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Abstract
This work introduces a Byzantine resilient so-
lution for learning low-dimensional linear rep-
resentation. Our main contribution is the de-
velopment of a provably Byzantine-resilient Alt-
GDmin algorithm for solving this problem in a
federated setting. We argue that our solution
is sample-efficient, fast, and communication-
efficient. In solving this problem, we also intro-
duce a novel secure solution to the federated sub-
space learning meta-problem that occurs in many
different applications.

1. Introduction
Multi-task representation learning refers to the problem of
jointly estimating the model parameters for a set of re-
lated tasks. This is typically done by learning a common
“representation” for all of their source vectors (feature vec-
tors). This learned representation can then be used for solv-
ing the meta-learning or learning-to-learn problem: learn-
ing model parameters in a data-scarce environment. This
strategy is referred to as “few-shot” learning. In recent
work (Du, Hu, Kakade, Lee, & Lei, 2020), a very interest-
ing low-dimensional linear representation was introduced
and the corresponding low rank matrix learning optimiza-
tion problem was defined. However, (Du et al., 2020) as-
sumed that this optimization problem (see eq. (1)), which
is non-convex, can be correctly solved. It is mentioned
that it should be possible to solve it by solving a nuclear
norm based convex relaxation of it. However, there are
no known guarantees to ensure that the solution to the re-
laxation is indeed also a solution of the original problem.
Moreover, convex relaxations are known to be very slow to
solve (compared with direct iterative solutions) (Jain, Kar,
et al., 2017; Netrapalli, Jain, & Sanghavi, 2013): these need
order 1/

√
ϵ number of iterations to obtain an ϵ accurate

solution. In follow-up work, (Tripuraneni, Jin, & Jordan,
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2021) studied a special case in which all the source vectors
for the different tasks are the same. It introduced a method
of moments estimator that is faster, but needs many more
samples; sample complexity grows as 1/ϵ2.

In interesting parallel works (Nayer & Vaswani, 2023, on
arXiv since Feb. 2021; Collins, Hassani, Mokhtari, &
Shakkottai, 2021), a fast and communication-efficient GD-
based algorithm, that was referred to as Alternating GD and
Minimization (AltGDmin) and FedRep respectively, was
introduced for solving the mathematical problem given in
(1), when the available number of training samples per task
is much lesser than the regression vector length. Follow-
up work (Vaswani, 2024) improved the guarantees for Alt-
GDmin while also simplifying the proof. AltGDmin and
FedRep algorithms are identical except for the initialization
step. AltGDmin uses a better initialization and hence also
has a better sample complexity by a factor of r. The latter
(FedRep) paper referred to the problem of (1) as multi-task
linear representation learning. The former (AltGDmin) pa-
per used federated sketching, dynamic MRI (Babu, Lin-
gala, & Vaswani, 2023) as motivating applications. It also
solved the phaseless generalization of (1) called low rank
phase retrieval. In older work (Nayer & Vaswani, 2021;
Nayer, Narayanamurthy, & Vaswani, 2020, 2019), an alter-
nating minimization (AltMin) solution to this problem was
developed and analyzed as well. Since (1) is a special case
of this more general problem, this AltMin solution also
solves (1). All these works study the centralized setting or
the attack-free federated setting. Other somewhat related
works include (Shen, Ye, Kang, Hassani, & Shokri, 2023;
Tziotis, Shen, Pedarsani, Hassani, & Mokhtari, 2022). A
longer version of the mathematical problem being solved in
this work (Byzantine resilient low rank column-wise com-
pressive sensing) is at (Singh & Vaswani, 2024).

1.1. Contributions

We adapt the altGDmin algorithm described above to show
how it can solve the multi-task linear representation learn-
ing and few shot learning problems. Our main contribu-
tion is the development of a provably Byzantine-resilient
AltGDmin-based solution for solving this problem in a
federated setting. Our solution is communication-efficient
along with being fast and sample-efficient. In this setting,
resilience to adversarial attacks on some nodes is an impor-
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tant requirement. The most general attack is the Byzantine
attack. For this, the attacking nodes can collude; and all the
attacking nodes know the outputs of all the nodes, the algo-
rithm being implemented by the center, and the algorithm
parameters.

In solving the above problem, we introduce a novel solu-
tion approach, called Subspace Median, for combining sub-
space estimates from multiple federated nodes when some
of them can be malicious. This approach and its guaran-
tee (Lemma 3.1) are of independent interest for developing
a secure solution to the federated subspace learning meta-
problem that occurs in many applications – (online) PCA,
subspace tracking, initializing many sparse recovery, low
rank matrix recovery, or phase retrieval problems.

1.2. Related Work

Few-shot learning is applied across various tasks such as
image classification (Vinyals, Blundell, Lillicrap, Wierstra,
et al., 2016), sentiment analysis from short texts (Yu et al.,
2018), and object recognition (Fei-Fei, Fergus, & Perona,
2006), with much of the focus on practical experimentation
over theoretical development (Snell, Swersky, & Zemel,
2017; Ravi & Larochelle, 2016; Sung et al., 2018; Boudiaf
et al., 2020). Representation learning, a significant method
within this field, has been highlighted in several studies
(Sun, Shrivastava, Singh, & Gupta, 2017; Goyal, Maha-
jan, Gupta, & Misra, 2019), though they often fall short of
providing algorithmic guarantees for provably solving the
representation learning problem (Du et al., 2020; Baxter,
2000; Maurer, Pontil, & Romera-Paredes, 2016; Tripura-
neni et al., 2021; Tripuraneni, Jordan, & Jin, 2020; Y. Li,
Ildiz, Papailiopoulos, & Oymak, 2023). Recent work by
(Collins et al., 2021) and (Nayer & Vaswani, 2023, on
arXiv since Feb. 2021; Vaswani, 2024) developed a prov-
able algorithm to solve the low-dimensional linear repre-
sentation learning problem, although they do not consider
Byzantine attacks. There are other line of works which
extends the low-dimensional linear representation learning
problem (Shen et al., 2023), which focuses on Differen-
tial Privacy. The algorithm CENTAUR, presented in their
work, aligns with the server and client procedures outlined
in the study by (Collins et al., 2021), with the notable ad-
dition of the Gaussian mechanism. The work presented in
(Tziotis et al., 2022) addresses the challenge of stragglers.
To combat the straggler effect, the paper introduces a novel
sampling mechanism that utilizes a “doubling” strategy.

Geometric Median is one of the aggregation method to han-
dle Byzantine attacks. (Chen, Su, & Xu, 2017) develops
non-asymptotic analysis in stochastic gradient descent uti-
lized the geometric median of means, giving convergence
guarantees under specific conditions. Follow-up work uses
coordinate-wise mean and trimmed-mean estimators (Yin,

Chen, Kannan, & Bartlett, 2018) but with assumption
of bounded variance and coordinate-wise bounded skew-
ness (or coordinate-wise sub-exponential) on the gradient
distribution. (Alistarh, Allen-Zhu, & Li, 2018; Allen-
Zhu, Ebrahimian, Li, & Alistarh, 2020) provided non-
asymptotic guarantees for Byzantine resilient stochastic
gradient descent, assuming a consistent set of Byzantine
nodes across iterations.

Some studies have explored heterogeneous data distribu-
tions, establishing results within bounds of heterogeneity
(Pillutla, Kakade, & Harchaoui, 2019; Data & Diggavi,
2021; L. Li, Xu, Chen, Giannakis, & Ling, 2019; Ghosh,
Hong, Yin, & Ramchandran, 2019). While (Regatti, Chen,
& Gupta, 2022; Lu, Li, Chen, & Ma, 2022; Cao, Fang, Liu,
& Gong, 2020; Cao & Lai, 2019; Xie, Koyejo, & Gupta,
2019) use detection methods to manage heterogeneous gra-
dients with a trusted dataset at central server.

1.3. Problem Set up

First consider the centralized setting. Suppose that there are
q source tasks, each task k ∈ [q] associated with a distri-
bution over the input-output space X × Y , where X ⊆ ℜn

and Y ⊆ ℜ. The aim is to learn prediction functions for
all tasks simultaneously, leveraging a shared representation
φ : X → Z that maps inputs to a feature space Z . We
let the representation function class be Low-Dimensional
Linear Representations i.e., {x 7→ UTx|U ∈ ℜn×r} (Du
et al., 2020). An example is the two-layer ReLU neural
network. The goal is to find the optimal representation φ∗,
represented by U∗ and the true linear predictors b∗k for all
tasks k ∈ [q] to minimize the difference between the pre-
dicted and actual outputs. Arranging the m input features
for task k as rows of an m× n matrix Xk, and the outputs
in an m× 1 vector yk, we have the following model

Y = [y1,y2, ...,yq] := [X1U
∗b∗1, ...,XqU

∗b∗q ] + V

where V is the modeling error that is assumed to be i.i.d.
zero mean Gaussian with variance σ2

v . We have assumed an
r-dimensional linear model for the regression coefficients,
i.e., θ∗

k = U∗b∗k, with r ≪ min(n, q). In other words, the
n×q regression coefficients’ matrix Θ∗ = U∗B∗ is rank r.
Our goal is to learn the column span of the n×r matrix U∗

(and in the process also learn Θ∗), from the m × q matrix
Y . We assume that all the feature vectors for all the tasks
are i.i.d. standard Gaussian, i.e., all the Xks are i.i.d. and
have i.i.d. standard Gaussian entries. Solving this problem
requires solving

min
Ũ∈ℜn×r

B̃∈ℜr×q

q∑
k=1

∥yk −XkŨ b̃k∥2 (1)

In the federated setting, we assume that there are a total of
L nodes. Each observes a different disjoint subset (m̃ =
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m/L) of rows of Y . Denoting the set of rows observed at
node ℓ by Sℓ, this means that Sℓs are disjoint and ∪Lℓ=1Sℓ =
[q]. At most τL nodes can be Byzantine with τ < 0.4. The
nodes can only communicate with the center.

In this work, all U matrices are n × r and are used
to denote the subspaces spanned by their columns. We
use ∥.∥ to denote the (induced) ℓ2 norm and ∥.∥F for
the Frobenius norm. For U1,U2 with orthonormal
columns, we use SD2(U1,U2) := ∥(I − U1U1

⊤)U2∥
or SDF (U1,U2) := ∥(I − U1U1

⊤)U2∥F to quantify
the Subspace Distance (SD). Clearly SDF (U1,U2) ≤√
rSD2(U1,U2).

2. Centralized Multi-task Representation
Learning and Few Shot Learning

Below, we first give the AltGDmin algorithm from (Nayer
& Vaswani, 2023, on arXiv since Feb. 2021) to learn U∗.
This is also similar to the FedRep algorithm of (Collins
et al., 2021), with the difference only being that the Alt-
GDmin initialization is better (has a better sample com-
plexity). Next, we give details about few-shot learning.

2.1. Multi-task Linear Representation Learning

Recall that the goal is to minimize f(U ,B) :=∑q
k=1 ∥yk − XkUbk∥2 where B = [b1, ..., bq]. Alt-

GDmin (Nayer & Vaswani, 2023, on arXiv since Feb.
2021; Collins et al., 2021; Vaswani, 2024) proceeds
as follows. We first initialize U as explained below;
this is needed since the our optimization problem is
clearly non-convex. After this, at each iteration, we
alternatively update U and B as follows: (1) Keep-
ing U fixed, update B by solving minB f(U ,B) =
minB

∑q
k=1 ∥yk − XkUbk∥2. (2) Keeping B fixed,

update U by a GD step, followed by orthonormalizing
its columns: U+ ← QR(U − η∇Uf(U ,B))). Here
∇Uf(U ,B) =

∑
k∈[q] X

⊤
k (XkUbk − yk)b

⊤
k , η is the

step-size for GD. We initialize U by (Nayer & Vaswani,
2023, on arXiv since Feb. 2021) computing the top r sin-
gular vectors of

Θ0 :=
∑
k

X⊤
k (yk)trunce

⊤
k , ytrunc := (y ◦ 1|y|≤√

α)

Here α := 9κ2µ2
∑

k ∥yk∥2/mq. Here and below, ytrunc

refers to a truncated version of the vector y obtained by ze-
roing out entries of y with magnitude larger than α (the no-
tation 1z≤α returns a 1-0 vector with 1 where zj < α and
zero everywhere else, and z1 ◦ z2 is the Hadamard product
(.* operation in MATLAB)). The algorithm is summarized
in Algorithm 1. We can show the following.

Theorem 2.1 ((Vaswani, 2024)). Assume σ2
v = 0 and

that maxk ∥b∗k∥ ≤ µ
√
r/qσ1(Θ

∗) for a constant µ ≥ 1

(incoherence of right singular vectors of Θ∗). Let κ de-
note the ratio of the first to the r-th singular value of
Θ∗. Consider Algorithm 1 with η = 0.4/mσ∗

1
2 and T =

Cκ2 log(1/ϵ). If mq ≥ Cκ6µ2(n + q)r(κ2r + log(1/ϵ))
and m ≥ Cmax(log n, log q, r) log(1/ϵ), then, with prob-
ability (w.p.) at least 1−n−10,SD2(U ,U

∗) ≤ ϵ and ∥θk−
θ∗
k∥ ≤ ϵ∥θ∗

k∥ for all k ∈ [q].

The time cost is mqnr · T = Cκ2mqnr log(1/ϵ). The
communication cost is nr per node per iteration.

This result shows that, as long as the total number of sam-
ples per task, m, is roughly order nr2/q, the learning er-
ror decays exponentially with iterations even with a step-
size η being a numerical constant (fast decay). Thus, after
T = Cκ2 log(1/ϵ) iterations, SD(U ,U∗) ≤ ϵ, i.e. the
low-dimensional subspace is accurately learned.

Treating κ, µ as numerical constants and assuming n ≈ q,
notice that the AltGDmin sample complexity is mq ≳
nrmax(r, log(1/ϵ)). On the other hand, FedRep (Collins
et al., 2021) needs to assume mq ≳ nr2 max(r, log(1/ϵ))
which is worse by a factor of r. In fact this complex-
ity is comparable to that for the AltMin solution from
(Nayer & Vaswani, 2021) that solved this problem and
its LRPR generalization. The older result of (Nayer &
Vaswani, 2023, on arXiv since Feb. 2021) for AltGDmin
needed mq ≳ nr2 log(1/ϵ). This is worse by a factor of
max(1, r/ log(1/ϵ)).

The FedRep guarantee is worse because its initialization
involves computing U0 as top r singular vectors of the ma-
trix

∑
ki y

2
kixkix

⊤
ki1(y

2
ki ≤ (9κ2µ2

∑
ki y

2
ki/mq)), and

its analysis of the GD step is not as tight as can be (sim-
ilar to that of (Nayer & Vaswani, 2023, on arXiv since Feb.
2021)). The advantage of the result of (Collins et al., 2021)
was (i) a slightly better dependence κ, and (ii) it studied the
low rank column-wise sensing problem in the σ2

v ̸= 0 set-
ting, while the result of (Vaswani, 2024) assumes σ2

v = 0.
As we explain in the remark given next, this result can eas-
ily extend to the σ2

v ̸= 0 setting as well with no change to
its sample complexity.

Remark 2.2 (Theorem 2.1 with σ2
v ̸= 0). Assume ev-

erything from Theorem 1 and that 0 < σ2
v ≤ c

∥Θ∗∥2
F

q .

Let ϵnoise := Cqκ2
σ2
v

σ∗
1
2 . Then, SD2(U ,U

∗) ≤
max(ϵ, ϵnoise). In words, the error decays exponentially
until it reaches the (normalized) “noise-level”, but saturates
after that.

2.2. Few-Shot Learning

Few-shot learning refers to learning in data-scarce environ-
ments (Du et al., 2020). Once an estimate U for the true
representation U∗ is obtained, the problem simplifies to
learning a predictor function bk : ℜr → ℜ defined on ℜr
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and specialized for each task k. Now, each source task can
easily compute the local predictor b∗k using the available
samples, as r ≪ m.

We want to bound the excess risk of the learned predic-
tor on target task new. We are given mnew input, output
training data pairs arranged into an m × n matrix Xnew,
and an m × 1 vector ynew and we need to solve the re-
gression problem. However, this is data-scarce setting, i.e.,
mnew ≪ n and consequently without the low-dimensional
linear representation, it is impossible to solve the regres-
sion problem. However, using the learned U , we can easy
learn an r-dimensional vector of regression coefficients as
long as mnew > r. Excess risk on the learned predictor
is given by ∥x⊤

newθ
∗
new + vnew − x⊤

newUbnew∥, where
θ∗
new = U∗b∗new.

We compute bnew as bnew = (XnewU)†ynew. Here, U is
the final estimate from the AltGDmin algorithm described
above. M † := (M⊤M)−1M⊤. We can prove the fol-
lowing for it.

We have the following bound on the expected value of the
excess risk (ER) for the few-shot learning task. Recall from
(Du et al., 2020) that E[ER(U , bnew] = E[(y− ŷ)2] where
y = θ∗

new
⊤x+ v and we predict it as ŷ = b⊤newU

⊤x with
bnew as given by the last step of Algorithm 1 and U is the
output of its learning representation step.

Corollary 2.3. Let U be the final output of the learning
steps of Algorithm 1. If mnew ≥ Cmax(r, log q, log n),
then, the excess risk E[ER(U , bnew] = ∥θ∗−Ubnew∥2+
σ2
v ≤ Cmax(σ2

v , ϵ∥b∗new∥2).

Notice that, with just order r samples, we are able to learn
the regression coefficients for n-dimensional features.

3. Resilient Federated Multi-Task and
Few-Shot Learning

Recall the federated setting problem from Sec. 1.3: there a
total of L federated nodes and we assume that at most τL
of them may be Byzantine with τ < 0.4. Denote the set of
good (non-Byzantine) nodes by Jgood. Equivalently, this
means that |Jgood| > (1− τ)L.

We develop a solution approach for making AltGDmin
Byzantine resilient that relies on the geometric median
(GM). The most challenging part in doing this is modify-
ing the initialization step. For the rest of the algorithm,
we can borrow ideas from the existing extensive literature
on Byzantine resilient GD discussed earlier. One popular
approach in this area is to replace the summation in the
gradient computation step by a “median” for vector-valued
quantities. A well-studied one is the geometric median
(GM) (Minsker, 2015; Chen et al., 2017), which we will
use. The minimization step for update of columns of B can

Algorithm 1 Few-Shot Learning via altGDmin. Let M† :=
(M⊤M)−1M⊤.

1: Input: yk,Xk, k ∈ [q]
2: Parameters: GD step size, η; Number of iterations, T
3: Sample-split: Partition the data into 2T + 1 equal-

sized disjoint sets: y(τ)
k ,X

(τ)
k , τ = 0, 1, . . . 2T .

Learning Representation:
4: Initialization:
5: set α← 9κ2µ2 1

mq

∑
ki

∣∣yki

∣∣2,

6: Using yk ≡ y
(0)
k ,Xk ≡X

(0)
k ,

7: set yk,trunc(α)← yk,trnc := trunc(yk, α),
8: set Θ0 ← (1/m)

∑
k∈[q]

X⊤
k yk,trunc(α)e

⊤
k

9: set U0 ← top-r-singular-vectors of Θ0

10: GDmin iterations:
11: for t = 1 to T do
12: Let U ← Ut−1.
13: Using yk ≡ y

(t)
k ,Xk ≡X

(t)
k ,

14: set bk ← (XkU)†yk, θk ← Ubk for all k ∈ [q]

15: Using yk ≡ y
(T+t)
k ,Xk ≡X

(T+t)
k , compute

16: set∇Uf(U ,B) =
∑

k X
⊤
k (XkUbk − yk)b

⊤
k

17: set Û+ ← U − (η/m)∇Uf(U ,Bt).

18: compute Û+ QR
= U+R+.

19: Set Ut ← U+.
20: end for

Few-shot Learning: Prediction on new source
21: bnew ← (XnewU)†ynew

22: θnew ← Ubnew

be done locally at the nodes. These are also used only in
the local partial gradient computation and hence never need
to be transmitted to the center. We should mention though
that the analysis of the GD step is not a direct extension of
existing ideas because of the important differences between
our problem and most standard problems. In our problem,
the GD step is not a standard GD or projected GD step for
a given cost function.

For L data vectors, z1, z2, . . . ,zL, the geometric median
(GM) is defined as zgm = minz

∑L
ℓ=1 ∥zℓ−z∥. Here and

below, ∥.∥ with a subscript denotes the l2 norm. The GM
cannot be computed in closed form but various algorithms
exist to accurately approximate it.

3.1. GM-based Resilient Spectral Initialization:
Subspace Median and Subspace Median of Means

This consists of two steps. First a resilient estimate of the
truncation threshold α = C̃

mq

∑
k

∑
i y

2
ki needs to be com-

puted. For this, we use the scalar median of means of the
partial estimates computed by each node. Next, we need to
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compute U0 which is the matrix of top r left singular vec-
tors of Θ0. Node ℓ has data to compute the n × q matrix
(Θ0)ℓ, defined as

(Θ0)ℓ :=

q∑
k=1

(Xk)ℓ
⊤((yk)ℓ)trunce

⊤
k , (2)

Observe that Θ0 =
∑

ℓ(Θ0)ℓ/L. If all nodes were good,
we would use this fact to implement the federated power
method (PM) for this case: starting with a random initial-
ization U , this involves iterating the following: compute
V :=

∑
ℓ Vℓ/L (where Vℓ = (Θ0)ℓ

⊤U ) in a federated
fashion, followed by computing Ũ+ =

∑
ℓ(Θ0)ℓV /L in

a federated fashion, and then obtain U+ = QR(Ũ+) at
the center. To deal with Byzantine attacks, the most obvi-
ous solution is to replace the averaging at the center by the
GM. However, this works with high probability only if all
the (Θ0)ℓ’s are extremely accurate estimates of Θ∗ 1. This
further implies that its required sample complexity is very
large. We provide a detailed discussion of this fact for the
simpler PCA problem in Sec. 4 and Table 1.

Subspace-Median. Since the GM is defined for quantities
whose distance can be measured using the vector l2 norm
(equivalently, matrix Frobenius norm), it cannot be directly
used for subspaces (or their basis matrices): these do not
lie in on a Euclidean space (but instead on the Stiefel mani-
fold). To understand this simply, notice that U ,−U specify
the same subspace even though ∥U − (−U)∥F = 2

√
r ̸=

0. Notice though that the Frobenius norm between the pro-
jection matrices of two subspaces is also a measure of sub-
space distance: ∥PU−PU∗∥F =

√
2SDF (U ,U

∗) (Chen,
Chi, Fan, Ma, et al., 2021, Lemma 2.5). HerePU := UU⊤

is the projection matrix for subspace U (assumes U has or-
thonormal columns). We use this idea to develop a simple
but useful approach called the “Subspace Median”: Node
ℓ computes Ûℓ as the top r singular vectors of the matrix
(Θ0)ℓ that it has data for, and sends it to the center. If
node ℓ is good, then Ûℓ already has orthonormal columns;
however if the node is Byzantine, then it is not. The center
first orthonormalizes the columns of all the received Ûℓ:

1The reason for this is that it computes the GM of the node
outputs Vℓ = (Θ0)

⊤
ℓ U at each iteration including the first one.

At the first iteration, U is a randomly generated matrix and
thus, w.h.p., this is a bad approximation of the desired subspace
span(U∗). Consequently, unless the various (Θ0)ℓ’s are very
close approximations of Θ∗, the different Vℓ’s are likely to be
bad approximations of span(B∗). In particular, this means that
the estimates at the different nodes may be quite different even
for all the good nodes. As a result, their GM is unable to distin-
guish between the good and Byzantine ones, and, there is a good
chance it approximates the Byzantine one(s). A similar argument
can be repeated for Ũℓs and so on. Thus, unless all the (Θ0)ℓ’s
are very close approximations of Θ∗ (and hence very similar),
there is a good chance that the subspace estimates do not improve
over iterations.

Uℓ = QR(Ûℓ) for all ℓ ∈ [L]. It then computes the projec-
tion matrices PUℓ

:= UℓU
⊤
ℓ , ℓ ∈ [L], followed by vector-

izing them, computing their GM, and then converting the
GM into a matrix. Denote this by Pgm. Finally, the center
finds the ℓ for which PUℓ

is closest to Pgm in Frobenius
norm and outputs the corresponding Uℓ. Denote this Uℓ by
Uout We can show the following for this estimator
Lemma 3.1. (Subspace Median) Suppose that |Jgood| ≥
(1−τ)L for a τ < 0.4. If minℓ∈Jgood

Pr(SDF (Uℓ,U
∗) ≤

δ) ≥ 1 − p. Then, with probability at least 1 − c0 −
exp(Lψ(0.4− τ, p)), SDF (Uout,U

∗) ≤ 23δ.

Here ψ(a, b) := (1− a) log 1−a
1−b + a log a

b is the binary KL
divergence.

Subspace Median of Means. A median-based estimator
can be robust to almost 50% outliers (here Byzantine at-
tacks), but, as is well known, the use of median also wastes
samples. In our context, this means that the estimate of
each node needs to be accurate enough. If the maximum
number of Byzantine nodes is known to be much lesser
than 50%, a better approach is to use the median of means
(MoM) estimator. We explain how to develop this for our
problem. For a parameter L̃ ≤ L, we would like to form
L̃ mini-batches of ρ = L/L̃ nodes; w.l.o.g. ρ is an integer.
For the ℓ-th node in the ϑ-th mini-batch we use the short
form notation (ϑ, ℓ) = (ϑ− 1)ρ+ ℓ, for ℓ ∈ [ρ].

In our setting, combining samples means combining the
rows of (Xk)ℓ and (yk)ℓ for ρ nodes to obtain (Θ0)(ϑ) with
k-th column given by

∑ρ
ℓ=1(Xk)

⊤
(ϑ,ℓ)(yk,trunc)(ϑ,ℓ)/ρ.

To compute this in a communication-efficient and private
fashion, we use a federated power method for each of
the L̃ mini-batches. The output of each of these power
methods is U(ϑ), ϑ ∈ [L̃]. Then we do subspace-
median on U(ϑ), ϑ ∈ [L̃] to obtain the final subspace
estimate Uout. To explain the federation details sim-
ply, we explain them for ϑ = 1. The power method
needs to federate U ← QR((Θ0)(1)(Θ0)

⊤
(1)U) =

QR(
∑ρ

ℓ′=1(Θ0)ℓ′(
∑ρ

ℓ=1(Θ0)
⊤
ℓ U)). This needs two steps

of information exchange between the nodes and center at
each power method iteration. In the first step, we compute
V =

∑
ℓ∈[ρ](Θ0)ℓ

⊤U , and in the second one we compute
Ũ =

∑
ℓ∈[ρ](Θ0)ℓV , followed by its QR decomposition.

We summarize the complete algorithm in Algorithm 2.

Guarantee. We can prove the following. It needs to as-
sume that the same set of τL nodes are Byzantine for all the
power method iterations needed for the initialization step2.
Theorem 3.2 (Initialization via Subs-MoM). Assume σ2

v =
0 and that maxk ∥b∗k∥ ≤ µ

√
r/qσ1(Θ

∗) for a con-
stant µ ≥ 1. Consider Algorithm 2 with Tgm =

2This can be relaxed if we instead assume that a much tighter
bound on the number of bad nodes per iteration.
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C log( L̃r
δ0
), Tpow = Cκ2 log( n

δ0
). Assume that the set of

Byzantine nodes remains fixed for all iterations in this al-
gorithm and is of size at most τL with τ < 0.4L̃/L. If
m̃q ≥ C L̃

L · κ
6µ2(n+ q)r2/δ20 , then

Then, w.p. at least 1 − c0 − exp(−L̃ψ(0.4 − τ, n−10 +
exp(−c(n+ q))))− L exp(−c̃m̃qδ20/r2κ4)

SDF (U
∗,Uout) ≤ δ0

The communication cost per node is order nr log( n
δ0
). The

computational cost at any node is order nqr log( n
δ0
) while

that at the center is n2L̃ log3(L̃r/δ0).

The extension of the above result for the σ2
v ̸= 0 case will

be straightforward and can be proved using the same ideas
as those used for Remark 2.2.

Proof. This follows by using Lemma 3.1 along with
the Davis Kahan sinΘ theorem and concentration
bounds from (Vershynin, 2018) applied to analyze
the output of each node. We apply the latter two
to Φ(ϑ) =

∑ρ
ℓ=1(Θ0)(ϑ,ℓ)(Θ0)

⊤
(ϑ,ℓ)/ρ and Φ∗ =

E[(Θ0)ℓ|α]E[(Θ0)ℓ|α]⊤ for ϑ ∈ [L̃].

3.2. GM-based Resilient Federated GDmin Iterations

We can make the altGDmin iterations resilient as follows.
In the minimization step, each node computes its own esti-
mate (bk)ℓ of b∗k as follows:

(bk)ℓ = ((Xk)ℓU)†(yk)ℓ, k ∈ [q]

Each node then uses this to compute its estimate of the gra-
dient w.r.t. U as ∇fℓ =

∑
k∈Sℓ

(Xk)
⊤
ℓ ((Xk)ℓU(bk)ℓ −

(yk)ℓ)(bk)
⊤
ℓ . The center receives the gradients from the

different nodes, computes their GM and uses this for the
projected GD step. Since the gradient norms are not
bounded, the GM computation needs to be preceded by the
thresholding step.

To improve sample complexity (while reducing Byzantine
tolerance), we can replace GM of the gradients by their GM
of means: form L̃ batches of size ρ = L/L̃ each, compute
the mean gradient within each batch, compute the GM of
the L̃ mean gradients. Use appropriate scaling. We sum-
marize the GMoM algorithm in Algorithm 3. The GM case
corresponds to L̃ = L. Given a good enough initialization,
a small enough fraction of Byzantine nodes, enough sam-
ples m̃q at each node at each iteration, we can prove the
following for the GD iterations.

Lemma 3.3. (AltGDmin-SubsMoM: Error Decay) Con-
sider Algorithm 3 with sample-splitting, and with step-
size η ≤ 0.5/σ∗

1
2. If, at each iteration t, m̃q ≥

C1κ
4µ2(n + r)r2(L̃/L), m̃ > C2 max(log q, log n);

Algorithm 2 Byz-AltGDmin-Learn: Initialization step.

1: Input: Batch ϑ : {(Xk)ℓ,Yℓ, k ∈ [q]}, ℓ ∈ [L]
2: Parameters: Tpow, Tgm,
3: Nodes ℓ = 1, ..., L

4: Compute αℓ ← C̃
m̃q

∑
k ∥(yk)ℓ∥2, with C̃ = 9κ2µ2.

5: Central Server
6: α ← Median{α(ϑ)}L̃ϑ=1, where α(ϑ) =∑ρ

ℓ=1 α(ϑ,ℓ)/ρ
7: Central Server
8: Let U0 = Urand where Urand is an n× r matrix with

i.i.d standard Gaussian entries.
9: for τ ∈ [Tpow] do

10: Nodes ℓ = 1, ..., L

11: Compute Vℓ ← (Θ0)
⊤
ℓ (U(ϑ))τ−1 for ℓ ∈ (ϑ−1)ρ+

[ρ], ϑ ∈ [L̃]. Push to center.
12: Central Server
13: Compute V(ϑ) ←

∑ρ
ℓ=1 V(ϑ−1)ρ+ℓ

14: Push V(ϑ) to nodes ℓ ∈ (ϑ− 1)ρ+ [ρ].
15: Nodes ℓ = 1, ..., L
16: Compute Uℓ ←

∑
k(Θ0)ℓV(ϑ) for ℓ ∈ (ϑ − 1)ρ +

[ρ], ϑ ∈ [L̃]. Push to center.
17: Central Server
18: Compute U(ϑ) ← QR(

∑ρ
ℓ=1 U(ϑ−1)ρ+ℓ)

19: Let (U(ϑ))τ ← U(ϑ). Push to nodes ℓ ∈ (ϑ− 1)ρ+
[ρ].

20: end for
21: Central Server (implements Subspace Median on

U(ϑ), ϑ ∈ [L̃])
22: Orthonormalize: Uϑ ← QR((Uϑ)0), ϑ ∈ [ρ]
23: Compute PUϑ

← UϑU
⊤
ϑ , ϑ ∈ [ρ]

24: Compute GM: Pgm ← approxGM{PUϑ
, ϑ ∈ [ρ]}

(Use (Cohen, Lee, Miller, Pachocki, & Sidford, 2016,
Algorithm 1) with parameter Tgm).

25: Find ϑbest = argminϑ ∥PUϑ
− Pgm∥F

26: Output Uout = Uϑbest

if τ < 0.4L̃/L; and if the initial estimate U0 satis-
fies SDF (U

∗,U0) ≤ δ0 = 0.1/κ2, then w.p. at
least 1 − c0 − t

[
Ln−10 + exp(−Lψ(0.4− τ, n−10))

]
,

SDF (U
∗,Ut+1) ≤ δt+1 :=

(
1− (ησ∗

1
∗2) 0.12κ2

)t+1
δ0

We prove this lemma in the long version (Singh & Vaswani,
2024, Section V). The complete algorithm is obtained
by using Algorithm 3 initialized using Algorithm 2 with
sample-splitting. Combining Theorem 3.2 and Lemma
3.3, and setting η = 0.5/σ∗

1
2 and δ0 = 0.1/κ2, we can

show that, at iteration t + 1, SDF (U
∗,Ut+1) ≤ δt+1 =

(1− 0.06/κ2)t+10.1/κ2 whp. Thus, in order for this to be
≤ ϵ, we need to set T = Cκ2 log(1/ϵ). Also, since we are
using fresh samples at each iteration (sample-splitting), this
also means that our sample complexity needs to be multi-
plied by T . We have the following final result.
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Algorithm 3 Byz-AltGDMin-Learn: Complete algorithm

1: Obtain U0 using Algorithm 2.
2: for t = 1 to T do
3: Nodes ℓ = 1, ..., L
4: Set U ← Ut−1

5: (bk)ℓ ← ((Xk)ℓU)†(yk)ℓ, ∀ k ∈ [q]
6: (θk)ℓ ← U(bk)ℓ, ∀ k ∈ [q]
7: (∇fk)ℓ ←

∑
k∈[q](Xk)

⊤
ℓ ((Xk)ℓU(bk)ℓ −

(yk)ℓ)(bk)ℓ
⊤, ∀ k ∈ [q]

8: Push ∇fℓ ←
∑

k∈[q](∇Ufk)ℓ
9: Central Server

10: Compute ∇f(ϑ) ←
∑

ℓ∈ϑ∇fℓ
11: ∇fGM ← approxGMthresh(∇f(ϑ), ϑ =

1, 2, . . . L̃).
(Use (Cohen et al., 2016, Algorithm 1) with Tgm
iterations on {∇f(ϑ), ϑ ∈ [L̃] \ {ℓ : ∥∇f(ϑ)∥ >
ω}})

12: Compute U+ ← QR(Ut−1 − η
ρm̃∇f

GM )

13: return Set Ut ← U+. Push Ut to nodes.
14: end for

Theorem 3.4. (AltGDmin-SubsMoM: Complete guar-
antee) Assume σ2

v = 0 and that maxk ∥b∗k∥ ≤
µ
√
r/qσ1(Θ

∗) for a constant µ ≥ 1. Consider Algorithm
3 and the setting of Theorem 3.2 and Lemma 3.3. Set T =
Cκ2 log(1/ϵ). If m̃q ≥ Cκ4µ2(n + q)r2 log(1/ϵ)(L̃/L)
and m̃ > Cκ2 max(log q, log n) log(1/ϵ), then, w.p. at
least 1 − TLn−10, SDF (U

∗,U) ≤ ϵ, and ∥θk − θ∗
k∥ ≤

ϵ∥θ∗
k∥ for all k ∈ [q]. The communication cost per node is

order nr log(nϵ ). The computational cost at any node is or-
der nqr log(nϵ ) while that at the center is n2L̃ log3(L̃r/ϵ).

The extension of the above result for the σ2
v ̸= 0 case will

be straightforward and can be proved using the same ideas
as those used for Remark 2.2.

3.3. Numerical Experiments

In the Figure 1 we plot Error vs Iteration where Error =
SDF (U∗,U)√

r
. We report mean SDF over 100 Monte Carlo

runs. We compare Byz-Fed-AltGDmin-Learn (GMoM)
with the baseline algorithm - AltGDmin-Learn (Mean) in
the no attack setting. We also provide results for Byz-
Fed-AltGDmin-Learn (GM) for both values of Lbyz . All
these are compared in Figure 1. We also compare the ini-
tialization errors in Figure 1 Table. As can be seen Byz-
Fed-AltGDmin-Learn (GMoM) based initialization error is
quite a bit lower than that with Byz-Fed-AltGDmin-Learn
(GM). The same is true for the GDmin iterations.

Method Lbyz = 1 Lbyz = 2
Byz-Fed-AltGDmin-Learn (GM) 0.716(0.665) 0.717(0.667)

Byz-Fed-AltGDmin-Learn (GMoM) 0.477(0.457) 0.475(0.459)
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Mean(No attack)

GMoM L
byz
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GM L
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byz

=1

GM L
byz

=1

Figure 1: Table: Initialization errors. We report
“maxSDF (meanSDF )” in each column. Figure: Byz-Fed-
AltGDmin-Learn (GMoM), AltGDmin-Learn (Mean), Byz-Fed-
AltGDmin-Learn (GM) for Lbyz = 1, 2; L = 18.

4. Resilient Federated PCA
Given q data vectors dk ∈ ℜn, that are zero mean, mutu-
ally independent, sub-Gaussian, and have covariance ma-
trices that share the same principal subspace, the goal is
to find this subspace. We can arrange the data vectors
into an n × q matrix, D := [d1,d2, . . .dq]. The data
is vertically federated, this means that each node ℓ has
qℓ = q̃ = q

L dk’s. Denote the corresponding sub-matrix
of D by Dℓ. Suppose that dk has covariance matrix Σ∗

k

of the form Σ∗
k

EVD
= [U∗,U∗

⊥,k]Sk[U
∗,U∗

⊥,k]
⊤: all the

covariance matrices share the same principal subspace U∗,
but the lower eigenvectors and all eigenvalues can be dif-
ferent. We use K to denote the maximum sub-Gaussian
norm (Vershynin, 2018, Chap 2) of Σ∗

k
−1/2dk for any

k ∈ [q]. The goal is to obtain a resilient estimate of the
r-dimensional subspace U∗ of ℜn in a federated setting.

The subspace median idea developed for initializing the
AltGDmin algorithm described earlier is in fact much more
generally applicable for a generic subspace learning meta-
problem: given L subspace estimates Uℓ of an unknown
subspace U∗, one can compute their subspace median us-
ing the exact same idea as that given in Sec. 3.1. For PCA,
the individual node subspace estimates Uℓ are computed as
the top r singular vectors of the data matrix Dℓ.

Moreover, we can also develop and analyze a subspace
median of means generalization of it well. This requires
some different ideas described next because, for the cur-
rent problem, we are assuming vertical federation. Pick
an integer L̃ ≤ L. In order to implement the “mean”
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Methods→ SVD-ResCovEst ResPowMeth SubsMed PowMeth, no attack
(Minsker, 2015, Cor 4.3) Modification of (Minsker, 2015; Hardt & Price, 2014) (Proposed) (baseline)

Sample Comp for PCA n2L
ϵ2 max

(
n2r2, n

ϵ2

)
· L nrL

ϵ2
nr
ϵ2

(lower bound on q)
Communic Cost n2 nr

σ∗
r

∆ log(nϵ ) nr nr
σ∗
r

∆ log(nϵ )

Compute Cost - node n2qℓ nqℓr
σ∗
r

∆ log(nϵ ) nqℓr
σ∗
r

∆ log(nϵ ) nqℓr
σ∗
r

∆ log(nϵ )

Compute Cost - center n2L log3
(
Ln
ϵ

)
nrL

σ∗
r

∆ log(nϵ ) log
3
(
Ln
ϵ

)
n2L log3

(
Ln
ϵ

)
nrL

σ∗
r

∆ log(nϵ )

Table 1: Comparisons for solving the resilient federated PCA problem (Sec. 4). We compare the proposed Subspace
Median (SubsMed) algorithm with the two obvious (but bad) solutions – SVD-Resilient Covariance Estimation (SVD-
ResCovEst): SVD on GM of Covariance matrices, and Resilient Power Method (ResPowMeth): GM based modification
of the power method – and with the baseline (power method for a no-attack setting). Observe that SubsMed needs the
smallest sample complexity and has the lowest communication cost.

step, we need to combine samples from ρ = L/L̃ nodes,
i.e., we need to find the r-SVD of matrices D(ϑ) =

[D(ϑ,1),D(ϑ,2), . . . ,D(ϑ,ρ)], for all ϑ ∈ [L̃]; we are us-
ing the notation (ϑ, ℓ) = (ϑ− 1)ρ+ ℓ. This needs to be
done without sharing the entire data matrix. We do this by
implementing L̃ different federated power methods, each
of which combines samples from a different minibatch of
ρ nodes. The output of this step is L̃ subspace estimates
U(ϑ), ϑ ∈ [L̃]. These serve as inputs to a basic Subspace-
Median algorithm to obtain the final Subspace-MoM esti-
mator. L̃ = L is its subspace median special case.
Theorem 4.1 (Resilient Federated PCA). Consider Sub-
space Median of Means. For a ∆ > 0, assume that
minℓ((σ

∗
r )ℓ − (σ∗

r+1)ℓ) ≥ ∆. Here Σ∗
ℓ = 1

q̃

∑
k∈Sℓ

Σ∗
k.

Assume that the set of Byzantine nodes remains fixed for all
iterations in this algorithm and the size of this set is at most
τL with τ < 0.4L̃/L. If

q ≥ CK4σ
∗
1
2

∆2

nr

ϵ2
· L̃

then, then w.p. at least 1 − c0 − exp(−Lψ(0.4 −
τ, 2 exp(−n))), SDF (Uout,U

∗) ≤ ϵ. The communica-
tion cost is Tpownr = nr

σ∗
r

∆ log(nϵ ) per node. The com-

putational cost at the center is order n2L̃ log3
(

L̃r
ϵ

)
. The

computational cost at any node is order nqℓrTpow.

Comparison with attack-free federated PCA. Observe
that the total sample complexity (lower bound on q) needed
by the above result to guarantee SDF (U

∗,U) ≤ ϵ is order
nrL̃/ϵ2. Here we are quantifying subspace distance using
SDF . However, even if we use the more common distance
measure SD2(U

∗,U) := ∥(I − UU⊤)U∗∥ and require
just SD2(U

∗,U) ≤ ϵ, this is the required sample com-
plexity. The reason is we need Frobenius norm is for the
GM computation. On the other hand, standard attack-free
PCA needs a sample complexity of only n/ϵ2 to guarantee
SD2(U

∗,U) ≤ ϵ (Vershynin, 2018, Remark 4.7.2). Our
complexity also has an extra factor of L̃; this is because we
are computing the individual node estimates using q̃ = q/L
data points and we need each of the node estimates to be
accurate (to ensure that their “median” is accurate). This

extra factor is needed also in other work that uses (geomet-
ric) median, e.g., in (Chen et al., 2017).

Two more obvious solutions for Resilient PCA and
why they fail. Consider the symmetric matrix Φℓ :=
(Θ0)ℓ(Θ0)ℓ

⊤. In a centralized setting, the most obvious
solution to the above problem would be to compute the
GM of the vectorized matrices Φℓ followed by obtaining
the principal subspace (r-SVD) of the GM matrix; this was
studied in (Minsker, 2015). However, in a federated set-
ting, this is communication inefficient because it requires
each node to share an n × n matrix. For the same reason
it is not private either. Moreover, this is extremely sample
inefficient; see Table 1. For a communication-efficient so-
lution, in the attack-free federated setting, one would use
the distributed power method (Golub & Van Loan, 1989;
Wu, Wai, Li, & Scaglione, 2018). A direct modification
of this to deal with attacks is to use its GM based modi-
fication: at each iteration, instead of summing the n × r
matrices, Ũℓ := (ΦℓU) received from each node, we com-
pute the GM of their vectorized versions. We refer to this
as Resilient Power Method (ResPowMeth). However, this
works w.h.p. only if all the Φℓ’s are extremely accurate es-
timates of Φ∗ = Θ∗Θ∗⊤ (Singh & Vaswani, 2024). We
summarize this discussion in Table 1.

5. Conclusions and Future Work
We developed a Byzantine-resilient, sample-, time-, and
communication-efficient solution, called Byz-AltGDmin,
for few shot learning. We also introduced a novel solu-
tion approach, called Subspace Median, for combining sub-
space estimates from multiple federated nodes when some
of them can be malicious. This is likely to be of indepen-
dent interest for developing a secure initialization approach
for various federated low rank matrix recovery, and sub-
space learning and tracking problems.

The few shot learning problem is almost synonymous with
the online subspace tracking problem studied in (Babu et
al., 2023) for real-time dynamic MRI. Mini-batch subspace
tracking ideas of this work can be useful for few shot learn-
ing as well. We will explore real data applications in future.
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