurately identifying poisoned samples from training datasets is a fundamental defense objective.
 039
 040

041 **Observation.** To defend against data poisoning-based backdoor attacks, various pre-training stage
 042 poisoned sample detection (PSD) methods have been proposed (Wu et al., 2023). General pre-training
 043 stage PSD approaches typically involve training a model on the potentially poisoned dataset and
 044 exploiting performance disparities in the feature space between poisoned and clean samples for
 045 detection (Chen et al., 2019; Tang et al., 2021; Hayase et al., 2021; Tran et al., 2018; Yuan et al.,
 046 2023). However, recent studies show that PSD methods can be bypassed when the poisoning ratio is
 047 low or the trigger is weak (Tang et al., 2021; Qi et al., 2023a; Zhu et al., 2024). We argue that the
 048 underlying cause is a reduction in the **backdoor effect**, defined as the relative strength of trigger-
 049 induced neuron activations compared to activations from benign features, and measurable with the
 050 Trigger Activation Change (TAC) metric (Zheng et al., 2022). Notably, a weak backdoor effect does
 051 not necessarily imply a low attack success rate (ASR); in many cases, ASR remains high even as
 052 detection performance deteriorates significantly. As shown in Fig. 1, a strong backdoor effect yields
 053 well-separated feature clusters for poisoned and clean samples (first and third plots), facilitating
 detection, whereas a weak effect results in cluster overlap (second and fourth plots), thereby degrading

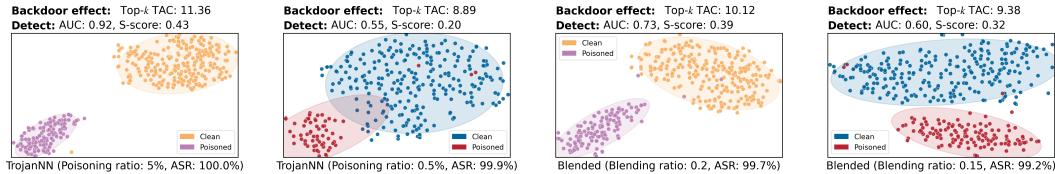


Figure 1: T-SNE visualizations of backdoor effects under high (**clean**, **poisoned**) and low (**clean**, **poisoned**) poisoning and blending ratios. Top- k TAC (Trigger Activation Change) quantifies the backdoor effect, where $k = 30$. AUC is the average ROC-AUC across different detection methods, and S-score is the Silhouette coefficient measuring separation between clean and poisoned samples. PSD performance. Empirical evaluations across diverse attack configurations further confirm a strong positive correlation between Top- k TAC and PSD performance (*Pearson correlation = 0.73*).

Motivation and Method. Building on the above observations, we address the challenge of detecting poisoned samples under weak backdoor conditions. Since defenders cannot alter trigger properties or poisoning ratios at the data level, we propose a new perspective: amplify the backdoor effect via the training of the model (used for feature extraction in PSD) to improve feature-space separability between clean and poisoned samples, thus enhancing PSD performance. Our approach adopts an optimization-based strategy inspired by the sparse feature property of Sharpness-Aware Minimization (SAM) (Andriushchenko et al., 2023). SAM encourages sparse neuron activations by amplifying dominant activations while suppressing weaker ones. Theoretical and empirical analyses show that SAM increases the activation of top TAC-ranked neurons (*i.e.*, neurons strongly associated with the backdoor trigger) while reducing the activation of others, thereby magnifying the backdoor effect. Leveraging this property, we design a SAM-enhanced, three-stage PSD pipeline: (1) train or fine-tune a model with SAM on the suspicious dataset; (2) extract backdoor-related features from intermediate activations (*e.g.*, TAC-ranked neurons); (3) apply an existing PSD detector that leverages feature-space disparities to identify poisoned samples. Note that our framework is model-agnostic and attack-independent, enabling seamless integration into existing PSD methodologies.

Contributions. Our work makes the following contributions: (1) We establish a strong positive correlation between backdoor effect and PSD effectiveness, demonstrating that weak backdoor effects significantly degrade detection performance. (2) We propose a simple yet effective SAM-based training method that amplifies the backdoor effect, thereby increasing feature-space separability and enhancing PSD performance. (3) We validate our approach through extensive experiments across diverse backdoor attack scenarios, showing that our SAM-enhanced pipeline consistently boosts multiple PSD methods, achieving an average True Positive Rate (TPR) gain of **+34.3%** over conventional PSD approaches.

2 RELATED WORK

Backdoor attack. Backdoor attacks aim to embed hidden malicious behaviors into models during training (Gu et al., 2019). Initial methods, like BadNets, add conspicuous triggers such as small patches to a subset of training data and alter their labels to a target class. Subsequent research focused on enhancing attack effectiveness and stealth through more diverse trigger designs, ranging from subtle image blends to modifications in the frequency domain (Chen et al., 2017; Li et al., 2021b; Zeng et al., 2021). To further evade detection, a significant line of work explores clean-label attacks, which preserve the original labels of poisoned samples (Turner et al., 2019). More advanced techniques even ensure that poisoned and clean samples are indistinguishable at the feature level, thus making them exceptionally difficult to detect (Tang et al., 2021; Qi et al., 2023a; Liang et al., 2024).

Backdoor defense. Backdoor defenses are categorized into four stages. Pre-training defenses (Chen et al., 2019; Gao et al., 2019; Qi et al., 2023a; Ma et al., 2022; Yao et al., 2024) proactively purify the dataset before the model learns malicious behaviors. In-training (Li et al., 2021a; Gao et al., 2023; Liu et al., 2023) and post-training (Li et al., 2023; Zhu et al., 2023; Hu et al., 2025; Wang et al., 2024) defenses aim to build robust models or repair compromised ones, respectively. Inference-time defenses (Guo et al., 2023; Hou et al., 2024) offer flexibility by detecting attacks on-the-fly without altering the model. Our work focuses on the proactive pre-training stage. In this stage, most methods identify poisoned samples by finding statistical deviations in their feature representations.

108 For instance, some leverage feature clustering or spectral analysis for this purpose (Chen et al.,
 109 2019; Hayase et al., 2021). Other paradigms exist, such as learning-based (Qi et al., 2023b) and
 110 perturbation-based detection (Huang et al., 2023; Pal et al., 2024). While most pre-training defenses
 111 are sophisticated detectors, our work introduces a novel enhancement paradigm. We leverage SAM
 112 during pre-training to widen the feature gap between clean and poisoned samples, making them easier
 113 to detect. This fundamentally contrasts with FT-SAM (Zhu et al., 2023), which uses a clean dataset
 114 for post-training model repair by suppressing backdoor effects. In contrast, our pre-training method
 115 uses the poisoned dataset to amplify these same effects to aid detection. Consequently, our method is
 116 not a new detector, but a plug-and-play module that improves the efficacy of existing ones.
 117

118 **Sharpness aware minimization.** Sharpness-Aware Minimization (SAM) is a training technique that
 119 improves model generalization by seeking flat, rather than sharp, minima in the loss landscape (Foret
 120 et al., 2021). It achieves this by simultaneously minimizing both the loss value and the loss sharpness.
 121 Variants like ASAM (Kwon et al., 2021) and GSAM (Zhuang et al., 2022) offer alternative strategies
 122 to find these flat regions more efficiently. Beyond improving generalization, empirical studies have
 123 shown that SAM can also induce other beneficial properties in models, such as increased neuron
 124 sparsity and better compressibility (Andriushchenko et al., 2023).
 125

126 3 METHOD

127 3.1 PROBLEM SETTING

128 **Threat model.** In this work, we consider data poisoning-based backdoor attacks, where the attacker
 129 releases a poisoned training dataset \mathcal{D}_{tr} to implant a backdoor into any model trained on it. Starting
 130 from a clean dataset $\mathcal{D}_{cl} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N \subset \mathcal{X} \times \mathcal{Y}$, where $\mathcal{X} \subset \mathbb{R}^d$ and $\mathcal{Y} = \{0, 1, \dots, K-1\}$
 131 represent the input space and label set, the attacker selects a subset $\mathcal{D}_{sub} \subset \mathcal{D}_{cl}$ to poison, with
 132 poisoning ratio $p = \frac{|\mathcal{D}_{sub}|}{|\mathcal{D}_{cl}|}$. Each poisoned sample is generated using a predefined trigger Δ , a
 133 generation function g , and a target label y_t , resulting in $(\tilde{\mathbf{x}} = g(\mathbf{x}, \Delta), y_t)$. The poisoned set \mathcal{D}_{poi}
 134 replaces \mathcal{D}_{sub} in \mathcal{D}_{cl} to form the final poisoned dataset $\mathcal{D}_{tr} = (\mathcal{D}_{cl} \setminus \mathcal{D}_{sub}) \cup \mathcal{D}_{poi}$.
 135

136 **Defender’s goal.** Defenders aim to detect the poisoned samples \mathcal{D}_{poi} within the released training
 137 dataset \mathcal{D}_{tr} without knowing attack details (e.g., the poisoning ratio p , the trigger Δ , and the
 138 generation function g), assuming defenders can access a few clean samples. A common defense
 139 pipeline first trains a model via a standard method (e.g., SGD) to extract features, then applies a
 140 detection algorithm on the extracted features. Our work introduces a new paradigm by innovating
 141 in the first stage. Instead of passively accepting the features from standard training, we propose a
 142 new training methodology designed to amplify the feature discrepancy between clean and poisoned
 143 samples. This serves as a foundational enhancement, boosting the performance of various subsequent
 144 detection methods.
 145

146 3.2 ANALYSIS BETWEEN BACKDOOR EFFECT AND DETECTION PERFORMANCE

147 **Backdoor effect measured by Top- k TAC.** To measure backdoor effect, we use Trigger Activation
 148 Change (TAC) (Zheng et al., 2022) which quantifies the differences in activation values between
 149 poisoned samples and their corresponding clean samples in a deep neural network (DNN). We denote
 150 a DNN as $f_{\theta} = f^{(L)} \circ f^{(L-1)} \circ \dots \circ f^{(1)}$. Given a clean input sample \mathbf{x} and its poisoned counterpart
 151 $\tilde{\mathbf{x}}$, TAC is computed using the following equation:
 152

$$153 TAC_j^{(l)}(\mathcal{D}) = \frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} \left\| f_j^{(l)}(\mathbf{x}) - f_j^{(l)}(\tilde{\mathbf{x}}) \right\|_2, \quad (1)$$

154 where j represents the j -th neuron in layer l , and \mathcal{D} is the set of clean samples. According to the
 155 definition, the magnitude of TAC reflects the neuron’s sensitivity to trigger. A higher TAC indicates
 156 that the neuron responds more strongly to trigger and can therefore be regarded as a *backdoor neuron*.
 157

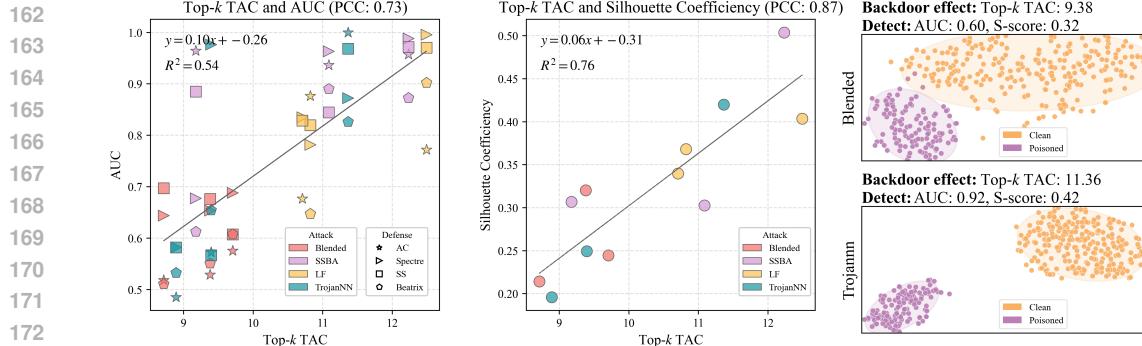


Figure 2: Correlation between backdoor effect and PSD performance on CIFAR-10 with ResNet-18 using $k = 30$ and poisoning ratios of 0.5%, 1% and 5%, quantified by Pearson correlation coefficient (PCC) and linear regression analysis. **Left:** AUC vs. Top- k TAC across different attacks and defenses, showing a positive correlation. **Middle:** Silhouette coefficient vs. Top- k TAC, indicating improved feature separability with stronger backdoor effect. **Right:** t-SNE visualizations showing that higher Top- k TAC leads to better separation between clean (purple) and poisoned (orange) samples, aligned with improved detection. (S-score is the Silhouette coefficient.)

To quantify the overall backdoor effect in the model, we consider the Top- k most responsive neurons in layer l . The Top- k TAC is computed by averaging the TAC values of these top- k neurons:

$$\text{Top-}k \text{ TAC}^{(l)}(\mathcal{D}) = \frac{1}{|T_k|} \sum_{j \in T_k} \text{TAC}_j^{(l)}(\mathcal{D}), \quad (2)$$

where T_k denotes the indices of the top- k neurons with the highest TAC values in layer l . In our method, we specifically select the final convolutional layer for this computation, as it typically provides the most discriminative features for distinguishing between clean and poisoned samples.

Backdoor effect and detection performance. To explore the relationship between the backdoor effect and detection performance, we manipulate the strength of the backdoor effect by adjusting the poisoning ratio across various attacks, using CIFAR-10 dataset on ResNet-18. We measure the backdoor effect using Top- k TAC and evaluate detection performance with AUC. As illustrated in Fig. 2, detection performance consistently declines as TAC decreases, with a Pearson correlation coefficient of 0.73, indicating a strong positive correlation. Regression analysis yields an R-squared¹ value of 0.54, indicating that TAC explains a significant portion of the variance in detection accuracy.

To further understand the impact of backdoor effect on detection, we compute the silhouette coefficient, a standard metric for evaluating how well two classes are separated in feature space. In our setting, it measures the separability between poisoned samples and target clean samples. As shown in Fig. 2, the silhouette coefficient increases with higher TAC, indicating that stronger backdoor effects lead to more distinct activation patterns between the two classes. The Pearson correlation coefficient between TAC and silhouette coefficient is 0.87, and the R-squared from regression analysis is 0.76, both supporting a clear linear relationship. These findings confirm that **stronger backdoor effects, as measured by higher Top- k TAC, lead to more pronounced separation between poisoned and clean sample activations**, suggesting that amplifying TAC through training modifications can enhance detection effectiveness even without prior knowledge of the specific attack. We provide additional results on other models and datasets, and a statistical analysis of the activation gap in our TAC formulation, in Sec. D.6 and Sec. D.5, respectively.

3.3 ENHANCING BACKDOOR EFFECTS VIA SAM

Backdoor learning with SAM. To enhance the backdoor effect during training, we adopt the Sharpness-Aware Minimization (SAM) optimization algorithm. Prior studies (Springer et al., 2024; Andriushchenko et al., 2023) have shown that SAM improves feature structure, such as producing lower-rank representations. Intuitively, SAM guides the learning process toward more discriminative

¹R-squared measures the proportion of the variance in the dependent variable that is predictable from the independent variables in a regression model. A higher R-squared indicates a better fit of the model to the data.

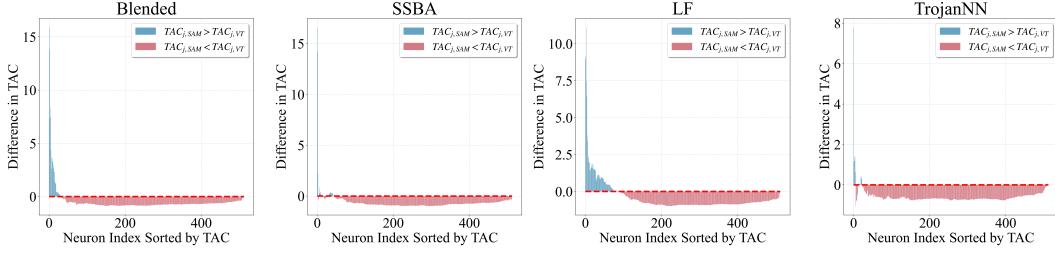


Figure 3: TAC differences between models trained with SAM and Vanilla Training. Neurons are sorted by their TAC (descending) in each model. Blue bars and red bars indicate increased and decreased TAC by SAM, respectively.

directions in the representation space, thereby amplifying the activations of neurons responsive to the features. The SAM objective is formulated as:

$$\min_{\boldsymbol{\theta}} \max_{\boldsymbol{\epsilon} \in \{\|\boldsymbol{\epsilon}\|_2 \leq \rho\}} \mathcal{L}(\boldsymbol{\theta} + \boldsymbol{\epsilon}), \quad (3)$$

where $\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{|\mathcal{D}_{tr}|} \sum_{(\mathbf{x}, y) \in \mathcal{D}_{tr}} \ell(f_{\boldsymbol{\theta}}(\mathbf{x}; y))$ is the cross-entropy loss, and $\rho > 0$ is a hyperparameter that controls the budget for weight perturbations. To illustrate the effect of SAM on backdoor learning, we compare TAC values between models trained with SAM and Vanilla Training across multiple backdoor attacks. As shown in Fig. 3, SAM consistently increases the TAC values of neurons highly responsive to the trigger (*i.e.*, backdoor neurons), while reducing the TAC values of unrelated neurons. *These results suggest that SAM selectively amplifies the most discriminative backdoor features by encouraging sharper activation patterns, thereby enhancing the backdoor effect.*

Theoretical analysis of SAM’s effect. To better understand how SAM enhances the activation of backdoor-related neurons, we provide a theoretical analysis of its effect on activation. Specifically, compared to SGD, the SAM update rule can be approximated as (Andriushchenko et al., 2023):

$$\boldsymbol{\theta}_{t+1}^{\text{SGD}} = \boldsymbol{\theta}_t - \eta \nabla \mathcal{L}(\boldsymbol{\theta}_t) \longrightarrow \boldsymbol{\theta}_{t+1}^{\text{SAM}} \approx \boldsymbol{\theta}_t - \eta \left[\nabla \mathcal{L}(\boldsymbol{\theta}_t) + \rho \nabla^2 \mathcal{L}(\boldsymbol{\theta}_t) \frac{\nabla \mathcal{L}(\boldsymbol{\theta}_t)}{\|\nabla \mathcal{L}(\boldsymbol{\theta}_t)\|} \right], \quad (4)$$

where η is the learning rate and ρ is a hyperparameter to control the budget for weight perturbations.

To deepen our analysis of SAM’s update mechanism, we adopt a simplified setting for theoretical tractability. Specifically, inspired by prior work (Andriushchenko et al., 2023), we consider a two-layer ReLU network, $f(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{a}^\top \sigma(\mathbf{W}\mathbf{x})$, notated as $f(\boldsymbol{\theta})$ for simplicity. Our analysis focuses on the change in the pre-activation of the j -th hidden neuron, *i.e.*, $\mathbf{w}_j^\top \mathbf{x}$. While this setting simplifies complex deep architectures, it is instrumental in isolating and understanding the core mechanism by which SAM affects feature separation, providing us with key theoretical intuition. The universality of this intuition is empirically validated on large-scale models in Fig. 3.

We conduct a detailed theoretical decomposition of how the SAM update affects the pre-activation in Sec. A.1. This analysis reveals that, compared to standard SGD, SAM’s update introduces a crucial additional regularization term. Based on a further analysis of this term, we can explain how it alters the learning dynamics of specific neurons when encountering poisoned samples. This finding serves as the theoretical foundation for our subsequent proposition regarding the TAC.

Proposition 1. *Based on the definition of TAC in Eq. (1), the TAC of neuron j at step t is $TAC_{j,t}(\mathcal{D}) = \frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} |\mathbf{w}_{j,t}^\top \mathbf{x} - \mathbf{w}_{j,t}^\top \tilde{\mathbf{x}}|$, where $\tilde{\mathbf{x}} = g(\mathbf{x}, \Delta)$ is a poisoned input with target label 0. Suppose for all clean sample $\mathbf{x} \in \mathcal{D}$ and corresponding poisoned sample $\tilde{\mathbf{x}}$, the following conditions are satisfied: (i) $a_{j,t} \sigma'(\mathbf{w}_{j,t}^\top \tilde{\mathbf{x}}) < -\frac{\sigma(\mathbf{w}_{j,t}^\top \tilde{\mathbf{x}})}{(1 - s(f(\boldsymbol{\theta}_t))) \|\nabla f(\boldsymbol{\theta}_t)\|_2^2}$, (ii) $\sigma'(\mathbf{w}_{j,t}^\top \mathbf{x}) = 0$ and (iii) $\mathbf{w}_{j,t}^\top \mathbf{x} < \mathbf{w}_{j,t}^\top \tilde{\mathbf{x}}$. Compared with vanilla SGD, TAC change at step t of neuron j for SAM increases by at least $\frac{\eta \rho s(f(\boldsymbol{\theta}_t)) \|\tilde{\mathbf{x}}\|_2^2}{\|\nabla f(\boldsymbol{\theta}_t)\|_2} (-(1 - s(f(\boldsymbol{\theta}_t))) \|\nabla f(\boldsymbol{\theta}_t)\|_2^2 a_{j,t} \sigma'(\mathbf{w}_{j,t}^\top \tilde{\mathbf{x}}) - \sigma(\mathbf{w}_{j,t}^\top \tilde{\mathbf{x}}))$.*

Remark. Our theory reveals how SAM enhances specific “backdoor neurons”. These neurons are defined by their response to a poisoned sample $\tilde{\mathbf{x}}$ (target label 0): they activate on the poisoned input, remain inactive on clean ones, and possess a negative output weight. Our proof demonstrates that for neurons meeting these criteria, this occurs because SAM’s optimization is driven to fit the

270 poisoned data point precisely, which in turn selectively amplifies their pre-activations. This selective
 271 amplification is the core mechanism that **raises the Top- k TAC**, thereby increasing the feature
 272 separability between poisoned and clean data and boosting detection performance. Further analysis
 273 and proofs are detailed in Sec. 4.3 and Secs. A.2 and A.3, respectively.
 274

275 **3.4 SAM-ENHANCED PSD**
 276

277 Building on the above findings that (1) the backdoor effect is concentrated within a small set of
 278 neurons identified by Top- k TAC, highlighting its significance for detection and suggesting that
 279 defenders should leverage the feature information of these Top- k neurons, and (2) SAM can amplify
 280 this neuron-level effect, we propose **SAM-enhanced Poison Sample Detection (SAM-enhanced-
 281 PSD)**, a three-stage framework designed to improve downstream detection:

- 282 • **Stage-1: Backdoored model training.** Train a backdoored model $f_{\theta_{\text{SAM}}}$ using SAM via Eq. (3).
 283
- 284 • **Stage-2: Backdoor-related feature extraction.** For each input, we get the intermediate features
 $g = \phi_{\theta_{\text{SAM}}}(x)$. Because the defender lacks ground-truth TAC indices, we apply feature extraction,
 285 which is validated to enhance detection in prior work (Hayase et al., 2021), to simulate backdoor-
 286 related features. Specifically, we compute scaled features as $g^s = \Sigma^{-1/2} P g$, where P is a PCA
 287 projection matrix estimated from the training data, and Σ is a covariance matrix estimated from a
 288 reference clean set along with dynamically filtered candidate clean samples. A detailed comparison
 289 between this PCA-based surrogate and the true Top- k neuron features is given in Sec. 4.3.
 290
- 291 • **Stage-3: Integrating with off-the-shelf PSD.** Apply an off-the-shelf PSD method (e.g., Activation
 292 Clustering) using the extracted features g^s as input.
 293

294 The full algorithmic details of SAM-enhanced PSD are provided in Sec. A.4.
 295

296 **4 EXPERIMENT**
 297

298 **4.1 EXPERIMENTAL SETUP**
 299

300 **Attack settings.** In this study, we evaluate the efficacy of backdoor attacks within an experimental
 301 framework. Specifically, we include thirteen backdoor attack methods: BadNets (Gu et al., 2019),
 302 both in its class-specific (BadNets-A2O) and universal forms (BadNets-A2A), Blended attack (Chen
 303 et al., 2017), Label-consistent attack (LC) (Turner et al., 2019), Low-frequency attack (LF) (Zeng
 304 et al., 2021), Sample-specific backdoor attack (SSBA) (Li et al., 2021b), Targeted contamination at-
 305 tack (TaCT) (Tang et al., 2021), Adaptive-Blend attack (Adap-Blend) (Qi et al., 2023a), Trojan attack
 306 (TrojanNN) (Liu et al., 2018), Warping-based attack (WaNet) (Nguyen & Tran, 2021), Input-aware dy-
 307 namic backdoor attack(Input-aware) (Nguyen & Tran, 2020), Bit-per-pixel attack(BppAttack) (Wang
 308 et al., 2022), and dubbed sparse and invisible backdoor attack (SIBA) (Gao et al., 2024). Each attack
 309 is configured according to the default settings provided by BackdoorBench (Wu et al., 2025). The ex-
 310 perimental evaluation is conducted on three benchmark datasets: CIFAR-10 (Krizhevsky et al., 2009),
 311 Tiny ImageNet (Russakovsky et al., 2015), and GTSRB (Stallkamp et al., 2011), and implemented on
 312 three neural network architectures, namely ResNet18 (He et al., 2016), VGG19-BN (Simonyan &
 313 Zisserman, 2014) and DenseNet-161 (Huang et al., 2017). Due to space constraints, the results for
 314 Tiny, VGG19-BN and DenseNet-161 are presented in Sec. C.1 and Sec. C.2. For our experiments, we
 315 set the poisoning ratio uniformly at 5% across all attack types, and the target label of BadNets-A2A
 316 is reassigned to $y_t = (y + 1) \bmod K$ for each class y , where K represents the total number of
 317 classes. However, the LC attacks, which only poison clean samples within the target class, can only
 318 be implemented for CIFAR-10. We consider **weak backdoor attacks** as those whose poisoning ratio
 319 is low (e.g., 1% or 0.5%), or those with weak trigger strength (e.g., Adap-Blend).
 320

321 **Detection settings.** In this study, we systematically evaluate the effectiveness of our proposed SAM-
 322 enhanced PSD, combined with a wide range of backdoor detection methods including Activation
 323 Clustering (AC) (Chen et al., 2019), Beatrix (Ma et al., 2022), SCAn (Tang et al., 2021) Spectral
 324 Signature (SS) (Tran et al., 2018), and Spectre (Hayase et al., 2021). Additionally, it is presumed
 325 that a small, clean dataset can be utilized to aid the detection process, a common practice in recent
 326 studies (Ma et al., 2022; Gao et al., 2019; Huang et al., 2023; Tang et al., 2021). For a balanced
 327 evaluation, each class in this auxiliary clean dataset contains 250 samples, which are carefully selected
 328

Table 1: Detection comparisons (measured by TPR (%), FPR (%) and F1 (%)) between base PSD and SAM-enhanced PSD (+SAM) on CIFAR-10 and ResNet18, and the better result in each pair is highlighted in **bold**. In terms of each metric, the average change of SAM-enhanced PSD to base PSD across all attacks is presented at the bottom: performance improvements are highlighted in **green**, other changes in **red**.

Detection → Attack ↓	Spectre / +SAM			SCAn / +SAM			SS / +SAM			AC / +SAM			Beatrix / +SAM		
	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑
BadNets	51.1/ 88.4	4.9/ 2.9	42.0/ 72.6	96.0 / 95.2	0.0/ 0.0	98.0 / 97.6	70.8/ 92.3	2.4/ 1.2	65.6/ 85.5	96.8 / 95.4	0.1/ 13.3	97.1 / 42.5	56.6/ 98.8	5.0/ 0.5	44.9/ 94.5
Blended	29.9/ 59.7	6.0/ 4.4	24.6/ 49.0	99.2 / 98.7	0.0/ 0.0	99.6 / 99.3	32.9/ 94.6	4.4/ 1.1	30.5/ 87.6	2.3 / 98.8	7.7/ 11.9	1.9 / 46.4	5.0/ 99.8	5.0/ 1.5	5.0/ 87.6
SSBA	36.6/ 67.2	5.6/ 3.7	30.1/ 59.8	93.9 / 96.5	0.0/ 0.0	96.9 / 98.2	80.4/ 89.9	1.9/ 1.4	74.5/ 83.3	99.3 / 96.5	3.3/ 16.2	76.1 / 38.3	16.8/ 98.9	5.0/ 0.4	15.8/ 95.5
LF	32.0/ 54.1	5.9/ 4.7	26.3/ 44.5	94.1 / 96.1	0.0/ 0.0	97.0 / 98.0	68.2/ 86.5	2.5/ 1.5	63.2/ 80.2	95.6 / 96.1	10.4/ 10.5	48.7 / 48.7	2.4/ 98.8	5.0/ 0.8	2.4/ 92.3
Adap-Blend	24.1/ 65.9	5.6/ 3.7	20.9/ 56.0	92.5 / 97.3	10.5/ 10.5	47.3 / 49.1	20.2/ 91.0	4.5/ 1.2	19.6/ 85.4	1.5 / 97.1	7.1/ 7.6	1.2 / 57.0	6.2 / 99.9	5.0/ 8.2	6.2/ 56.2
LC	17.0/ 41.7	4.3/ 3.0	17.1/ 41.9	100.0 / 99.9	0.0/ 0.0	100.0 / 99.9	40.5/ 47.8	2.1/ 1.7	45.0/ 53.2	0.0/ 100.0	0.0/ 0.0	0.0/ 100.0	2.2/ 99.9	5.0/ 3.2	2.2/ 76.6
TaCT	36.1/ 78.6	7.0/ 2.3	26.9/ 70.9	100.0 / 100.0	0.0/ 0.0	100.0 / 100.0	42.3/ 46.4	4.2/ 3.7	38.1/ 42.7	100.0 / 100.0	0.1/ 0.0	99.5 / 100.0	13.4/ 100.0	5.0/ 2.6	12.9/ 80.2
TrojanNN	30.2/ 62.4	6.0/ 4.3	24.8/ 51.3	100.0 / 100.0	0.0/ 0.0	100.0 / 100.0	63.4/ 97.2	2.8/ 1.0	58.7/ 90.1	99.9 / 100.0	3.2/ 12.0	76.7 / 46.7	4.6/ 100.0	5.0/ 3.5	4.6/ 75.3
WaNet	66.4/ 97.7	4.1/ 2.6	54.3/ 79.2	66.3 / 99.0	0.0/ 0.0	79.7 / 94.8	71.1/ 86.0	1.5/ 0.7	71.4/ 85.9	85.1 / 90.1	0.0/ 0.0	91.9 / 94.8	1.2/ 95.5	5.0/ 5.0	1.2/ 65.7
Input-aware	53.9/ 99.0	4.7/ 2.5	44.2/ 80.2	97.4 / 97.9	0.1/ 0.1	97.6 / 98.4	83.5/ 82.8	0.9/ 0.9	83.5/ 82.8	0.0/ 91.9	0.0/ 0.1	0.0 / 95.2	3.4/ 98.4	5.0/ 5.0	3.4/ 67.0
BppAttack	21.5/ 40.2	6.3/ 5.4	17.8/ 33.1	87.8 / 96.6	0.0/ 0.0	93.5 / 98.3	85.8/ 92.6	0.8/ 0.4	85.7/ 92.3	94.2 / 96.6	0.0/ 0.0	97.0 / 98.3	0.1/ 99.9	5.0/ 5.0	0.1/ 67.7
SIBA	30.0/ 65.2	6.0/ 4.1	24.6/ 53.6	98.7 / 98.9	0.0/ 0.0	99.3 / 99.4	72.9/ 91.5	1.2/ 0.3	74.2/ 93.1	96.8 / 98.9	0.0/ 0.0	98.4 / 99.5	4.3/ 90.3	5.0/ 5.0	4.3/ 63.3
BadNets-A2A	99.5/ 99.6	10.6/ 10.5	49.7/ 49.8	0.0/ 0.0	0.0/ 0.0	0.0/ 0.0	99.4/ 99.4	10.6/ 10.6	49.7/ 49.7	97.8 / 96.1	0.0/ 0.0	98.9 / 98.0	27.3/ 99.2	5.0/ 1.0	24.6/ 91.3
Average	+30.6	-1.7	+26.1	+3.2	-0.0	+1.9	+20.5	-1.1	+19.4	+29.8	+3.0	+13.7	+87.4	-1.8	+68.1

from the test dataset. Furthermore, as demonstrated in the Sec. D.2.2, our method remains robust even when using limited, sifted, or out-of-distribution auxiliary clean data.

Evaluation metrics. We adopt three common metrics to measure the detection performance: True Positive Rate (TPR), False Positive Rate (FPR) and F1 score. Higher TPR and F1 scores indicate better performance, while lower FPR denotes better.

4.2 MAIN RESULTS

Effectiveness of SAM-enhanced PSD. To validate the effectiveness of the SAM-enhanced PSD, we demonstrate the effects of different PSDs as well as these combined with SAM-enhanced PSD on CIFAR-10 and GTSRB datasets, as shown in Tab. 1 and Tab. 2, respectively. ① The SAM-enhanced PSD generally enhances various base off-the-shelf PSDs, as indicated in Tab. 1

and Tab. 2. For CIFAR-10, we improved the True Positive Rate (TPR) by over 25% for four detection methods. Averaged over 13 attack types and 5 detection methods on the CIFAR-10 dataset, our approach yields a 34.3% improvement in TPR. On GTSRB, we enhanced the detection performance of most methods, with increases in TPR exceeding 20% for two methods. ② For methods like Spectre, SS and Beatrix, which are based on anomaly detection, SAM-enhanced PSD increases the prominence of poisoned samples at backdoor neurons relative to clean samples, making these samples more anomalous and thus enhancing detection. In GTSRB, the number of poisoned and target clean samples is similar, which breaks the key assumption of anomaly-based methods like Spectre and SS. In addition, since neither method leverages a surrogate clean dataset, they lack the reference needed to discriminate poisoned inputs. We exclude them from our evaluation. ③ For the SCAn method, our approach shows significant improvements, especially under attacks where SCAn typically underperforms, such as WaNet. Since SCAn requires identification of the target label, it cannot detect BadNets-A2A. ④ For the AC, since SAM-enhanced PSD increases the activation of poisoned samples in backdoor-related neurons, it causes poisoned samples to deviate more from clean samples and cluster more tightly, thereby enhancing detection effectiveness. We also design an adaptive attack targeting our method and, as detailed in Sec. C.5, demonstrate that an attacker who cannot alter the training process cannot weaken our detector. Furthermore, retraining on the purified dataset confirms our defense’s effectiveness in Sec. C.6.

Performance under different poisoning ratios. To evaluate the impact of the poisoning ratio on the SAM-enhanced PSD, especially in the case of what we consider to be **weak backdoor attacks**, we present the average detection performance of four detection methods under all attacks on CIFAR-10

Table 2: Detection comparisons (%) between base PSD and SAM-enhanced PSD (+SAM) on GTSRB and ResNet18 (same evaluation setup as Tab. 1).

Detection → Attack ↓	SCAn / +SAM			AC / +SAM			Beatrix / +SAM		
	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑
BadNets	97.8 / 91.2	0.0/ 0.0	98.9 / 95.4	96.4 / 91.0	0.2/ 0.3	96.3 / 92.7	25.8 / 99.8	5.1/ 5.1	23.2 / 67.5
Blended	88.9/ 99.6	0.0/ 0.0	94.1/ 99.8	0.0/ 99.7	0.2/ 0.2	0.0/ 98.4	46.9/ 100.0	5.1/ 5.1	38.6/ 67.6
SSBA	100.0 / 97.3	0.0/ 0.0	100.0 / 98.7	91.0/ 97.4	0.1/ 0.3	94.0 / 96.0	35.7/ 100.0	5.1/ 5.0	30.8/ 67.6
LF	91.2 / 85.8	0.0/ 0.0	95.4 / 92.3	0.0/ 87.9	0.2/ 1.3	0.0/ 82.9	32.5/ 99.5	5.1/ 5.1	28.4/ 67.4
Adap-Blend	99.8 / 97.6	13.5/ 0.0	43.7 / 98.8	88.3/ 96.8	0.3/ 0.3	90.9/ 95.3	97.9/ 99.9	4.5/ 4.5	69.0/ 69.9
TrojanNN	99.9 / 99.9	0.0/ 0.0	100.0 / 100.0	98.3/ 99.9	0.4/ 0.3	95.4 / 97.2	36.8/ 100.0	5.1/ 5.1	31.6/ 67.6
WaNet	0.0/ 71.1	0.0/ 0.0	0.0/ 83.1	0.0/ 72.6	0.1/ 0.7	0.0/ 78.0	6.3/ 86.5	5.1/ 5.1	6.2/ 61.2
Input-aware	98.5 / 98.2	0.1/ 0.0	98.7 / 98.8	95.8 / 93.5	0.2/ 0.2	95.6 / 80.9	30.1/ 91.9	5.0/ 5.0	26.6/ 63.8
BppAttack	99.8 / 86.8	3.1/ 0.0	77.2 / 93.0	99.9 / 88.0	0.5/ 0.8	95.5 / 86.7	97.2/ 97.8	5.0/ 5.0	66.3/ 66.6
SIBA	99.3/ 99.6	0.0/ 0.0	0.0/ 0.0	91.7/ 99.6	0.3/ 0.5	93.0 / 95.0	13.2/ 100.0	5.1/ 5.1	12.6/ 67.6
BadNets-A2A	0.0/ 0.0	0.0/ 0.0	0.0/ 0.0	92.1/ 94.2	0.0/ 0.0	95.9 / 97.0	73.7/ 100.0	5.0/ 5.1	54.7/ 67.6
Average	+4.7	-1.5	+13.8	+24.3	+0.4	+22.1	+52.7	-0.0	+31.5

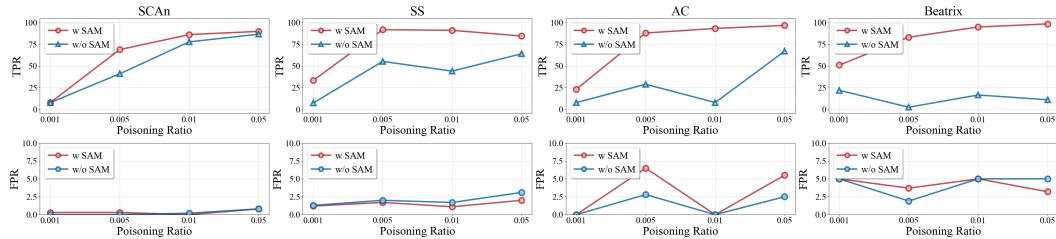


Figure 4: Detection performance of base PSD (w/o SAM) and SAM-enhanced PSD (w SAM) under different poisoning ratios on CIFAR10 and ResNet18.

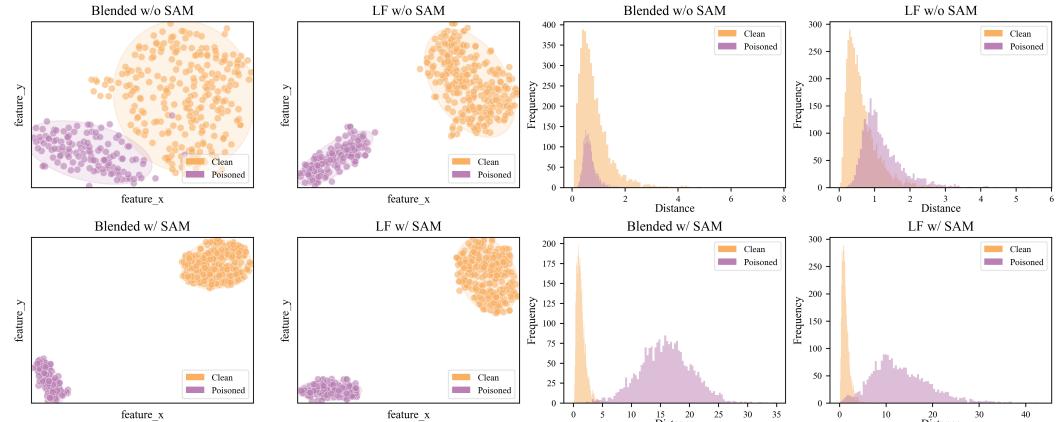


Figure 5: **Left:** t-SNE under different attacks in models trained with Vanilla training (Top row) and with SAM (Bottom row). **Right:** Distribution of distances between the target clean samples center and each sample in models trained with Vanilla training (Top row) and with SAM (Bottom row) under various backdoor attacks on CIFAR-10 and ResNet18.

and ResNet18, as shown in Fig. 4. The selected range for the poisoning ratio is $\{0.1\%, 0.5\%, 1\%, 5\%\}$. ① SAM-enhanced PSD enhances detection performance across different poisoning ratios as illustrated in Fig. 4. Notably, when the poisoning ratio is low such as 0.5% and 1%, SAM-enhanced PSD significantly improves the performance of PSDs. ② When the poisoning ratio is 0.1%, even though SAM-enhanced PSD improves performance, its average True Positive Rate (TPR) does not exceed 60%. The average attack success rate is only 31.8%, meaning a complete backdoor cannot form, which makes poisoned samples harder to detect. Detailed results are provided in Sec. C.3.

4.3 ANALYSIS OF SAM-ENHANCED-PSD

Ablation study in SAM-enhanced PSD. As shown in Tab. 3, we evaluate the impact of sharpness-aware minimization (SAM) and backdoor-related feature extraction (BRF) on the detection of backdoor attacks. Integrating SAM significantly enhances detection effectiveness by increasing the feature gap between clean and poisoned samples. Incorporating BRF pushes performance further by concentrating on the dimensions that are most informative for recognizing poisoned samples, thereby making the backdoor pattern more salient. Combining SAM and BRF provides both stronger feature separability and a focus on backdoor-relevant directions, yielding the best results against both attack types.

Effect of SAM on feature-space separation between poisoned and clean samples. To gain a deeper understanding of the impact of the SAM on poisoned and clean samples, we conduct a detailed analysis and visualization of the distribution of samples in the feature space in Fig. 5. ① t-SNE visualization: As shown on the **left** of Fig. 5, we demonstrate, through t-SNE, the distribution of poisoned and target clean samples in the feature space, where we observe that after training with

Table 3: Ablation study with different components of SAM-enhanced PSD under various backdoor attacks and base PSDs on CIFAR-10 and ResNet18.

Detection	SAM	BRF	SS		Beatrix	
			TPR(%)	FPR(%)	TPR(%)	FPR(%)
BadNets	✗	✗	70.8	2.4	56.6	5.0
	✓	✗	86.0	0.6	98.4	5.0
	✗	✓	72.8	1.2	67.0	5.0
	✓	✓	92.3	1.2	98.8	0.5
Blended	✗	✗	32.9	4.4	5.0	5.0
	✓	✗	90.6	0.3	79.8	5.0
	✗	✓	60.4	1.9	27.1	5.0
	✓	✓	94.6	1.1	99.8	1.5

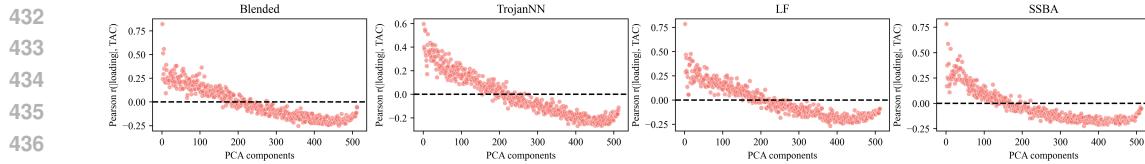


Figure 6: Pearson correlation between PCA component loadings and TAC scores under four different backdoor attacks on CIFAR10 dataset with ResNet18 model. Each point represents the Pearson correlation between the neuron loadings of the i -th PCA component and the neuron-wise TAC scores.

the SAM, poisoned samples are more distinctly separated from the target class. ② Distribution of distances between the target clean sample center and each sample: The center of the target clean samples is defined by the average of their features within the current model. As illustrated on the right of Fig. 5, in models trained with vanilla training (SGD), the features of poisoned samples are closer to the center of clean samples compared to those in models trained with SAM, which increases the difficulty in distinguishing between poisoned and clean samples. Sec. D.7 provides additional t-SNE visualizations of various attacks. These results show that, after training with the SAM, poisoned samples are much more clearly separated from the target class in feature space.

Relationship between Top- k TAC neurons and principal components. We analyze the alignment between the Top- k TAC neurons and PCA components to investigate how effectively BRF captures backdoor-relevant information. Specifically, we calculate the Pearson correlation coefficients $r_i = \text{corr}(l^{(i)}, t)$ between each principal component’s loading vector $l^{(i)}$ and the corresponding TAC score vector t . By plotting these correlations for various attacks (see Fig. 6), we consistently observe that the strongest correlations occur among the initial principal components and gradually diminish as we move toward components with lower variance contributions. This indicates that neurons with higher TAC values have larger loadings in the leading principal components, thus confirming that BRF effectively captures the backdoor-related signals embedded in the Top- k neuron subset.

Additional analyses in appendix. To further validate the robustness of our method, we provide several complementary analyses in Appendix Secs. C and D. ① **Adaptive attack.** We evaluate our framework under a stronger adversary with full knowledge of the SAM-based training procedure, who explicitly optimizes the trigger to minimize the feature-space gap. Even in this challenging setting, our method consistently achieves over 94% TPR across multiple detectors, whereas baseline performance drops to near zero. This result indicates that the proposed defense is difficult to circumvent unless the attacker can directly control the entire training process (details in Sec. C.5). ② **Computational efficiency.** Standard SAM approximately doubles training time. We demonstrate that our framework is fully compatible with efficient variants such as MSAM, which deliver comparable detection gains while incurring almost no additional runtime relative to the baseline. This ensures the method remains both effective and practical for real-world deployment (details in Sec. D.4). ③ **Stability and data flexibility.** We examine performance sensitivity to hyperparameters and SAM variant choices, finding the results to be stable across settings. Importantly, the method maintains strong detection performance even with limited clean samples, “sifted-clean” data extracted from the poisoned set, or entirely out-of-distribution auxiliary data. These findings highlight the flexibility and practical utility of our approach in diverse application scenarios (details in Secs. D.1 to D.3).

5 CONCLUSION

This work revisits existing poisoned sample detection (PSD) methods and finds that they often struggle against weak backdoor attacks, such as those with low poisoning ratios or weak trigger strengths. Our statistical analysis reveals a positive correlation between the strength of the backdoor effect and detection performance. Based on this finding, we propose to amplify the backdoor effect by training the model using Sharpness-Aware Minimization (SAM), without changing the poisoning ratio or trigger strength, thereby making poisoned samples more detectable. Our method, called *SAM-enhanced PSD*, integrates easily with any feature-based PSD method. Experiments on diverse datasets and network architectures show that our method significantly improves detection performance. This work contributes to defending against backdoor attacks in deep neural networks, providing a new perspective that complements existing detection methods and has the potential to inspire further research in this critical area.

486 6 ETHICS STATEMENT**487**
488 Our research is ethically motivated by the need to enhance the security of AI systems in critical
489 applications, as vulnerabilities like backdoor attacks pose significant risks to public safety and trust.
490 We acknowledge the dual-use nature of security research; however, our work is fundamentally
491 defensive in its aim to create more robust detection methods. By publicly sharing these findings, we
492 intend to empower the security community, believing the positive impact of creating more trustworthy
493 AI outweighs the potential for misuse.**494**
495 7 REPRODUCIBILITY STATEMENT**496**
497 To ensure our results are reproducible, all experiments were conducted using public benchmarks
498 such as the CIFAR-10 and GTSRB datasets with standard models like ResNet-18, all within the
499 BackdoorBench framework. We have documented the specific configurations for all thirteen attack
500 types and five detection methods evaluated. Key hyperparameters for both conventional SGD and
501 SAM-based training, along with detailed pseudocode for our method, are provided in the paper and
502 its appendix to allow for the complete replication of our findings.**503**
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES
541

542 Maksym Andriushchenko, Dara Bahri, Hossein Mobahi, and Nicolas Flammarion. Sharpness-aware
543 minimization leads to low-rank features. *Advances in Neural Information Processing Systems*, pp.
544 47032–47051, 2023.

545 Marlon Becker, Frederick Altrock, and Benjamin Risse. Momentum-sam: Sharpness aware mini-
546 mization without computational overhead. *arXiv e-prints*, 2024.

548 Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Edwards, Taesung
549 Lee, Ian Molloy, and Biplav Srivastava. Detecting backdoor attacks on deep neural networks by
550 activation clustering. In *Workshop on Artificial Intelligence Safety*. CEUR-WS, 2019.

551 Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep
552 learning systems using data poisoning. *arXiv e-prints*, 2017.

554 Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
555 for efficiently improving generalization. In *International Conference on Learning Representations*,
556 2021.

557 Kuofeng Gao, Yang Bai, Jindong Gu, Yong Yang, and Shu-Tao Xia. Backdoor defense via adaptively
558 splitting poisoned dataset. In *Conference on Computer Vision and Pattern Recognition*, pp.
559 4005–4014, 2023.

560 Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C Ranasinghe, and Surya Nepal.
561 Strip: A defence against trojan attacks on deep neural networks. In *Annual Computer Security
562 Applications Conference*, pp. 113–125, 2019.

564 Yinghua Gao, Yiming Li, Xueluan Gong, Zhifeng Li, Shu-Tao Xia, and Qian Wang. Backdoor attack
565 with sparse and invisible trigger. *IEEE Transactions on Information Forensics and Security*, 2024.

566 Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Evaluating backdooring
567 attacks on deep neural networks. *IEEE Access*, pp. 47230–47244, 2019.

569 Junfeng Guo, Yiming Li, Xun Chen, Hanqing Guo, Lichao Sun, and Cong Liu. Scale-up: An
570 efficient black-box input-level backdoor detection via analyzing scaled prediction consistency. In
571 *International Conference on Learning Representations*, 2023.

572 Jonathan Hayase, Weihao Kong, Raghav Soman, and Sewoong Oh. Spectre: Defending against
573 backdoor attacks using robust statistics. In *International Conference on Machine Learning*, pp.
574 4129–4139, 2021.

575 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
576 recognition. In *Conference on Computer Vision and Pattern Recognition*, pp. 770–778, 2016.

578 Linshan Hou, Ruili Feng, Zhongyun Hua, Wei Luo, Leo Yu Zhang, and Yiming Li. Ibd-psc:
579 Input-level backdoor detection via parameter-oriented scaling consistency. *arXiv e-prints*, 2024.

580 Mengxuan Hu, Zihan Guan, Yi Zeng, Junfeng Guo, Zhongliang Zhou, Jielu Zhang, Ruoxi Jia,
581 Anil Kumar Vullikanti, and Sheng Li. Mind control through causal inference: Predicting clean
582 images from poisoned data. In *International Conference on Learning Representations*, 2025.

584 Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
585 convolutional networks. In *Conference on Computer Vision and Pattern Recognition*, pp. 4700–
586 4708, 2017.

587 Hanxun Huang, Xingjun Ma, Sarah Monazam Erfani, and James Bailey. Distilling cognitive backdoor
588 patterns within an image. In *International Conference on Learning Representations*, 2023.

589 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
590 *Master's thesis, University of Tront*, 2009.

592 Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-aware
593 minimization for scale-invariant learning of deep neural networks. In *International Conference on
Machine Learning*, pp. 5905–5914, 2021.

594 Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Anti-backdoor learning:
 595 Training clean models on poisoned data. *Advances in Neural Information Processing Systems*, pp.
 596 14900–14912, 2021a.

597 Yige Li, Xixiang Lyu, Xingjun Ma, Nodens Koren, Lingjuan Lyu, Bo Li, and Yu-Gang Jiang.
 598 Reconstructive neuron pruning for backdoor defense. In *International Conference on Machine
 599 Learning*, pp. 19837–19854, 2023.

600 Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li, Ran He, and Siwei Lyu. Invisible backdoor attack
 601 with sample-specific triggers. In *International Conference on Computer Vision*, 2021b.

602 Siyuan Liang, Mingli Zhu, Aishan Liu, Baoyuan Wu, Xiaochun Cao, and Ee-Chien Chang. Badclip:
 603 Dual-embedding guided backdoor attack on multimodal contrastive learning. In *Conference on
 604 Computer Vision and Pattern Recognition*, pp. 24645–24654, 2024.

605 Min Liu, Alberto Sangiovanni-Vincentelli, and Xiangyu Yue. Beating backdoor attack at its own
 606 game. In *International Conference on Computer Vision*, pp. 4620–4629, 2023.

607 Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and Xiangyu
 608 Zhang. Trojaning attack on neural networks. In *Network and Distributed System Security
 609 Symposium*, 2018.

610 Wanlun Ma, Derui Wang, Ruoxi Sun, Minhui Xue, Sheng Wen, and Yang Xiang. The "beat-
 611 rix"resurrections: Robust backdoor detection via gram matrices. *arXiv e-prints*, 2022.

612 Maximilian Mueller, Tiffany Vlaar, David Rolnick, and Matthias Hein. Normalization layers are all
 613 that sharpness-aware minimization needs. *Advances in Neural Information Processing Systems*, pp.
 614 69228–69252, 2023.

615 Preetum Nakkiran, Behnam Neyshabur, and Hanie Sedghi. The deep bootstrap framework: Good
 616 online learners are good offline generalizers. *arXiv preprint arXiv:2010.08127*, 2020.

617 Tuan Anh Nguyen and Anh Tran. Input-aware dynamic backdoor attack. *Advances in Neural
 618 Information Processing Systems*, pp. 3454–3464, 2020.

619 Tuan Anh Nguyen and Anh Tuan Tran. Wanet - imperceptible warping-based backdoor attack. In
 620 *International Conference on Learning Representations*, 2021.

621 Soumyadeep Pal, Yuguang Yao, Ren Wang, Bingquan Shen, and Sijia Liu. Backdoor secrets
 622 unveiled: Identifying backdoor data with optimized scaled prediction consistency. In *International
 623 Conference on Learning Representations*, 2024.

624 Dimitrios P Panagoulias, Maria Virvou, and George A Tsihrintzis. Evaluating llm-generated multi-
 625 modal diagnosis from medical images and symptom analysis. *arXiv e-prints*, 2024.

626 Xiangyu Qi, Tinghao Xie, Yiming Li, Saeed Mahloujifar, and Prateek Mittal. Revisiting the as-
 627 sumption of latent separability for backdoor defenses. In *International Conference on Learning
 628 Representations*, 2023a.

629 Xiangyu Qi, Tinghao Xie, Jiachen T Wang, Tong Wu, Saeed Mahloujifar, and Prateek Mittal.
 630 Towards a proactive {ML} approach for detecting backdoor poison samples. In *USENIX Security
 631 Symposium*, pp. 1685–1702, 2023b.

632 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
 633 Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
 634 challenge. *International Journal of Computer Vision*, pp. 211–252, 2015.

635 Zhiyao Shu, Xiangguo Sun, and Hong Cheng. When llm meets hypergraph: A sociological analysis
 636 on personality via online social networks. In *ACM International Conference on Information and
 637 Knowledge Management*, pp. 2087–2096, 2024.

638 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 639 recognition. *arXiv e-prints*, 2014.

648 Jacob Mitchell Springer, Vaishnavh Nagarajan, and Aditi Raghunathan. Sharpness-aware minimization
 649 enhances feature quality via balanced learning. In *International Conference on Learning*
 650 *Representations*, 2024.

651 Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The german traffic sign
 652 recognition benchmark: a multi-class classification competition. In *International Joint Conference*
 653 *on Neural Networks*, pp. 1453–1460, 2011.

654 Di Tang, XiaoFeng Wang, Haixu Tang, and Kehuan Zhang. Demon in the variant: Statistical analysis
 655 of {DNNs} for robust backdoor contamination detection. In *USENIX Security Symposium*, pp.
 656 1541–1558, 2021.

657 Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in backdoor attacks. *Advances in*
 658 *Neural Information Processing Systems*, 2018.

659 Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Label-consistent backdoor attacks. *arXiv*
 660 *e-prints*, 2019.

661 Hang Wang, Zhen Xiang, David J Miller, and George Kesisidis. Mm-bd: Post-training detection of
 662 backdoor attacks with arbitrary backdoor pattern types using a maximum margin statistic. In *Symposium on Security and Privacy*, pp. 1994–2012, 2024.

663 Zhenting Wang, Juan Zhai, and Shiqing Ma. Bppattack: Stealthy and efficient trojan attacks against
 664 deep neural networks via image quantization and contrastive adversarial learning. In *Conference*
 665 *on Computer Vision and Pattern Recognition*, pp. 15074–15084, 2022.

666 Kaiyue Wen, Tengyu Ma, and Zhiyuan Li. How does sharpness-aware minimization minimize
 667 sharpness? *arXiv e-prints*, 2022.

668 Baoyuan Wu, Shaokui Wei, Mingli Zhu, Meixi Zheng, Zihao Zhu, Mingda Zhang, Hongrui Chen,
 669 Danni Yuan, Li Liu, and Qingshan Liu. Defenses in adversarial machine learning: A survey. *arXiv*
 670 *e-prints*, 2023.

671 Baoyuan Wu, Hongrui Chen, Mingda Zhang, Zihao Zhu, Shaokui Wei, Danni Yuan, Mingli Zhu,
 672 Ruotong Wang, Li Liu, and Chao Shen. Backdoorbench: A comprehensive benchmark and analysis
 673 of backdoor learning. *International Journal of Computer Vision*, pp. 1–88, 2025.

674 Zhen Xiang, Zidi Xiong, and Bo Li. Cbd: A certified backdoor detector based on local dominant
 675 probability. *Advances in Neural Information Processing Systems*, 36:4937–4951, 2023.

676 Zeming Yao, Hangtao Zhang, Yicheng Guo, Xin Tian, Wei Peng, Yi Zou, Leo Yu Zhang, and Chao
 677 Chen. Reverse backdoor distillation: Towards online backdoor attack detection for deep neural
 678 network models. *IEEE Transactions on Dependable and Secure Computing*, 2024.

679 Hakan Yekta Yatbaz, Mehrdad Dianati, and Roger Woodman. Introspection of dnn-based perception
 680 functions in automated driving systems: State-of-the-art and open research challenges. *IEEE*
 681 *Transactions on Intelligent Transportation Systems*, 2023.

682 Danni Yuan, Mingda Zhang, Shaokui Wei, Li Liu, and Baoyuan Wu. Activation gradient based
 683 poisoned sample detection against backdoor attacks. *International Conference on Learning*
 684 *Representations*, 2023.

685 Yi Zeng, Won Park, Z Morley Mao, and Ruoxi Jia. Rethinking the backdoor attacks' triggers: A
 686 frequency perspective. In *International Conference on Computer Vision*, pp. 16473–16481, 2021.

687 Yi Zeng, Minzhou Pan, Himanshu Jahagirdar, Ming Jin, Lingjuan Lyu, and Ruoxi Jia. {Meta-Sift}:
 688 How to sift out a clean subset in the presence of data poisoning? In *32nd USENIX Security*
 689 *Symposium (USENIX Security 23)*, pp. 1667–1684, 2023.

690 Runkai Zheng, Rongjun Tang, Jianze Li, and Li Liu. Data-free backdoor removal based on channel
 691 lipschitzness. In *European Conference on Computer Vision*, pp. 175–191, 2022.

692 Mingli Zhu, Shaokui Wei, Li Shen, Yanbo Fan, and Baoyuan Wu. Enhancing fine-tuning based
 693 backdoor defense with sharpness-aware minimization. In *International Conference on Computer*
 694 *Vision*, pp. 4466–4477, 2023.

702 Mingli Zhu, Siyuan Liang, and Baoyuan Wu. Breaking the false sense of security in backdoor defense
703 through re-activation attack. In *Conference on Neural Information Processing Systems*, 2024.
704

705 Juntang Zhuang, Boqing Gong, Liangzhe Yuan, Yin Cui, Hartwig Adam, Nicha C Dvornek, James
706 s Duncan, Ting Liu, et al. Surrogate gap minimization improves sharpness-aware training. In
707 *International Conference on Learning Representations*, 2022.

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **Reliable Poisoned Sample Detection against Backdoor Attacks Enhanced by**
 757 **Sharpness Aware Minimization**

759 **Appendix**

760 A Details of SAM-enhanced PSD	17
761 A.1 Theoretical analysis of the SAM update mechanism	17
762 A.2 Proof of the Lemma 1	17
763 A.3 Proof of the Proposition 1	18
764 A.4 Detailed algorithm of SAM-enhanced PSD	19
765 B Details of experiment settings	20
766 B.1 Detailed training settings	20
767 B.2 Detailed attack settings	20
768 B.3 Detailed detection settings	21
769 C Additional experiment results	21
770 C.1 Main experiments on Tiny ImageNet	21
771 C.2 Main experiments on different models	21
772 C.3 Experiments under different poisoning ratios	22
773 C.4 Analysis with non-feature-based detectors	22
774 C.5 Adaptive attack	23
775 C.6 Performance on the model trained by filtered data.	25
776 C.7 Comparison with inference-time detection methods	25
777 D Additional analysis of SAM-enhanced-PSD	26
778 D.1 Detection performance with different ρ	26
779 D.2 Detection performance on different parameters of extracting backdoor-related feature	27
780 D.2.1 Impact of feature dimension	27
781 D.2.2 Impact of the surrogate dataset	27
782 D.3 Detection performance with different SAM variants	28
783 D.4 Computational analysis	29
784 D.5 Statistical analysis of TAC values	29
785 D.6 Generalization of the TAC-Detection Correlation	30

810	D.7 t-SNE visualization	30
811		
812	E The Use of Large Language Models	31
813		
814		
815		
816		
817		
818		
819		
820		
821		
822		
823		
824		
825		
826		
827		
828		
829		
830		
831		
832		
833		
834		
835		
836		
837		
838		
839		
840		
841		
842		
843		
844		
845		
846		
847		
848		
849		
850		
851		
852		
853		
854		
855		
856		
857		
858		
859		
860		
861		
862		
863		

864 **A DETAILS OF SAM-ENHANCED PSD**
865866 **A.1 THEORETICAL ANALYSIS OF THE SAM UPDATE MECHANISM**
867

868 For theoretical tractability, we consider a two-layer ReLU network defined as $f(\mathbf{x}; \boldsymbol{\theta}) = \mathbf{a}^\top \sigma(\mathbf{W}\mathbf{x})$,
869 simplified as $f(\boldsymbol{\theta})$, with a logistic loss $\ell(\boldsymbol{\theta})$ to adapt to our task. Here, $\mathbf{W} = [\mathbf{w}_1, \dots, \mathbf{w}_m]^\top$
870 represents the weight matrix of the first layer. We analyze the pre-activation value of each hidden
871 neuron j , defined as $\mathbf{w}_j^\top \mathbf{x}$.

872 According to the SAM update rule, SAM introduces an extra second-order perturbation compared to
873 SGD. This update acts on the step- t weight $\mathbf{w}_{j,t}$ of neuron j and, in turn, changes its pre-activation
874 $\mathbf{w}_{j,t}^\top \mathbf{x}$. As stated in the lemma below, the one-step change splits into three parts: one *SGD part* plus
875 two *SAM parts*.

876 **Lemma 1.** *At training step t , the change in the pre-activation of neuron j approximately splits into:*

$$878 \quad \mathbf{w}_{j,t+1}^\top \mathbf{x} - \mathbf{w}_{j,t}^\top \mathbf{x} \simeq \eta(\textcircled{1} + \textcircled{2} + \textcircled{3}),$$

879 where

880 ① $-a_{j,t} \sigma'(\mathbf{w}_{j,t}^\top \mathbf{x}) \|\mathbf{x}\|_2^2 (s(f(\boldsymbol{\theta}_t)) - y)$ is the standard **SGD update**,

881 ② $-\rho \text{sign}(s(f(\boldsymbol{\theta}_t)) - y) s(f(\boldsymbol{\theta}_t))(1 - s(f(\boldsymbol{\theta}_t))) \|\nabla f(\boldsymbol{\theta}_t)\|_2 a_{j,t} \sigma'(\mathbf{w}_{j,t}^\top \mathbf{x}) \|\mathbf{x}\|_2^2$ is the **SAM data-fitting term**, and

882 ③ $-\rho |s(f(\boldsymbol{\theta}_t)) - y| \frac{\sigma(\mathbf{w}_{j,t}^\top \mathbf{x}) \|\mathbf{x}\|_2^2}{\|\nabla f(\boldsymbol{\theta}_t)\|_2}$ acts as a **SAM regularization component**.

883 where $s(z) = 1/(1 + \exp(-z))$ is the sigmoid function.

884 The decomposition above provides the foundation for the proposition mentioned in the main text.
885 Without loss of generality, let's assume the target label for a poisoned sample $\tilde{\mathbf{x}}$ is $y = 0$. For
886 any neuron j that is activated by this input (i.e., $\sigma(\mathbf{w}_{j,t}^\top \mathbf{x}) > 0$) and has a corresponding second-
887 layer weight $a_{j,t} < 0$, the sum of the data-fitting term and the regularization term may be positive
888 ($\textcircled{2} + \textcircled{3} > 0$).

889 This causes the SAM update to push the neuron's pre-activation more strongly than the SGD update
890 would, potentially leading to a positive change in TAC. This observation clarifies the core idea of our
891 proposition that SAM influences the model's feature representation by amplifying the activations of
892 specific neurons.

893 **A.2 PROOF OF THE LEMMA 1**
894

895 *Proof.* Considering the sample is (\mathbf{x}, y) . We have for the update of SAM:

$$896 \quad \begin{aligned} & \nabla \ell \left(\boldsymbol{\theta} + \rho \frac{\nabla \ell(\boldsymbol{\theta}_t)}{\|\nabla \ell(\boldsymbol{\theta}_t)\|_2} \right) \\ &= \nabla \ell(\boldsymbol{\theta}_t) + \rho \nabla^2 \ell(\boldsymbol{\theta}_t) \frac{\nabla \ell(\boldsymbol{\theta}_t)}{\|\nabla \ell(\boldsymbol{\theta}_t)\|_2} + \mathcal{O}(\rho^2) \\ &= \nabla [\ell(\boldsymbol{\theta}_t) + \rho \|\nabla \ell(\boldsymbol{\theta}_t)\|_2 + \mathcal{O}(\rho^2)]. \end{aligned} \tag{5}$$

900 Thus, under the first-order approximation, a step of SAM corresponds to a gradient update on the
901 regularized objective $\ell(\boldsymbol{\theta}_t) + \rho \|\nabla \ell(\boldsymbol{\theta}_t)\|_2$. Now recall that the layerwise gradients of a two-layer
902 ReLU network can be written as:

$$914 \quad \nabla_{\mathbf{a}_t} \ell(\boldsymbol{\theta}_t) = (s(f(\boldsymbol{\theta}_t)) - y) \cdot \sigma'(\mathbf{W}_t \mathbf{x}), \tag{6}$$

$$915 \quad \nabla_{\mathbf{w}_{j,t}} \ell(\boldsymbol{\theta}_t) = (s(f(\boldsymbol{\theta}_t)) - y) \cdot a_{j,t} \sigma'(\mathbf{w}_{j,t}^\top \mathbf{x}) \mathbf{x}, \tag{7}$$

916 where $s(f(\boldsymbol{\theta}_t)) = \frac{1}{1 + \exp(-f(\boldsymbol{\theta}_t))}$.

918 Then a direct computation gives us the following expression for the full gradient norm:
 919
 920
 921

$$\begin{aligned}
 & \|\nabla \ell(\boldsymbol{\theta}_t)\|_2 \\
 &= |s(f(\boldsymbol{\theta}_t)) - y| \cdot \|\nabla f(\boldsymbol{\theta}_t)\|_2 \\
 &= |s(f(\boldsymbol{\theta}_t)) - y| \sqrt{\|\sigma(\mathbf{W}_t \mathbf{x})\|_2^2 + \|\mathbf{x}\|_2^2 \cdot \|\mathbf{a}_t \odot \sigma'(\mathbf{W}_t \mathbf{x})\|_2^2},
 \end{aligned} \tag{8}$$

928 where \odot denotes element-wise multiplication. Then the update of $\mathbf{w}_{j,t}$ for neuron j on each step of
 929 SAM with step size η can be written as:
 930

$$\begin{aligned}
 \mathbf{w}_{j,t+1} &= \mathbf{w}_{j,t} - \eta (\nabla \ell(\boldsymbol{\theta}_t) + \rho \nabla \|\nabla \ell(\boldsymbol{\theta}_t)\|_2) + \mathcal{O}(\rho^2), \\
 \mathbf{w}_{j,t+1} &= \mathbf{w}_{j,t} - \eta (s(f(\boldsymbol{\theta}_t)) - y) a_{j,t} \sigma'(\mathbf{w}_{j,t}^\top \mathbf{x}) \mathbf{x} \\
 &\quad - \eta \rho \text{sign}(s(f(\boldsymbol{\theta}_t)) - y) s(f(\boldsymbol{\theta}_t)) (1 - s(f(\boldsymbol{\theta}_t))) \|\nabla f(\boldsymbol{\theta}_t)\|_2 a_{j,t} \sigma'(\mathbf{w}_{j,t}^\top \mathbf{x}) \mathbf{x} \\
 &\quad - \eta \rho |s(f(\boldsymbol{\theta}_t)) - y| / \|\nabla f(\boldsymbol{\theta}_t)\|_2 \sigma(\mathbf{w}_{j,t}^\top \mathbf{x}) \mathbf{x} + \mathcal{O}(\rho^2),
 \end{aligned}$$

941 where we used the fact that $\sigma'(\mathbf{w}_{j,t}^\top \mathbf{x}) \sigma(\mathbf{w}_{j,t}^\top \mathbf{x}) = \sigma(\mathbf{w}_{j,t}^\top \mathbf{x})$ and second-order terms are zero
 942 almost everywhere for ReLUs. The ρ refers to the radius of perturbation. If ρ is sufficiently small,
 943 $\mathcal{O}(\rho^2)$ is negligible relative to other terms in Eq. (3) of the manuscript. The assumption of sufficiently
 944 small ρ is commonly used to analyze the property of SAM in the community (Wen et al., 2022). The
 945 activation of Neuron can be approximately updated by:
 946

$$\begin{aligned}
 \mathbf{w}_{j,t+1}^\top \mathbf{x} &\simeq \mathbf{w}_{j,t}^\top \mathbf{x} - \eta a_{j,t} \sigma'(\mathbf{w}_{j,t}^\top \mathbf{x}) \|\mathbf{x}\|_2^2 (s(f(\boldsymbol{\theta}_t)) - y) \\
 &\quad - \eta \rho \text{sign}(s(f(\boldsymbol{\theta}_t)) - y) s(f(\boldsymbol{\theta}_t)) (1 - s(f(\boldsymbol{\theta}_t))) \|\nabla f(\boldsymbol{\theta}_t)\|_2 a_{j,t} \sigma'(\mathbf{w}_{j,t}^\top \mathbf{x}) \|\mathbf{x}\|_2^2 \\
 &\quad - \eta \rho |s(f(\boldsymbol{\theta}_t)) - y| \frac{\sigma(\mathbf{w}_{j,t}^\top \mathbf{x}) \|\mathbf{x}\|_2^2}{\|\nabla f(\boldsymbol{\theta}_t)\|_2} \\
 &= \eta(\textcircled{1} + \textcircled{2} + \textcircled{3}).
 \end{aligned}$$

□

A.3 PROOF OF THE PROPOSITION 1

961 *Proof.* We consider the clean sample and the corresponding poisoned sample is (\mathbf{x}, y) and $(\tilde{\mathbf{x}} =$
 962 $g(\mathbf{x}, \Delta), y_t)$, where Δ is a predefined trigger, g is a generation function and a target label y_t . Without
 963 loss of generality, we assume that the label of poisoned sample is 0. We have for the update of TAC:
 964

$$TAC_{j,t+1}(\mathcal{D}) - TAC_{j,t}(\mathcal{D}) = \frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} |\mathbf{w}_{j,t+1}^\top \mathbf{x} - \mathbf{w}_{j,t+1}^\top \tilde{\mathbf{x}}| - \frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} |\mathbf{w}_{j,t}^\top \mathbf{x} - \mathbf{w}_{j,t}^\top \tilde{\mathbf{x}}|. \tag{9}$$

971 Under the condition (iii), we have

$$\begin{aligned}
& |w_{j,t+1}^\top \mathbf{x} - w_{j,t+1}^\top \tilde{\mathbf{x}}| - |w_{j,t}^\top \mathbf{x} - w_{j,t}^\top \tilde{\mathbf{x}}| \\
&= (w_{j,t+1}^\top \tilde{\mathbf{x}} - w_{j,t}^\top \tilde{\mathbf{x}}) - (w_{j,t+1}^\top \mathbf{x} - w_{j,t}^\top \mathbf{x}) \\
&= -\eta a_{j,t} \sigma'(w_{j,t}^\top \tilde{\mathbf{x}}) \|\tilde{\mathbf{x}}\|_2^2 (s(f(\theta_t)) - y) \\
&\quad - \eta \rho \operatorname{sign}(s(f(\theta_t)) - y) s(f(\theta_t)) (1 - s(f(\theta_t))) \|\nabla f(\theta_t)\|_2 a_{j,t} \sigma'(w_{j,t}^\top \tilde{\mathbf{x}}) \|\tilde{\mathbf{x}}\|_2^2 \\
&\quad - \eta \rho |s(f(\theta_t)) - y| \frac{\sigma(w_{j,t}^\top \tilde{\mathbf{x}}) \|\mathbf{x}\|_2^2}{\|\nabla f(\theta_t)\|_2} \\
&\quad + \eta a_{j,t} \sigma'(w_{j,t}^\top \mathbf{x}) \|\mathbf{x}\|_2^2 (s(f(\theta_t)) - y) \\
&\quad + \eta \rho \operatorname{sign}(s(f(\theta_t)) - y) s(f(\theta_t)) (1 - s(f(\theta_t))) \|\nabla f(\theta_t)\|_2 a_{j,t} \sigma'(w_{j,t}^\top \mathbf{x}) \|\mathbf{x}\|_2^2 \\
&\quad + \eta \rho |s(f(\theta_t)) - y| \frac{\sigma(w_{j,t}^\top \mathbf{x}) \|\mathbf{x}\|_2^2}{\|\nabla f(\theta_t)\|_2} \\
&= -\eta a_{j,t} \sigma'(w_{j,t}^\top \tilde{\mathbf{x}}) \|\tilde{\mathbf{x}}\|_2^2 s(f(\theta_t)) \\
&\quad - \eta \rho s(f(\theta_t)) (1 - s(f(\theta_t))) \|\nabla f(\theta_t)\|_2 a_{j,t} \sigma'(w_{j,t}^\top \tilde{\mathbf{x}}) \|\tilde{\mathbf{x}}\|_2^2 \\
&\quad - \eta \rho s(f(\theta_t)) \frac{\sigma(w_{j,t}^\top \tilde{\mathbf{x}}) \|\tilde{\mathbf{x}}\|_2^2}{\|\nabla f(\theta_t)\|_2} \\
&\quad + \eta \rho (1 - s(f(\theta_t))) \frac{\sigma(w_{j,t}^\top \mathbf{x}) \|\mathbf{x}\|_2^2}{\|\nabla f(\theta_t)\|_2} \\
&\geq -\eta a_{j,t} \sigma'(w_{j,t}^\top \tilde{\mathbf{x}}) \|\tilde{\mathbf{x}}\|_2^2 s(f(\theta_t)) \\
&\quad \underbrace{\frac{\eta \rho s(f(\theta_t)) \|\tilde{\mathbf{x}}\|_2^2}{\|\nabla f(\theta_t)\|_2} \left(-(1 - s(f(\theta_t))) \|\nabla f(\theta_t)\|_2^2 a_{j,t} \sigma'(w_{j,t}^\top \tilde{\mathbf{x}}) - \sigma(w_{j,t}^\top \tilde{\mathbf{x}}) \right)}_{\text{positive under condition (i)}}
\end{aligned}$$

where the third equality uses condition (ii) together with the fact that the poisoned sample $\tilde{\mathbf{x}}$ has label $y = 0$. Hence

$$\begin{aligned}
& TAC_{j,t+1}(\mathcal{D}) - TAC_{j,t}(\mathcal{D}) \\
&\geq \frac{1}{|\mathcal{D}|} \underbrace{\sum_{\mathbf{x} \in \mathcal{D}} -\eta a_{j,t} \sigma'(w_{j,t}^\top \tilde{\mathbf{x}}) \|\tilde{\mathbf{x}}\|_2^2 s(f(\theta_t))}_{\text{SGD update term}} \\
&\quad + \underbrace{\frac{\eta \rho s(f(\theta_t)) \|\tilde{\mathbf{x}}\|_2^2}{\|\nabla f(\theta_t)\|_2} \left(-(1 - s(f(\theta_t))) \|\nabla f(\theta_t)\|_2^2 a_{j,t} \sigma'(w_{j,t}^\top \tilde{\mathbf{x}}) - \sigma(w_{j,t}^\top \tilde{\mathbf{x}}) \right)}_{\text{positive under condition (i)}}
\end{aligned}$$

where the first term is the standard SGD update and the second term is strictly positive under condition (i), ensuring an overall increase in the neuron's TAC.

□

A.4 DETAILED ALGORITHM OF SAM-ENHANCED PSD

We present a detailed algorithmic procedure for SAM-enhanced PSD in Algorithm 1. When training with Sharpness-Aware Minimization (SAM), we select dataset-specific sharpness parameter values, setting $\rho = 0.1$ for CIFAR-10 and $\rho = 0.4$ for both Tiny ImageNet and GTSRB. Additionally, we utilize a reference dataset containing 250 clean samples per class. Dimensionality reduction parameters are set specifically at 30 for CIFAR-10, 20 for GTSRB, and 10 for Tiny ImageNet, with each configuration undergoing 10 iterations. The detection thresholds for these datasets are established as 10, 25, and 5, respectively.

1026

Algorithm 1 Full Algorithm of SAM-enhanced PSD

1: **Input:** Dataset $\mathcal{D}_{tr} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$ to be cleansed, reference clean set \mathcal{D}_{ref} , loss function ℓ , model f_θ , epochs E , learning rate $\eta > 0$, perturbation bound $\rho > 0$, class K , reduced dimension d , iteration $iter$, threshold ϵ , detection algorithm \mathcal{A}

2: **Output:** The cleansed dataset D^*

3: Initialize θ_0 .

4: **for** $t = 1, \dots, E$ **do**

5: Sample a mini-batch B from \mathcal{D}_{tr} ;

6: Update ϵ_{t+1} via $\rho \frac{\nabla_\theta \mathcal{L}(\theta_t)}{\|\nabla_\theta \mathcal{L}(\theta_t)\|_2}$ w.r.t. B ;

7: Update weights: $\theta_{t+1} = \theta_t - \eta \nabla_\theta \mathcal{L}(\theta_t + \epsilon_{t+1})$ w.r.t. B ;

8: **end for**

9: **for** $k = 1, \dots, K$ **do**

10: Get the representation sets of class c for training dataset $\mathcal{G}_{tr,k} = \{\mathbf{g} = f_\theta(\mathbf{x}) \mid (x, y) \in \mathcal{D}_{tr}, y = c\}$ and reference dataset $\mathcal{G}_{ref,k} = \{\mathbf{g} = f_\theta(\mathbf{x}) \mid (x, y) \in \mathcal{D}_{ref}, y = c\}$

11: Perform PCA on normalized $\mathcal{G}_{tr,k}$ to extract the top- d features and obtain the projection matrix $P \in \mathbb{R}^{p \times d}$, where p is the original feature dimension.

12: Obtain projected features $\tilde{\mathcal{G}}_{tr,k}$ and $\tilde{\mathcal{G}}_{ref,k}$.

13: **for** $i = 1, \dots, iter$ **do**

14: Estimate the mean μ_k and covariance matrix Σ_k based on the features of the reference dataset $\tilde{\mathcal{G}}_{ref,k}$.

15: Compute the Mahalanobis distance from $\tilde{\mathcal{G}}_{tr,k}$ to the mean μ_k .

16: Add samples to the reference dataset features $\tilde{\mathcal{G}}_{ref,k}$ if Mahalanobis distance is less than $\frac{i*\epsilon}{iter}$.

17: **end for**

18: Project the features $\tilde{\mathcal{G}}_{tr,k}$ for class k using the final covariance matrix Σ_k to get $\tilde{\mathcal{G}}_{tr,k}^* = \{\mathbf{g}^* = \Sigma_k^{-1/2} \mathbf{g} \mid \mathbf{g} \in \tilde{\mathcal{G}}_{tr,k}\}$.

19: **end for**

20: Input the projected features $\tilde{\mathcal{G}}_{tr}^*$ into the detection algorithm \mathcal{A} to obtain the filtered dataset $D^* = \mathcal{A}(\tilde{\mathcal{G}}_{tr}^*)$.

21: **return** D^*

1056

B DETAILS OF EXPERIMENT SETTINGS

1057

B.1 DETAILED TRAINING SETTINGS

1060

1061

In our experiments, all vanilla training sessions utilize Stochastic Gradient Descent (SGD) with a learning rate lr of 0.1, momentum of 0.9, and a weight decay of 1×10^{-4} . However, for training on the VGG19-BN model, we adjust the learning rate to 0.01 to optimize performance. All training sessions across these experiments are standardized to 100 epochs, ensuring consistency in our approach to model development and evaluation across different datasets.

1066

B.2 DETAILED ATTACK SETTINGS

1069

The methodologies in our experiment, including BadNets (Gu et al., 2019), Blended attack (Chen et al., 2017), Label-consistent attack (LC) (Turner et al., 2019), Low-frequency attack (LF) (Zeng et al., 2021), Sample-specific backdoor attack (SSBA) (Li et al., 2021b), Trojan attack (TrojanNN) (Liu et al., 2018), Warping-based attack (WaNet) (Nguyen & Tran, 2021), Input-aware dynamic backdoor attack(Input-aware) (Nguyen & Tran, 2020), Bit-per-pixel attack(BppAttack) (Wang et al., 2022), and dubbed sparse and invisible backdoor attack (SIBA) (Gao et al., 2024), are configured following the standard settings provided by BackdoorBench (Wu et al., 2025), a recognized benchmark for backdoor attacks. The target label for GTSRB is 2 and the target label for CIFAR-10 is 0. The TaCT (Tang et al., 2021) method targets a specific class (1,3) by inserting a trigger into the samples and changing their labels to a target label. Additionally, it uses another class (5,7), where the same trigger is applied but without changing the labels. Only about 0.05% of the samples receive the trigger without changing the labels. The Adap-Blend (Qi et al., 2023a) method uses an adaptive

1080 approach where a masking parameter $m = 0.5$ controls the probability of concealing parts of the
 1081 images with a trigger.
 1082

1083 B.3 DETAILED DETECTION SETTINGS 1084

1085 The methodologies in our experiment, including Activation Clustering (AC) (Chen et al., 2019),
 1086 Beatrix (Ma et al., 2022), SCAn (Tang et al., 2021) Spectral Signature (SS) (Tran et al., 2018) and
 1087 Spectre (Hayase et al., 2021), are configured following the standard settings provided by Backdoor-
 1088 Bench (Wu et al., 2025). For the Spectral Signature (SS) and Spectre methodologies, we adjust the
 1089 proportion of potentially harmful samples to $1.5 * p$, where p is the poisoning ratio and we adopt the
 1090 strategy outlined in previous studies (referenced as Yuan et al. (2023)) to determine the target label for
 1091 these potentially poisoned samples, which are applied in both the base detection and SAM-enhanced
 1092 PSD. The Activation Clustering (AC) method typically requires that the volume of potential poisoned
 1093 samples be less than 35% of the number of samples in the class. However, given the large number
 1094 of classes in the GTSRB dataset and the proximity of the poisoned sample volume to 50% of the
 1095 number of samples in the class, we disregard the usual 35% threshold in this specific case.
 1096

1097 C ADDITIONAL EXPERIMENT RESULTS

1098 C.1 MAIN EXPERIMENTS ON TINY IMAGENET

1100 To validate the detection performance of SAM-enhanced PSD on large datasets, we conduct a series of
 1101 tests using Tiny ImageNet. Due to the limited number of samples per category in the Tiny ImageNet,
 1102 it poses a challenge for various attack and detection methods. In our experiments, we limited the
 1103 poisoning rate to 0.5% and only tested attack types that could meet the prerequisites for the number of
 1104 poisoned samples under this condition. Detection methods like AC, SS, and Spectre are also excluded
 1105 from our tests because these methods require fewer poisoned samples than there are samples in the
 1106 target class, a condition difficult to meet with the Tiny ImageNet.

1107 As shown in Tab. 4, our experimental results indicate that SAM-enhanced PSD performs exceptionally
 1108 well in enhancing detection. We found that despite the limited number of clean samples per category,
 1109 this method effectively improved the recognition of poisoned samples.
 1110

1111 Table 4: Comparison of TPR (%) and FPR (%) between base PSD and SAM-enhanced PSD (+SAM)
 1112 on Tiny ImageNet and ResNet18 with poisoning ratio = 0.5%. Top 1 are **bold**. When comparing SAM-
 1113 enhanced PSD to base PSD, performance improvements are highlighted in **green**, other changes in
 1114 **red**.
 1115

1116 Detection → 1117 Attack ↓	SCAn / +SAM			Beatrix / +SAM		
	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑
1118 BadNets	0.0/ 43.8	0.0 /0.8	0.0/ 29.5	79.4/ 81.4	5.3 /5.8	12.9 /12.2
1119 Blended	0.0/ 75.6	0.0/ 0.0	0.0/ 86.1	15.2/ 73.4	5.3 /5.7	2.6/ 11.2
1120 SSBA	0.0/ 73.0	0.0/ 0.0	0.0/ 80.3	13.2/ 55.2	5.3 /5.9	2.3/ 8.3
1121 LF	0.0/ 52.2	0.0 /0.2	0.0/ 53.2	33.6/ 35.6	5.3 /5.9	5.7 /5.5
1122 TrojanNN	0.0/ 100.0	0.0/ 0.0	0.0/ 100.0	4.8/ 99.6	5.3 /5.7	0.8/ 15.0
1123 Average	+68.9	+0.2	+69.8	+39.8	+0.5	+5.5

1124 C.2 MAIN EXPERIMENTS ON DIFFERENT MODELS

1127 To explore the effects of SAM-enhanced PSD across different model architectures, we conduct a
 1128 series of experiments using DenseNet-161, VGG19-BN, and the CIFAR-10 dataset. As shown in
 1129 Tab. 5 and Tab. 6, the experimental results demonstrate that the implementation of SAM-enhanced
 1130 PSD significantly improves detection performance in both the DenseNet-161 and the VGG19-BN
 1131 models. However for the VGG19-BN model, although SAM-enhanced PSD enhanced the detection
 1132 capabilities of this model, the improvement in TPR is still unsatisfactory under some backdoor
 1133 attacks. The deep network architecture and large feature dimensionality of VGG19-BN result in a
 dispersion of backdoor signals within the feature space, making it challenging for SAM to effectively

concentrate and enhance these signals. Based on these findings, selecting an appropriate model architecture is crucial for enhancing detection outcomes. It is beneficial for the defender to adjust the model structure to improve detection performance, which can be fully controlled by the defender.

Table 5: Comparison of TPR (%) and FPR (%) between base PSD and SAM-enhanced PSD (+SAM) on CIFAR-10 and DenseNet-161 with poisoning ratio = 5%. Top 1 are **bold**. When comparing SAM-enhanced PSD to base PSD, performance improvements are highlighted in **green**, other changes in **red**.

Detection → Attack ↓	Spectre / +SAM			SCAn / +SAM			SS / +SAM			AC / +SAM			Beatrix / +SAM		
	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑
BadNets	88.3% 96.4	2.9/2.5	72.6/79.2	47.7% 85.8	4.6/0.0	40.7/92.3	79.6% 81.2	0.9/0.8	81.0/82.7	90.4% 87.7	0.0/0.0	95.0% 93.5	25.7/97.6	5.0/5.0	23.3/66.7
Blended	43.6% 97.2	5.3/2.4	35.8/79.9	45.0% 89.2	4.5/0.0	38.9/94.3	84.1% 80.2	0.7/0.9	85.6% 81.6	98.0/95.0	0.0/0.0	98.9% 97.5	3.3/98.8	5.0/5.0	3.3/67.2
SSBA	53.8% 84.1	4.7/2.9	46.6/68.6	4.6/0.0	39.8/81.3	79.4/88.1	0.9/1.5	88.0/81.4	94.0/88.5	0.0/0.0	96.7% 93.9	16.2/92.4	5.0/5.0	15.4/64.3	
LF	59.0% 84.5	4.4/3.1	48.4/69.4	48.0% 89.8	4.7/0.0	40.3/93.4	79.3% 83.4	0.9/2.3	80.7% 73.6	94.6% 91.3	0.0/0.0	97.1% 95.4	11.1/62.4	5.0/5.0	10.8/48.4
Adap-Blend	54.2% 92.8	4.2/2.4	46.3/78.0	47.4% 81.2	4.2/10.4	41.6/42.8	78.4% 74.2	0.8/1.0	80.6% 76.5	96.2% 89.2	0.0/0.0	98.0% 94.3	7.0/96.8	5.0/5.0	6.9/66.3
LC	41.3% 65.6	3.0/1.8	41.5/65.9	0.0/99.3	0.0/0.0	0.0/99.7	29.1/42.2	2.0/1.3	34.9/50.6	100.0/99.3	0.0/0.0	99.9% 99.7	0.5/90.4	5.0/5.0	0.5/63.3
TaCT	19.3% 70.3	6.2/0.5	16.3/78.0	47.9% 99.3	5.3/0.0	38.4/99.6	39.6% 49.6	3.0/1.9	40.2/53.4	98.5/99.3	0.0/0.1	99.3% 98.9	2.5/100.0	5.0/5.0	2.5/67.8
TrojanNN	19.8% 79.7	6.5/3.4	16.2/65.5	48.0% 97.2	4.6/0.0	40.7/98.6	80.0/89.7	0.9/0.4	81.4/91.3	95.8/97.2	0.0/0.0	97.8/98.6	3.2/99.9	5.0/5.0	3.2/67.7
WaNet	61.4% 82.5	4.4/3.3	50.3/67.1	48.2% 76.6	4.8/0.0	40.3/86.6	54.3% 73.4	2.3/1.4	54.8% 73.6	0.0/77.8	0.0/0.0	0.0/87.3	6.6/93.3	5.0/5.0	6.5/64.7
Input-aware	63.9% 93.0	14.4/0.4	29.2/93.2	87.9% 98.6	0.0/0.0	93.5/99.3	79.5% 82.0	0.0/0.5	88.6% 85.9	0.0/90.2	0.0/0.0	0.0/94.9	4.3/100.0	5.0/5.0	4.3/67.8
BppAttack	25.5% 40.3	54.0/7.1	4.4/29.3	69.8% 93.6	0.0/0.0	82.2/96.7	94.8% 83.3	7.5/7.0	56.3% 52.6	99.7% 97.4	0.0/0.6	99.8% 93.4	0.0/95.2	5.0/5.0	0.0/65.6
SIBA	39.8% 67.7	0.0/4.8	56.9/52.2	96.4% 100.0	16.6/1.2	37.7/99.1	75.1% 92.3	17.2/0.0	30.0/96.0	81.3% 99.4	25.7/3.5	24.3/74.8	3.2/99.0	5.0/5.0	3.2/63.4
BadNets-A2A	99.3% 99.4	10.6/10.6	49.7/49.7	0.0/0.0	0.0/0.0	0.0/0.0	99.6% 99.4	10.6/10.6	49.8% 49.7	97.2% 95.6	0.0/0.0	98.5% 97.7	32.7/99.4	5.0/5.0	28.7/67.5
Average	+29.9	-5.8	+28.3	+29.0	-3.2	+37.0	+5.1	-1.4	+8.0	+12.5	-1.7	+16.5	+84.7	-0.0	+56.3

Table 6: Comparison of TPR (%) and FPR (%) between base PSD and SAM-enhanced PSD (+SAM) on CIFAR-10 and VGG19-BN with poisoning ratio = 5%. Top 1 are **bold**. When comparing SAM-enhanced PSD to base PSD, performance improvements are highlighted in **green**, other changes in **red**.

Detection → Attack ↓	Spectre / +SAM			SCAn / +SAM			SS / +SAM			AC / +SAM			Beatrix / +SAM		
	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑
BadNets	53.2% 74.2	4.7/3.6	43.7/61.0	0.0/86.4	0.0/0.1	0.0/91.5	34.2/57.8	3.3/2.0	34.8/58.8	0.0/0.0	0.0/0.0	0.0/0.0	4.0/64.3	5.0/5.0	4.0/49.6
Blended	76.8% 73.8	3.5/6.1	63.1/50.9	44.6/93.9	4.4/0.0	38.9/96.9	42.5/76.6	2.8/1.1	43.2/77.9	64.2/97.4	0.0/0.0	78.0/98.6	7.7/99.4	5.0/5.0	7.6/67.5
SSBA	40.3% 86.8	5.4/3.0	33.1/71.4	0.0/61.0	0.0/0.0	0.0/75.7	33.4/58.7	3.3/2.0	34.0/59.7	0.0/58.1	0.0/0.0	0.0/73.4	2.6/77.4	5.0/5.0	2.7/56.8
LF	84.5% 83.8	3.1/3.1	69.4/68.9	47.2/42.9	4.4/0.0	41.0/59.8	68.1/68.8	1.5/1.5	69.3/70.0	0.0/22.0	0.0/0.0	0.0/36.0	36.6/80.2	5.0/5.0	31.6/58.2
Adap-Blend	26.0% 55.9	5.5/4.1	22.5/47.7	45.4% 40.1	13.3/10.5	22.8/23.7	27.4% 40.7	3.3/2.6	29.0/42.7	0.0/2.4	0.0/0.1	0.0/4.7	0.4/15.2	5.0/5.0	0.4/14.5
LC	28.8% 56.2	3.7/4.5	28.9/46.4	0.0/100.0	0.0/0.0	0.0/100.0	31.4/40.2	1.9/1.4	37.7/48.2	99.6/100.0	0.0/0.0	99.5/100.0	1.0/100.0	5.0/5.0	1.0/67.8
TaCT	26.7% 45.4	5.4/5.7	23.4/35.7	46.5% 100.0	5.3/0.0	37.6/100.0	30.6/37.7	4.0/3.2	29.6/37.9	100.0/100.0	0.0/0.0	100.0/100.0	1.1/100.0	5.0/5.0	1.2/67.8
TrojanNN	32.9% 55.5	5.8/4.6	27.0/45.6	42.5% 99.2	4.6/0.0	36.8/99.6	61.3/92.6	1.9/0.2	62.4/94.2	99.2/99.4	0.0/0.0	99.6/99.7	0.8/99.8	5.0/5.0	0.9/67.7
WaNet	52.9% 72.8	4.8/3.8	43.4/59.4	0.0/0.0	0.0/0.0	0.0/0.0	18.0/43.9	4.1/2.8	18.4/44.5	0.0/9.6	0.0/0.0	0.0/17.5	0.7/44.4	5.0/5.0	0.7/37.1
Input-aware	51.1% 99.0	6.0/2.3	38.4/81.5	95.5% 98.3	1.4/0.0	85.9/98.8	85.1% 82.1	0.0/1.5	91.9/78.3	0.0/92.7	3.5/3.0	0.0/93.8	0.0/100.0	5.0/5.0	0.0/67.8
BppAttack	22.1% 40.4	5.1/5.4	20.1/33.2	83.9% 96.6	0.0/0.0	91.2/98.3	81.7/92.7	0.0/0.2	89.9/86.3	94.2/96.5	0.0/0.0	97.0/98.2	0.0/99.3	5.0/5.0	0.0/67.5
SIBA	25.2% 64.2	6.2/5.0	20.8/49.7	100.0% 99.0	0.0/0.0	100.0/99.5	74.6/91.4	0.7/0.0	79.6/95.4	95.3/99.2	5.9/0.0	61.9/99.6	5.1/90.9	5.0/5.0	5.1/63.6
BadNets-A2A	98.8% 91.2	10.6/11.0	49.4/45.6	0.0/0.0	0.0/0.0	0.0/0.0	23.8/97.8	14.5/10.6	0.0/64.9	0.0/0.3	0.0/76.5	24.6/74.2	5.0/5.0	22.4/55.1	
Average	+21.6	-0.6	+16.4	+31.7	-2.1	+37.7	+20.7	-0.9	+16.2	+22.3	-0.6	+27.9	+73.9	-0.0	+51.0

C.3 EXPERIMENTS UNDER DIFFERENT POISONING RATIOS

To demonstrate the stability and effectiveness of SAM-enhanced PSD against weak backdoor attacks, we evaluate its detection performance at various low poisoning ratios, focusing on the 1% and 0.5% settings. We also discuss the extreme scenario of 0.1% poisoning.

As shown in Tab. 7 and Tab. 8, our method provides substantial and consistent performance gains in these weak backdoor scenarios. At a 1% poisoning ratio, SAM-enhanced PSD boosts the average True Positive Rate, TPR, across all detection methods, with particularly large average gains for SS at +47.0% and AC at +85.4%. This strong performance is maintained at the more challenging 0.5% ratio, where our method again significantly improves the average TPR for detectors like Beatrix and SCAn with gains of +80.7% and +27.9%, respectively, all while keeping FPR low. These results confirm our method’s efficacy in amplifying the backdoor signal in weak attack settings.

As shown in Tab. 9, we also investigate the extreme scenario of 0.1% poisoning. At this ratio, the detection challenge becomes fundamental. We find that the potency of the backdoor attacks themselves is intrinsically limited, with the average ASR, across all tested attacks being merely 31.8%, which implies that the backdoor signal is inherently weak and ambiguous. Despite this inherent challenge, SAM-enhanced PSD still demonstrates a significant enhancement effect, providing considerable relative performance improvements for the base detectors. For instance, it achieves a +27.7% TPR gain for Spectre. This shows that our approach effectively amplifies backdoor features, even when the signal is at its weakest.

C.4 ANALYSIS WITH NON-FEATURE-BASED DETECTORS

To comprehensively define the scope of our SAM-enhanced framework, we investigate its effectiveness when applied to other categories of detectors, including perturbation-based and topology-based methods.

1188 Table 7: Comparison of TPR (%) and FPR (%) between base PSD and SAM-enhanced PSD (+SAM)
1189 on CIFAR-10 and ResNet18 with poisoning ratio=1%. Top 1 are **bold**. When comparing SAM-
1190 enhanced PSD to base PSD, performance improvements are highlighted in **green**, other changes in
1191 **red**.

Detection → Attack ↓	Spectre / +SAM			SCAn / +SAM			SS / +SAM			AC / +SAM			Beatrix / +SAM		
	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑
BadNets	78.0/83.8	0.7/0.7	62.4/67.0	92.4 /91.6	0.0/0.0	96.0 /95.6	66.4/96.2	0.3/0.0	66.7/96.6	0.0/91.6	0.0/0.0	0.0/95.6	49.8/99.2	5.0/5.0	15.4/28.5
Blended	19.8/57.4	1.3/0.9	15.8/45.9	95.4/96.2	0.0/0.0	97.6/98.1	8.2/99.4	0.9/0.0	8.2/99.4	0.0/96.2	0.0/0.0	0.0/98.1	8.2/100.0	5.0/5.0	2.7/28.7
SSBA	70.4/97.4	0.8/0.5	56.3/77.9	92.2 /90.4	0.0/0.0	95.9 /95.0	3.6/97.4	1.0/0.0	3.6/97.8	0.0/99.4	0.0/0.1	0.0/90.6	3.4/99.4	5.0/5.0	1.1/28.6
LF	60.6 /52.0	0.9/1.0	48.5 /51.6	88.4/99.6	0.0/0.0	93.8/95.9	54.2/96.2	0.5/0.0	54.4/96.6	0.0/99.6	0.0/0.0	0.0/95.1	2.6/95.6	5.0/5.0	0.9/27.6
Adap-Blend	71.9/88.5	0.8/0.6	57.3/70.5	93.1 /91.5	2.0/0.0	47.4/95.6	55.9/98.0	0.4/0.0	56.5/98.8	0.0/91.5	0.0/0.0	0.0/95.6	9.7/98.8	5.0/5.0	3.2/28.4
LC	4.0/42.2	1.5/2.6	3.2/21.1	100.0/100.0	0.0/0.0	100.0/100.0	60.4/91.0	0.3/0.0	63.2/95.3	0.0/100.0	0.0/0.0	0.0/100.0	23.4/100.0	5.0/5.0	7.6/28.8
TaCT	0.1/33.0	1.6/1.1	0.1/27.5	100.0/100.0	0.0/0.0	100.0/100.0	8.0/24.3	1.0/0.0	7.6/39.1	0.0/100.0	0.0/0.0	0.0/100.0	36.0/100.0	5.0/5.0	11.4/28.8
TrojanNN	96.4 /51.4	0.5/4.9	77.1/16.1	100.0/100.0	0.0/0.0	100.0/100.0	0.4/99.2	1.0/0.0	0.4/99.6	0.0/100.0	0.0/0.0	0.0/100.0	25.8/100.0	5.0/5.0	8.3/28.7
WaNet	71.4/86.4	0.9/0.8	53.8/64.4	0.0/71.9	0.0/0.0	0.0/83.6	50.9/84.9	0.6/0.3	48.8/78.6	0.0/71.1	0.0/0.0	0.0/83.1	1.8/83.6	5.0/5.0	0.6/24.6
Input-aware	69.6/96.7	1.0/0.7	52.5/71.4	81.6 92.8	0.0/0.0	88.2/94.2	75.7/99.5	0.4/0.2	70.7/99.8	0.0/93.6	0.0/0.1	0.0/93.5	15.9/62.1	5.0/5.0	5.2/18.9
BppAttack	94.9/98.0	0.8/0.7	70.2/72.2	67.0 94.9	0.0/0.0	80.2/97.4	94.1/98.0	0.2/0.2	86.3/89.5	69.6/94.6	0.0/0.0	82.1/97.2	2.0/98.5	5.0/5.0	0.7/28.4
SIBA	0.2/16.2	1.5/1.4	0.2/13.0	99.8 98.8	0.0/0.0	99.9 99.5	0.0/99.2	1.0/0.0	0.0/99.6	0.0/99.0	0.0/0.0	0.0/99.5	2.0/97.2	5.0/5.0	0.7/28.0
BadNets-A2A	99.8/100.0	14.1/14.1	12.5/12.5	0.0/0.0	0.0/0.0	0.0/0.0	93.8/100.0	14.2/14.1	11.7/12.5	31.2/93.6	0.0/0.0	47.6/96.7	33.4/99.4	5.0/5.0	10.6/28.6
Average	+12.8	+0.3	+7.0	+8.4	-0.2	+12.0	+47.0	-0.6	+47.4	+85.4	-0.0	+85.8	+78.4	-0.0	+22.1

1200 Table 8: Comparison of TPR (%) and FPR (%) between base PSD and SAM-enhanced PSD (+SAM)
1201 on CIFAR-10 and ResNet18 with poisoning ratio=0.5%. Top 1 are **bold**. When comparing SAM-
1202 enhanced PSD to base PSD, performance improvements are highlighted in **green**, other changes in
1203 **red**.

Detection → Attack ↓	Spectre / +SAM			SCAn / +SAM			SS / +SAM			AC / +SAM			Beatrix / +SAM		
	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑
BadNets	90.0/98.4	1.1/1.0	45.0/49.2	0.0 88.4	0.0/0.0	0.0 93.8	78.4/97.6	1.2/1.1	37.9/47.2	84.0/88.4	1.9/8.2	30.1 9.7	2.0/97.6	0.5/1.6	2.0/37.7
Blended	28.4/99.2	1.4/1.0	14.2/49.6	0.0/96.8	0.0/0.0	0.0/98.4	39.2/99.2	1.4/1.1	19.0/48.0	0.0/96.4	0.0/12.0	0.0/0.7.5	0.0/98.4	0.4/0.9	0.0/52.0
SSBA	92.4/92.0	1.0/1.0	46.2/46.0	77.6/66.0	0.0/0.0	87.4/79.5	78.8/91.2	1.2/1.1	38.1/44.1	66.8/66.0	3.3/8.0	16.4/47.5	0.0/59.6	0.7/2.0	0.0/21.3
LF	94.0/95.6	1.0/1.0	47.0/47.8	0.0/0.0	0.0/0.0	0.0/0.0	58.8/95.6	1.3/1.1	28.5/54.3	0.0/79.6	6.6/14.0	0.0/5.4	0.0/78.8	0.5/1.9	0.0/27.9
Adap-Blend	97.2/99.2	1.0/1.0	48.6/49.6	0.0 90.4	0.0/0.0	0.0 95.0	78.8/98.4	1.2/1.1	38.4/48.0	62.4/90.0	6.5/14.4	8.6/5.9	0.8/98.4	0.3/4.1	1.0/19.5
LC	14.0/11.6	1.4/1.4	7.0/5.8	100.0/100.0	0.0/0.0	100.0/100.0	97.6/100.0	1.0/1.0	48.8/50.0	99.6/100.0	7.6/13.5	11.7/6.9	0.0/99.6	0.5/5.0	0.0/16.7
TaCT	0.7/10.3	1.5/1.0	0.3/6.7	100.0/100.0	0.0/0.0	100.0/100.0	16.0/42.3	1.5/0.0	7.6/59.4	0.0/100.0	3.4/0.0	0.0/100.0	0.6/0.5	0.0/16.7	
TrojanNN	12.4/5.6	1.4/1.5	6.2/2.2	100.0/100.0	0.0/4.3	100.0/19.1	11.6/100.0	1.5/1.1	5.6/48.4	0.0/100.0	6.8/14.7	0.0/6.4	0.4/9.6	0.7/5.0	0.3/16.1
WaNet	50.8/84.0	0.5/0.3	40.6/67.2	0.0/61.2	0.0/0.0	0.0/75.9	36.8/81.6	0.3/0.1	36.8/81.6	0.0/60.8	0.0/0.0	0.0/75.6	4.8/84.0	5.0/5.0	0.9/14.2
Input-aware	28.0/97.6	0.6/0.3	22.4/77.6	0.0/0.0	0.0/0.0	0.0/0.0	82.5/91.1	0.1/0.1	82.1/90.6	0.0/97.3	0.0/0.1	0.0/77.2	1.2/77.6	5.0/5.0	0.2/13.2
BppAttack	92.4/98.0	0.3/0.3	73.9/78.4	55.2 92.8	0.0/0.0	71.1/96.3	90.8/97.6	0.0/0.0	90.8/97.6	63.2/92.8	0.0/0.0	77.5/96.3	0.4/98.0	5.0/5.0	0.1/16.4
SIBA	1.6/5.6	0.7/0.7	1.3/4.5	99.2 99.2	0.0/0.0	99.6/99.6	0.0/99.6	0.5/0.0	0.0/99.8	0.0/98.0	0.0/0.0	0.0/99.0	7.6/21.6	5.0/5.0	1.4/3.9
BadNets-A2A	98.0/98.4	14.6/14.6	6.3/6.3	0.0/0.0	0.0/0.0	0.0/0.0	48.8/98.8	14.8/14.6	3.1/6.4	0.0/90.8	0.0/0.0	0.0/95.2	13.6/71.6	0.7/2.4	10.7/21.9
Average	+15.1	-0.1	+10.2	+27.9	+0.3	+23.1	+36.6	-0.3	+25.4	+59.0	+3.7	+34.5	+80.7	+1.8	+20.0

1214 We applied our framework to representative defenses from both categories. The results presented in
1215 Tab. 10 show that the performance gains for these non-feature-based methods are less pronounced
1216 than the substantial gains demonstrated for feature-based detectors in Table 1. We posit that this
1217 outcome is not a limitation, but rather an important finding that clarifies the core mechanism of our
1218 framework and defines its operational boundaries.

1219 The reasons are linked to SAM’s optimization objective. For perturbation-based detectors, their
1220 effectiveness relies on the inference instability of poisoned samples. SAM’s objective of finding flat
1221 minima, however, improves overall model stability, which inadvertently suppresses the signal these
1222 detectors require. Similarly, topology-based detectors identify structural anomalies in the feature
1223 manifold. The smoothening effect of SAM’s optimization can mask the subtle topological artifacts
1224 these methods are designed to find.

1225 This investigation, therefore, clarifies the contribution of our framework: **it acts as a dedicated**
1226 **signal amplifier for defenses that leverage feature-space disparity**. Because SAM’s core effect
1227 is to increase the separability between poisoned and clean samples in the feature space, it creates a
1228 powerful synergy with feature-based detectors. This analysis provides a clear scope for our method’s
1229 application and reinforces the understanding of its underlying mechanism.

1230 C.5 ADAPTIVE ATTACK

1231 In this chapter, we propose an *adaptive backdoor attack* specifically designed to compromise the sep-
1232 aration capability of SAM-enhanced-PSD. Unlike traditional adaptive attacks that primarily consider
1233 the detector’s mechanisms, our threat model extends further: we assume that the adversary possesses
1234 comprehensive knowledge of the training method, including the Sharpness-Aware Minimisation
1235 (SAM) that SAM-enhanced-PSD employs during model training to improve detection performance.

1236 **Attack goal and assumptions.** The goal of the adversary is to diminish the feature-space distinction
1237 between poisoned samples and target clean samples, thereby evading detection. Under our adaptive
1238 attack setting, the adversary enjoys complete white-box access, encompassing full visibility into the
1239 network architecture, optimization hyperparameters, and SAM optimization. By integrating the SAM
1240 training step into the adversary’s optimization process, the adversary explicitly aims to neutralize

1242 Table 9: Comparison of TPR (%) and FPR (%) between base PSD and SAM-enhanced PSD (+SAM)
1243 on CIFAR-10 and ResNet18 with poisoning ratio=0.1%. Top 1 are **bold**. When comparing SAM-
1244 enhanced PSD to base PSD, performance improvements are highlighted in **green**, other changes in
1245 **red**.

Detection → Attack ↓	Spectre / +SAM			SCAn / +SAM			SS / +SAM			AC / +SAM			Beatrix / +SAM		
	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑
BadNets	2.0/ 58.0	0.1/0.1	1.6/ 46.4	0.0/0.0	0.0/0.0	0.0/0.0	0.0/28.0	0.1/0.1	0.0/28.0	0.0/0.0	0.0/0.0	0.0/0.0	36.0/ 62.0	5.0/5.0	1.4/2.4
Blended	8.0/ 8.0	0.1/0.1	6.4/ 6.4	0.0/0.0	0.0/0.0	0.0/0.0	0.0/6.0	0.1/0.1	0.0/6.0	0.0/0.0	0.0/0.0	0.0/0.0	8.0/ 38.0	5.0/5.0	0.3/1.5
SSBA	16.0/ 50.0	0.1/0.1	12.8/ 40.0	0.0/0.0	0.0/0.0	0.0/0.0	0.0/30.0	0.1/0.1	0.0/30.0	0.0/0.0	0.0/0.0	0.0/0.0	28.0/ 42.0	5.0/5.0	1.1/1.6
LF	2.0/ 12.0	0.1/0.1	1.6/ 9.6	0.0/0.0	0.0/4.2	0.0/0.0	0.0/8.0	0.1/0.1	0.0/8.0	0.0/0.0	0.0/0.0	0.0/0.0	30.0/ 14.0	5.0/5.0	1.2/0.5
Adap-Blend	14.0/ 0.8	0.1/0.1	11.2/ 6.4	0.0/0.0	0.0/0.0	0.0/0.0	0.0/6.0	0.1/0.1	0.0/6.0	0.0/0.0	0.0/0.0	0.0/0.0	30.0/ 28.0	5.0/5.0	1.2/1.1
LC	0.0/ 100.0	0.2/0.1	0.0/ 80.0	0.0/0.0	0.0/0.0	0.0/0.0	0.0/ 100.0	0.1/0.0	0.0/ 100.0	0.0/0.0	0.0/0.0	0.0/0.0	10.0/ 0.0	5.0/5.0	0.4/0.0
TaCT	0.1/ 0.3	0.2/0.1	0.1/ 0.2	100.0/ 100.0	0.0/0.0	100.0/ 100.0	0.0/2.9	2.0/0.0	0.0/5.7	100.0/ 100.0	0.0/0.0	100.0/ 100.0	22.2/ 100.0	5.0/5.0	0.9/3.8
TrojanNN	12.0/ 100.0	0.1/0.1	9.6/ 80.0	0.0/0.0	0.0/0.0	0.0/0.0	0.0/ 100.0	0.1/0.0	0.0/ 100.0	0.0/0.0	0.0/0.0	0.0/0.0	10.0/ 100.0	5.0/5.0	0.4/3.8
WaNet	43.8/ 20.8	0.1/0.1	34.8/ 16.6	0.0/0.0	0.0/0.0	0.0/0.0	41.7/ 4.2	0.1/0.1	41.3/ 4.2	0.0/0.0	0.0/0.1	0.0/0.0	4.2/ 60.4	5.0/5.0	0.2/2.3
Input-aware	94.2/ 95.8	0.1/0.1	76.5/ 56.4	0.0/0.0	0.0/0.0	0.0/0.0	17.3/ 32.7	0.1/0.1	17.4/ 32.9	0.0/0.0	0.0/0.0	0.0/0.0	3.8/ 55.8	5.0/5.0	0.2/2.2
BppAttack	41.7/ 52.9	0.1/0.1	33.1/ 37.7	0.0/0.0	0.0/0.0	0.0/0.0	10.4/ 10.4	0.1/0.1	10.4/ 10.4	0.0/0.0	0.0/0.0	0.0/0.0	18.8/ 27.1	5.0/5.0	0.7/1.1
SIBA	0.8/ 0.4	0.2/0.1	0.6/ 0.72	0.0/0.0	0.0/0.0	0.0/0.0	2.0/ 50.0	0.1/0.1	2.0/ 50.0	0.0/0.0	0.0/0.0	0.0/0.0	4.0/ 58.0	5.0/5.0	0.2/2.2
BadNets-A2A	76.0/ 80.0	14.9/ 14.9	1.0/ 1.1	0.0/0.0	0.0/0.0	0.0/0.0	24.0/ 56.0	15.0/ 15.0	3.0/ 7.0	0.0/0.0	0.0/0.0	0.0/0.0	80.0/ 78.0	5.0/5.0	3.1/3.0
Average	+27.7	-0.1	+20.0	-0.0	+0.3	-0.0	+26.1	-0.1	+23.9	+15.4	-0.0	+15.4	+29.1	-0.0	+1.1

1254 Table 10: Comparison of TPR (%) and FPR (%) between other non-feature-based PSD and SAM-
1255 enhanced PSD (+SAM) on CIFAR-10 and ResNet18 with poisoning ratio = 5%. Top 1 are **bold**.
1256 When comparing SAM-enhanced PSD to base PSD, performance improvements are highlighted in
1257 **green**, other changes in **red**.

Detection → Attack ↓	CD / +SAM			STRIP / +SAM			SentiNet / +SAM			TED / +SAM		
	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑
BadNets	63.8/ 67.2	5.0/ 5.0	49.5/ 51.3	85.6/ 93.3	11.1/ 9.4	43.3/ 50.1	35.3/ 36.7	13.1/ 12.4	18.4/ 19.7	86.5/ 55.3	33.0/ 20.3	21.3/ 20.4
Blended	4.2/ 14.4	4.9/5.0	4.2/ 13.8	71.0/ 59.8	11.0/ 10.7	37.3/ 33.0	2.9/ 22.9	4.2/21.2	3.2/ 8.7	26.0/ 35.2	23.3/ 20.4	9.1/ 13.5
SSBA	66.4 / 62.8	5.0/5.0	50.8 / 48.7	78.7/ 86.8	8.9/ 8.5	45.3/ 49.9	1.9/ 20.9	1.8/ 1.8	2.7/ 27.0	66.3/ 71.6	22.2/ 18.2	22.6/ 27.6
LF	5.8/ 42.9	5.0/5.0	5.8/ 36.1	86.8/ 89.2	11.1/11.3	43.6/ 44.2	0.0/ 36.2	0.0/1.2	0.0/ 45.8	42.4/ 51.8	15.2/ 10.8	19.6/ 29.0
Average	+11.7	-0.0	+9.9	+1.8	-0.5	+1.9	+19.2	+4.4	+19.2	-1.8	-6.0	+4.4

1265 SAM’s beneficial effects, specifically its capacity to widen feature gaps, making poisoned samples
1266 indistinguishable from target clean samples during detection.

1268 **Attack methodology.** Our proposed attack extends Adapt-Blend (Qi et al., 2023a), a backdoor
1269 attack method that reduces detectability by randomly cropping the commonly used "Hello Kitty"
1270 trigger, assigning random labels, and lowering the poisoning rate, thereby diminishing the feature-
1271 space gap between poisoned samples and target clean samples. To further enhance this reduction
1272 of the feature gap and effectively counteract Sharpness-Aware Minimization (SAM), we propose
1273 replacing the commonly used trigger with an optimized trigger generated through a novel bi-level
1274 optimization approach. Specifically, we formulate this optimization as:

- *Outer minimization*: shrinks the distance between features of poisoned samples and target clean samples, explicitly pulling poisoned representations towards the clean target class.
- *Inner maximization*: replicates the perturbation step inherent to SAM training, ensuring the optimized trigger anticipates and counters SAM’s attempt to re-expand feature distances.

1279 This approach can be formally expressed as:

$$\min_{\epsilon, \theta} \max_{\delta} \mathbb{E}_{(\mathbf{x}, y) \in \mathcal{D}_c} [\mathcal{L}(f_{\theta+\delta}(\mathbf{x}), y)] \\ + \mathbb{E}_{(\mathbf{x}, y) \in \mathcal{D}_p, (\mathbf{x}_t, y_t) \in \mathcal{D}_t} [\mathcal{L}(f_{\theta+\delta}((1-\alpha)\mathbf{x} + \alpha\mathbf{e}), y_t) + \lambda \|f_{\theta+\delta}((1-\alpha)\mathbf{x} + \alpha\mathbf{e}) - f_{\theta+\delta}(\mathbf{x}_t)\|_2^2], \quad (10)$$

1283 where \mathcal{D}_c is the clean subset, \mathcal{D}_p contains images to be poisoned, and \mathcal{D}_t is the set of clean samples
1284 with the target label. The blending ratio α controls the proportion between the original images \mathbf{x} and
1285 the optimized trigger ϵ . The first expectation maintains model performance on clean data, while the
1286 second explicitly learns poisoned samples and reduces the feature-space distance between poisoned
1287 samples and target clean samples. The inner maximization step ensures the trigger adapts to SAM’s
1288 perturbations, weakening SAM’s subsequent effectiveness.

1290 **Implementation details.** We follow the Adapt-Blend recipe pasted with a 20 % opacity onto each
1291 poisoned image. The poisoning ratio is set to 0.3 %. Both the outer training loop and the inner
1292 maximization use the same SAM hyperparameters as SAM-enhanced-PSD, namely a neighbourhood
1293 radius of $\rho = 0.1$. In the loss of Eq. (10) we fix the gap-shrinking weight to $\lambda = 0.1$.

1294 **Results and analysis.** As demonstrated in Tab. 11, applying the Adapt-Blend severely degrades
1295 the performance of standard PSD detectors (Spectre, SS, AC, and Beatrix). Specifically, their

1296 Table 11: Comparison of TPR (%) and FPR (%) between baseline PSD and SAM-enhanced PSD
 1297 (+SAM) under adaptive attacks on CIFAR-10 with ResNet-18.

Trigger →	Hello-Kitty			Optimized Trigger		
Detection ↓	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑
Spectre	14.67 / 97.33	0.41 / 0.16	11.69 / 77.71	1.33 / 100.0	0.45 / 0.15	1.06 / 80.05
SS	6.00 / 96.67	0.28 / 0.01	6.03 / 96.67	0.00 / 99.33	0.30 / 0.00	0.00 / 99.67
AC	0.00 / 94.67	0.00 / 0.00	0.00 / 97.26	0.00 / 100.0	0.00 / 0.00	0.00 / 100.0
Beatrix	10.67 / 96.67	5.01 / 5.01	1.20 / 10.39	0.67 / 97.33	5.01 / 5.01	0.08 / 10.45

1306
 1307 average True Positive Rate (TPR) drops below 11% for the manually crafted Hello-Kitty patch
 1308 and near-zero for the optimized trigger, validating the effectiveness of feature-gap minimization.
 1309 Nevertheless, the SAM-enhanced PSD consistently recovers detection capability, achieving TPRs
 1310 above 94% and False Positive Rates (FPRs) under 0.2% for both triggers. These outcomes highlight
 1311 SAM’s intrinsic robustness, whose feature-space expansion capability effectively counters even
 1312 an explicitly adaptive adversary. Consequently, unless attackers gain full control over the training
 1313 procedure, neutralizing SAM-enhanced-PSD remains notably challenging, ensuring strong and
 1314 persistent detection performance.

1315 C.6 PERFORMANCE ON THE MODEL TRAINED BY FILTERED DATA.

1316 To validate the effectiveness of the SAM-enhanced PSD, we also systematically measure performances
 1317 in accuracy (ACC), attack success rate (ASR), and robust accuracy (RA) during model retraining after
 1318 removing poisoned samples identified by PSDs and SAM-enhanced PSDs, where higher ACC/RA
 1319 and lower ASR indicate better defense performance.

1320 As shown in Tab. 12, experimental results reveal SAM-enhanced PSD impact across multiple attack
 1321 scenarios. In BadNets (Gu et al., 2019) attacks, SCA (Tang et al., 2021) detection coupled with
 1322 SAM improved ACC from 94.1% to 94.4% and RA from 94.0% to 94.3% while maintaining ASR
 1323 at 0.7%. More strikingly, against challenging Blended (Chen et al., 2017) attacks, SAM reduced
 1324 AC (Chen et al., 2019) method’s ASR from 99.7% to 2.7% while boosting RA from 0.3% to 79.1%.
 1325 Similar patterns emerged in adaptive attacks like Adap-Blend (Qi et al., 2023a), LF (Zeng et al.,
 1326 2021), and WaNet (Nguyen & Tran, 2021), where SAM achieved over 90% ASR reduction and
 1327 80% RA improvement in critical cases. Aggregate statistics across all attack types show SAM
 1328 delivers 0.2%-0.5% ACC gains, up to 93.8% ASR suppression, and remarkable RA enhancements
 1329 reaching 84%. These improvements stem from SAM’s ability to amplify activation pattern differences
 1330 between clean and poisoned samples in feature space through sharpness-aware optimization, thereby
 1331 increasing PSD discriminative power.

1332 The findings conclusively demonstrate that incorporating Sharpness-Aware Minimization into PSD
 1333 training frameworks significantly strengthens model resilience against diverse backdoor threats.
 1334 By simultaneously improving detection accuracy (ACC/RA) and suppressing attack success rates
 1335 (ASR), SAM establishes a robust defense paradigm applicable to complex adversarial environments,
 1336 providing critical insights for developing next-generation AI security solutions.

1337 C.7 COMPARISON WITH INFERENCE-TIME DETECTION METHODS

1338 In this section, we extend our analysis to include a comparison with state-of-the-art training-free detection
 1339 methods that operate at inference time, specifically Scale-up (Guo et al., 2023) and CBD (Xiang
 1340 et al., 2023). It is important to first clarify that our pre-training defense and these inference-time
 1341 defenses address different stages of the security pipeline and are thus complementary. Our method
 1342 aims to provide a one-time, permanent “cure” by cleansing the training dataset itself, ensuring that any
 1343 model trained on it is inherently more secure without runtime overhead. In contrast, inference-time
 1344 defenses act as a perpetual “treatment,” requiring continuous monitoring and incurring per-inference
 1345 costs to block malicious inputs at runtime, while the underlying model remains vulnerable.

1346 Despite these conceptual differences, we conduct a direct performance comparison on the CIFAR-10
 1347 dataset to evaluate their practical detection capabilities. To simulate a realistic scenario where false

Table 12: Detection comparisons (measured by ACC (%), ASR (%) and RA (%)) between base PSD and SAM-enhanced PSD (+SAM) on CIFAR-10 and ResNet18, and the better result in each pair is highlighted in **bold**. In terms of each metric, the average change of SAM-enhanced PSD to base PSD across all attacks is presented at the bottom: performance improvements are highlighted in **green**, other changes in **red**.

Attack ↓	SCAn / +SAM			AC / +SAM			Beatrix / +SAM		
	ACC ↑	ASR ↓	RA ↑	ACC ↑	ASR ↓	RA ↑	ACC ↑	ASR ↓	RA ↑
BadNets	94.1/ 94.4	0.7/ 0.7	94.0/ 94.3	94.6 /94.5	0.7/0.8	94.5 /94.3	93.3/ 94.5	91.0/ 0.7	8.5/ 94.2
Blended	94.6 /94.5	6.7/ 4.4	76.8/ 77.8	93.1/ 94.8	99.7/ 2.7	0.3/ 79.1	93.8/ 94.2	99.4/ 3.3	0.6/ 78.4
SSBA	94.4/ 94.4	1.2/ 1.0	91.6/ 92.2	94.0/ 94.4	0.8/1.0	91.7/ 92.2	94.1 /93.8	95.3/ 0.8	4.6/ 91.6
LF	94.2/ 94.6	9.5/ 3.0	85.1/ 90.7	93.6/ 94.6	7.4/ 3.0	86.4/ 90.7	94.0/ 94.1	98.0/ 1.6	1.9/ 92.1
Adap-Blend	94.0/ 94.3	83.0/ 6.0	15.8/ 75.8	91.7/ 93.9	99.9/ 6.9	0.0/ 74.6	93.8 /93.6	100.0/ 1.9	0.0/ 79.1
LC	94.6 /94.3	0.7/ 0.7	92.9 /92.5	94.2/ 94.3	100.0/ 0.7	0.0/ 92.8	94.4 /94.0	100.0/ 0.6	0.0/ 92.9
TaCT	94.0/ 94.0	1.2/ 1.2	86.7/ 86.7	94.2 /94.0	1.6/ 1.2	89.1 /86.7	93.8/ 94.2	100.0/ 0.6	0.0/ 87.8
TrojanNN	94.6 /94.5	3.1/ 3.6	86.6/ 87.0	94.2/ 94.4	2.7/ 2.9	86.4/ 87.3	94.4 /94.2	100.0/ 2.0	0.0/ 87.4
WaNet	94.2/ 94.2	11.8/ 0.9	82.7/ 93.0	94.2/ 94.3	1.5/ 0.9	92.6/ 92.9	94.2 /93.5	90.0/ 0.9	9.9/ 92.3
Input-aware	94.5/ 94.5	1.0/ 1.8	92.0 /90.9	94.6/ 94.8	80.5/ 1.9	18.6/ 91.5	93.5/ 94.5	82.1/ 1.2	17.2/ 91.1
BppAttack	94.6 /94.4	30.3/ 11.7	73.9/ 90.2	94.4/ 94.4	13.0/ 11.7	88.8/ 90.2	94.0/ 94.0	99.9/ 10.4	10.1/ 90.4
Average	+0.1	-10.4	+8.5	+0.5	-34.0	+29.5	+0.2	-93.8	+84.0

Table 13: Comparison of achievable TPR (%) for different defense methods on CIFAR-10 with $FPR \leq 10\%$. For SCAn/+SAM, we show the performance of the base detector and our SAM-enhanced version.

Attack ↓	Scale-up TPR ↑	CBD TPR ↑	SCAn/+SAM TPR ↑
BadNets	100.00	100.00	96.01 / 95.21
Blended	12.01	91.21	99.22 / 98.73
WaNet	16.72	78.23	66.31 / 90.12

alarms are highly undesirable, we assess the achievable True Positive Rate (TPR) while constraining the False Positive Rate (FPR) to be no more than 10%. As presented in Tab. 13, the results show that while training-free methods are effective against some attacks, their TPR can be inconsistent under this practical constraint, especially for more sophisticated attacks like Blended and WaNet. In contrast, our SAM-enhanced method demonstrates consistently superior and more stable detection performance across all scenarios.

Ultimately, the key advantage of our pre-training approach is its ability to enable the training of a final model that is both secure and high-performing. As demonstrated in Sec. E.6, retraining a model on the dataset purified by our SAM-enhanced method not only maintains high clean accuracy (ACC) but also significantly reduces the attack success rate (ASR). This confirms the practical, end-to-end effectiveness of our framework in producing a robust final model, a benefit not offered by inference-time defenses.

D ADDITIONAL ANALYSIS OF SAM-ENHANCED-PSD

D.1 DETECTION PERFORMANCE WITH DIFFERENT ρ

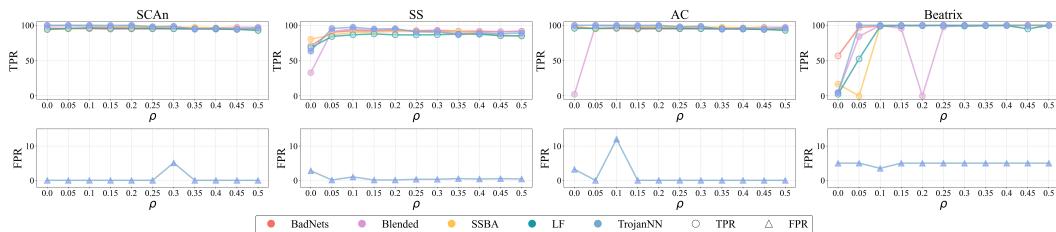


Figure 7: Detection performance of base PSD with SAM-enhanced PSD with different ρ on CIFAR10 and ResNet18.

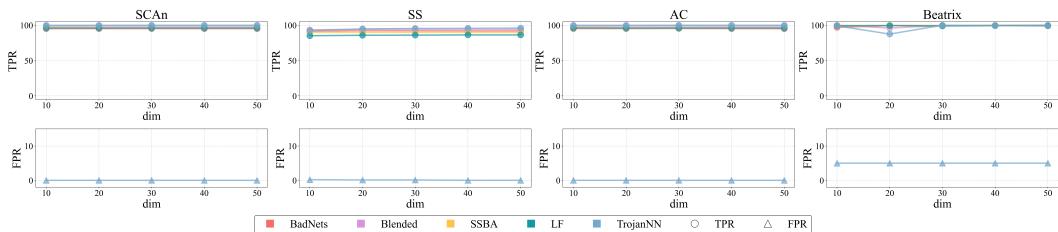


Figure 8: Detection performance of base PSD with SAM-enhanced PSD with different dimensions on CIFAR10 and ResNet18

The constraint bound ρ is a key hyperparameter in our detection strategy, as it governs the extent of perturbation ϵ . The excessively small ρ may result in a weak enhancement of the backdoor effect, whereas an excessively large ρ can degrade the model’s performance by disrupting the extraction of information, such as features, from both poisoned and clean samples. We assess the sensitivity of ρ by executing five complex attacks and employing four detection methods. Figure 7 illustrates the results of these detections combined with SAM-enhanced PSD. While a smaller ρ may not fully amplify backdoor effects, resulting in poor performance of Beatrix against SSBA and TrojanNN attacks, it demonstrates that SAM-enhanced PSD can successfully identify poisoned samples and maintain a reasonable false positive rate across different ρ settings. Overall, ρ proves to be relatively insensitive; a broad range of values can be selected with good detection performance.

D.2 DETECTION PERFORMANCE ON DIFFERENT PARAMETERS OF EXTRACTING BACKDOOR-RELATED FEATURE

In this study, we analyze two crucial parameters in the extracting backdoor-related feature stage of our proposed defense mechanism, SAM-enhanced PSD: dimension and the choice of surrogate dataset.

D.2.1 IMPACT OF FEATURE DIMENSION

The dimension of the feature space plays a pivotal role in the effectiveness of backdoor detection methods. A dimension that is too large complicates the estimation of the covariance matrix, while a dimension that is too small may result in excessive removal of the backdoor signal. Through empirical testing, we evaluate the impact of varying the dimension from 10 to 50 on the performance of SAM-enhanced PSD across different attacks and detection methods. As shown in Fig. 8, our results indicate that the performance remains relatively stable across this range for most scenarios. However, we observe some variability in performance at a dimension of 20 for the Beatrix method. Based on these findings, we select a dimension of 30 for our main experiments, balancing the trade-offs between complexity and signal retention effectively.

D.2.2 IMPACT OF THE SURROGATE DATASET

To further investigate the practical applicability and robustness of our method, we evaluate its performance under various conditions for the clean auxiliary set. The flexibility of a defense method regarding its auxiliary set is critical, especially in real-world scenarios where a large, verified clean dataset may not be available. Therefore, we systematically designed three parallel experimental scenarios: (1) **Limited in-distribution data**, where we investigate the method’s sensitivity to the quantity of clean samples by varying the auxiliary set size from as few as 25 per class (a 0.5% clean ratio) to 250 per class (a 5% clean ratio); (2) **Sifted-clean (S-Clean) Data**, where we test the method’s reliance on the purity of the auxiliary set by simulating a case where defenders identify a reference set from the poisoned dataset itself using an existing technique (META-SIFT (Zeng et al., 2023)) to sift out 250 samples per class; and (3) **Out-of-distribution (OOD) data**, where we assess the method’s ability to leverage OOD data by using 250 samples per class from the CIFAR-5m (Nakkiran et al., 2020) dataset as the auxiliary set for the CIFAR-10 task.

In the latter two scenarios, we use a fixed quantity of 250 samples per class. This is because the primary challenge for these data sources lies in their purity or distribution mismatch, not their

1458 Table 14: Detection comparisons (measured by TPR (%), FPR (%) and F1 (%)) between base PSD and SAM-
1459 enhanced PSD (+SAM optimized with ASAM) on CIFAR-10 and ResNet18, and the better result in each pair is
1460 highlighted in **bold**. In terms of each metric, the average change of SAM-enhanced PSD to base PSD across all
1461 attacks is presented at the bottom: performance improvements are highlighted in **green**, other changes in **red**.
1462

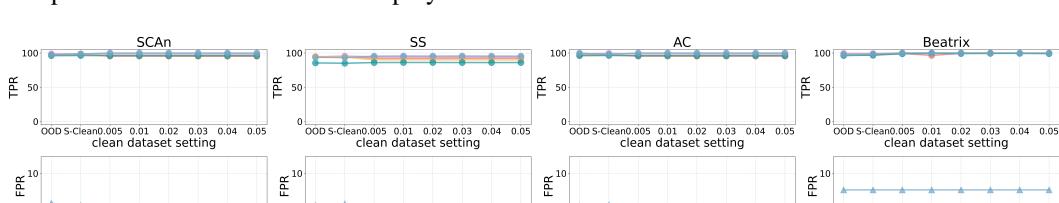
Detection → Attack ↓	Spectre / +SAM			SCAn / +SAM			SS / +SAM			AC / +SAM			Beatrix / +SAM		
	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑
BadNets	51.1/ 84.4	4.9/ 4.4	42.0/ 62.9	96.0 /95.0	0.0/0.0	98.0 /97.5	70.8/ 91.7	2.4/0.0	65.6/ 95.7	96.8 /95.1	0.1/13.8	97.1 /41.5	56.6/ 92.6	5.0/ 0.4	44.9/ 92.6
Blended	29.9/ 60.6	6.0/ 0.0	24.6/ 75.5	99.2/98.8	0.0/3.8	99.6 /73.1	32.9/ 100.0	4.4/6.1	30.5/ 63.2	2.3/ 87.3	7.7/11.7	1.9/ 42.7	5.0/ 99.4	5.0/1.3	5.0/ 89.0
SSBA	36.6/ 70.8	5.6/ 7.5	30.1/ 45.2	93.9/ 98.2	0.0/0.0	96.9/ 99.1	74.5/ 97.9	2.3/0.0	76.1/ 13.6	99.3/ 100.0	3.3/20.8	76.1 /3.6	16.8/ 98.1	5.0/ 0.0	15.8/ 99.0
LF	32.0/ 57.4	5.9/ 6.1	26.3/ 41.9	94.1/ 99.6	0.0/0.7	97.0 /93.4	68.2/ 86.1	2.5/4.8	63.2/ 62.3	95.6/ 100.0	10.4/7.7	48.7/ 57.9	2.4/ 100.0	5.0/ 0.7	2.4/ 93.9
Adap-Blend	24.1/ 64.5	5.6/ 7.4	20.9/ 42.4	92.5/ 93.7	10.5/2.4	47.3/ 78.2	20.2/ 85.0	4.5/1.4	19.6/ 80.1	1.5/ 95.4	7.1/3.1	1.2/ 74.8	6.2/ 100.0	5.0/ 0.7	6.2/ 57.5
LC	17.0/33.9	4.3/ 7.5	17.1/24.5	100.0/ 100.0	0.0/0.0	100.0/ 100.0	40.5/ 41.4	2.1/0.9	45.0/ 51.9	0.0/ 100.0	0.0/0.0	0.0/ 100.0	2.2/ 100.0	5.0/2.8	2.2/ 78.9
TaCT	36.1/ 82.7	7.0/13.6	26.9/ 37.6	100.0/ 100.0	0.0/0.0	100.0/ 100.0	42.3/ 40.9	4.2/10.0	38.1/ 24.7	100.0/ 100.0	0.1/0.4	99.5/ 100.0	13.4/ 100.0	5.0/2.5	12.9/ 81.0
TrojanNN	30.2/ 51.0	6.0/ 4.7	24.8/ 42.4	100.0 / 97.0	0.0/0.0	100.0/ 98.5	63.4/ 99.5	2.8/1.6	58.7/ 86.9	99.9/ 100.0	3.2/15.3	76.7 /40.7	4.6/ 100.0	5.0/3.1	4.6/ 77.1
WaNet	66.4/ 100.0	4.1/ 0.0	54.3/ 100.0	66.3/ 88.2	0.0/0.3	79.7/ 90.7	71.1/ 87.4	1.5/0.0	71.4/ 93.2	85.1/ 96.1	0.0/0.0	91.9/ 98.0	1.2/ 96.6	5.0/5.0	1.2/ 66.2
Input-aware	53.9/ 100.0	4.7/ 0.0	44.2/ 100.0	97.4/ 100.0	0.1/4.2	97.6 /71.2	83.5/ 81.8	0.9/0.0	83.5/ 90.0	0.0/ 88.3	0.0/0.0	0.0/ 93.8	3.4/ 100.0	5.0/5.0	3.4/ 67.8
BppAttack	21.5/ 28.6	6.3/ 5.3	17.8/ 25.2	87.8/ 100.0	0.0/2.8	93.5/ 78.9	85.8/ 96.7	0.8/0.0	85.7/ 98.3	94.2/ 96.7	0.0/0.0	97.0/ 98.3	0.1/ 100.0	5.0/5.0	0.1/ 67.8
SIBA	30.0/ 64.6	6.0/ 1.3	24.6/ 68.4	98.7 / 93.6	0.0/3.9	99.3 / 70.1	72.9/ 88.8	1.2/6.1	74.2 / 58.4	96.8/ 100.0	0.0/0.0	98.4/ 100.0	4.3/ 92.4	5.0/5.0	4.3/ 64.3
BadNets-A2A	99.5/ 100.0	10.6/ 15.2	49.7/ 51.3	0.0/0.0	0.0/0.0	0.0/0.0	99.4 / 96.2	10.6/16.0	49.7/ 55.9	97.8 / 90.3	0.0/0.0	98.9 / 94.9	27.3/ 99.8	5.0/0.3	24.6/ 97.0
Average	+28.5			-0.7			+24.2			+2.9			+0.7		
	-4.5			+19.1			+0.3			+12.2			+29.2		
	+3.1			+14.5			+14.5			+87.4			-2.0		
	+69.6														

1471 Table 15: Detection comparisons (measured by TPR (%), FPR (%) and F1 (%)) between base PSD and SAM-
1472 enhanced PSD (+SAM optimized with SAM-ON) on CIFAR-10 and ResNet18, and the better result in each pair is
1473 highlighted in **bold**. In terms of each metric, the average change of SAM-enhanced PSD to base PSD across all
1474 attacks is presented at the bottom: performance improvements are highlighted in **green**, other changes in **red**.
1475

Detection → Attack ↓	Spectre / +SAM			SCAn / +SAM			SS / +SAM			AC / +SAM			Beatrix / +SAM		
	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑
BadNets	51.1/ 77.6	4.9/ 1.4	42.0/ 76.2	96.0 /95.8	0.0/0.0	98.0 /97.9	70.8/ 89.4	2.4/0.6	65.6 / 88.8	96.8 / 98.9	0.1/8.8	97.1 / 54.1	56.6/ 100.0	5.0/ 0.2	44.9/ 98.4
Blended	29.9/ 56.8	6.0/ 7.7	24.6/ 37.4	99.2/ 98.3	0.0/0.0	99.6 / 99.2	32.9/ 93.3	4.4/0.0	30.5/ 96.6	2.3 / 100.0	7.7/14.0	1.9/ 43.0	5.0/ 100.0	5.0/1.2	5.0/ 90.0
SSBA	36.6/ 78.8	5.6/ 2.3	30.1/ 71.0	93.9/ 96.7	0.0/0.0	96.9/ 98.3	80.4/ 88.9	1.9/4.1	74.5 / 66.5	99.3 / 97.8	3.3/13.3	76.1 / 43.4	16.8/ 97.0	5.0/0.3	15.8/ 95.6
LF	32.0/ 51.9	5.9/ 8.2	26.3/ 33.8	94.1/ 100.0	0.0/0.0	97.0/ 100.0	68.2/ 83.7	2.5/3.8	63.2/ 65.4	95.6 / 97.0	10.4/15.0	48.7/ 40.2	2.4/ 92.2	5.0/0.5	2.4/ 91.7
Adap-Blend	24.1/ 67.3	5.6/ 2.4	20.9/ 63.4	92.5 / 100.0	0.0/5.7	47.3/ 60.1	20.2/ 91.5	4.5/3.6	19.6/ 70.7	1.5 / 98.2	7.1/7.5	1.2/ 57.5	6.2/ 100.0	5.0/7.9	6.2/ 57.1
LC	17.0/ 40.7	4.3/ 5.5	17.1/ 33.2	100.0 / 96.0	0.0/0.0	100.0/ 98.0	40.5/ 44.0	2.1/5.4	45.0 / 35.6	0.0/ 100.0	0.0/0.9	0.0/ 91.9	2.2/ 100.0	5.0/2.9	2.2/ 78.6
TaCT	36.1/ 77.5	7.0/ 4.7	26.9/ 58.3	100.0/ 100.0	0.0/0.0	100.0/ 100.0	42.3/ 46.8	4.2/4.7	38.1/ 59.3	100.0/ 96.8	0.1/0.5	99.5/ 93.7	13.4/ 100.0	5.0/2.0	12.9/ 84.2
TrojanNN	30.2/ 61.7	6.0/ 0.0	24.8/ 76.3	100.0/ 93.0	0.0/0.0	100.0/ 96.4	63.4/ 100.0	2.8/4.2	58.7/ 71.6	99.9/ 99.1	3.2/14.8	76.7 / 41.3	4.6/ 93.7	5.0/3.3	4.6/ 73.0
WaNet	66.4/ 95.1	4.1/ 0.0	54.3/ 97.5	66.3 / 100.0	0.1/0.9	79.7/ 85.0	71.1/ 93.7	1.5/7.3	71.4 / 56.4	85.1 / 85.1	0.3/2.2	91.9/ 69.2	1.2/ 100.0	5.0/5.0	1.2/ 67.7
Input-aware	53.9/ 97.2	4.7/ 7.8	44.2/ 56.4	97.4/ 91.6	0.1/0.0	97.6 / 95.6	83.5/ 79.4	0.9/0.0	83.5 / 88.5	0.0/89.6	0.0/5.1	0.0/ 62.7	3.4/ 97.0	5.0/5.0	3.4/ 66.4
BppAttack	21.5/ 44.7	6.3/ 6.9	17.8/ 32.5	87.8/ 93.4	0.0/0.2	93.5/ 95.1	85.8/ 89.5	0.8/0.5	85.7/ 90.1	94.2/ 97.3	0.0/0.0	97.0/ 98.6	0.1/ 91.7	5.0/5.0	0.1/ 63.9
SIBA	30.0/ 64.2	6.0/ 1.9	24.6/ 68.3	98.7 / 79.0	0.0/0.0	99.3 / 95.2	72.9/ 86.8	1.2/3.6	74.2 / 56.5	96.8 / 93.8	0.0/0.0	98.4 / 96.8	4.3/ 86.4	5.0/5.0	4.3/ 61.4
BadNets-A2A	99.5/ 100.0	10.6/ 15.2	49.7/ 40.8	0.0/0.0	0.0/0.0	0.0/0.0	99.4 / 96.6	16.0/16.0	49.7/ 38.6	97.8/ 89.3	0.0/2.1	98.9 / 78.2	27.3/ 100.0	5.0/0.9	24.6/ 92.2
Average	+29.5			-1.0			+25.9			+2.3			-0.1		
	+0.9			+19.4			+1.2			+8.1			+28.7		
	+4.1			+6.4			+6.4			+85.8			-2.0		
	+68.7														

1487 availability, as they are generally easier to acquire than verified in-distribution clean data. Thus, our
1488 goal here is to validate their *viability* as substitutes for a standard clean set.

1489 As shown in Fig. 9, our method demonstrates remarkable robustness across all three challenging
1490 scenarios. Detection performance remains high even when the quantity of clean samples is severely
1491 limited (Scenario 1). Critically, our method is equally effective when using the S-Clean set (Scenario
1492 2) or data from a completely different distribution (Scenario 3). These findings collectively confirm
1493 that SAM-enhanced PSD has a low dependency on the clean auxiliary set, highlighting its flexibility
1494 and practical value for real-world deployment.



1504 Figure 9: Detection performance of SAM-enhanced PSD with different clean auxiliary sets on
1505 CIFAR10 and ResNet18. The x-axis compares results using three types of auxiliary data: an Out-
1506 of-Distribution (OOD) set, an S-Clean set, and varying ratios of true in-distribution clean data. The
1507 S-Clean set refers to data sifted from the poisoned dataset.
1508
1509 D.3 DETECTION PERFORMANCE WITH DIFFERENT SAM VARIANTS
1510
1511 To examine how alternative sharpness-aware optimizers influence SAM-enhanced-PSD, we replace
1512 the original SAM with three popular variants, ASAM (Kwon et al., 2021), SAM-ON (Mueller et al.,

Table 16: Detection comparisons (measured by TPR (%), FPR (%) and F1 (%)) between base PSD and SAM-enhanced PSD (+SAM optimized with MSAM) on CIFAR-10 and ResNet18, and the better result in each pair is highlighted in **bold**. In terms of each metric, the average change of SAM-enhanced PSD to base PSD across all attacks is presented at the bottom: performance improvements are highlighted in **green**, other changes in **red**.

Detection → Attack ↓	Spectre / +SAM			SCAn / +SAM			SS / +SAM			AC / +SAM			Beatrix / +SAM		
	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑	TPR ↑	FPR ↓	F1 ↑
BadNets	51.1/ 86.7	4.9 /9.6	42.0/ 47.0	96.0 /95.4	0.0/ 0.0	98.0 /97.6	70.8/ 91.9	2.4/ 0.0	65.6/ 95.8	96.8 /96.3	0.1/ 9.9	97.1/ 50.1	56.6/ 100.0	5.0/ 0.5	44.9/ 95.4
Blended	29.9/ 58.4	6.0 /8.3	24.6/ 37.0	99.2 /98.6	0.0/ 4.3	99.6 /70.3	32.9/ 94.9	4.4/ 0.0	30.5/ 97.4	2.3/ 100.0	7.7/ 11.9	1.9/ 46.9	5.0/ 93.2	5.0/ 1.1	5.0/ 86.9
SSBA	36.6/ 68.4	5.6 /4.0	30.1/ 56.0	93.9 / 96.7	0.0/ 0.5	96.9 /94.1	80.4/ 94.0	1.9/ 0.0	74.5/ 96.9	99.3/ 100.0	3.3/ 14.3	76.1 / 142.4	16.8/ 98.0	5.0/ 0.4	15.8/ 95.1
LF	32.0/ 53.0	5.9 /0.0	26.3/ 69.3	94.1/ 97.8	0.0/ 0.0	97.0 / 98.9	68.2/ 91.2	2.5/ 0.0	63.2/ 95.4	95.6/ 100.0	10.4/ 10.2	48.7/ 50.7	2.4/ 98.9	5.0/ 0.2	2.4/ 97.7
Adap-Blend	24.1/ 60.1	5.6/ 3.8	20.9/ 51.6	92.5 / 100.0	10.5/ 9.1	47.3/ 53.5	20.2/ 91.4	4.5/ 0.0	19.6/ 95.5	1.5/ 100.0	7.1/ 6.1	1.2/ 63.1	6.2/ 100.0	5.0/ 0.7	6.2/ 57.5
LC	17.0/ 41.8	4.3/ 3.1	17.1/ 41.7	100.0 / 95.3	0.0/ 1.8	100.0 / 82.8	40.5/ 50.7	2.1/ 0.0	45.0/ 67.2	0.0/ 99.3	0.0/ 0.0	0.0/ 0.999.6	2.2/ 100.0	5.0/ 3.1	2.2/ 77.3
TaCT	36.1/ 80.9	7.0 /10.2	26.9/ 43.1	100.0 / 95.4	0.0/ 0.0	100.0 / 97.6	42.3/ 49.3	4.2/ 2.5	38.1/ 50.0	100.0 / 93.4	0.1/ 0.0	99.5 / 96.6	13.4/ 91.6	5.0/ 2.3	12.9/ 78.1
TrojanNN	30.2/ 61.6	6.0/ 13.7	24.8/ 29.2	100.0 / 100.0	0.0/ 0.0	100.0 / 100.0	63.4/ 97.3	2.8/ 0.0	58.7/ 98.6	99.9 / 96.9	3.2/ 22.2	76.7 / 73.1	4.6/ 100.0	5.0/ 3.0	4.6/ 67.8
WaNet	66.4/ 98.8	4.1/ 0.4	54.3/ 99.4	66.3/ 87.8	0.0/ 0.0	79.7/ 93.5	71.1/ 93.9	1.5/ 0.0	71.4/ 96.9	85.1/ 94.2	0.2/ 0.7	91.9 / 76.9	1.2/ 93.9	5.0/ 5.0	1.2/ 65.0
Input-aware	53.9/ 100.0	4.7/ 2.2	44.2/ 82.9	97.4 / 100.0	0.1/ 0.0	97.6 / 99.8	83.5/ 81.9	0.9/ 0.0	83.5/ 90.1	0.0/ 92.0	0.0/ 4.1	0.0/ 68.3	3.4/ 100.0	5.0/ 5.0	3.4/ 67.8
BppAttack	21.5/ 41.3	6.3/ 0.3	17.8/ 56.1	87.8/ 99.0	0.0/ 4.4	93.5/ 70.1	85.8/ 93.3	0.8/ 0.0	85.7/ 96.6	94.2/ 98.4	0.0/ 0.0	97.0/ 99.2	0.1/ 96.9	5.0/ 5.0	0.1/ 66.4
SIBA	30.0/ 68.5	6.0/ 4.7	24.6/ 53.3	98.7 / 94.9	0.0/ 0.0	99.3 / 97.4	72.9/ 89.3	1.2/ 0.8	74.2/ 87.2	96.8/ 100.0	0.0/ 0.5	98.4 / 95.8	4.3/ 90.1	5.0/ 5.0	4.3/ 63.1
BadNets-A2A	99.5/ 100.0	10.6/ 6.3	49.7/ 62.4	0.0/ 0.0	0.0/ 0.0	0.0/ 0.0	99.4/ 100.0	10.6/ 9.4	49.7/ 52.9	97.8/ 98.2	0.0/ 0.0	98.9/ 99.1	27.3/ 100.0	5.0/ 0.1	24.6/ 99.1
Average	+30.1	-0.8	+25.1	+2.7	+0.7	-4.1	+22.1	-2.1	+27.8	+30.7	+3.8	+10.2	+86.1	-2.0	+69.2

2023), and MSAM (Becker et al., 2024), and evaluate them on CIFAR-10 with ResNet-18. Following common practice, we set $\rho = 1.0$ for ASAM, $\rho = 0.5$ for SAMON, and $\rho = 0.1$ for MSAM. The results (Tab. 14, Tab. 15 and Tab. 16) reveal a consistent pattern: regardless of the optimizer variant, the SAM-enhanced-PSD markedly outperforms their vanilla PSD baselines, delivering substantial gains in true-positive rate while maintaining a low false-positive rate across all tested backdoor attacks. This robustness is in line with our theoretical insight in Proposition 1, which shows that the additional parameter step introduced by the SAM update amplifies backdoor-relevant neurons, thereby enlarging the separation between poisoned and clean samples; because all SAM variants share the extra ascent–descent mechanism, SAM-enhanced-PSD retains the same advantage and therefore remains broadly effective even when the defender replaces one variant with another.

D.4 COMPUTATIONAL ANALYSIS

To thoroughly analyze the computational complexity of PSD and SAM-enhanced-PSD, we divide the process into three distinct stages: training, feature extraction, and detection. The training stage is widely adopted by most existing PSD methods, typically using conventional SGD optimization. In contrast, SAM-enhanced-PSD replaces SGD with the original SAM optimizer, introducing an additional ascent–descent step per mini-batch, which approximately doubles the computational complexity compared to standard SGD. The feature extraction stage is exclusive to SAM-enhanced-PSD, specifically designed to capture backdoor-related features through a single PCA operation and variance estimation. The detection stage remains identical for both PSD and SAM-enhanced-PSD, contributing minimally to overall computational costs.

We estimate the algorithmic complexities for both baseline PSD and SAM-enhanced-PSD across these three stages and measure their actual runtimes on an NVIDIA GeForce RTX 4090 GPU, as shown in Tab. 17. Our measurements confirm that the model training stage dominates the runtime, while the SAM-enhanced-PSD’s feature extraction stage is shorter than the detection stage. Although SAM approximately doubles the training overhead, our theoretical analysis in Proposition 1 guarantees compatibility with various efficient SAM variants. Specifically, we test MSAM (Becker et al., 2024), an efficient variant of SAM, in Tab. 16, demonstrating that MSAM significantly enhances detection performance and can seamlessly replace the original SAM in SAM-enhanced-PSD. Furthermore, Tab. 17 illustrates that MSAM’s computational complexity and runtime closely approximate those of the conventional SGD baseline.

In summary, the primary computational cost of SAM-enhanced-PSD lies within its training stage due to the optimization method used. However, employing a computationally efficient SAM variant such as MSAM mitigates this overhead while maintaining robust backdoor detection performance.

D.5 STATISTICAL ANALYSIS OF TAC VALUES

To validate that our reported average Top-k TAC is a robust metric, we conduct a deeper statistical analysis of its properties. A potential concern is that a high average TAC value could be skewed by a few samples exhibiting extreme activation differences, masking the true distribution across the entire

1566 Table 17: Computation complexity and time of PSD and SAM-enhanced-PSD on CIFAR-10. General
 1567 setting: Epoch E ; Samples N ; Perturbation samples N_p ; Feature Dimension D ; Class K ; Forward
 1568 F ; Backward B

1. Training			2. Extract Features	3. Detection
Conventional SGD	SAM	Momentum-SAM	$O(NKd^2)$	Varies by method
$O((N/B)E(f + b + p))$	$O(2 * (N/B)E(f + b + 3p))$	$O((N/B)E(f + b + 4p))$	26s	124s (average)
1165s	2266s	1253s		

1573
 1574 dataset. To rule out such statistical artifacts, we directly analyze the distribution of the **per-sample**
 1575 **activation differences** that constitute the final TAC value.
 1576

1577 **Experimental setup and conclusion** For the Top-5 (most responsive) and Bottom-5 (least responsive)
 1578 neurons under three different attacks, we calculated the activation difference ($\|f_j(x) - f_j(\tilde{x})\|_2$)
 1579 from Eq. (1) for each clean sample x and its poisoned counterpart \tilde{x} . We then computed the mean
 1580 and standard deviation of these per-sample difference values.
 1581

1582 The results, presented in Tab. 18, show a clear dichotomy. The Top-5 neurons exhibit consistently
 1583 high mean activation differences with low standard deviations relative to their means. For instance,
 1584 under the Blended attack, the Top-1 neuron has a mean activation difference of 22.55 versus a
 1585 standard deviation of only 1.82. This demonstrates that the backdoor induces a stable and strong
 1586 activation change across the vast majority of samples. In contrast, the Bottom-5 neurons consistently
 1587 show negligible activation differences. This analysis confirms that our reported average TAC is driven
 1588 by a robust and consistent effect across the sample population, rather than being a statistical artifact
 1589 caused by a few outliers, thus validating its reliability as a metric for a backdoor effect.
 1590

1590 Table 18: Statistical analysis of per-sample activation differences for the top-5 and bottom-5 neurons
 1591 under different attacks. The values are presented in Mean (Standard Deviation) format.
 1592

Attack	Top 1	Top 2	Top 3	Top 4	Top 5	Bottom 1	Bottom 2	Bottom 3	Bottom 4	Bottom 5
Blended	22.55 (1.82)	11.44 (1.48)	11.34 (1.32)	10.80 (0.84)	10.27 (1.16)	1.18 (0.34)	1.04 (0.20)	0.96 (0.20)	0.93 (0.00)	0.90 (0.00)
SSBA	26.26 (2.28)	15.01 (1.32)	11.52 (1.00)	10.83 (1.31)	10.23 (1.35)	1.18 (0.28)	1.16 (0.28)	1.15 (0.20)	1.14 (0.28)	0.94 (0.20)
LF	20.27 (1.66)	16.66 (1.35)	12.93 (1.07)	11.37 (0.93)	10.23 (1.16)	1.45 (0.34)	1.44 (0.40)	1.35 (0.20)	1.11 (0.28)	0.97 (0.00)

1596 D.6 GENERALIZATION OF THE TAC-DETECTION CORRELATION

1597 To further validate the generalizability of the positive correlation we identified between Trigger
 1599 Activation Change (TAC) and backdoor detection performance, we extended our evaluation to
 1600 additional datasets and model architectures.
 1602

1603 **Experimental setup and analysis** We designed two additional experimental settings to verify the
 1604 consistency of our findings: the first on the GTSRB dataset with a ResNet-18 model, and the second
 1605 on the CIFAR-10 dataset with a VGG19-BN model. In this expanded analysis, we report not only the
 1606 TAC values and detection performance (AUROC) but also the Pearson correlation coefficient and the
 1607 linear regression coefficient (R^2) to quantify the strength and consistency of the relationship.
 1608

1609 As illustrated in Fig. 10, the results from our expanded analysis demonstrate a consistently positive
 1610 correlation between TAC and detection performance across all tested configurations. The high values
 1611 for both the Pearson correlation and R^2 coefficients shown in the figure confirm that the strong
 1612 relationship between TAC and detection efficacy is not a statistical artifact but a robust outcome that
 1613 holds across different datasets and models. These findings strengthen our paper’s core claim that
 1614 amplifying the backdoor effect, as measured by TAC, is an effective strategy for improving poisoned
 1615 sample detection.
 1616

1617 D.7 t-SNE VISUALIZATION

1618 We have provided the t-SNE visualization results, as shown in Fig. 11. The first row displays the
 1619 feature distribution after training with vanilla training, while the second row shows the distribution
 after training with SAM. It is evident that the poisoned samples are more distant from the target

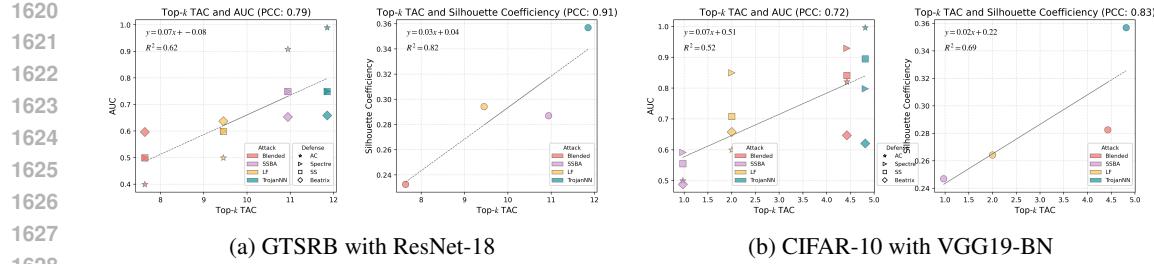


Figure 10: Validation of the correlation between Top-k TAC, detection performance (AUC), and feature separability (Silhouette Score) on new experimental settings. The left image (a) displays the correlation plots for GTSRB with ResNet-18, while the right image (b) displays the plots for CIFAR-10 with VGG19-BN.

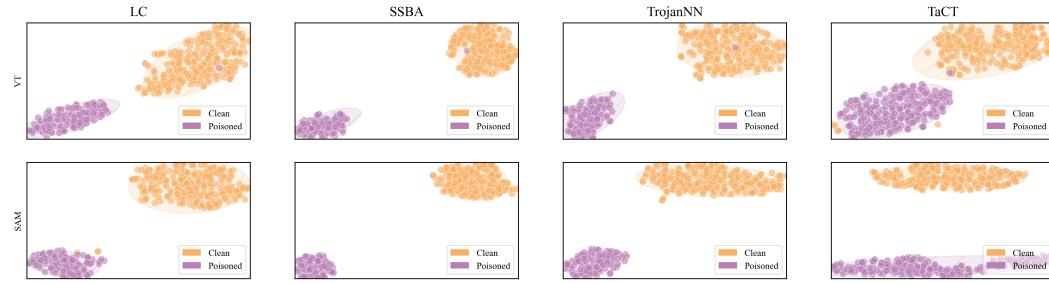


Figure 11: T-SNE visualization under different backdoor attacks on CIFAR10 and ResNet18 with different training algorithms. The first row represents the model using vanilla training, and the second row represents the model using SAM.

clean samples when trained with SAM. This indicates that SAM enhances the separability between poisoned and target clean samples, thereby improving the detection performance.

E THE USE OF LARGE LANGUAGE MODELS

In the preparation of this manuscript, we utilize a large language model (LLM) to enhance the quality and clarity of the text. The primary application of the LLM involves grammatical correction and language polishing. We employ this assistive tool to identify and rectify syntactical errors, improve sentence structure, and ensure the consistent use of academic terminology. The core intellectual content, including all research, analysis, and conclusions, is generated entirely by the authors. The role of the LLM is strictly limited to that of a writing aid to improve the readability and professionalism of the prose.