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ABSTRACT

This work investigates Poisoned Sample Detection (PSD), a promising defense
approach against backdoor attacks. However, we observe that the effectiveness of
many advanced PSD methods degrades significantly under weak backdoor attacks
(e.g., low poisoning ratios or weak trigger patterns). To substantiate this obser-
vation, we conduct a statistical analysis across various attacks and PSD methods,
revealing a strong correlation between the strength of the backdoor effect and the
detection performance. Inspired by this, we propose amplifying the backdoor effect
through training with Sharpness-Aware Minimization (SAM). Both theoretical
insights and empirical evidence validate that SAM enhances the activations of top
Trigger Activation Change (TAC) neurons while suppressing others. Based on this,
we introduce SAM-enhanced PSD, a simple yet effective framework that seamlessly
improves existing PSD methods by extracting detection features from the SAM-
trained model rather than the conventionally trained model. Extensive experiments
across multiple benchmarks demonstrate that our approach significantly improves
detection performance under both strong and weak backdoor attacks, achieving an
average True Positive Rate (TPR) gain of +34.3% over conventional PSD methods.
Overall, we believe that the revealed correlation between the backdoor effect and
detection performance could inspire future research advancements.

1 INTRODUCTION

Deep Neural Networks (DNNs), while achieving remarkable success across a wide range of appli-
cations (Yatbaz et al., 2023; Panagoulias et al., 2024; Shu et al., 2024), are vulnerable to backdoor
attacks (Wu et al., 2025). In such attacks, adversaries inject a small number of poisoned samples
into the training dataset (Gu et al., 2019), enabling the model to produce targeted malicious outputs
when a hidden trigger is present. This poses safety risks in security domains such as autonomous
driving, where even a single malicious prediction can cause catastrophic consequences. Consequently,
accurately identifying poisoned samples from training datasets is a fundamental defense objective.

Observation. To defend against data poisoning—based backdoor attacks, various pre-training stage
poisoned sample detection (PSD) methods have been proposed (Wu et al., 2023). General pre-training
stage PSD approaches typically involve training a model on the potentially poisoned dataset and
exploiting performance disparities in the feature space between poisoned and clean samples for
detection (Chen et al., 2019; Tang et al., 2021; Hayase et al., 2021; Tran et al., 2018; Yuan et al.,
2023). However, recent studies show that PSD methods can be bypassed when the poisoning ratio is
low or the trigger is weak (Tang et al., 2021; Qi et al., 2023a; Zhu et al., 2024). We argue that the
underlying cause is a reduction in the backdoor effect, defined as the relative strength of trigger-
induced neuron activations compared to activations from benign features, and measurable with the
Trigger Activation Change (TAC) metric (Zheng et al., 2022). Notably, a weak backdoor effect does
not necessarily imply a low attack success rate (ASR); in many cases, ASR remains high even as
detection performance deteriorates significantly. As shown in Fig. 1, a strong backdoor effect yields
well-separated feature clusters for poisoned and clean samples (first and third plots), facilitating
detection, whereas a weak effect results in cluster overlap (second and fourth plots), thereby degrading
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Figure 1: T-SNE visualizations of backdoor effects under high ( , ) and low (clean,
poisoned) poisoning and blending ratios. Top-k TAC (Trigger Activation Change) quantifies the
backdoor effect, where &k = 30. AUC is the average ROC-AUC across different detection methods,
and S-score is the Silhouette coefficient measuring separation between clean and poisoned samples.

PSD performance. Empirical evaluations across diverse attack configurations further confirm a strong
positive correlation between Top-k TAC and PSD performance (Pearson correlation = 0.73).

Motivation and Method. Building on the above observations, we address the challenge of detecting
poisoned samples under weak backdoor conditions. Since defenders cannot alter trigger properties
or poisoning ratios at the data level, we propose a new perspective: amplify the backdoor effect via
the training of the model (used for feature extraction in PSD) to improve feature-space separability
between clean and poisoned samples, thus enhancing PSD performance. Our approach adopts an
optimization-based strategy inspired by the sparse feature property of Sharpness-Aware Minimization
(SAM) (Andriushchenko et al., 2023). SAM encourages sparse neuron activations by amplifying
dominant activations while suppressing weaker ones. Theoretical and empirical analyses show that
SAM increases the activation of top TAC-ranked neurons (i.e., neurons strongly associated with
the backdoor trigger) while reducing the activation of others, thereby magnifying the backdoor
effect. Leveraging this property, we design a SAM-enhanced, three-stage PSD pipeline: (1) train or
fine-tune a model with SAM on the suspicious dataset; (2) extract backdoor-related features from
intermediate activations (e.g., TAC-ranked neurons); (3) apply an existing PSD detector that leverages
feature-space disparities to identify poisoned samples. Note that our framework is model-agnostic
and attack-independent, enabling seamless integration into existing PSD methodologies.

Contributions. Our work makes the following contributions: (1) We establish a strong positive
correlation between backdoor effect and PSD effectiveness, demonstrating that weak backdoor effects
significantly degrade detection performance. (2) We propose a simple yet effective SAM-based
training method that amplifies the backdoor effect, thereby increasing feature-space separability
and enhancing PSD performance. (3) We validate our approach through extensive experiments
across diverse backdoor attack scenarios, showing that our SAM-enhanced pipeline consistently
boosts multiple PSD methods, achieving an average True Positive Rate (TPR) gain of +34.3% over
conventional PSD approaches.

2 RELATED WORK

Backdoor attack. Backdoor attacks aim to embed hidden malicious behaviors into models during
training (Gu et al., 2019). Initial methods, like BadNets, add conspicuous triggers such as small
patches to a subset of training data and alter their labels to a target class. Subsequent research
focused on enhancing attack effectiveness and stealth through more diverse trigger designs, ranging
from subtle image blends to modifications in the frequency domain (Chen et al., 2017; Li et al.,,
2021b; Zeng et al., 2021). To further evade detection, a significant line of work explores clean-label
attacks, which preserve the original labels of poisoned samples (Turner et al., 2019). More advanced
techniques even ensure that poisoned and clean samples are indistinguishable at the feature level, thus
making them exceptionally difficult to detect (Tang et al., 2021; Qi et al., 2023a; Liang et al., 2024).

Backdoor defense. Backdoor defenses are categorized into four stages. Pre-training defenses (Chen
etal., 2019; Gao et al., 2019; Qi et al., 2023a; Ma et al., 2022; Yao et al., 2024) proactively purify
the dataset before the model learns malicious behaviors. In-training (Li et al., 2021a; Gao et al.,
2023; Liu et al., 2023) and post-training (Li et al., 2023; Zhu et al., 2023; Hu et al., 2025; Wang
et al., 2024) defenses aim to build robust models or repair compromised ones, respectively. Inference-
time defenses (Guo et al., 2023; Hou et al., 2024) offer flexibility by detecting attacks on-the-fly
without altering the model. Our work focuses on the proactive pre-training stage. In this stage, most
methods identify poisoned samples by finding statistical deviations in their feature representations.
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For instance, some leverage feature clustering or spectral analysis for this purpose (Chen et al.,
2019; Hayase et al., 2021). Other paradigms exist, such as learning-based (Qi et al., 2023b) and
perturbation-based detection (Huang et al., 2023; Pal et al., 2024). While most pre-training defenses
are sophisticated detectors, our work introduces a novel enhancement paradigm. We leverage SAM
during pre-training to widen the feature gap between clean and poisoned samples, making them easier
to detect. This fundamentally contrasts with FI-SAM (Zhu et al., 2023), which uses a clean dataset
for post-training model repair by suppressing backdoor effects. In contrast, our pre-training method
uses the poisoned dataset to amplify these same effects to aid detection. Consequently, our method is
not a new detector, but a plug-and-play module that improves the efficacy of existing ones.

Sharpness aware minimization. Sharpness-Aware Minimization (SAM) is a training technique that
improves model generalization by seeking flat, rather than sharp, minima in the loss landscape (Foret
et al., 2021). It achieves this by simultaneously minimizing both the loss value and the loss sharpness.
Variants like ASAM (Kwon et al., 2021) and GSAM (Zhuang et al., 2022) offer alternative strategies
to find these flat regions more efficiently. Beyond improving generalization, empirical studies have
shown that SAM can also induce other beneficial properties in models, such as increased neuron
sparsity and better compressibility (Andriushchenko et al., 2023).

3 METHOD

3.1 PROBLEM SETTING

Threat model. In this work, we consider data poisoning-based backdoor attacks, where the attacker
releases a poisoned training dataset D;, to implant a backdoor into any model trained on it. Starting
from a clean dataset D = {(zi,y:)}Y, C X x Y, where ¥ C R?and Y = {0,1,..., K — 1}
represent the input space and label set, the attacker selects a subset Dy, C D to poison, with

poisoning ratio p = ‘l%“lbll. Each poisoned sample is generated using a predefined trigger A, a

generation function g, and a target label y;, resulting in (Z = g(x, A), ;). The poisoned set D,,;
replaces Dy, in Dy to form the final poisoned dataset Dy, = (Dgy \ Dsup) U Dpos.-

Defender’s goal. Defenders aim to detect the poisoned samples D,,,; within the released training
dataset Dy, without knowing attack details (e.g., the poisoning ratio p, the trigger A, and the
generation function g), assuming defenders can access a few clean samples. A common defense
pipeline first trains a model via a standard method (e.g., SGD) to extract features, then applies a
detection algorithm on the extracted features. Our work introduces a new paradigm by innovating
in the first stage. Instead of passively accepting the features from standard training, we propose a
new training methodology designed to amplify the feature discrepancy between clean and poisoned
samples. This serves as a foundational enhancement, boosting the performance of various subsequent
detection methods.

3.2 ANALYSIS BETWEEN BACKDOOR EFFECT AND DETECTION PERFORMANCE

Backdoor effect measured by Top-k£ TAC. To measure backdoor effect, we use Trigger Activation
Change (TAC) (Zheng et al., 2022) which quantifies the differences in activation values between
poisoned samples and their corresponding clean samples in a deep neural network (DNN). We denote
aDNNas fo = f(F) o fL=Do...0 (1) Given a clean input sample z and its poisoned counterpart
x, TAC is computed using the following equation:

TACY (D) = ﬁ z;) Hf;”(m) - f;“(ﬁa)HQ, (1)
xTC

where j represents the j-th neuron in layer [, and D is the set of clean samples. According to the
definition, the magnitude of TAC reflects the neuron’s sensitivity to trigger. A higher TAC indicates
that the neuron responds more strongly to trigger and can therefore be regarded as a backdoor neuron.
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Figure 2: Correlation between backdoor effect and PSD performance on CIFAR-10 with ResNet-18
using k£ = 30 and poisoning ratios of 0.5%, 1% and 5%, quantified by Pearson correlation coefficient
(PCC) and linear regression analysis. Left: AUC vs. Top-k TAC across different attacks and defenses,
showing a positive correlation. Middle: Silhouette coefficient vs. Top-k TAC, indicating improved
feature separability with stronger backdoor effect. Right: t-SNE visualizations showing that higher
Top-k TAC leads to better separation between clean (purple) and poisoned (orange) samples, aligned
with improved detection. (S-score is the Silhouette coefficient.)

To quantify the overall backdoor effect in the model, we consider the Top-k£ most responsive neurons
in layer /. The Top-k TAC is computed by averaging the TAC values of these top-k neurons:

Z TAC ()

JE€ET

Top-k TAC'®
p- ‘Tk

where T}, denotes the indices of the top-k neurons with the highest TAC values in layer [. In our
method, we specifically select the final convolutional layer for this computation, as it typically
provides the most discriminative features for distinguishing between clean and poisoned samples.

Backdoor effect and detection performance. To explore the relationship between the backdoor
effect and detection performance, we manipulate the strength of the backdoor effect by adjusting
the poisoning ratio across various attacks, using CIFAR-10 dataset on ResNet-18. We measure the
backdoor effect using Top-k TAC and evaluate detection performance with AUC. As illustrated in
Fig. 2, detection performance consistently declines as TAC decreases, with a Pearson correlation
coefficient of 0.73, indicating a strong positive correlation. Regression analysis yields an R-squared'
value of 0.54, indicating that TAC explains a significant portion of the variance in detection accuracy.

To further understand the impact of backdoor effect on detection, we compute the silhouette coefficient,
a standard metric for evaluating how well two classes are separated in feature space. In our setting, it
measures the separability between poisoned samples and target clean samples. As shown in Fig. 2,
the silhouette coefficient increases with higher TAC, indicating that stronger backdoor effects lead
to more distinct activation patterns between the two classes. The Pearson correlation coefficient
between TAC and silhouette coefficient is 0.87, and the R-squared from regression analysis is 0.76,
both supporting a clear linear relationship. These findings confirm that stronger backdoor effects,
as measured by higher Top-k£ TAC, lead to more pronounced separation between poisoned
and clean sample activations, suggesting that amplifying TAC through training modifications can
enhance detection effectiveness even without prior knowledge of the specific attack. We provide
additional results on other models and datasets, and a statistical analysis of the activation gap in our
TAC formulation, in Sec. D.6 and Sec. D.5, respectively.

3.3 ENHANCING BACKDOOR EFFECTS VIA SAM

Backdoor learning with SAM. To enhance the backdoor effect during training, we adopt the
Sharpness-Aware Minimization (SAM) optimization algorithm. Prior studies (Springer et al., 2024;
Andriushchenko et al., 2023) have shown that SAM improves feature structure, such as producing
lower-rank representations. Intuitively, SAM guides the learning process toward more discriminative

'R-squared measures the proportion of the variance in the dependent variable that is predictable from the
independent variables in a regression model. A higher R-squared indicates a better fit of the model to the data.
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Figure 3: TAC differences between models trained with SAM and Vanilla Training. Neurons are
sorted by their TAC (descending) in each model. Blue bars and red bars indicate increased and
decreased TAC by SAM, respectively.

directions in the representation space, thereby amplifying the activations of neurons responsive to the
features. The SAM objective is formulated as:

mn _ guax  LO+e), ©)
where L(0) = ﬁ > (w.y)ep,, {(fo(m;y)) is the cross-entropy loss, and p > 0 is a hyperparameter
that controls the budget for weight perturbations. To illustrate the effect of SAM on backdoor learning,
we compare TAC values between models trained with SAM and Vanilla Training across multiple
backdoor attacks. As shown in Fig. 3, SAM consistently increases the TAC values of neurons highly
responsive to the trigger (¢.e., backdoor neurons), while reducing the TAC values of unrelated neurons.
These results suggest that SAM selectively amplifies the most discriminative backdoor features by
encouraging sharper activation patterns, thereby enhancing the backdoor effect.

Theoretical analysis of SAM’s effect. To better understand how SAM enhances the activation of
backdoor-related neurons, we provide a theoretical analysis of its effect on activation. Specifically,
compared to SGD, the SAM update rule can be approximated as (Andriushchenko et al., 2023):

VL(6:)
VL@

where 7 is the learning rate and p is a hyperparameter to control the budget for weight perturbations.

03P =0, ~nVLO,) — O ~ 0, —n|VLO,) + pVL(O)) @)

To deepen our analysis of SAM’s update mechanism, we adopt a simplified setting for theoretical
tractability. Specifically, inspired by prior work (Andriushchenko et al., 2023), we consider a two-
layer ReLU network, f(z;0) = a'o(W ), notated as f(8) for simplicity. Our analysis focuses on
the change in the pre-activation of the j-th hidden neuron, i.e., w . While this setting simplifies
complex deep architectures, it is instrumental in isolating and understanding the core mechanism by
which SAM affects feature separation, providing us with key theoretical intuition. The universality of
this intuition is empirically validated on large-scale models in Fig. 3.

We conduct a detailed theoretical decomposition of how the SAM update affects the pre-activation in
Sec. A.1. This analysis reveals that, compared to standard SGD, SAM’s update introduces a crucial
additional regularization term. Based on a further analysis of this term, we can explain how it alters
the learning dynamics of specific neurons when encountering poisoned samples. This finding serves
as the theoretical foundation for our subsequent proposition regarding the TAC.

Proposition 1. Based on the definition of TAC in Eq. (1), the TAC of neuron j at step t is

TAC; (D) = ﬁ Zmep|w;m — ijt:i|, where & = g(x,A) is a poisoned input with target
label 0. Suppose for all clean sample x € D and corresponding poisoned sample &, the following
o(w],x)
J,t

conditions are satisfied: (i) aj,o'(w],z) < —

o (i) o' (w],x) = 0
(1= s(f(O))IVf(0)l5 o
and (iii) w;ft:c < w;':tﬁz. Compared with vanilla SGD, TAC change at step t of neuron j for SAM

s(f(8))]|z||3 - -
e o2 (== (0 V50 030" (w] ) ~ o] ).
Remark. Our theory reveals how SAM enhances specific “backdoor neurons”. These neurons are
defined by their response to a poisoned sample & (target label 0): they activate on the poisoned
input, remain inactive on clean ones, and possess a negative output weight. Our proof demonstrates
that for neurons meeting these criteria, this occurs because SAM’s optimization is driven to fit the

increases by at least
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poisoned data point precisely, which in turn selectively amplifies their pre-activations. This selective
amplification is the core mechanism that raises the Top-k£ TAC, thereby increasing the feature
separability between poisoned and clean data and boosting detection performance. Further analysis
and proofs are detailed in Sec. 4.3 and Secs. A.2 and A.3, respectively.

3.4 SAM-ENHANCED PSD

Building on the above findings that (1) the backdoor effect is concentrated within a small set of
neurons identified by Top-k TAC, highlighting its significance for detection and suggesting that
defenders should leverage the feature information of these Top-k neurons, and (2) SAM can amplify
this neuron-level effect, we propose SAM-enhanced Poison Sample Detection (SAM-enhanced-
PSD), a three-stage framework designed to improve downstream detection:

 Stage-1: Backdoored model training. Train a backdoored model fg,,, using SAM via Eq. (3).

» Stage-2: Backdoor-related feature extraction. For each input, we get the intermediate features
g = Posuy (). Because the defender lacks ground-truth TAC indices, we apply feature extraction,
which is validated to enhance detection in prior work (Hayase et al., 2021), to simulate backdoor-
related features. Specifically, we compute scaled features as g° = =V 2Pg, where P is a PCA
projection matrix estimated from the training data, and 3 is a covariance matrix estimated from a
reference clean set along with dynamically filtered candidate clean samples. A detailed comparison
between this PCA-based surrogate and the true Top-k neuron features is given in Sec. 4.3.

 Stage-3: Integrating with off-the-shelf PSD. Apply an off-the-shelf PSD method (e.g., Activation
Clustering) using the extracted features g° as input.

The full algorithmic details of SAM-enhanced PSD are provided in Sec. A 4.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Attack settings. In this study, we evaluate the efficacy of backdoor attacks within an experimental
framework. Specifically, we include thirteen backdoor attack methods: BadNets (Gu et al., 2019),
both in its class-specific (BadNets-A20) and universal forms (BadNets-A2A), Blended attack (Chen
et al., 2017), Label-consistent attack (LC) (Turner et al., 2019), Low-frequency attack (LF) (Zeng
et al., 2021), Sample-specific backdoor attack (SSBA) (Li et al., 2021b), Targeted contamination at-
tack (TaCT) (Tang et al., 2021), Adaptive-Blend attack (Adap-Blend) (Qi et al., 2023a), Trojan attack
(TrojanNN) (Liu et al., 2018), Warping-based attack (WaNet) (Nguyen & Tran, 2021), Input-aware dy-
namic backdoor attack(Input-aware) (Nguyen & Tran, 2020), Bit-per-pixel attack(BppAttack) (Wang
et al., 2022), and dubbed sparse and invisible backdoor attack (SIBA) (Gao et al., 2024). Each attack
is configured according to the default settings provided by BackdoorBench (Wu et al., 2025). The ex-
perimental evaluation is conducted on three benchmark datasets: CIFAR-10 (Krizhevsky et al., 2009),
Tiny ImageNet (Russakovsky et al., 2015), and GTSRB (Stallkamp et al., 2011), and implemented on
three neural network architectures, namely ResNet18 (He et al., 2016), VGG19-BN (Simonyan &
Zisserman, 2014) and DenseNet-161 (Huang et al., 2017). Due to space constraints, the results for
Tiny, VGG19-BN and DenseNet-161 are presented in Sec. C.1 and Sec. C.2. For our experiments, we
set the poisoning ratio uniformly at 5% across all attack types, and the target label of BadNets-A2A
is reassigned to y; = (y + 1) mod K for each class y, where K represents the total number of
classes. However, the LC attacks, which only poison clean samples within the target class, can only
be implemented for CIFAR-10. We consider weak backdoor attacks as those whose poisoning ratio
is low (e.g., 1% or 0.5%), or those with weak trigger strength (e.g., Adap-Blend).

Detection settings. In this study, we systematically evaluate the effectiveness of our proposed SAM-
enhanced PSD, combined with a wide range of backdoor detection methods including Activation
Clustering (AC) (Chen et al., 2019), Beatrix (Ma et al., 2022), SCAn (Tang et al., 2021) Spectral
Signature (SS) (Tran et al., 2018), and Spectre (Hayase et al., 2021). Additionally, it is presumed
that a small, clean dataset can be utilized to aid the detection process, a common practice in recent
studies (Ma et al., 2022; Gao et al., 2019; Huang et al., 2023; Tang et al., 2021). For a balanced
evaluation, each class in this auxiliary clean dataset contains 250 samples, which are carefully selected
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Table 1: Detection comparisons (measured by TPR (%), FPR (%) and F1 (%)) between base PSD and SAM-
enhanced PSD (+SAM) on CIFAR-10 and ResNet18, and the better result in each pair is highlighted in bold. In
terms of each metric, the average change of SAM-enhanced PSD to base PSD across all attacks is presented at

the bottom: performance improvements are highlighted in green, other changes in red.

Detection — Spectre / +SAM SCAn/+SAM SS /+SAM AC/+SAM Beatrix / +SAM
Attack | TPRT FPR] F171 TPR T FPR | F11 TPRT FPR F171 TPR T FPR | F11 TPRT FPR| FIt
BadNets 51.1/88.4 4.9/2.9 42.0/72.6| 96.0/952 0.0/0.0 98.0/97.6 |70.8/92.3 2.4/1.2 65.6/85.5| 96.8/95.4 0.1/13.3 97.1/42.5 | 56.6/98.8 5.0/0.5 44.9/94.5
Blended 29.9/59.7 6.0/4.4 24.6/49.0| 99.2/98.7 0.0/0.0  99.6/99.3 |32.9/94.6 4.4/1.1 30.5/87.6| 2.3/98.8 7.7/11.9 1.9/46.4 | 5.0/99.8 5.0/1.5 5.0/87.6
SSBA 36.6/72.8 5.6/3.7 30.1/59.8| 93.9/96.5 0.0/0.0 96.9/98.2 |80.4/89.9 1.9/1.4 74.5/83.3| 99.3/96.5 3.3/16.2 76.1/38.3 | 16.8/98.9 5.0/0.4 15.8/95.5
LF 32.0/54.1 59/4.7 26.3/44.5| 94.1/96.1 0.0/0.0 97.0/98.0 |68.2/86.5 2.5/1.5 63.2/80.2| 95.6/96.1 10.4/10.5 48.7/48.7 | 2.4/98.8 5.0/0.8 2.4/92.3
Adap-Blend [24.1/65.9 5.6/3.7 20.9/56.0| 92.5/97.3 10.5/10.5 47.3/49.1 |20.2/91.0 4.5/1.2 19.6/85.4| 1.5/97.1 7.1/77.6 12/57.0 | 6.2/99.9 5.0/8.2 6.2/56.2
LC 17.0/41.7 4.3/3.0 17.1/41.9| 100.0/99.9 0.0/0.0 100.0/99.9 (40.5/47.8 2.1/1.7 45.0/53.2| 0.0/100.0  0.0/0.0 0.0/100.0 | 2.2/99.9 5.0/3.2 2.2/76.6
TaCT 36.1/78.6  7.0/2.3 26.9/70.9100.0/100.0 0.0/0.0 100.0/100.0|42.3/46.4 4.2/3.7 38.1/42.7|100.0/100.0 0.1/0.0 99.5/100.0|13.4/100.0 5.0/2.6 12.9/80.2
TrojanNN 30.2/62.4 6.0/4.3 24.8/51.3/100.0/100.0 0.0/0.0 100.0/100.0|63.4/97.2 2.8/1.0 58.7/90.1| 99.9/100.0 3.2/12.0 76.7/46.7 | 4.6/100.0 5.0/3.5 4.6/75.3
WaNet 66.4/97.7 4.1/2.6 54.3/79.2| 66.3/90.1 0.0/0.0 79.7/94.8 |71.1/86.0 1.5/0.7 71.4/85.9| 85.1/90.1 0.0/0.0 91.9/94.8 | 1.2/95.5 5.0/5.0 1.2/65.7
Input-aware [53.9/99.0 4.7/2.5 44.2/80.2| 97.4/97.9 0.1/0.1 97.6/98.4 |83.5/82.8 0.9/0.9 83.5/82.8| 0.0/91.9  0.0/0.1 0.0/95.2 | 3.4/98.4 5.0/5.0 3.4/67.0
BppAttack  [21.5/40.2 6.3/5.4 17.8/33.1| 87.8/96.6 0.0/0.0  93.5/98.3 |85.8/92.6 0.8/0.4 85.7/92.3| 94.2/96.6 0.0/0.0 97.0/98.3 | 0.1/99.9 5.0/5.0 0.1/67.7
SIBA 30.0/65.2 6.0/4.1 24.6/53.6| 98.7/98.9 0.0/0.0 99.3/99.4 |72.9/91.5 1.2/0.3 74.2/93.1| 96.8/98.9 0.0/0.0 98.4/99.5| 4.3/90.3 5.0/5.0 4.3/63.3
BadNets-A2A|99.5/99.6 10.6/10.5 49.7/49.8| 0.0/0.0 0.0/0.0 0.0/0.0  |99.4/99.4 10.6/10.6 49.7/49.7| 97.8/96.1  0.0/0.0 98.9/98.0 | 27.3/99.2 5.0/1.0 24.6/91.3
Average ‘ +30.6 -1.7 +26.1 ‘ +3.2 -0.0 +1.9 ‘ +20.5 -1.1 +19.4 ‘ +29.8 +3.0 +13.7 ‘ +874 -1.8 +68.1

from the test dataset. Furthermore, as demonstrated in the Sec. D.2.2, our method remains robust
even when using limited, sifted, or out-of-distribution auxiliary clean data.

Evaluation metrics. We adopt three common metrics to measure the detection performance: True
Positive Rate (TPR), False Positive Rate (FPR) and F1 score. Higher TPR and F1 scores indicate
better performance, while lower FPR denotes better.

4.2 MAIN RESULTS

Table 2: Detection comparisons (%) between base PSD and SAM-

Effectiveness of SAM-en- enhanced PSD (+SAM) on GTSRB and ResNetl8 (same evaluation

hanced PSD. To validate

the effectiveness of the SAM-

setup as Tab. 1).

Detection — SCAn/+SAM AC/+SAM Beatrix / +SAM
enhanced PSD, W.e demonstrate Attack | TPR{ FPR| FlIt | TPRT FPR| FI{ | TPRT FPR| FI{
the effects of different PSDs gners 97.8/912 0.0/0.0 98.9/954 [96.4/91.0 0.2/0.3 96.3/92.7| 25.8/99.8 5.1/5.1 23.2/67.5
as well as these combined  Blended 88.9/99.6 0.0/0.0 94.1/99.8 | 0.0/99.7 0.2/0.2 0.0/98.4 |46.9/100.0 5.1/5.1 38.6/67.6

. SSBA 100.0/97.3 0.0/0.0 100.0/98.7 [91.0/97.4 0.1/0.3 94.0/96.0|35.7/100.0 5.1/5.0 30.8/67.6
with SAM-enhanced PSD & 91.2/85.8 0.0/0.0 95.4/923 | 0.0/87.9 0.2/1.3 0.0/82.9 | 32.5/99.5 5.1/5.1 28.4/67.4
on CIFAR-10 and GTSRB  Adap-Blend |99.8097.6 13.50.0 43.7/98.8 |88.3/96.8 0.3/0.3 90.0/95.3| 97.9/99.9 4.5/4.5 69.0/69.9

. TrojanNN | 99.9/99.9 0.0/0.0 100.0/100.0|98.3/99.9 0.4/0.3 95.4/97.2|36.8/100.0 5.1/5.1 31.6/67.6
datasets, as shown in Tab. 1  waet 0.0/71.1  0.0/0.0  0.0/83.1 | 0.0/72.6 0.1/0.7 0.0/78.0 | 6.3/86.5 5.1/5.1 6.2/61.2
and Tab. 2. respectively. @ The  Inpu-aware | 985982 0.1/0.0 98.7/98.8 |95.8/93.5 0.2/2.0 95.6/30.9( 30.1/91.9 5.0/5.0 26.6/63.8

BppAttac .8/86.8 3.1/0.0  77.2/93.0 |99.9/88.0 0.5/0.8 95.5/86.7| 97.2/97.8 5.0/5.0 66.3/66.

» IeSp AL ppAttack | 99.8/36.8 3.1/0.0 77.2/93.0 |99.9/88.0 0.5/0.8 95.5/86.7| 97.2/97.8 5.0/5.0 66.3/66.6
SAM-enhanced PSD generally sma 99.3/99.6 0.0/0.0 99.7/99.8 [91.7/99.6 0.3/0.5 93.0/95.0|13.2/100.0 5.1/5.1 12.6/67.6
enhances various base off-the- BadNets-A2A| 0.0/0.0  0.0/0.0  0.0/0.0 [92.1/94.2 0.0/0.0 95.9/97.0|73.7/100.0 5.0/5.1 54.7/67.6

Average | +47  -15 4138 | +243 404 4221 +527 00 4315

shelf PSDs, as indicated in Tab. 1
and Tab. 2. For CIFAR-10, we improved the True Positive Rate (TPR) by over 25% for four detection
methods. Averaged over 13 attack types and 5 detection methods on the CIFAR-10 dataset, our
approach yields a 34.3% improvement in TPR. On GTSRB, we enhanced the detection performance
of most methods, with increases in TPR exceeding 20% for two methods. @ For methods like
Spectre, SS and Beatrix, which are based on anomaly detection, SAM-enhanced PSD increases
the prominence of poisoned samples at backdoor neurons relative to clean samples, making these
samples more anomalous and thus enhancing detection. In GTSRB, the number of poisoned and
target clean samples is similar, which breaks the key assumption of anomaly-based methods like
Spectre and SS. In addition, since neither method leverages a surrogate clean dataset, they lack the
reference needed to discriminate poisoned inputs. We exclude them from our evaluation. & For the
SCAn method, our approach shows significant improvements, especially under attacks where SCAn
typically underperforms, such as WaNet. Since SCAn requires identification of the target label, it
cannot detect BadNets-A2A. @ For the AC, since SAM-enhanced PSD increases the activation of
poisoned samples in backdoor-related neurons, it causes poisoned samples to deviate more from
clean samples and cluster more tightly, thereby enhancing detection effectiveness. We also design an
adaptive attack targeting our method and, as detailed in Sec. C.5, demonstrate that an attacker who
cannot alter the training process cannot weaken our detector. Furthermore, retraining on the purified
dataset confirms our defense’s effectiveness in Sec. C.6.

Performance under different poisoning ratios. To evaluate the impact of the poisoning ratio on
the SAM-enhanced PSD, especially in the case of what we consider to be weak backdoor attacks, we
present the average detection performance of four detection methods under all attacks on CIFAR-10
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Figure 4: Detection performance of base PSD (w/o SAM) and SAM-enhanced PSD (w SAM) under
different poisoning ratios on CIFAR10 and ResNet18.

Blended w/o SAM LF w/o SAM Blended w/o SAM LF w/o SAM

400

350

300

250

requency

200

feature_y
feature y

F

100

50

0 0
feature_x o 2 4 s 5 0
Distance

Blended w/ SAM

feature_x 2 3 4
Distance
LF w/ SAM

Blended w/ SAM LF w/ SAM

200

150

feature_y
Frequency
Freque ney

feature_y

003 0 10 2 30

20 40
Distance

feature_x feature_x 0 5 10

Figure 5: Left: t-SNE under different attacks in models trained with Vanilla training (Top row) and
with SAM (Bottom row). Right: Distribution of distances between the target clean samples center
and each sample in models trained with Vanilla training (Top row) and with SAM (Bottom row)
under various backdoor attacks on CIFAR-10 and ResNet18.

and ResNet18, as shown in Fig. 4. The selected range for the poisoning ratio is {0.1%, 0.5%, 1%,
5%}. ® SAM-enhanced PSD enhances detection performance across different poisoning ratios as
illustrated in Fig. 4. Notably, when the poisoning ratio is low such as 0.5% and 1%, SAM-enhanced
PSD significantly improves the performance of PSDs. @& When the poisoning ratio is 0.1%, even
though SAM-enhanced PSD improves performance, its average True Positive Rate (TPR) does not
exceed 60%. The average attack success rate is only 31.8%, meaning a complete backdoor cannot
form, which makes poisoned samples harder to detect. Detailed results are provided in Sec. C.3.

4.3 ANALYSIS OF SAM-ENHANCED-PSD

Table 3: Ablation study with different components of
SAM-enhanced PSD under various backdoor attacks
and base PSDs on CIFAR-10 and ResNet18.

Ablation study in SAM-enhanced PSD. As
shown in Tab. 3, we evaluate the impact
of sharpness-aware minimization (SAM) and
backdoor-related feature extraction (BRF) on the

. . . S Beatri
detection of backdoor attacks.. Integrating SAM  Detection | SAM  BRF ‘ TPR(%)  FPR(%) | TPR  FPR(%)
significantly enhances detection effectiveness by X X | 708 24 56.6 50
i i L e | Y X | 860 0.6 98.4 5.0
increasing the feature gap between clean and poi-  BaNes | % 5 | 350 o 70 P
soned samples. Incorporating BRF pushes perfor- oo/ | 93 12 98.8 0.5
mance further by concentrating on the dimensions X X | 329 44 5.0 5.0

: : L . X 90.6 0.3 79.8 5.0
that are most 1nf0rrna.t1ve for recognizing poisoned  Blended >‘/< v 60.4 19 231 50
samples, thereby making the backdoor pattern more /| %6 L1 99.8 L5

salient.

backdoor-relevant directions, yielding the best results against both attack types.

Effect of SAM on feature-space separation between poisoned and clean samples.

Combining SAM and BRF provides both stronger feature separability and a focus on

To gain a

deeper understanding of the impact of the SAM on poisoned and clean samples, we conduct a detailed
analysis and visualization of the distribution of samples in the feature space in Fig. 5. @ t-SNE
visualization: As shown on the left of Fig. 5, we demonstrate, through t-SNE, the distribution of
poisoned and target clean samples in the feature space, where we observe that after training with
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the SAM, poisoned samples are more distinctly separated from the target class. @ Distribution of
distances between the target clean sample center and each sample: The center of the target clean
samples is defined by the average of their features within the current model. As illustrated on the
right of Fig. 5, in models trained with vanilla training (SGD), the features of poisoned samples
are closer to the center of clean samples compared to those in models trained with SAM, which
increases the difficulty in distinguishing between poisoned and clean samples. Sec. D.7 provides
additional t-SNE visualizations of various attacks. These results show that, after training with the
SAM, poisoned samples are much more clearly separated from the target class in feature space.

Relationship between Top-% TAC neurons and principal components. We analyze the alignment
between the Top-k£ TAC neurons and PCA components to investigate how effectively BRF captures
backdoor-relevant information. Specifically, we calculate the Pearson correlation coefficients r; =
corr (l(i), t) between each principal component’s loading vector 1() and the corresponding TAC
score vector t. By plotting these correlations for various attacks (see Fig. 6), we consistently observe
that the strongest correlations occur among the initial principal components and gradually diminish
as we move toward components with lower variance contributions. This indicates that neurons with
higher TAC values have larger loadings in the leading principal components, thus confirming that
BREF effectively captures the backdoor-related signals embedded in the Top-k neuron subset.

Additional analyses in appendix. To further validate the robustness of our method, we provide
several complementary analyses in Appendix Secs. C and D. @ Adaptive attack. We evaluate our
framework under a stronger adversary with full knowledge of the SAM-based training procedure, who
explicitly optimizes the trigger to minimize the feature-space gap. Even in this challenging setting, our
method consistently achieves over 94% TPR across multiple detectors, whereas baseline performance
drops to near zero. This result indicates that the proposed defense is difficult to circumvent unless
the attacker can directly control the entire training process (details in Sec. C.5). ® Computational
efficiency. Standard SAM approximately doubles training time. We demonstrate that our framework
is fully compatible with efficient variants such as MSAM, which deliver comparable detection gains
while incurring almost no additional runtime relative to the baseline. This ensures the method
remains both effective and practical for real-world deployment (details in Sec. D.4). & Stability and
data flexibility. We examine performance sensitivity to hyperparameters and SAM variant choices,
finding the results to be stable across settings. Importantly, the method maintains strong detection
performance even with limited clean samples, “sifted-clean” data extracted from the poisoned set, or
entirely out-of-distribution auxiliary data. These findings highlight the flexibility and practical utility
of our approach in diverse application scenarios (details in Secs. D.1 to D.3).

5 CONCLUSION

This work revisits existing poisoned sample detection (PSD) methods and finds that they often
struggle against weak backdoor attacks, such as those with low poisoning ratios or weak trigger
strengths. Our statistical analysis reveals a positive correlation between the strength of the backdoor
effect and detection performance. Based on this finding, we propose to amplify the backdoor effect
by training the model using Sharpness-Aware Minimization (SAM), without changing the poisoning
ratio or trigger strength, thereby making poisoned samples more detectable. Our method, called SAM-
enhanced PSD, integrates easily with any feature-based PSD method. Experiments on diverse datasets
and network architectures show that our method significantly improves detection performance. This
work contributes to defending against backdoor attacks in deep neural networks, providing a new
perspective that complements existing detection methods and has the potential to inspire further
research in this critical area.
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6 ETHICS STATEMENT

Our research is ethically motivated by the need to enhance the security of Al systems in critical
applications, as vulnerabilities like backdoor attacks pose significant risks to public safety and trust.
We acknowledge the dual-use nature of security research; however, our work is fundamentally
defensive in its aim to create more robust detection methods. By publicly sharing these findings, we
intend to empower the security community, believing the positive impact of creating more trustworthy
Al outweighs the potential for misuse.

7 REPRODUCIBILITY STATEMENT

To ensure our results are reproducible, all experiments were conducted using public benchmarks
such as the CIFAR-10 and GTSRB datasets with standard models like ResNet-18, all within the
BackdoorBench framework. We have documented the specific configurations for all thirteen attack
types and five detection methods evaluated. Key hyperparameters for both conventional SGD and
SAM-based training, along with detailed pseudocode for our method, are provided in the paper and
its appendix to allow for the complete replication of our findings.
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D.7 t-SNE visualization.
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A DETAILS OF SAM-ENHANCED PSD

A.1 THEORETICAL ANALYSIS OF THE SAM UPDATE MECHANISM

For theoretical tractability, we consider a two-layer ReLU network defined as f(x;0) = aTa(Wacjl,
simplified as f(6), with a logistic loss £(0) to adapt to our task. Here, W = [w1,..., wy]
represents the weight matrix of the first layer. We analyze the pre-activation value of each hidden
neuron j, defined as ij:c.

According to the SAM update rule, SAM introduces an extra second-order perturbation compared to
SGD. This update acts on the step-t weight w; ; of neuron j and, in turn, changes its pre-activation

'w;r,tw. As stated in the lemma below, the one-step change splits into three parts: one SGD part plus
two SAM parts.

Lemma 1. At training step t, the change in the pre-activation of neuron j approximately splits into:
ijt+1m — wztm ~ n(@ +@+ @),
where

© —aj o' (w] )3 (s(f(0:)) —y) is the standard SGD update,

@ —p sign(s(f(8:)) —y) s(f(0:))(1 = s(f(00) IV f(O)l|2 aje o' (w],) |23 is the SAM data-
fitting term, and

o(w],z) ||z
IV£(6:)]2
where s(z) = 1/(1 + exp(—=z)) is the sigmoid function.

® —pls(f(6:) —y|

acts as a SAM regularization component.

The decomposition above provides the foundation for the proposition mentioned in the main text.
Without loss of generality, let’s assume the target label for a poisoned sample  is y = 0. For
any neuron j that is activated by this input (i.e., U(ij,tx) > 0) and has a corresponding second-
layer weight a; ; < 0, the sum of the data-fitting term and the regularization term may be positive
(@4+® > 0.

This causes the SAM update to push the neuron’s pre-activation more strongly than the SGD update
would, potentially leading to a positive change in TAC. This observation clarifies the core idea of our
proposition that SAM influences the model’s feature representation by amplifying the activations of
specific neurons.

A.2 PROOF OF THE LEMMA 1

Proof. Considering the sample is (x, y). We have for the update of SAM:

\v/4 <0+p Vio,) )

[VE(0:)]l2
_vi(6,) + pV2E(0t)vvf((00:>)||2 +0(p?) )

=V [£(8:) + p||VE(0,)|2 + O ()] -

Thus, under the first-order approximation, a step of SAM corresponds to a gradient update on the
regularized objective £(0;) + p||V£(0;)||2. Now recall that the layerwise gradients of a two-layer
ReLU network can be written as:

Va, l(0:) =(5(f(0:) —y) - o(Wyz), (6)
Vaw, L(0:) =(s(f(6:) — v) - ajs0’ (w)] )z, @)

where s(f(6;)) = m'
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Then a direct computation gives us the following expression for the full gradient norm:

IVL(0:)]]2
=[s(f(8:)) =yl - [[Vf(8:)]2 (8)

=|s(f(6:)) — yl\/IIU(Wtw)II% + l|2[l3 - lla: © o' (W),

where © denotes element-wise multiplication. Then the update of w ; for neuron j on each step of
SAM with step size 7) can be written as:

wj i1 =wj — 1 (VEO:) + pVI[VEO:)|l2) + O (%),

w1 =wjp —n(s(f(0:) —y)aj o’ (w),x)x
— npsign(s(f(6:)) — y)s(£(0:1))(1 = s(F(O)IVf(8:) 200" (w],x) x
—npls(f(6:)) — yl/IIV£(0:)]l20 (w],x) 2 + O (p*) ,

where we used the fact that o’ (w;':t:c) o (w;ft:c) =0 (w;':tm) and second-order terms are zero
almost everywhere for ReLUs. The p refers to the radius of perturbation. If p is sufficiently small,
O(p?) is negligible relative to other terms in Eq. (3) of the manuscript. The assumption of sufficiently
small p is commonly used to analyze the property of SAM in the community(Wen et al., 2022). The
activation of Neuron can be approximately updated by:

w1 ~w] @~ nag,of (w] @)@} (s(/(6,) ~ v)
— o sign(s(/(60,)) — ) s(F(8))(1 — s(7(0.)) [V I (0))]|2 a5 0" (w] ) 2]3
)y Stk el

—np |s(f(8y) IVF(00)]l2

=n(®+ @ +0).

A.3 PROOF OF THE PROPOSITION 1

Proof. We consider the clean sample and the corresponding poisoned sample is (x,y) and (£ =
g(x, A),y;), where A is a predefined trigger, g is a generation function and a target label y,. Without
loss of generality, we assume that the label of poisoned sample is 0. We have for the update of TAC:

T - T T =
TAC; 141(D) — TAC; +( Z w; t+11’ jwt+1w| — ﬁ Z |wj’tw — wjytw|. )
€D xz€D

Under the condition (iii), we have
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(wi® = w1 @| - |lwj,z —w),
:(ij,t-f-li - ij,t‘i) - (ij,t-i-lm - ij,tm)
= —naj o' (w;,@)||Z[3 (s((8:) — y)
—np sign(s(f(61)) —y) s(£(8:))(1 — s(f(O))) IV f(81) |2 aji o’ (w] &) | 2|3
w!, &) ||&|?
o |s(£(80)) ~ | ”ﬁg;(g)t')'”]?
+naj o (w],x) |23 (s(f(6:) — y)
+np sign(s(f(01)) —y) s(£(0:))(1 = s(f(0) IV f(81)|l2 a5 0 (w) @) |3
’LUT Zr £ 2
+np[s(£(6:)) —y| ”ﬁg;(g)t')'ng'b
= —naj; o' (w]&)||Z]|3 s(f(6:))
—nps(f(00)(1 = s(£(0)) IVF(01) 2051 0" (w] &) &3

o) ki) 1
OO P

0o (1= s(F0)) =5 o0

> —naje o' (w,@)||2]3 5(f(6:)

5(/(0)l1 115 . )
% (=1 = s(f(B)) IVF () I3 aj 0 (w;tw) - a(wztw))

where the third equality uses condition (ii) together with the fact that the poisoned sample & has label
y = 0. Hence

TACj ++1(D) — TAC; +(D)

> b Y —nag o (w] @) &3 s((6:))
xeD

SGD update term

mp SO ((y _ y5(0,))) V782 ase o’ (w],) — o (w],))

M ZICAIE

positive under condition (i)

where the first term is the standard SGD update and the second term is strictly positive under
condition (i), ensuring an overall increase in the neuron’s TAC.

O

A.4 DETAILED ALGORITHM OF SAM-ENHANCED PSD

We present a detailed algorithmic procedure for SAM-enhanced PSD in Algorithm 1. When training
with Sharpness-Aware Minimization (SAM), we select dataset-specific sharpness parameter values,
setting p = 0.1 for CIFAR-10 and p = 0.4 for both Tiny ImageNet and GTSRB. Additionally,
we utilize a reference dataset containing 250 clean samples per class. Dimensionality reduction
parameters are set specifically at 30 for CIFAR-10, 20 for GTSRB, and 10 for Tiny ImageNet,
with each configuration undergoing 10 iterations. The detection thresholds for these datasets are
established as 10, 25, and 5, respectively.
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Algorithm 1 Full Algorithm of SAM-enhanced PSD

1: Input: Dataset Dy, = {(x, )}V, to be cleansed, reference clean set D, #, loss function ¢,
model fg, epochs F, learning rate 7 > 0, perturbation bound p > 0, class K, reduced dimension
d, iteration iter, threshold ¢, detection algorithm A
Output: The cleansed dataset D*
Initialize 6.
fort=1,...,Edo

Sample a mini-batch B from D;,.;

Update €;41 via p% w.rt. B;

Update weights: 8,11 = 0; — nVoL(0; + €141) W.r.t. B;
end for
fork=1,...,K do

Get the representation sets of class ¢ for training dataset G, = {g = fo(x) | (z,y) €
D,y = c} and reference dataset Gcp . = {g = fo(x) | (v,y) € Dyey,y = c}

Perform PCA on normalized G, j, to extract the top-d features and obtain the projection
matrix P € RPX? where p is the original feature dimension.
12: Obtain projected features Gy, i and Gyef k.
13: fori=1,...,iterdo

A A Al

—

Ju—
—

14: Estimate the mean p;, and covariance matrix 3, based on the features of the reference
dataset QTE Foke

15: Compute the Mahalanobis distance from -C;tr, % to the mean pu,.

16: Add samples to the reference dataset features Qre 1,k if Mahalanobis distance is less than

17: end for _ _

18: Project the features Gy, for class k using the final covariance matrix X to get g;;_, k=
{g" =%,"%g g€ G}

19: end for _

20: Input the projected features G, into the detection algorithm A to obtain the filtered dataset
D™ = A(G,).

21: return D*

B DETAILS OF EXPERIMENT SETTINGS

B.1 DETAILED TRAINING SETTINGS

In our experiments, all vanilla training sessions utilize Stochastic Gradient Descent (SGD) with a
learning rate [ of 0.1, momentum of 0.9, and a weight decay of 1 x 10~%. However, for training on the
VGG19-BN model, we adjust the learning rate to 0.01 to optimize performance. All training sessions
across these experiments are standardized to 100 epochs, ensuring consistency in our approach to
model development and evaluation across different datasets.

B.2 DETAILED ATTACK SETTINGS

The methodologies in our experiment, including BadNets (Gu et al., 2019), Blended attack (Chen et al.,
2017), Label-consistent attack (LC) (Turner et al., 2019), Low-frequency attack (LF) (Zeng et al.,
2021), Sample-specific backdoor attack (SSBA) (Li et al., 2021b), Trojan attack (TrojanNN) (Liu
et al., 2018), Warping-based attack (WaNet) (Nguyen & Tran, 2021), Input-aware dynamic backdoor
attack(Input-aware) (Nguyen & Tran, 2020), Bit-per-pixel attack(BppAttack) (Wang et al., 2022),
and dubbed sparse and invisible backdoor attack (SIBA) (Gao et al., 2024), are configured following
the standard settings provided by BackdoorBench (Wu et al., 2025), a recognized benchmark for
backdoor attacks. The target label for GTSRB is 2 and the target label for CIFAR-10 is 0. The
TaCT (Tang et al., 2021) method targets a specific class (1,3) by inserting a trigger into the samples
and changing their labels to a target label. Additionally, it uses another class (5,7), where the same
trigger is applied but without changing the labels. Only about 0.05% of the samples receive the
trigger without changing the labels. The Adap-Blend (Qi et al., 2023a) method uses an adaptive
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approach where a masking parameter m = 0.5 controls the probability of concealing parts of the
images with a trigger.

B.3 DETAILED DETECTION SETTINGS

The methodologies in our experiment, including Activation Clustering (AC) (Chen et al., 2019),
Beatrix (Ma et al., 2022), SCAn (Tang et al., 2021) Spectral Signature (SS) (Tran et al., 2018) and
Spectre (Hayase et al., 2021), are configured following the standard settings provided by Backdoor-
Bench (Wu et al., 2025). For the Spectral Signature (SS) and Spectre methodologies, we adjust the
proportion of potentially harmful samples to 1.5 % p, where p is the poisoning ratio and we adopt the
strategy outlined in previous studies (referenced as Yuan et al. (2023)) to determine the target label for
these potentially poisoned samples, which are applied in both the base detection and SAM-enhanced
PSD. The Activation Clustering (AC) method typically requires that the volume of potential poisoned
samples be less than 35% of the number of samples in the class. However, given the large number
of classes in the GTSRB dataset and the proximity of the poisoned sample volume to 50% of the
number of samples in the class, we disregard the usual 35% threshold in this specific case.

C ADDITIONAL EXPERIMENT RESULTS

C.1 MAIN EXPERIMENTS ON TINY IMAGENET

To validate the detection performance of SAM-enhanced PSD on large datasets, we conduct a series of
tests using Tiny ImageNet. Due to the limited number of samples per category in the Tiny ImageNet,
it poses a challenge for various attack and detection methods. In our experiments, we limited the
poisoning rate to 0.5% and only tested attack types that could meet the prerequisites for the number of
poisoned samples under this condition. Detection methods like AC, SS, and Spectre are also excluded
from our tests because these methods require fewer poisoned samples than there are samples in the
target class, a condition difficult to meet with the Tiny ImageNet.

As shown in Tab. 4, our experimental results indicate that SAM-enhanced PSD performs exceptionally
well in enhancing detection. We found that despite the limited number of clean samples per category,
this method effectively improved the recognition of poisoned samples.

Table 4: Comparison of TPR (%) and FPR (%) between base PSD and SAM-enhanced PSD (+SAM)
on Tiny ImageNet and ResNet18 with poisoning ratio = 0.5%. Top 1 are bold. When comparing SAM-
enhanced PSD to base PSD, performance improvements are highlighted in green, other changes in
red.

Detection — SCAn /+SAM Beatrix / +SAM

Attack | TPR 1 FPR | F11 TPR 1 FPR | F11
BadNets 0.0/43.8 0.0/0.8 0.0/29.5 | 79.4/81.4 5.3/5.8 12.9/12.2
Blended 0.0/75.6  0.0/0.0 0.0/86.1 | 15.2/73.4 5.3/57 2.6/11.2
SSBA 0.0/73.0 0.0/0.0 0.0/80.3 | 13.2/55.2 5.3/59 2.3/8.3
LF 0.0/52.2 0.0/0.2 0.0/53.2 | 33.6/35.6 5.3/59 5.7/5.5
TrojanNN 0.0/100.0 0.0/0.0 0.0/100.0 | 4.8/99.6 5.3/5.7 0.8/15.0
Average \ +68.9 +0.2 +69.8 \ +39.8 +0.5 +5.5

C.2 MAIN EXPERIMENTS ON DIFFERENT MODELS

To explore the effects of SAM-enhanced PSD across different model architectures, we conduct a
series of experiments using DenseNet-161, VGG19-BN, and the CIFAR-10 dataset. As shown in
Tab. 5 and Tab. 6, the experimental results demonstrate that the implementation of SAM-enhanced
PSD significantly improves detection performance in both the DenseNet-161 and the VGG19-BN
models. However for the VGG19-BN model, although SAM-enhanced PSD enhanced the detection
capabilities of this model, the improvement in TPR is still unsatisfactory under some backdoor
attacks. The deep network architecture and large feature dimensionality of VGG19-BN result in a
dispersion of backdoor signals within the feature space, making it challenging for SAM to effectively
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concentrate and enhance these signals. Based on these findings, selecting an appropriate model
architecture is crucial for enhancing detection outcomes. It is beneficial for the defender to adjust the
model structure to improve detection performance, which can be fully controlled by the defender.

Table 5: Comparison of TPR (%) and FPR (%) between base PSD and SAM-enhanced PSD (+SAM)
on CIFAR-10 and DenseNet-161 with poisoning ratio = 5%. Top 1 are bold. When comparing SAM-
enhanced PSD to base PSD, performance improvements are highlighted in green, other changes in
red.

Detection — Spectre / +SAM SCAn/+SAM SS/+SAM AC/+SAM Beatrix / +SAM

Attack | ‘ TPR 1 FPR | F11 ‘ TPR 1 FPR | F11 ‘ TPR 1 FPR | F1 1 ‘ TPR 1 FPR | F1t ‘ TPRT  FPR| F11
BadNets 88.3/96.4  29/2.5  72.6/79.2 | 47.7/858  4.6/0.0 40.7/92.3 | 79.6/81.2  0.9/0.8  81.0/82.7 | 90.4/87.7  0.0/0.0 95.0/93.5 | 25.7/97.6 5.0/5.0 23.3/66.7
Blended 43.6/97.2  5.3/24  358/79.9 | 45.0/89.2 4.5/0.0 38.9/94.3 | 84.1/80.2  0.7/09  85.6/81.6 | 98.0/95.0 0.0/0.0 98.9/97.5 | 3.3/98.8 5.0/5.0 3.3/67.2
SSBA 53.8/89.1  47/2.9  44.2/732 | 46.6/68.6  4.6/0.0 39.8/81.3 | 79.4/88.1  0.9/1.5  80.8/81.4 | 94.0/88.5  0.0/0.0 96.7/93.9 | 16.2/92.4 5.0/5.0 15.4/64.3
LF 59.0/84.5  4.4/3.1  48.4/69.4 | 48.0/208  4.7/0.0 40.3/34.4 | 79.3/83.4  0.9/23  80.7/73.6 | 94.6/91.3  0.0/0.0 97.1/954 | 11.1/62.4 5.0/5.0 10.8/48.4
Adap-Blend 54.2/92.8 42/24  46.3/78.0 | 47.4/81.2 4.2/104 41.6/42.8 | 78.4/742  0.8/1.0  80.6/76.5 | 96.2/89.2  0.0/0.0 98.0/94.3 | 7.0/96.8 5.0/5.0  6.9/66.3
LC 41.3/65.6  3.0/1.8  41.5/65.9 | 0.0/99.3 0.0/0.0  0.0/99.7 | 29.1/422  2.0/1.3  34.9/50.6 | 100.0/99.3  0.0/0.0  99.9/99.7 | 0.5/90.4 5.0/5.0 0.5/63.3
TaCT 19.3/70.3  62/0.5  16.3/78.0 | 47.9/99.3  53/0.0 38.4/99.6 | 39.6/49.6  3.0/1.9  40.2/53.4 | 98.5/99.3  0.0/0.1 99.3/989 | 2.5/100.0 5.0/5.0 2.5/67.8
TrojanNN 19.8/79.7  6.5/3.4  16.2/65.5 | 48.0/97.2  4.6/0.0 40.7/98.6 | 80.0/89.7  0.9/0.4  81.4/91.3 | 95.8/97.2  0.0/0.0 97.8/98.6 | 3.2/99.9 5.0/5.0 3.2/67.7
WaNet 61.4/82.5 44/3.3  50.3/67.1 | 48.2/76.6  4.8/0.0 40.3/86.6 | 54.3/73.4  2.3/1.4  54.8/73.6 | 0.0/77.8 0.0/0.0  0.0/87.3 | 6.6/933 5.0/50 6.5/64.7

Input-aware 63.9/93.0 14.4/0.3 29.2/93.2 | 87.9/98.6  0.0/0.0 93.5/99.3 | 79.5/82.0  0.0/0.5  88.6/85.9 | 0.0/90.2 0.0/0.0  0.0/94.9 | 43/100.0 5.0/5.0 4.3/67.8
BppAttack 25.5/40.3 54.0/71  4.4/293 | 69.8/93.6  0.0/0.0 82.2/96.7 | 94.8/83.3  7.5/7.0  56.3/52.6 | 99.7/97.4  0.0/0.6 99.8/93.4 | 0.0/952 5.0/5.0 0.0/65.6

SIBA 39.8/67.7  0.0/4.8  56.9/52.2 | 96.4/100.0 16.6/1.2 37.7/90.1 | 75.1/92.3  17.2/0.0  30.0/96.0 | 81.3/99.4 25.7/3.5 24.3/74.8 | 3.2/90.6 5.0/5.0 3.2/63.4
BadNets-A2A | 99.3/99.4 10.6/10.6 49.7/49.7 0.0/0.0 0.0/0.0  0.0/0.0 | 99.6/99.4 10.6/10.6 49.8/49.7 | 97.2/95.6  0.0/0.0  98.5/97.7 | 32.7/99.4 5.0/5.0 28.7/67.5
Average +29.9 =58 +28.3 +29.0 =32 +37.0 +5.1 -14 +80 | +125 -17 +16.5 | +847 -0.0 +56.3

Table 6: Comparison of TPR (%) and FPR (%) between base PSD and SAM-enhanced PSD (+SAM)
on CIFAR-10 and VGG19-BN with poisoning ratio = 5%. Top 1 are bold. When comparing SAM-
enhanced PSD to base PSD, performance improvements are highlighted in green, other changes in
red.

Detection — Spectre / +SAM SCAn/+SAM SS/+SAM AC/+SAM Beatrix / +SAM

Attack | TPRT  FPRJ F11 TPR 1 FPR | Flt TPRT  FPR F11 TPRT  FPR Flt TPRT FPR|  FIt
BadNets 532742 47/3.6 437/61.0 | 0.0/864  0.0/0.1 00915 | 34.2/57.8 3320 348588 | 000.0 0000 0000 | 40/643 5050 4.049.6
Blended 76.8/73.8  3.56.1  63.0/50.9 | 44.6/93.9  44/0.0  389/96.9 | 42.5/76.6 2.8/1.1 432779 | 642/97.9 0.0/0.0 78.0/98.6 | 7.7/994 5.0/50 7.6/67.5
SSBA 403/86.8  54/3.0 33.1/714 | 00/61.0 4600 00757 |334/587 3320 34.0/59.7 | 00/581 0000 00734 | 26774 5050 2.7/56.8
LF 84.5/83.8  3.0/3.1  69.4/689 | d47.2/429  44/00  41.0/59.8 | 68.1/688 1.5/15  69.370.0 | 0.0220  000.0 00360 |366/802 5050 31.6/58.2
Adap-Blend | 26.0/55.9 5541 225477 | 45.4/40.1 13.3/105 22.8/23.7 | 27.4407  33/26 29.0/427 | 0024  000.0 0047 | 04152 5050 0.4/145
LC 28.8/562  37/45 289464 | 0.0/100.0  0.0/0.0  0.0/100.0 | 31.4/40.2 1.9/1.4  37.748.2 | 99.6/100.0 0.0/0.0 99.5100.0 | 1.0/100.0 5.0/5.0 1.0/67.8
TaCT 26.7/45.4  5.4/57  23.4/357 | 4651000  53/0.0  37.6/100.0 | 30.6/37.7  4.0/3.2  29.6/37.9 | 100.0/100.0 0.0/0.0 100.0/100.0 | 1.1/100.0 5.0/5.0 1.2/67.8
TrojanNN 329/55.5  5.8/46  27.0/45.6 | 42.5/99.2  46/0.0  36.8/99.6 | 61.3/92.6 1902  62.4/942 | 99.2/99.4  0.0/0.0 99.6/99.7 | 0.8/99.8 5.0/5.0 0.9/67.7
WaNet 529/72.8  4.8/3.8  43.4/594 | 0000 0000 0000 | 180439 4128 184/445| 0096 0000 00175 | 0.7/444 5050 0.7/37.1

Input-aware 51.1/99.0  6.0/23  38.4/81.5 | 95.5/98.3 1.4/0.0 85.9/98.8 | 85.1/82.1  0.0/1.5  91.9/78.3 0.0/92.7 3503  0.0/93.8 0.0/100.0  5.0/5.0  0.0/67.8
BppAttack 22.1/40.4  5.1/54  20.1/33.2 | 83.9/96.6  0.0/0.0  91.2/98.3 | 81.7/92.7 0.0/1.2  89.9/86.3 | 94.2/96.5 0.0/0.0 97.0/982 | 0.0/99.3 5.0/5.0 0.0/67.5
SIBA 25.2/64.2  6.2/5.0  20.8/49.7 | 100.0/99.0  0.0/0.0  100.0/99.5 | 74.6/91.4  0.7/0.0  79.6/95.4 | 953/99.2 59/0.0  61.9/99.6 5.1/90.9  5.0/5.0 5.1/63.6
BadNets-A2A | 98.8/91.2 10.6/11.0 49.4/45.6 0.0/0.0 0.0/0.0 0.0/0.0 23.8/97.8 14.5/10.6 11.9/48.9 | 0.0/64.9  0.0/0.3 0.0/76.5 24.6/74.2  5.0/5.0 22.4/55.1

Average | +216 -0.6 +164 | +317 =21 +377 | 4207 -0.9 +162 | +223 -0.6 +27.9 | +739 -0.0 +51.0

C.3 EXPERIMENTS UNDER DIFFERENT POISONING RATIOS

To demonstrate the stability and effectiveness of SAM-enhanced PSD against weak backdoor attacks,
we evaluate its detection performance at various low poisoning ratios, focusing on the 1% and 0.5%
settings. We also discuss the extreme scenario of 0.1% poisoning.

As shown in Tab. 7 and Tab. 8, our method provides substantial and consistent performance gains in
these weak backdoor scenarios. At a 1% poisoning ratio, SAM-enhanced PSD boosts the average
True Positive Rate, TPR, across all detection methods, with particularly large average gains for SS
at +47.0% and AC at +85.4%. This strong performance is maintained at the more challenging 0.5%
ratio, where our method again significantly improves the average TPR for detectors like Beatrix and
SCAn with gains of +80.7% and +27.9%, respectively, all while keeping FPR low. These results
confirm our method’s efficacy in amplifying the backdoor signal in weak attack settings.

As shown in Tab. 9, we also investigate the extreme scenario of 0.1% poisoning. At this ratio,
the detection challenge becomes fundamental. We find that the potency of the backdoor attacks
themselves is intrinsically limited, with the average ASR, across all tested attacks being merely
31.8%, which implies that the backdoor signal is inherently weak and ambiguous. Despite this
inherent challenge, SAM-enhanced PSD still demonstrates a significant enhancement effect, providing
considerable relative performance improvements for the base detectors. For instance, it achieves a
+27.7% TPR gain for Spectre. This shows that our approach effectively amplifies backdoor features,
even when the signal is at its weakest.

C.4 ANALYSIS WITH NON-FEATURE-BASED DETECTORS
To comprehensively define the scope of our SAM-enhanced framework, we investigate its effective-

ness when applied to other categories of detectors, including perturbation-based and topology-based
methods.
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Table 7: Comparison of TPR (%) and FPR (%) between base PSD and SAM-enhanced PSD (+SAM)
on CIFAR-10 and ResNet18 with poisoning ratio=1%. Top 1 are bold. When comparing SAM-
enhanced PSD to base PSD, performance improvements are highlighted in green, other changes in
red.

Detection — Spectre / +SAM SCAn/+SAM SS/+SAM AC/+SAM Beatrix / +SAM

Attack | TPR FPR | F1 1 TPR 1 FPR | F11 TPR 1 FPR | F11 TPRT  FPR| F1t TPR 1 FPR | F11
BadNets 78.0/83.8  0.7/0.7  62.4/67.0 | 92.4/91.6  0.0/0.0  96.0/95.6 66.4/96.2  0.3/0.0  66.7/96.6 | 0.0/91.6 0.0/0.0 0.0/95.6 | 49.8/99.2 5.0/5.0 15.4/28.5
Blended 19.8/57.4 1.3/0.9  15.8/45.9 | 95.4/96.2  0.0/0.0  97.6/98.1 8.2/99.0 0.9/0.0 8.2/99.4 | 0.0/96.2 0.0/0.0 0.0/98.1 | 82/100.0 5.0/5.0 2.7/28.7
SSBA 70.4/97.4  0.8/0.5  56.3/77.9 | 92.2/904  0.0/0.0  95.9/95.0 3.6/97.4 1.0/0.0 3.6/97.8 | 0.0/90.4 0.0/0.1 0.0/90.6 3.4/994  5.0/5.0 1.1/28.6
LF 60.6/52.0  0.9/1.0  48.5/41.6 | 88.4/90.6  0.0/0.0  93.8/95.1 54.2/96.2  0.5/0.0  54.4/96.6 | 0.0/90.6 0.0/0.0 0.0/95.1 2.6/95.6  5.0/50 0.9/27.6
Adap-Blend 71.9/88.5  0.8/0.6  57.3/70.5 | 93.1/91.5  2.0/0.0  47.4/95.6 55.9/98.0  0.4/0.0 56.5/98.8 | 0.0/9L5 0.0/0.0 0.0/95.6 9.7/98.8  5.0/50 3.2/284
LC 4.0/42.2 1526  3.2/21.1 | 100.0/100.0 0.0/0.0 100.0/100.0 | 60.4/91.0  0.3/0.0  63.2/95.3 | 0.0/100.0 0.0/0.0 0.0/100.0 | 23.4/100.0 5.0/5.0 7.6/28.8
TaCT 0.1/33.0 1.6/1.1 0.1/27.5 | 100.0/100.0  0.0/0.0 100.0/100.0 | 8.0/24.3 1.0/0.0 7.6/39.1 | 0.0/100.0  0.0/0.0 0.0/100.0 | 36.0/100.0 5.0/5.0 11.4/28.8
TrojanNN 96.4/51.4  0.5/4.9  77.1/16.1 | 100.0/100.0 0.0/0.0 100.0/100.0 | 0.4/99.2 1.0/0.0  0.4/99.6 | 0.0/100.0 0.0/0.0 0.0/100.0 | 25.8/100.0 5.0/5.0 8.3/28.7
WaNet 71.4/86.4  0.9/0.8  53.8/64.4 0.0/71.9  0.0/0.0  0.0/83.6 50.9/84.9  0.6/0.3  48.8/78.6 | 0.0/71.1 0.0/0.0 0.0/83.1 1.8/83.6  5.0/5.0 0.6/24.6
Input-aware 69.6/96.7 1.0/0.7  525/71.4 | 81.6/92.8 0.0/0.0  88.2/94.2 75.7/99.5 0.4/0.2  70.7/90.8 | 0.0/93.6 0.0/0.1 0.0/93.5 | 15.9/62.1 5.0/5.0 5.2/18.9
BppAttack 94.9/98.0  0.8/0.7  70.2/72.2 | 67.0/94.9 0.0/0.0 80.2/97.4 | 94.1/98.0  0.2/0.2  86.3/89.5 | 69.6/94.6 0.0/0.0 82.1/97.2 | 2.0/98.5 50/50 0.7/284
SIBA 0.2/16.2 1.5/1.4  0.2/13.0 99.8/98.8  0.0/0.0  99.9/99.4 0.0/99.2 1.0/0.0  0.0/99.6 | 0.0/99.0 0.0/0.0 0.0/99.5 20972  5.0/50 0.7/28.0
BadNets-A2A | 99.8/100.0 14.1/14.1 12.5/12.5 0.0/0.0 0.0/0.0 0.0/0.0 93.8/100.0 14.2/14.1 11.7/12.5 | 31.2/93.6 0.0/0.0 47.6/96.7 | 33.4/99.4 50/5.0 10.6/28.6
Average | +128 +0.3 +7.0 +8.4 -0.2 +120 | +470 -0.6 +474 | +854 -0.0 +85.8 +78.4 -0.0 +22.1

Table 8: Comparison of TPR (%) and FPR (%) between base PSD and SAM-enhanced PSD (+SAM)
on CIFAR-10 and ResNet18 with poisoning ratio=0.5%. Top 1 are bold. When comparing SAM-
enhanced PSD to base PSD, performance improvements are highlighted in green, other changes in
red.

Detection — Spectre / +SAM SCAn/+SAM SS/+SAM AC/+SAM Beatrix / +SAM
Attack | TPR FPR | F1 1 TPR 1 FPR | F11 TPR 1 FPR | F11 TPR FPR | F1 1 TPRT  FPR| F11
BadNets 90.0/98.4 L1/1.0  45.0/49.2 0.0/88.4 0.0/0.0 0.0/93.8 78.4/97.6 1.2/1.1 37.9/47.2 | 84.0/88.4 1.9/8.2 30.1/9.7 2.0/97.6 0.5/1.6 2.0/37.7
Blended 28.4/99.2 1.4/1.0 14.2/49.6 0.0/96.8 0.0/0.0 0.0/98.4 39.2/99.2 1.4/1.1 19.0/48.0 0.0/96.4 0.0/12.0 0.0/7.5 0.0/98.4  0.4/09  0.0/52.0
SSBA 92.4/92.0 1.0/1.0  46.2/46.0 77.6/66.0  0.0/0.0 87.4/79.5 78.8/91.2 1.2/1.1 38.1/44.1 | 66.8/66.0 3.3/8.0 16.4/7.5 0.0/59.6  0.72.0 0.0/21.3
LF 94.0/95.6 1.0/1.0  47.0/47.8 0.0/0.0 0.0/0.0 0.0/0.0 58.8/95.6 1.3/1.1 28.5/46.3 0.0/79.6 6.6/14.0 0.0/5.4 0.0/78.0  0.5/1.9  0.0/27.9
Adap-Blend 97.2/99.2  1.0/1.0  48.6/49.6 0.0/90.4  0.0/0.0  0.0/95.0 78.8/98.4 1.2/1.1  38.4/48.0 | 62.4/90.0 6.5/144  8.6/59 0.8/98.4  0.3/4.1 1.0/19.5
LC 14.0/11.6  1.4/14 7.0/5.8 | 100.0/100.0 0.0/0.0 100.0/100.0 | 97.6/100.0  1.0/1.0  48.8/50.0 | 99.6/100.0 7.6/13.5 11.7/6.9 | 0.0/99.6 0.5/50 0.0/16.7
TaCT 0.7/10.3 1.5/1.0 0.3/6.7 | 100.0/100.0  0.0/0.0 100.0/100.0 | 16.0/42.3 1.5/0.0 7.6/59.4 | 0.0/100.0  3.4/0.0 0.0/100.0 | 0.0/100.0 0.6/5.0 0.0/16.7
TrojanNN 12.4/5.6 14/1.5 6.2/2.8 | 100.0/100.0 0.0/4.3  100.0/19.1 | 11.6/100.0  1.5/1.1 5.6/48.4 | 0.0/100.0 6.8/14.7  0.0/6.4 0.4/96.0  0.7/5.0  0.3/16.1
WaNet 50.8/84.0  0.5/0.3  40.6/67.2 0.0/61.2  0.0/0.0  0.0/75.9 36.8/81.6  0.3/0.1  36.8/81.6 | 0.0/60.8  0.0/0.0 0.0/75.6 | 4.8/84.0 5.0/50 0.9/14.2
Input-aware 28.0/97.6  0.6/0.3 22.4/77.6 0.0/0.0 0.0/0.0 0.0/0.0 82.5/91.1 0.1/0.1  82.1/90.6 | 0.0/79.3  0.0/0.1  0.0/77.2 | 12/77.6 5.0/5.0 02/13.2
BppAttack 92.4/98.0  03/0.3 73.9/784 | 552/92.8  0.0/0.0  71.1/96.3 90.8/97.6  0.0/0.0  90.8/97.6 | 63.2/92.8  0.0/0.0 77.5/96.3 | 0.4/98.0 5.0/5.0 0.1/16.4
SIBA 1.6/5.6 0.7/0.7 1.3/4.5 99.2/99.2  0.0/0.0  99.6/99.6 0.0/99.6 0.5/0.0  0.0/99.8 0.0/98.0  0.0/0.0 0.0/99.0 | 7.6/21.6 5.0/5.0 1.4/39
BadNets-A2A | 98.0/98.4 14.6/14.6  6.3/6.3 0.0/0.0 0.0/0.0 0.0/0.0 48.8/98.8 14.8/14.6  3.1/6.4 0.0/90.8  0.0/0.0 0.0/95.2 | 13.6/71.6 0.72.4 10.7/21.9
Average | +15.1 -0.1 +10.2 +27.9 +0.3 4231 | +36.6 -03 +254 | +59.0 +3.7 +34.5 +80.7 +1.8 +20.0

We applied our framework to representative defenses from both categories. The results presented in
Tab. 10 show that the performance gains for these non-feature-based methods are less pronounced
than the substantial gains demonstrated for feature-based detectors in Table 1. We posit that this
outcome is not a limitation, but rather an important finding that clarifies the core mechanism of our
framework and defines its operational boundaries.

The reasons are linked to SAM’s optimization objective. For perturbation-based detectors, their
effectiveness relies on the inference instability of poisoned samples. SAM’s objective of finding flat
minima, however, improves overall model stability, which inadvertently suppresses the signal these
detectors require. Similarly, topology-based detectors identify structural anomalies in the feature
manifold. The smoothening effect of SAM’s optimization can mask the subtle topological artifacts
these methods are designed to find.

This investigation, therefore, clarifies the contribution of our framework: it acts as a dedicated
signal amplifier for defenses that leverage feature-space disparity. Because SAM’s core effect
is to increase the separability between poisoned and clean samples in the feature space, it creates a
powerful synergy with feature-based detectors. This analysis provides a clear scope for our method’s
application and reinforces the understanding of its underlying mechanism.

C.5 ADAPTIVE ATTACK

In this chapter, we propose an adaptive backdoor attack specifically designed to compromise the sep-
aration capability of SAM-enhanced-PSD. Unlike traditional adaptive attacks that primarily consider
the detector’s mechanisms, our threat model extends further: we assume that the adversary possesses
comprehensive knowledge of the training method, including the Sharpness-Aware Minimisation
(SAM) that SAM-enhanced-PSD employs during model training to improve detection performance.

Attack goal and assumptions. The goal of the adversary is to diminish the feature-space distinction
between poisoned samples and target clean samples, thereby evading detection. Under our adaptive
attack setting, the adversary enjoys complete white-box access, encompassing full visibility into the
network architecture, optimization hyperparameters, and SAM optimization. By integrating the SAM
training step into the adversary’s optimization process, the adversary explicitly aims to neutralize
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Table 9: Comparison of TPR (%) and FPR (%) between base PSD and SAM-enhanced PSD (+SAM)
on CIFAR-10 and ResNet18 with poisoning ratio=0.1%. Top 1 are bold. When comparing SAM-
enhanced PSD to base PSD, performance improvements are highlighted in green, other changes in
red.

Detection — Spectre / +SAM SCAn/+SAM SS/+SAM AC/+SAM Beatrix / +SAM
Attack | ‘ TPR 1 FPR | Fl1 ‘ TPRT  FPR Flt ‘ TPRT  FPR Fl1 ‘ TPRT  FPR FIt ‘ TPRT  FPR| FIt
BadNets 20580  0.1/0.1  1.6/464 | 0000 0000 0000 | 0.0280 0.1/0. 00280 | 0000 0000 0000 | 360620 5050 1424
Blended 8080  0.1/01  64/64 0.0/0.0 0000  0.0/0.0 0.0/60  0.10.1  0.0/6.0 0.0/0.0  0.0/0.0  0.0/0.0 8.0/38.0 50550 03/15
SSBA 160/50.0  0.1/0.1 128400 |  0.0/0.0  0.0/0.0 0000 | 0.030.0 0.1/0.1 00300 | 0000 0000 0000 | 280420 5050 LI1/16
LE 20120 0101 1.6/96 0000 0042  00/0.0 0080  0.1/0.1 0080 00/0.0 0000 0000 | 30.0/140 5050 1205
Adap-Blend 14080  0.1/01  112/64 | 0000 0000  0.00.0 0.0/60  0.10.1  0.0/6.0 00/0.0 0000 0000 | 300280 5050 1211
LC 0.0/100.0  02/0.1  0.0/80.0 | 00/0.0  0.0/0.0 0000 | 00/100.0 0./0.0 0.0/100.0 | 0.0/100.0 0.0/0.0 0.0/100.0 | 10.0/0.0 5050 0.4/0.0
TaCT 0.1/03  02/01  0.1/0.2 | 100.0/100.0 0.0/0.0 100.0/100.0 | 0.0/29  02/0.0  0.0/5.7 | 100.0/100.0 0.0/0.0 100.0/100.0 | 22.2/100.0 5.0/5.0 0.9/3.8
TrojanNN 12.0/100.0  0.1/0.1  9.6/80.0 0.0/0.0 0.0/100.0  0.1/0.0  0.0/100.0 | 0.0/100.0  0.0/0.0  0.0/100.0 | 10.0/100.0 5.0/5.0 0.4/3.8
WaNet 438208  0.1/01 348166 | 00/0.0 0000 0000 | 41742 0100 41342 | 0000  0.00.1  0.00.0 420604 5050 02123
Input-aware | 942/958  0.1/0.1  76.5/564 | 0000 0000 0000 | 173327 0101 174329 | 0000 0000 0000 38/558  5.0/50 0222
BppAttack 41.7/529 0101 331377 | 0000 0000 0000 | 104104 0.10.1 104104 | 0000 0000  0.0/0.0 18.827.1  5.0/50 0.7/1.1
SIBA 0.0/840  02/0.1  00/67.2 | 0000 0000 0000 | 20500 0.10.  20/500 | 0000 0000  00/0.0 40/580 5050 0222
BadNets-A2A | 76.0/80.0 14.9/149  1.0/1.1 00/0.0 0000 0000 |240/560 150150 0.3/0.7 00/0.0 0000 0000 | 80.0780 5050 3.130
Average | +217 0.1 4200 | 00 +0.3 00 | +261 0.1 +23.9 +154 0.0 +154 | 4291 00  +L1

Table 10: Comparison of TPR (%) and FPR (%) between other non-feature-based PSD and SAM-
enhanced PSD (+SAM) on CIFAR-10 and ResNet18 with poisoning ratio = 5%. Top 1 are bold.
When comparing SAM-enhanced PSD to base PSD, performance improvements are highlighted in
green, other changes in red.

Detection — CD/+SAM STRIP / +SAM SentiNet / +SAM TED / +SAM

Attack | TPRt FPR|  F1¢ TPRT  FPR| Fl1 TPRT  FPR] Fl 1 TPRT  FPR| Fl11
BadNets 63.8/67.2 5.0/50 49.5/51.3 | 85.6/93.3 11.1/9.4 433/50.1 | 353/36.7 13.1/12.4 18.4/19.7 | 86.5/55.3 33.0/20.3 21.3/20.4
Blended 42/144  49/50 42/138 | 7L0/59.8 11.0/10.7 37.3/330 | 2.9/229 427212  32/87 | 260/352 2331204 9.1/13.5
SSBA 66.4/62.8 5.0/50 50.8/48.7 | 78.7/86.8 8.9/85 453/49.9 | 1.9/209  1.8/18  27/27.0 | 663/71.6 222/182 22.6/27.6
LF 5.8/42.9 5.0/50 58361 | 86.8/89.2 1L1/11.3 43.6/44.2 | 0.0/36.2  0.0/12  0.0/458 | 42.4/51.8 15.2/10.8 19.6/29.0
Average +117 0.0 499 | +18 -05 +19 | +192 +4.4 +192 | -18 -6.0 +4.4

SAM’s beneficial effects, specifically its capacity to widen feature gaps, making poisoned samples
indistinguishable from target clean samples during detection.

Attack methodology. Our proposed attack extends Adapt-Blend (Qi et al., 2023a), a backdoor
attack method that reduces detectability by randomly cropping the commonly used "Hello Kitty"
trigger, assigning random labels, and lowering the poisoning rate, thereby diminishing the feature-
space gap between poisoned samples and target clean samples. To further enhance this reduction
of the feature gap and effectively counteract Sharpness-Aware Minimization (SAM), we propose
replacing the commonly used trigger with an optimized trigger generated through a novel bi-level
optimization approach. Specifically, we formulate this optimization as:

* QOuter minimization: shrinks the distance between features of poisoned samples and target clean
samples, explicitly pulling poisoned representations towards the clean target class.

* Inner maximization: replicates the perturbation step inherent to SAM training, ensuring the
optimized trigger anticipates and counters SAM’s attempt to re-expand feature distances.

This approach can be formally expressed as:
rgig max E(z,y)ep, [L(foys(x),y)]

+ E(@.p)eDp . (@p ) €Dy [L(fogs (1 — @)z + ae), y:) + Mfo4s((1 — @)z + ce) — fots (%)”Z}, (10)

where D, is the clean subset, D}, contains images to be poisoned, and D is the set of clean samples

with the target label. The blending ratio « controls the proportion between the original images « and
the optimized trigger €. The first expectation maintains model performance on clean data, while the
second explicitly learns poisoned samples and reduces the feature-space distance between poisoned
samples and target clean samples. The inner maximization step ensures the trigger adapts to SAM’s
perturbations, weakening SAM’s subsequent effectiveness.

Implementation details. We follow the Adapt-Blend recipe pasted with a 20 % opacity onto each
poisoned image. The poisoning ratio is set to 0.3 %. Both the outer training loop and the inner
maximization use the same SAM hyperparameters as SAM-enhanced-PSD, namely a neighbourhood
radius of p = 0.1. In the loss of Eq. (10) we fix the gap-shrinking weight to A = 0.1.

Results and analysis. As demonstrated in Tab. 11, applying the Adapt-Blend severely degrades
the performance of standard PSD detectors (Spectre, SS, AC, and Beatrix). Specifically, their
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Table 11: Comparison of TPR (%) and FPR (%) between baseline PSD and SAM-enhanced PSD
(+SAM) under adaptive attacks on CIFAR-10 with ResNet-18.

Trigger — | Hello-Kitty \ Optimized Trigger

Detection | |  TPR 1 FPR | FIt | TPR?T FPR | Fl 1
Spectre 14.67/97.33 041/0.16 11.69/77.71 | 1.33/100.0 0.45/0.15 1.06/80.05
SS 6.00/96.67 0.28/0.01 6.03/96.67 0.00/99.33 0.30/0.00 0.00/99.67
AC 0.00/94.67 0.00/0.00 0.00/97.26 | 0.00/100.0 0.00/0.00 0.00/100.0
Beatrix 10.67/96.67 5.01/5.01 120/10.39 | 0.67/97.33 5.01/5.01 0.08/10.45

average True Positive Rate (TPR) drops below 11% for the manually crafted Hello-Kitty patch
and near-zero for the optimized trigger, validating the effectiveness of feature-gap minimization.
Nevertheless, the SAM-enhanced PSD consistently recovers detection capability, achieving TPRs
above 94% and False Positive Rates (FPRs) under 0.2% for both triggers. These outcomes highlight
SAM’s intrinsic robustness, whose feature-space expansion capability effectively counters even
an explicitly adaptive adversary. Consequently, unless attackers gain full control over the training
procedure, neutralizing SAM-enhanced-PSD remains notably challenging, ensuring strong and
persistent detection performance.

C.6 PERFORMANCE ON THE MODEL TRAINED BY FILTERED DATA.

To validate the effectiveness of the SAM-enhanced PSD, we also systematically measure performances
in accuracy (ACC), attack success rate (ASR), and robust accuracy (RA) during model retraining after
removing poisoned samples identified by PSDs and SAM-enhanced PSDs, where higher ACC/RA
and lower ASR indicate better defense performance.

As shown in Tab. 12, experimental results reveal SAM-enhanced PSD impact across multiple attack
scenarios. In BadNets (Gu et al., 2019) attacks, SCAn (Tang et al., 2021) detection coupled with
SAM improved ACC from 94.1% to 94.4% and RA from 94.0% to 94.3% while maintaining ASR
at 0.7%. More strikingly, against challenging Blended (Chen et al., 2017) attacks, SAM reduced
AC (Chen et al., 2019) method’s ASR from 99.7% to 2.7% while boosting RA from 0.3% to 79.1%.
Similar patterns emerged in adaptive attacks like Adap-Blend (Qi et al., 2023a), LF (Zeng et al.,
2021), and WaNet (Nguyen & Tran, 2021), where SAM achieved over 90% ASR reduction and
80% RA improvement in critical cases. Aggregate statistics across all attack types show SAM
delivers 0.2%-0.5% ACC gains, up to 93.8% ASR suppression, and remarkable RA enhancements
reaching 84%. These improvements stem from SAM’s ability to amplify activation pattern differences
between clean and poisoned samples in feature space through sharpness-aware optimization, thereby
increasing PSD discriminative power.

The findings conclusively demonstrate that incorporating Sharpness-Aware Minimization into PSD
training frameworks significantly strengthens model resilience against diverse backdoor threats.
By simultaneously improving detection accuracy (ACC/RA) and suppressing attack success rates
(ASR), SAM establishes a robust defense paradigm applicable to complex adversarial environments,
providing critical insights for developing next-generation Al security solutions.

C.7 COMPARISON WITH INFERENCE-TIME DETECTION METHODS

In this section, we extend our analysis to include a comparison with state-of-the-art training-free detec-
tion methods that operate at inference time, specifically Scale-up (Guo et al., 2023) and CBD (Xiang
et al., 2023). It is important to first clarify that our pre-training defense and these inference-time
defenses address different stages of the security pipeline and are thus complementary. Our method
aims to provide a one-time, permanent "cure" by cleansing the training dataset itself, ensuring that any
model trained on it is inherently more secure without runtime overhead. In contrast, inference-time
defenses act as a perpetual "treatment," requiring continuous monitoring and incurring per-inference
costs to block malicious inputs at runtime, while the underlying model remains vulnerable.

Despite these conceptual differences, we conduct a direct performance comparison on the CIFAR-10
dataset to evaluate their practical detection capabilities. To simulate a realistic scenario where false
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Table 12: Detection comparisons (measured by ACC (%), ASR (%) and RA (%)) between base PSD and
SAM-enhanced PSD (+SAM) on CIFAR-10 and ResNet18, and the better result in each pair is highlighted in
bold. In terms of each metric, the average change of SAM-enhanced PSD to base PSD across all attacks is
presented at the bottom: performance improvements are highlighted in green, other changes in red.

Detection — SCAn /+SAM AC/+SAM Beatrix / +SAM
Attack | ACC?T ASR| RA 1 ACC?T ASR| RA 1 ACC?T ASR| RA 1

BadNets 94.1/94.4 0.7/0.7 94.0/94.3|94.6/94.5 0.7/0.8 94.5/94.3/93.3/94.5 91.0/0.7 8.5/94.2
Blended 94.6/94.5 6.7/4.4 76.8/77.8|93.1/94.8 99.7/2.7 0.3/79.1 |93.8/94.2 99.4/3.3 0.6/78.4

SSBA 94.4/94.4 1.2/1.0 91.6/92.2|194.0/94.4 0.8/1.0 91.7/92.2/194.1/93.8 95.3/0.8 4.6/91.6
LF 94.2/94.6 9.5/3.0 85.1/90.7|93.6/94.6 7.4/3.0 86.4/90.7(94.0/94.1 98.0/1.6 1.9/92.1
Adap-Blend |94.0/94.3 83.0/6.0 15.8/75.8/91.7/93.9 99.9/6.9 0.0/74.6 |93.8/93.6 100.0/1.9 0.0/79.1
LC 94.6/94.3  0.7/0.7 92.9/92.5|94.2/94.3 100.0/0.7 0.0/92.8 {94.4/94.0 100.0/0.6 0.0/92.9
TaCT 94.0/94.0 1.2/1.2 86.7/86.7|94.2/94.0 1.6/1.2 89.1/86.7|93.8/94.2 100.0/0.6 0.0/87.8
TrojanNN  |94.6/94.5 3.1/3.6 86.6/87.0(94.2/94.4 2.7/2.9 86.4/87.3|94.4/94.2 100.0/2.0 0.0/87.4
WaNet 94.2/94.2 11.8/0.9 82.7/93.0/94.2/94.3 1.5/0.9 92.6/92.9(94.2/93.5 90.0/0.9 9.9/92.3

Input-aware |94.5/94.5 1.0/1.8 92.0/90.9|94.6/94.8 80.5/1.9 18.6/91.5|93.5/94.5 82.1/1.2 17.2/91.1
BppAttack |94.6/94.4 30.3/11.7 73.9/90.2|94.4/94.4 13.0/11.7 88.8/90.2|94.0/94.0 99.9/10.4 10.1/90.4
Average | +0.1  -104  +85 | +0.5 340 4295 | +02 938  +84.0

Table 13: Comparison of achievable TPR (%) for different defense methods on CIFAR-10 with
FPR < 10%. For SCAn/+SAM, we show the performance of the base detector and our SAM-
enhanced version.

Attack | ‘ Scale-up TPR1T CBD TPR1 SCAn/+SAM TPR 1

BadNets 100.00 100.00 96.01/95.21
Blended 12.01 91.21 99.22/98.73
WaNet 16.72 78.23 66.31/90.12

alarms are highly undesirable, we assess the achievable True Positive Rate (TPR) while constraining
the False Positive Rate (FPR) to be no more than 10%. As presented in Tab. 13, the results show
that while training-free methods are effective against some attacks, their TPR can be inconsistent
under this practical constraint, especially for more sophisticated attacks like Blended and WaNet. In
contrast, our SAM-enhanced method demonstrates consistently superior and more stable detection
performance across all scenarios.

Ultimately, the key advantage of our pre-training approach is its ability to enable the training of
a final model that is both secure and high-performing. As demonstrated in Sec. E.6, retraining a
model on the dataset purified by our SAM-enhanced method not only maintains high clean accuracy
(ACC) but also significantly reduces the attack success rate (ASR). This confirms the practical,
end-to-end effectiveness of our framework in producing a robust final model, a benefit not offered by
inference-time defenses.

D ADDITIONAL ANALYSIS OF SAM-ENHANCED-PSD

D.1 DETECTION PERFORMANCE WITH DIFFERENT p
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Figure 7: Detection performance of base PSD with SAM-enhanced PSD with different p on CIFAR10
and ResNet18.
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Figure 8: Detection performance of base PSD with SAM-enhanced PSD with different dimensions
on CIFAR10 and ResNet18

The constraint bound p is a key hyperparameter in our detection strategy, as it governs the extent of
perturbation e. The excessively small p may result in a weak enhancement of the backdoor effect,
whereas an excessively large p can degrade the model’s performance by disrupting the extraction
of information, such as features, from both poisoned and clean samples. We assess the sensitivity
of p by executing five complex attacks and employing four detection methods. Figure 7 illustrates
the results of these detections combined with SAM-enhanced PSD. While a smaller p may not fully
amplify backdoor effects, resulting in poor performance of Beatrix against SSBA and TrojanNN
attacks, it demonstrates that SAM-enhanced PSD can successfully identify poisoned samples and
maintain a reasonable false positive rate across different p settings. Overall, p proves to be relatively
insensitive; a broad range of values can be selected with good detection performance.

D.2 DETECTION PERFORMANCE ON DIFFERENT PARAMETERS OF EXTRACTING
BACKDOOR-RELATED FEATURE

In this study, we analyze two crucial parameters in the extracting backdoor-related feature stage
of our proposed defense mechanism, SAM-enhanced PSD: dimension and the choice of surrogate
dataset.

D.2.1 IMPACT OF FEATURE DIMENSION

The dimension of the feature space plays a pivotal role in the effectiveness of backdoor detection
methods. A dimension that is too large complicates the estimation of the covariance matrix, while
a dimension that is too small may result in excessive removal of the backdoor signal. Through
empirical testing, we evaluate the impact of varying the dimension from 10 to 50 on the performance
of SAM-enhanced PSD across different attacks and detection methods. As shown in Fig. 8, our results
indicate that the performance remains relatively stable across this range for most scenarios. However,
we observe some variability in performance at a dimension of 20 for the Beatrix method. Based
on these findings, we select a dimension of 30 for our main experiments, balancing the trade-offs
between complexity and signal retention effectively.

D.2.2 IMPACT OF THE SURROGATE DATASET

To further investigate the practical applicability and robustness of our method, we evaluate its
performance under various conditions for the clean auxiliary set. The flexibility of a defense method
regarding its auxiliary set is critical, especially in real-world scenarios where a large, verified clean
dataset may not be available. Therefore, we systematically designed three parallel experimental
scenarios: (1) Limited in-distribution data, where we investigate the method’s sensitivity to the
quantity of clean samples by varying the auxiliary set size from as few as 25 per class (a 0.5% clean
ratio) to 250 per class (a 5% clean ratio); (2) Sifted-clean (S-Clean) Data, where we test the method’s
reliance on the purity of the auxiliary set by simulating a case where defenders identify a reference
set from the poisoned dataset itself using an existing technique (META-SIFT (Zeng et al., 2023))
to sift out 250 samples per class; and (3) Out-of-distribution (OOD) data, where we assess the
method’s ability to leverage OOD data by using 250 samples per class from the CIFAR-5m (Nakkiran
et al., 2020) dataset as the auxiliary set for the CIFAR-10 task.

In the latter two scenarios, we use a fixed quantity of 250 samples per class. This is because the
primary challenge for these data sources lies in their purity or distribution mismatch, not their
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Table 14: Detection comparisons (measured by TPR (%), FPR (%) and F1 (%)) between base PSD and SAM-
enhanced PSD (+SAM optimized with ASAM) on CIFAR-10 and ResNet18, and the better result in each pair is
highlighted in bold. In terms of each metric, the average change of SAM-enhanced PSD to base PSD across all
attacks is presented at the bottom: performance improvements are highlighted in green, other changes in red.

Detection — Spectre / +SAM SCAn/+SAM SS/+SAM AC/+SAM Beatrix / +SAM
Attack | TPR+  FPR| F11 ‘ TPR? FPR|  FI7 ‘ TPR1Y FPR| FIt ‘ TPR+ FPR| FIt TPRT FPR| FIt
BadNets 51.1/84.4 4.9/44 42.0/62.9 | 96.0/95.0 0.0/0.0 98.0/97.5 | 70.8/91.7 2.4/0.0 65.6/95.7| 96.8/95.1 0.1/13.8 97.1/41.5 | 56.6/92.6 5.0/0.4 44.9/92.6
Blended 29.9/60.6 6.0/0.0 24.6/75.5| 99.2/98.8 0.0/3.8 99.6/73.1 |32.9/100.0 4.4/6.1 30.5/63.2| 2.3/87.3 7.7/11.7 1.9/42.7 | 5.0/99.4 5.0/1.3 5.0/89.0
SSBA 36.6/70.8 5.6/7.5 30.1/45.2 | 93.9/98.2 0.0/0.0 96.9/99.1 | 80.4/84.9 1.9/5.9 74.5/57.2| 99.3/100.0 3.3/20.8 76.1/33.6 | 16.8/98.1 5.0/0.0 15.8/99.0
LF 32.0/57.4 5.9/6.1 26.3/41.9 | 94.1/99.6 0.0/0.7 97.0/93.4 | 68.2/86.1 2.5/4.8 63.2/62.3| 95.6/100.0 10.4/7.7 48.7/57.9 | 2.4/100.0 5.0/0.7 2.4/93.9
Adap-Blend | 24.1/64.5 5.6/7.4 20.9/42.4 | 92.5/93.7 10.5/2.4 47.3/78.2 | 20.2/85.0 4.5/1.4 19.6/80.1| 1.5/954 7.1/3.1 1.2/74.8 | 6.2/100.0 5.0/7.8 6.2/57.5
LC 17.0/33.9 4.3/7.5 17.1/24.5 |100.0/100.0 0.0/0.0 100.0/100.0| 40.5/41.4 2.1/0.9 45.0/51.9| 0.0/100.0 0.0/0.0 0.0/100.0 | 2.2/100.0 5.0/2.8 2.2/78.9
TaCT 36.1/82.7 7.0/13.6 26.9/37.6 {100.0/100.0 0.0/0.0 100.0/100.0| 42.3/40.9 4.2/10.0 38.1/24.7|100.0/100.0 0.1/0.0 99.5/100.0|13.4/100.0 5.0/2.5 12.9/81.0
TrojanNN 30.2/51.0 6.0/4.7 24.8/42.5 | 100.0/97.0 0.0/0.0 100.0/98.5 | 63.4/99.5 2.8/1.6 58.7/86.9| 99.9/100.0 3.2/15.3 76.7/40.7 | 4.6/100.0 5.0/3.1 4.6/77.1
‘WaNet 66.4/100.0 4.1/0.0 54.3/100.0| 66.3/88.2 0.0/0.3 79.7/90.7 | 71.1/87.4 1.5/0.0 71.4/93.2| 85.1/96.1 0.0/0.0 91.9/98.0 | 1.2/96.6 5.0/5.0 1.2/66.2
Input-aware |53.9/100.0 4.7/0.0 44.2/100.0| 97.4/100.0 0.1/4.2 97.6/71.2 | 83.5/81.8 0.9/0.0 83.5/90.0| 0.0/88.3 0.0/0.0 0.0/93.8 | 3.4/100.0 5.0/5.0 3.4/67.8
BppAttack 21.5/28.6 6.3/5.3 17.8/25.0 | 87.8/100.0 0.0/2.8 93.5/78.9 | 85.8/96.7 0.8/0.0 85.7/98.3| 94.2/96.7 0.0/0.0 97.0/98.3 | 0.1/100.0 5.0/5.0 0.1/67.8
SIBA 30.0/64.6 6.0/1.3 24.6/68.4 | 98.7/93.6 0.0/3.9 99.3/70.1 | 72.9/88.8 1.2/6.1 74.2/58.4| 96.8/100.0 0.0/0.0 98.4/100.0| 4.3/92.4 5.0/5.0 4.3/64.3
BadNets-A2A|99.5/100.0 10.6/10.0 49.7/51.3 | 0.0/0.0  0.0/0.0  0.0/0.0 | 99.4/96.2 10.6/7.8 49.7/55.9| 97.8/90.3 0.0/0.0 98.9/94.9 | 27.3/99.8 5.0/0.3 24.6/97.0
Average | +285 -0.7 242 | 429 +0.7 4.5 | +191 0.3 4122 | 4292 +3.1 +145 | 4874 20 +69.6

Table 15: Detection comparisons (measured by TPR (%), FPR (%) and F1 (%)) between base PSD and SAM-
enhanced PSD (+SAM optimized with SAM-ON) on CIFAR-10 and ResNet18, and the better result in each pair
is highlighted in bold. In terms of each metric, the average change of SAM-enhanced PSD to base PSD across
all attacks is presented at the bottom: performance improvements are highlighted in green, other changes in
red.

Detection — Spectre / +SAM SCAn/+SAM SS /+SAM AC/+SAM Beatrix / +SAM
Attack | TPR 1 FPR | F171 TPR T FPR | F171 TPR T FPR | F11 TPR 1 FPR | F171 TPRT FPR| Fl1t
BadNets 51.1/77.6  4.9/1.4 42.0/76.2| 96.0/958 0.0/0.0 98.0/97.9 | 70.8/89.4 2.4/0.6 65.6/88.8| 96.8/98.9 0.1/8.8 97.1/54.1|56.6/100.0 5.0/0.2 44.9/98.4
Blended 29.9/56.8 6.0/7.7 24.6/37.4| 99.2/98.3 0.0/0.0 99.6/99.2 | 32.9/93.3 4.4/0.0 30.5/96.6| 2.3/100.0 7.7/14.0 1.9/43.0 | 5.0/100.0 5.0/1.2 5.0/90.0
SSBA 36.6/78.8 5.6/2.3 30.1/71.0| 93.9/96.7 0.0/0.0 96.9/98.3 | 80.4/88.9 1.9/4.1 74.5/66.5| 99.3/97.8 3.3/13.3 76.1/43.4| 16.8/97.0 5.0/0.3 15.8/95.6
LF 32.0/51.9 59/82 26.3/33.8|94.1/100.0 0.0/0.0 97.0/100.0 | 68.2/83.7 2.5/3.8 63.2/65.4| 95.6/97.0 10.4/15.0 48.7/40.2| 2.4/92.2 5.0/0.5 2.4/91.7
Adap-Blend | 24.1/67.3 5.6/2.4 20.9/63.4| 92.5/100.0 10.5/7.0 47.3/60.1 | 20.2/91.5 4.5/3.6 19.6/70.4| 1.5/98.2 7.1/7.5 1.2/57.5|6.2/100.0 5.0/7.9 6.2/57.1
LC 17.0/40.7 4.3/5.5 17.1/33.2| 100.0/96.0 0.0/0.0 100.0/98.0 | 40.5/44.0  2.1/5.4 45.0/35.6| 0.0/100.0  0.0/0.9 0.0/91.9 | 2.2/100.0 5.0/2.9 2.2/78.6
TaCT 36.1/77.5 7.0/4.7 26.9/58.3|100.0/100.0 0.0/0.0 100.0/100.0| 42.3/46.8 4.2/4.7 38.1/39.5/100.0/96.8 0.1/0.5 99.5/93.7|13.4/100.0 5.0/2.0 12.9/84.2
TrojanNN 30.2/61.7 6.0/0.0 24.8/76.3| 100.0/93.0 0.0/0.0 100.0/96.4 |63.4/100.0 2.8/42 58.7/71.6| 99.9/99.1 3.2/14.8 76.7/41.3| 4.6/93.7 5.0/3.3 4.6/73.0
WaNet 66.4/95.1 4.1/0.0 54.3/97.5| 66.3/100.0 0.0/1.9 79.7/85.0 | 71.1/93.7 1.5/7.3 71.4/56.4| 85.1/85.1 0.0/3.2 91.9/69.2| 1.2/100.0 5.0/5.0 1.2/67.8
Input-aware | 53.9/97.2 4.7/7.8 44.2/56.4| 97.4/91.6 0.1/0.0 97.6/95.6 | 83.5/79.4 0.9/0.0 83.5/88.5| 0.0/89.6 0.0/5.1 0.0/62.7 | 3.4/97.0 5.0/5.0 3.4/66.4
BppAttack 21.5/44.7 6.3/6.9 17.8/32.5| 87.8/93.4 0.0/0.2 93.5/95.1 | 85.8/89.5 0.8/0.5 85.7/90.1| 94.2/97.3 0.0/0.0 97.0/98.6| 0.1/91.7 5.0/5.0 0.1/63.9
SIBA 30.0/62.4 6.0/1.9 24.6/62.8| 98.7/90.9 0.0/0.0 99.3/95.2 | 72.9/86.8 1.2/6.3 74.2/56.5| 96.8/93.8 0.0/0.0 98.4/96.8| 4.3/86.4 5.0/5.0 4.3/61.4
BadNets-A2A|99.5/100.0 10.6/15.2 49.7/40.8| 0.0/0.0  0.0/0.0  0.0/0.0 | 99.4/96.6 10.6/16.0 49.7/38.6| 97.8/89.3  0.0/2.1 98.9/78.2|27.3/100.0 5.0/0.9 24.6/92.2
Average ‘ +29.5 -1.0 +25.9 +2.3 -0.1 +0.9 ‘ +19.4 +1.2 +8.1 ‘ +28.7 +4.1 +6.4 ‘ +85.8 -2.0 +68.7

availability, as they are generally easier to acquire than verified in-distribution clean data. Thus, our
goal here is to validate their viability as substitutes for a standard clean set.

As shown in Fig. 9, our method demonstrates remarkable robustness across all three challenging
scenarios. Detection performance remains high even when the quantity of clean samples is severely
limited (Scenario 1). Critically, our method is equally effective when using the S-Clean set (Scenario
2) or data from a completely different distribution (Scenario 3). These findings collectively confirm
that SAM-enhanced PSD has a low dependency on the clean auxiliary set, highlighting its flexibility
and practical value for real-world deployment.
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Figure 9: Detection performance of SAM-enhanced PSD with different clean auxiliary sets on
CIFAR10 and ResNet18. The x-axis compares results using three types of auxiliary data: an Out-
of-Distribution (OOD) set, an S-Clean set, and varying ratios of true in-distribution clean data. The
S-Clean set refers to data sifted from the poisoned dataset.

D.3 DETECTION PERFORMANCE WITH DIFFERENT SAM VARIANTS

To examine how alternative sharpness-aware optimizers influence SAM-enhanced-PSD, we replace
the original SAM with three popular variants, ASAM (Kwon et al., 2021), SAM-ON (Mueller et al.,
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Table 16: Detection comparisons (measured by TPR (%), FPR (%) and F1 (%)) between base PSD and SAM-
enhanced PSD (+SAM optimized with MSAM) on CIFAR-10 and ResNet18, and the better result in each pair is
highlighted in bold. In terms of each metric, the average change of SAM-enhanced PSD to base PSD across all
attacks is presented at the bottom: performance improvements are highlighted in green, other changes in red.

Detection — Spectre / +SAM SCAn/+SAM SS/+SAM AC/+SAM Beatrix / +SAM
Attack | TPRT FPR| FIt TPRT  FPR| F11 TPRT FPR] FIt TPRT FPR| F1 1 TPRT FPR| FI11
BadNets 51.1/86.7 4.9/9.6 42.0/47.0| 96.0/95.4 0.0/0.0 98.0/97.6 | 70.8/91.9 2.4/0.0 65.6/95.8| 96.8/96.3 0.1/9.9 97.1/50.1|56.6/100.0 5.0/0.5 44.9/95.4
Blended 29.9/58.4 6.0/8.3 24.6/37.0| 99.2/98.6 0.0/43 99.6/70.3 | 32.9/94.9 4.4/0.0 30.5/97.4| 2.3/100.0 7.7/11.9 1.9/46.9 | 5.0/93.2 5.0/1.1 5.0/86.9
SSBA 36.6/68.4 5.6/4.0 30.1/56.0| 93.9/96.7 0.0/0.5 96.9/94.1 | 80.4/94.0 1.9/0.0 74.5/96.9|99.3/100.0 3.3/14.3 76.1/42.4| 16.8/98.0 5.0/0.4 15.8/95.1
LF 32.0/53.0 5.9/0.0 26.3/69.3| 94.1/97.8 0.0/0.0 97.0/98.9 | 68.2/91.2 2.5/0.0 63.2/95.4|95.6/100.0 10.4/10.2 48.7/50.7| 2.4/98.9 5.0/0.2 2.4/97.7
Adap-Blend | 24.1/60.1 5.6/3.8 20.9/51.6| 92.5/100.0 10.5/9.1 47.3/53.5 | 20.2/91.4 4.5/0.0 19.6/95.5| 1.5/100.0 7.1/6.1 1.2/63.1 | 6.2/100.0 5.0/7.8 6.2/57.5
LC 17.0/41.8 4.3/3.1 17.1/41.7| 100.0/95.3 0.0/1.8 100.0/82.8 | 40.5/50.7 2.1/0.0 45.0/67.2| 0.0/99.3 0.0/0.0 0.0/99.6 | 2.2/100.0 5.0/3.1 2.2/77.3
TaCT 36.1/80.9 7.0/10.2 26.9/43.1| 100.0/95.4 0.0/0.0 100.0/97.6 | 42.3/49.3 4.2/2.5 38.1/50.0|100.0/93.4 0.1/0.0 99.5/96.6| 13.4/91.6 5.0/2.3 12.9/78.1
TrojanNN 30.2/61.6 6.0/13.7 24.8/29.2{100.0/100.0 0.0/0.0 100.0/100.0| 63.4/97.3 2.8/0.0 58.7/98.6| 99.9/96.9 3.2/22.2 76.7/31.3| 4.6/100.0 5.0/3.0 4.6/78.1
WaNet 66.4/98.8 4.1/0.0 54.3/99.4| 66.3/87.8 0.0/0.0 79.7/93.5 | 71.1/93.9 1.5/0.0 71.4/96.9| 85.1/94.2 0.0/2.7 91.9/76.9| 1.2/93.9 5.0/5.0 1.2/65.0
Input-aware |53.9/100.0 4.7/2.2 44.2/82.9| 97.4/100.0 0.1/0.0 97.6/99.8 | 83.5/81.9 0.9/0.0 83.5/90.1| 0.0/92.0 0.0/4.1 0.0/68.3 | 3.4/100.0 5.0/5.0 3.4/67.8
BppAttack 21.5/41.3 6.3/0.3 17.8/56.1| 87.8/99.0 0.0/4.4 93.5/70.1 | 85.8/93.3 0.8/0.0 85.7/96.6| 94.2/98.4 0.0/0.0 97.0/99.2| 0.1/96.9 5.0/5.0 0.1/66.4
SIBA 30.0/68.5 6.0/4.7 24.6/53.3| 98.7/94.9 0.0/0.0 99.3/97.4 | 72.9/89.3 1.2/0.8 74.2/87.2|96.8/100.0 0.0/0.5 98.4/95.8| 4.3/90.1 5.0/5.0 4.3/63.1
BadNets-A2A(99.5/100.0 10.6/6.3 49.7/62.4| 0.0/0.0  0.0/0.0  0.0/0.0 |99.4/100.0 10.6/9.4 49.7/52.9| 97.8/98.2  0.0/0.0 98.9/99.1|27.3/100.0 5.0/0.1 24.6/99.1
Average ‘ +30.1 -0.8  +25.1 ‘ +2.7 +0.7 —4.1 ‘ +22.1 2.1 +27.8 +30.7 +3.8 +10.2 +86.1 20 +69.2

2023), and MSAM (Becker et al., 2024), and evaluate them on CIFAR-10 with ResNet-18. Following
common practice, we set p = 1.0 for ASAM, p = 0.5 for SAMON, and p = 0.1 for MSAM. The
results ( Tab. 14, Tab. 15 and Tab. 16) reveal a consistent pattern: regardless of the optimizer variant,
the SAM-enhanced-PSD markedly outperforms their vanilla PSD baselines, delivering substantial
gains in true-positive rate while maintaining a low false-positive rate across all tested backdoor
attacks. This robustness is in line with our theoretical insight in Proposition 1, which shows that
the additional parameter step introduced by the SAM update amplifies backdoor-relevant neurons,
thereby enlarging the separation between poisoned and clean samples; because all SAM variants
share the extra ascent—descent mechanism, SAM-enhanced-PSD retains the same advantage and
therefore remains broadly effective even when the defender replaces one variant with another.

D.4 COMPUTATIONAL ANALYSIS

To thoroughly analyze the computational complexity of PSD and SAM-enhanced-PSD, we divide
the process into three distinct stages: training, feature extraction, and detection. The training stage
is widely adopted by most existing PSD methods, typically using conventional SGD optimization.
In contrast, SAM-enhanced-PSD replaces SGD with the original SAM optimizer, introducing an
additional ascent-descent step per mini-batch, which approximately doubles the computational
complexity compared to standard SGD. The feature extraction stage is exclusive to SAM-enhanced-
PSD, specifically designed to capture backdoor-related features through a single PCA operation and
variance estimation. The detection stage remains identical for both PSD and SAM-enhanced-PSD,
contributing minimally to overall computational costs.

We estimate the algorithmic complexities for both baseline PSD and SAM-enhanced-PSD across these
three stages and measure their actual runtimes on an NVIDIA GeForce RTX 4090 GPU, as shown in
Tab. 17. Our measurements confirm that the model training stage dominates the runtime, while the
SAM-enhanced-PSD’s feature extraction stage is shorter than the detection stage. Although SAM
approximately doubles the training overhead, our theoretical analysis in Proposition 1 guarantees
compatibility with various efficient SAM variants. Specifically, we test MSAM (Becker et al., 2024),
an efficient variant of SAM, in Tab. 16, demonstrating that MSAM significantly enhances detection
performance and can seamlessly replace the original SAM in SAM-enhanced-PSD. Furthermore,
Tab. 17 illustrates that MSAM’s computational complexity and runtime closely approximate those of
the conventional SGD baseline.

In summary, the primary computational cost of SAM-enhanced-PSD lies within its training stage due
to the optimization method used. However, employing a computationally efficient SAM variant such
as MSAM mitigates this overhead while maintaining robust backdoor detection performance.

D.5 STATISTICAL ANALYSIS OF TAC VALUES
To validate that our reported average Top-k TAC is a robust metric, we conduct a deeper statistical

analysis of its properties. A potential concern is that a high average TAC value could be skewed by a
few samples exhibiting extreme activation differences, masking the true distribution across the entire
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Table 17: Computation complexity and time of PSD and SAM-enhanced-PSD on CIFAR-10. General
setting: Epoch E; Samples N; Perturbation samples IV,,; Feature Dimension D; Class K; Forward
F; Backward B

1. Training

Conventional SGD SAM Momentum-SAM 2. Extract Features 3. Detection
O(N/B)E(f+b+p)) | O2«(N/B)E(f+b+3p)) | O(N/B)E(f +b+4p)) O(NKd%) Varies by method
1165s 2266s 1253s 26s 124s (average)

dataset. To rule out such statistical artifacts, we directly analyze the distribution of the per-sample
activation differences that constitute the final TAC value.

Experimental setup and conclusion For the Top-5 (most responsive) and Bottom-5 (least respon-
sive) neurons under three different attacks, we calculated the activation difference (|| f;(x) — f;(Z)|2
from Eq. (1)) for each clean sample x and its poisoned counterpart £. We then computed the mean
and standard deviation of these per-sample difference values.

The results, presented in Tab. 18, show a clear dichotomy. The Top-5 neurons exhibit consistently
high mean activation differences with low standard deviations relative to their means. For instance,
under the Blended attack, the Top-1 neuron has a mean activation difference of 22.55 versus a
standard deviation of only 1.82. This demonstrates that the backdoor induces a stable and strong
activation change across the vast majority of samples. In contrast, the Bottom-5 neurons consistently
show negligible activation differences. This analysis confirms that our reported average TAC is driven
by a robust and consistent effect across the sample population, rather than being a statistical artifact
caused by a few outliers, thus validating its reliability as a metric for a backdoor effect.

Table 18: Statistical analysis of per-sample activation differences for the top-5 and bottom-5 neurons
under different attacks. The values are presented in Mean (Standard Deviation) format.

Attack ‘ Top 1 Top 2 Top 3 Top 4 Top 5 ‘ Bottom1  Bottom2  Bottom3  Bottomd4  Bottom 5
Blended | 22.55(1.82) 11.44(1.48) 11.34(1.32) 10.80(0.84) 10.27(1.16) | 1.18(0.34) 1.04(0.20) 0.96 (0.20) 0.93 (0.00) 0.90 (0.00)
SSBA 2626 (2.28) 15.01(1.32) 11.52(1.00) 10.83(1.31) 10.23(1.35) | 1.18 (0.28) 1.16(0.28) 1.15(0.20) 1.14(0.28) 0.94 (0.20)
LF 20.27 (1.66)  16.66 (1.35) 12,93 (1.07) 11.37(0.93) 10.23(1.16) | 1.45(0.34) 1.44(0.40) 1.35(0.20) 1.11(0.28) 0.97 (0.00)

D.6 GENERALIZATION OF THE TAC-DETECTION CORRELATION

To further validate the generalizability of the positive correlation we identified between Trigger
Activation Change (TAC) and backdoor detection performance, we extended our evaluation to
additional datasets and model architectures.

Experimental setup and analysis We designed two additional experimental settings to verify the
consistency of our findings: the first on the GTSRB dataset with a ResNet-18 model, and the second
on the CIFAR-10 dataset with a VGG19-BN model. In this expanded analysis, we report not only the
TAC values and detection performance (AUROC) but also the Pearson correlation coefficient and the
linear regression coefficient (R?) to quantify the strength and consistency of the relationship.

As illustrated in Fig. 10, the results from our expanded analysis demonstrate a consistently positive
correlation between TAC and detection performance across all tested configurations. The high values
for both the Pearson correlation and R? coefficients shown in the figure confirm that the strong
relationship between TAC and detection efficacy is not a statistical artifact but a robust outcome that
holds across different datasets and models. These findings strengthen our paper’s core claim that
amplifying the backdoor effect, as measured by TAC, is an effective strategy for improving poisoned
sample detection.

D.7 T-SNE VISUALIZATION
We have provided the t-SNE visualization results, as shown in Fig. 11. The first row displays the

feature distribution after training with vanilla training, while the second row shows the distribution
after training with SAM. It is evident that the poisoned samples are more distant from the target
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Top-k TAC and AUC (PCC: 0.79) Top-k TAC and Silhouette Coefficiency (PCC: 0.91) Top-k TAC and AUC (PCC: 0.72) Top-k TAC and Silhouette Coefficiency (PCC: 0.83)
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Figure 10: Validation of the correlation between Top-k TAC, detection performance (AUC), and
feature separability (Silhouette Score) on new experimental settings. The left image (a) displays
the correlation plots for GTSRB with ResNet-18, while the right image (b) displays the plots for
CIFAR-10 with VGG19-BN.
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Figure 11: T-SNE visualization under different backdoor attacks on CIFAR10 and ResNet18 with
different training algorithms. The first row represents the model using vanilla training, and the second
row represents the model using SAM.

clean samples when trained with SAM. This indicates that SAM enhances the separability between
poisoned and target clean samples, thereby improving the detection performance.

E THE USE OF LARGE LANGUAGE MODELS

In the preparation of this manuscript, we utilize a large language model (LLM) to enhance the quality
and clarity of the text. The primary application of the LLM involves grammatical correction and
language polishing. We employ this assistive tool to identify and rectify syntactical errors, improve
sentence structure, and ensure the consistent use of academic terminology. The core intellectual
content, including all research, analysis, and conclusions, is generated entirely by the authors. The role
of the LLM is strictly limited to that of a writing aid to improve the readability and professionalism
of the prose.
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