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ABSTRACT

Unsupervised domain adaptation (UDA) aims to transfer the knowledge from a
labeled source domain to an unlabeled target domain. Typically, to guarantee
desirable knowledge transfer, aligning the distribution between source and target
domain from a global perspective is widely adopted in UDA. Recent researchers
further point out the importance of local-level alignment and borrow the experi-
ence from Optimal Transport (OT) theory to construct instance-pair alignment.
However, existing OT-based algorithms are limited to resolve class imbalance
challenge and require a huge computation cost when considering a large-scale
training situation. In this paper, we address these two issues by proposing a
Clustering-based Optimal Transport (COT) algorithm, which formulates the align-
ment procedure as an Optimal Transport problem by capturing the fine-grained
attribute alignment. Concretely, COT innovatively designs the loss derived from
discrete Kantorovich dual form to construct a mapping between clustering centers
in source and target domain, which simultaneously eliminates the negative effect
brought by class imbalance and reduces the computation cost on the basis of the-
oretical analysis. Finally, our COT together with some previous UDA methods
achieve superior performance on several benchmarks.

1 INTRODUCTION

Benefiting from the availability of large-scale data , the field of deep learning has achieved tremen-
dous success over the past few years. However, directly applying a well-trained convolution neu-
ral network on a new domain frequently suffers from the domain shift challenge, resulting in the
spurious predictions on the new domain. Furthermore, collecting labeled data in various domains
is labor-intensive and expensive. To alleviate the negative effect brought by the domain discrep-
ancy, Unsupervised Domain Adaptation (UDA) has attracted many researchers’ attention, which
can transfer the knowledge from a labeled domain to an unlabeled domain.

Previous unsupervised domain adaptation methods (Yan et al. (2017); Saito et al. (2018); Wang
et al. (2020)) mainly seek to learn a global domain shift by aligning the global source and target
distributions, while ignoring the local-level alignment between two domains. Under the guidance of
global domain adaptation, the distributions of source and target domain are almost the same, thus
losing the fine-grained information for each class in target domain. This would be a fatal problem
in the existing global domain adaptation methods.

In order to bridge the local alignment between source and target domain, recent researchers em-
ploys the experience from Optimal Transport theory to construct instance-pair alignment between
domains. Compared with traditional global alignment algorithms, OT-based UDA methods can pre-
serve the domain-specific properties since the instance-level alignment is highlighted. However,
there exist two drawbacks on recent OT-based UDA algorithms. 1) When considering a realistic
situation, i.e. the class imbalance1 phenomenon occurs between source and target domain, samples
belong to the same class in the target domain are assigned with different pseudo labels due to the
mechanism of optimal transport, which requires each sample in source domain has to be mapped
on target samples under the constraint of marginal distribution preservation. As a result, current
OT-based UDA methods fail to provide accurate local alignment between source and target domain

1label distribution are different in two domains,Ps(y) 6= Pt(y)
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Figure 1: Comparison of previous UDA methods and our proposed method when facing class-
imbalance challenge. (a) Previous UDA methods aim to align the source and target domain from the
global perspective, leading the ambiguous boundary between different classes. (b) Traditional OT-
based UDA algorithms further align the feature representation on the instance-level, which performs
poorly in the face of class-imbalance challenge due to the false-assigned label on the sample within
the target domain. (c) Our COT presents a cluster-based optimal transport alignment algorithm,
which can get accurate fine-grained representation to resist the class-imbalance risk.

when facing class imbalance challenge. 2) Previous OT-based UDA methods aim to find a sample-
level optimal counterpart, which wastes a large amount of computation cost, especially training on
the large-scale benchmarks.

To resolve two aforementioned drawbacks on the OT-based UDA algorithms, we propose a
Clustering-based Optimal Transport (COT) algorithm to construct a mapping between clustering
centers in source and target domain. Instead of aligning the feature representation between domains
on the instance level, COT align the clustering centers from source to target domain by applying
optimal transport metric. Clusters in source domain are obtained from the classifiers supervised by
the labeled source domain data. For target domain, COT utilizes a set of learnable clusters to repre-
sent the feature distribution of target domain, which can describe the sub-domain information (Zhu
et al. (2021); Wei et al. (2020)) implicitly. The clusters on source and target domain can represent
the individual sub-domains information respectively, such that optimal transport between clusters
intrinsically provide a local mapping from sub-domains in source domain to those in target domain.
To this end, our Cluster-based Optimal Transport method, achieving the distinct local alignment
and capturing amazing abilities to resist class-imbalance challenge (shown in Fig. 1) and reduce
computation cost, facilitates the OT-based UDA community significantly. Moreover, we provide
a theoretical analysis to guarantee that 1) COT can eliminate the negative effect brought by class
imbalance 2) COT mitigates much computation cost than previous OT-based UDA methods.

In summary, our main contributions include: 1) We propose a novel Cluster-based Optimal Transport
module with a special designed loss derived from discrete type of Kantorovich dual form, which
aligns the clusters between source and target domain to transfer knowledge between individual sub-
domains (clusters) and resist the class imbalance challenge; 2) Our COT can be more efficient on
the practical application in the field of UDA by aligning each cluster instead of individual sample,
which economizes the computation cost effectively; 3) Our COT can be well integrated with existing
unsupervised domain adaptation methods. Empirically, COT together with MCC (Jin et al. (2020)),
DANN (Ajakan et al. (2014)), CDAN (Long et al. (2017a)) achieve state-of-the-art performance on
several benchmarks.

2 RELATED WORK

Pseudo Label based Domain Adaptation Supervised domain adaptation methods utilize the class
label information as a guide for efficiently transferring knowledge between different domains, which
assumes that fine-tuning the deep neural network model with labeled source data can remedy the
domain shift. When labeled target data are unavailable for unsupervised domain adaptation task,
several methods have been proposed to substitute for labeled data by introducing pseudo labels.

Inspired by the observation that samples in target domain can be clustered within the feature space,
for accurate pseudo-labeling, Wang & Breckon (2020) propose a selective pseudo-labeling strat-
egy based on structural predictions which utilize the unsupervised clustering analysis. Rhee &

2



Under review as a conference paper at ICLR 2022

Cho (2019) introduce a confidence-based weighting scheme for obtaining pseudo-labels and an
adaptive threshold adjustment strategy to provide sufficient and accurate pseudo-labels during the
training process. The confidence-based weighting scheme generates pseudo-labels can enable the
performance less sensitive to threshold which determine the pseudo-labels. In the task of person re-
identification, Ge et al. (2020) propose an unsupervised framework called Mutual Mean-Teaching
to learn better features from the target domain by refining the hard pseudo labels offline and soft
pseudo labels online alternatively to mitigate the effects of noisy pseudo labels caused by the clus-
tering algorithms. Morerio et al. (2020) provide an characterization of shift noise and show that
the conditional Generative Adversarial Networks (cGANs) are robust to shift noise to some extent.
Specifically, the generator allows for cleaner samples from target distribution and classifier allows
for better label assignment for target samples.

Optimal Transport based Domain Adaptation As a way to find a minimal effort strategy to the
transport of a given mass of dirt into a given hole, Monge (1781) put forward the optimal transport
problem for the first time. Kantorovich (2006) provide an extension of the original problem of
Monge. Recently, new computation strategy have emerged and make possible the application of
optimal transport in domain adaptation.

Courty et al. (2016) propose regularized unsupervised optimal transport model to align the represen-
tation of features between different domains. The regularization schemes encoding class-structure
in source domain during estimation of transport map enforce the intuition that samples of same class
must undergo similar transformation. Courty et al. (2017) minimize the optimal transport loss be-
tween the joint source distribution and the estimated target joint distribution depending on a function
which is introduced to predict an output value given input from source domain. For reducing dis-
crepancy between multiple domains, Redko et al. (2019) propose Joint Class Proportion and Optimal
Transport which performs multi-source domain adaptation and target shift correction simultaneously
by learning the predicted class probability of the unlabeled target data and the coupling to align the
distributions between source and target domain. For better alignment between different domains, a
relation between target error and the magnitude of different Wasserstein distances are proposed in
Kerdoncuff et al. (2020) which optimize the metric for domain adaptation. Taking the ignorance
of intra-domain structure of current domain adaptation based on optimal transport, Xu et al. (2020)
focus on the target samples distributed near the edge of clusters/far from corresponding class centers
which may be easily misclassified by the decision boundary learned from source domain. The propo-
sition of Shrinking Subspace Reliability exploits spatial prototypical information and intra-domain
structure to dynamically measure the sample-level domain discrepancy across domains.

3 PRELIMINARY

In this section, we will introduce the basic knowledge for optimal transport.

3.1 OPTIMAL TRANSPORT

Let X ⊆ Rd be a measurable space and the labels are denoted as Y . We denote the set of all
probability distributions on X as P(X). The source and target domains are space X equipped with
two distinct probability distributions µS and µT . Suppose we have source dataset {xsi}

ns
i=1 ⊂ XS =

(X,µS) associated with label set {ysi }
ns
i=1 with ysi ∈ Y . The target dataset is {xtj}

nt
j=1 ⊂ XT =

(X,µT ) without labels. The goal of optimal transport is to minimize the inter-domain transportation
cost by finding a feasible map which preserve measure.

Definition 1 (Kantorovich) For given joint distribution ρ(xs, xt) which satisfies for every measur-
able Borel set OS ⊂ XS , OT ⊂ XT , we have

ρ(OS ×XT ) = µS(OS), ρ(XS ×OT ) = µT (OT ) (1)

For convenience, we denote the projection maps from XS × XT to XS and XT as πS , πT . The
above equation can be denoted as πS#ρ = µS and πT#ρ = µT . The corresponding transportation
cost is

C(ρ) =

∫
XS×T

c(xs, xt)dρ(xs, xt) (2)
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where c(xs, xt) is pointwise transportation cost between xs ∈ XS and xt ∈ XT . The optimal
transport problem is proposed to minimize the C(ρ) under the measure preserving as the following:

Wc(µS , µT ) = inf
ρ
{C(ρ)||πS#ρ = µS , πT#ρ = µT } (3)

By convex optimization theory, we can consider the Kantorovich’s dual problem as:

Wc(µS , µT ) = max
ϕ,ψ
{
∫
XS

ϕ(xs)dµS(xs) +

∫
XT

ψ(xt)dµT (xt)|ϕ(xs) + ψ(xt) ≤ c(xs, xt)} (4)

where ϕ and ψ are real functions from XS and XT to R. Moreover, the Kantorovich problem can
be formulated as

Wc(µS , µT ) = max
ϕ
{
∫
XS

ϕ(xs)dµS(xs) +

∫
XT

ϕc(xt)dµT (xt)} (5)

where ϕc(xt) = inf
xs∈XS

{c(xs, xt)− ϕ(xs)} is called the c-transform of ϕ.

By classical optimal transport theory, different choices of cost function will influence the difficulty
to solving the optimal transport problem. When we choose c(xs, xt) = ‖xs − xt‖2, the problem
stated in Equation (5) is equivalent to

Wc(µS , µT ) = max
ϕ
{
∫
XS

ϕ(xs)dµS −
∫
XT

ϕ(xt)dµT (xt)} (6)

where ϕ is under the constraint that |ϕ(x) − ϕ(x′)| ≤ ‖x − x′‖2. WGAN Arjovsky et al. (2017)
is inspired by above cost setting, during the implementation of optimal transport in WGAN, they
utilize the gradient clip to guarantee the Lipschitz constant of ϕ is bounded from above by 1. When
we set the cost function as c(xs, xt) = ‖xs− xt‖22, by Gangbo & McCann (1996) that the existence
and uniqueness of optimal transport map is guaranteed.

4 METHOD

4.1 CLUSTERING-BASED OPTIMAL TRANSPORT

Instead of aligning instance-level features between source and target domain, we propose a novel
clustering-based optimal transport (COT) module for unsupervised domain adaptation in this sub-
section. Firstly, we extract features from source and target domain by ImageNet pretrained CNNs.
Then we utilize learnable clusters to represent the sub-domains in source and target domain, respec-
tively. Finally, we apply a Kantorovich dual form based loss to implement the optimal transport
between clusters from both domains.

Feature Extractor We utilize an ImageNet pretrained (without fully connected layers) CNNs (e.g.
ResNet50/ResNet101) to extract features {xsi}

ns
i=1 and {xtj}

nt
j=1 from the source and target dataset

respectively at the beginning of training process. Note that the distributions of feature vary during
the training due to the parameters updating in the feature extractor.

Clustering As for each sample from source domain, i.e., xsi has a label ysi ∈ Y . We denote the fully-
connected layer which outputs the classification logits as W = [ws1, ..., w

s
|Y|]
> ∈ R|Y|×c, where

|Y| is the number of categories and c is number of feature channels. The predicted classification

probability is P (ŷsi = v|xsi ) = ex
s>
i ws

v

|Y|∑
u=1

ex
s>
i

ws
u

. The corresponding cross-entropy loss is shown as

follows:

Lcross−entropy =
1

b

b∑
i=1

−ysi · log(P (ŷsi |xsi )) (7)

For source domain, we take the classifiers {wsv}
|Y|
v=1 as clusters for feature space of source domain.

For target domain, a set of learnable clusters termed as {wtu}Ku=1 are proposed to represent the sub-
domains, where K = Q · |Y| is hyper-parameter which stands for the number of sub-domains in
target domain, Q is a positive integer which represents the number of sub-domains for each class.
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Algorithm 1 Clustering based on Optimal Transport

Set number of epochs for training as E, updating duration for COT as fot, learnable clusters for
target domain as {wtu}

|Y|
u=1, classifiers/clusters for source domain as W = {wsv}

|Y|
v=1;

for k-th training epoch while k ≤ E do
for l-th iteration in k-th epoch do

1. Take mini-batch of samples from source and target domain as input for feature extractor
CNNs with parameters θ, the output features are {xsi}bi=1 and {xtj}bj=1;
2. compute the Lcluster for {xtj}bj=1 and Lcross-entropy for {xsi}bi=1 in the l-th batch;
3. compute the clustering based optimal transport loss LOT;
if 1 ≤ (v mod 10) ≤ fot then

we find the current optimal map s from source domain to the set of clusters in target
domain by maximizing LOT and update {λtv}

|Y|
v=1;

end if
4. optimize the following weighted loss

α1 · Lcross-entropy + α2 · Lcluster + α3 · LOT

update {wtu}
|Y|
u=1,{wsv}

|Y|
v=1 and parameters θ, where α1, α2, α3 are weights.

end for
end for

{wtu ∈ Rc}l·Qu=(l−1)·Q+1 represent the clusters for class l, ∀1 ≤ l ≤ |Y|. For each feature xtj , we
assign it to the closest cluster in {wtu}Ku=1. We utilize the suitable metric to measure the distance
between features and clusters and pull the features back to corresponding clusters.

Lcluster = distance({wtu}Ku=1, {xtj}
nt
j=1) (8)

Optimal Transport With clusters {wsv}
|Y|
v=1 and {wtu}Ku=1 from source and target domain respec-

tively, we design the clustering based optimal transport as follows:

min
T∈R|Y|×K

Tvucvu

s.t.

K∑
u=1

Tvu =
1

K
,

|Y|∑
v=1

Tvu =
1

|Y|
, Tvu ≥ 0,∀1 ≤ v ≤ |Y|, 1 ≤ u ≤ K

(9)

where cvu = ‖wsv−wtu‖22. Similar to Equation (5), we can get the discrete Kantorovich dual problem
of Equation (9).

max
ψ
{ 1

K

K∑
u=1

ψ(wtu) +
1

|Y|

|Y|∑
v=1

ψc(wsv)} (10)

where ψc(wsv) =
K

inf
u=1

(cvu − ψ(wtu)). We seek for the optimal transportation map between clusters
by optimizing the following loss.

LOT =
1

K

K∑
u=1

λtu +
1

|Y|

|Y|∑
v=1

(
K

inf
u=1

(cvu − λtu)) (11)

where {λtu}Ku=1 represent the value of function ψ at points {wtu}Ku=1. Furthermore, it is worth noting
that cost cvu is frozen during the optimization ofLOT. Whenever we update the parameters of feature
extractor CNNs, cvu will be updated in the meantime. The details of our COT’s optimization strategy
of is shown in Algorithm 1.

4.2 THEORETICAL ANALYSIS ON INSTANCE/CLUSTERING OPTIMAL TRANSPORT

Given features {xsi}
ns
i=1 and {xtj}

nt
j=1 from source and target domain respectively, where xsi and xtj

are output from shared-parameters neural network for feature extractor. We consider the discrete
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Kantorovich problem

min
T∈Rns×nt

Tijcij

s.t.

nt∑
j=1

Tij =
1

ns
,

ns∑
i=1

Tij =
1

nt
, Tij ≥ 0,∀1 ≤ i ≤ ns, 1 ≤ j ≤ nt.

(12)

where cij = ‖xsi − xtj‖22.

Considering the distance and inner-product between features and classifiers:

‖xsi − wvs1‖
2
2 − ‖xsi − wsv2‖

2
2

=‖wsv1‖
2
2 − ‖wsv2‖

2
2 + 2(‖wsv2‖2x

s>
i

wsv2
‖wsv2‖2

− ‖wsv1‖2x
s>
i

wsv1
‖wsv1‖2

)
(13)

In the Bayesian view, we can consider ‖wsv‖2 as the prior probability of class v, xsi is feature repre-
sentation of a sample and ws

v

‖ws
v‖2

is the cluster for class v. xs>i
ws

v

‖ws
v‖2

measure the similarity between

feature and cluster. When classifiers in {‖wsv‖2}
|Y|
v=1 are of the same magnitude, we draw the con-

clusion that the similarity between features and clusters are almost equivalent to distance between
features and classifiers. With labels as supervision, the optimization of cross-entropy can promote
the inter-class discrepancy which imply

xs>i
wsysi
‖wsysi ‖2

� xs>i
wsv
‖wsv‖2

,∀v 6= ysi (14)

which also provide the following result

‖xsi − wsysi ‖
2
2 � ‖xsi − wsv‖22,∀v 6= ysi (15)

If clustering doesn’t work sufficiently well, it happens that some samples in source domain with
label v are assigned to samples in target domain with label u 6= v. When clustering perform well,
We have cij ∼ c̄vj = ‖wsv − xtj‖22, where ∼ means these two numbers are almost the same. Then
we get ∑

i,j

Tijcij ∼
∑
v,j

(
∑
xs
i∈Xs

v

Tij)c̄vj (16)

where Xs
v is the set of samples with label v in source domain. We denote the number of samples

with class v as nv , then we get

nt∑
j=1

(
∑
xs
i∈Xs

v

Tij) =
nv
ns

,
|Y|∑
v=1

(
∑
xs
i∈Xs

v

Tij) =
1

nt
(17)

Inspired by Equation (16) and (17), we consider the following optimal transport between clusters
from source domain and instances from target domain instead of solving Kantorovich problem in
Equation (12).

min
T̄∈R|Y |×nt

T̄vj c̄vj

s.t.

nt∑
j=1

T̄vj =
nv
ns
,

|Y|∑
v=1

T̄vj =
1

nt
, T̄vj ≥ 0,∀1 ≤ v ≤ |Y|, 1 ≤ j ≤ nt

(18)

In general, because of the class imbalance, the empirical label distribution between source and target
dataset are different

∃δ > 0, s.t. ‖(n
s
1

ns
, ...,

ns|Y|

ns
)− (

nt1
nt
, ...,

nt|Y|

nt
)‖2 ≥ δ (19)

where δ is a constant which measure the label distribution between source and target domain. There
must exists some index i such that n

s
v

ns
>

nt
v

nt
, which means that some samples with label v in source

domain will be assigned to samples in target domain with label u 6= v. This will result in samples
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belonging to same category in the target domain be given different pseudo labels, which increase the
difficulty of training and cause the degradation of performance of deep learning methods on target
domain.

When we utilize the clustering based optimal transport, for source domain, we have
K∑
u=1

Tvu = 1
|Y| .

For target domain,
|Y|∑
v=1

l·Q∑
u=(l−1)·Q+1

Tvu = Q
K = 1

|Y| , which ease the negative effect from class

imbalance in domain adaptation based on optimal transport.

4.3 COMPUTATION COST

In terms of instance-based optimal transport, firstly we need to obtain the features of all samples
from source and target domain, computation cost on feature extractor is shown as follows:

O(ns + nt) · O(feature-extractor) (20)

where O(feature-extractor) means the computation cost on single sample when extracting the fea-
ture. Then considering the optimization of optimal transport, every iteration will need

O(ns · nt) (21)

In comparison, for cluster-based optimal transport, the main computation cost is on optimal trans-
port:

O(|Y| ·K) (22)

For a large scale dataset, clustering-based optimal transport cost much less than instance-based
optimal transport.

5 EXPERIMENTS

In this section, we compare our method with state-of-the-art unsupervised domain adaptation meth-
ods on the three authoritative benchmarks,including Office-31, Office-Home and VisDa-2017.

5.1 DATASETS AND IMPLEMENTATION DETAIL

Office-31 is a famous dataset on the real-world unsupervised domain adaptation. It has 4110 im-
ages for 31 classes drawn from three domains: Amazon (A), DSLR (D) and Webcam (W). The 31
classes in the dataset consist of objects commonly appeared in office settings, such as keyboards,
file cabinets and laptops.

Office-Home is a challenging benchmark dataset for domain adaptation which has 4 domains where
each domain consists of 65 categories. The four domains are: Art – artistic images in the form of
sketches, paintings, ornamentation, etc.; Clipart – collection of clipart images; Product – images of
objects without a background and Real-World – images of objects captured with a regular camera.
It contains 15,500 images in 65 classes.

VisDa-2017 is a large-scale simulation-to-real dataset for domain adaptation, which has over
280,000 images across 12 categories in the training, validation and testing domains. The train-
ing images are generated from the same object under different circumstances, while the validation
images are collected from MSCOCO (Lin et al. (2014)).

Implementation details Followed by GVB (Cui et al. (2020c)), we adopt ResNet-50 pretrained on
the ImageNet (Deng et al. (2009)) as our backbone for Office-31 and Office-Home benchmarks and
ResNet-101 for VisDa-2017 dataset. In this paper, all experiments are implemented by PyTorch. For
optimizer schedule, we adopt SGD with momentum with 0.9. We apply our method on the DANN
and MCC respectively. For each transferring task, we report the average accuracy of 3 random trails.
The optimal transport loss weight, cluster loss weight and classification loss weight are 0.1, 0.1 and
1 respectively.
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5.2 RESULTS

Results on Office-31. The results are shown in the Table 1. We implement our method on the basis
of DANN and MCC. When comparing with other state-of-the-art methods, MCC + Ours achieves
the highest average accuracy 90.7%. Besides, DANN + Ours brings a remarkable enhancement of
8.2% to DANN, demonstrating that our method is complementary with adversarial-based domain
adaptation method. Our COT achieves the most significant enhancement on the Office-31 bench-
mark, which embraces the most severe class-imbalance situation comparing with other evaluated
datasets.

Table 1: Accuracy (%) on Office-31 for UDA (ResNet-50).
Method A→W D→W W→D A→D D→A W→A Avg
ADDA Tzeng et al. (2017) 86.2 96.2 98.4 77.8 69.5 68.9 82.9
JAN Long et al. (2017b) 85.4 97.4 99.8 84.7 68.6 70.0 84.3
MCD Saito et al. (2018) 88.6 98.5 100.0 92.2 69.5 69.7 86.5
BNM Cui et al. (2020a) 91.5 98.5 100.0 90.3 70.9 71.6 87.1
AFN Xu et al. (2019) 88.8 98.4 99.8 87.7 69.8 68.7 85.7
DMRL Wu et al. (2020) 90.8 99.0 100.0 93.4 73.0 71.2 87.9
GTA Sankaranarayanan et al. (2018) 89.5 97.9 99.8 87.7 72.8 71.4 86.5
SymNets Zhang et al. (2019) 90.8 98.8 100.0 93.9 74.6 72.5 88.4
CDAN Long et al. (2017a) 94.1 98.6 100.0 92.9 71.0 69.3 87.7
TAT Liu et al. (2019) 92.5 99.3 100.0 93.2 73.1 72.1 88.4
MDD Li et al. (2020a) 94.5 98.4 100.0 93.5 74.6 72.2 88.9
GVB-GD Cui et al. (2020b) 94.8 98.7 100.0 95.0 73.4 73.7 89.3
GSP Hajifar & Sun (2020) 92.9 98.7 99.8 94.5 75.9 74.9 89.5
TSA Li et al. (2021) 96.0 98.7 100.0 95.4 76.7 76.8 90.6
DANN Ajakan et al. (2014) 82.0 96.9 99.1 79.7 68.2 67.4 82.2
+Ours 95.2 98.6 100.0 94.4 76.7 77.4 90.4
MCC Jin et al. (2020) 95.5 98.6 100.0 94.4 72.9 74.9 89.4
+Ours 96.5 99.1 100.0 96.1 76.5 76.1 90.7

Results on Office-home. The results are reported in the Table 2. We introduce our method on the
basis of DANN and achieves the highest average accuracy 70.6%. Note that the result of TSA (Li
et al. (2021)) is re-implemented by the official code.

Table 2: Accuracy (%) on Office-Home for UDA (ResNet-50).
Method Ar→ClAr→PrAr→RwCl→ArCl→PrCl→RwPr→ArPr→ClPr→RwRw→ArRw→ClRw→PrAvg
JAN Long et al. (2017b) 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
TAT Liu et al. (2019) 51.6 69.5 75.4 59.4 69.5 68.6 59.5 50.5 76.8 70.9 56.6 81.6 65.8
TPN Pan et al. (2019) 51.2 71.2 76.0 65.1 72.9 72.8 55.4 48.9 76.5 70.9 53.4 80.4 66.2
ETD Li et al. (2020b) 51.3 71.9 85.7 57.6 69.2 73.7 57.8 51.2 79.3 70.2 57.5 82.1 67.3
SymNets Zhang et al. (2019) 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6
BNM Cui et al. (2020a) 52.3 73.9 80.0 63.3 72.9 74.9 61.7 49.5 79.7 70.5 53.6 82.2 67.9
MDD Li et al. (2020a) 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
GSP Hajifar & Sun (2020) 56.8 75.5 78.9 61.3 69.4 74.9 61.3 52.6 79.9 73.3 54.2 83.2 68.4
MCD Saito et al. (2018) 48.9 68.3 74.6 61.3 67.6 68.8 57 47.1 75.1 69.1 52.2 79.6 67.8
CDAN Long et al. (2017a) 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
BSP Chen et al. (2019) 52.0 68.6 76.1 58.0 70.3 70.2 58.6 50.2 77.6 72.2 59.3 81.9 66.3
TSA Li et al. (2021) 55.8 73.7 79.0 61.9 74.6 74.5 60.7 53.2 80.1 72.7 58.4 84.3 69.1
GVB-GD Cui et al. (2020b) 57.0 74.7 79.8 64.6 74.1 74.6 65.2 55.1 81.0 74.6 59.7 84.3 70.4
DANN Ajakan et al. (2014) 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
+Ours 57.6 74.8 80.4 63.6 74.1 75.7 65.0 54.7 81.0 75.1 60.7 84.7 70.6

Results on VisDA-2017. The results are presented in the Table 3. Similar in the Office-home, we
reported the result of our method on the basis of DANN. Our method outperforms MCC by 2.2%
average accuracy. The result of TSA on the VisDA-2017 dataset is also re-implemented by the
official code.

5.3 ABLATION STUDY

In this subsection, we evaluate the effectiveness of our COT module on three famous unsupervised
domain adaptation algorithm, including DANN, CDAN and MCC. All experiments are conducted
on the Office-31 benchmark. The significant improvement on these methods demonstrate the plug
and play property of our proposed optimal transport module.
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Table 3: Accuracy (%) on VisDA-2017 as regularizer for UDA (ResNet-101).

Method plane bcybl bus car horse knife mcyle persn plant sktb train truck mean
DANN Ajakan et al. (2014) 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
DANN + MinEnt Grandvalet et al. (2005) 87.4 55.0 75.3 63.8 87.4 43.6 89.3 72.5 82.9 78.6 85.6 27.4 70.7
DANN + TSA Li et al. (2021) 93.0 77.8 82.2 50.8 89.9 28.0 77.1 70.0 85.2 80.0 86.1 43.0 71.9
DANN + BSP Chen et al. (2019) 92.2 72.5 83.8 47.5 87.0 54.0 86.8 72.4 80.6 66.9 84.5 37.1 72.1
DANN + MCC Jin et al. (2020) 90.4 79.8 72.3 55.1 90.5 86.8 86.6 80.0 94.2 76.9 90.0 49.6 79.4
DANN + Ours 93.6 78.1 82.2 74.1 91.1 91.8 88.1 76.8 88.7 76.6 84.3 42.3 80.6

Table 4: Ablation Study of COT Module on Office-31.
method A→W D→W W→D A→D D→A W→A Avg
DANN Ajakan et al. (2014) 82.0 96.9 99.1 79.7 68.2 67.4 82.2
+COT 95.2 98.6 100.0 94.4 76.7 77.4 90.4
CDAN Long et al. (2017a) 94.1 98.6 100.0 92.9 71.0 69.3 87.7
+COT 94.8 98.8 100.0 94.4 74.8 75.4 89.6
MCC Jin et al. (2020) 95.5 98.6 100.0 94.4 72.9 74.9 89.4
+COT 96.5 99.1 100.0 96.1 76.5 76.1 90.7

5.4 VISUALIZATION

Most recent domain adaptation methods minimize the divergence between these two domains in
the same embedding feature space. It turn out to be an overly rough operation which will lead
to the lack of domain-specific feature representation. Instead of aligning features from different
domains on instance level, we implement the alignment between clusters from source and target
domains, which should be more efficient and robust. The visualization of feature cluster in source
and target domain are shown in Figure 1. Obviously, our COT module together with DANN has a
more compact cluster centers than other two methods.

(a) ResNet50 (b) DANN (c) COT

Figure 2: t-SNE of classifier responses by ResNet50, DANN and COT (red: Amazon, blue: Web-
cam).

6 CONCLUSION

In this paper, we propose a novel module for domain adaptation which integrates with optimal
transport and clustering operation, termed as clustering based optimal transport (COT). With pseudo
labels provided by learnable clusters, COT can reduce the intra-class distance and enlarge inter-
class distance simultaneously. COT apply the loss derived from discrete Kantorovich dual form
to cluster centers in source and target domain, thus transfering knowledge from source domain to
target domain. Besides, our COT can eliminate the negative effect from class imbalance and reduce
the computation cost in optimal transport. Additionally, COT is plug and play which can be well
integrated with existing domain adaptation methods. Empirically, COT together with MCC, DANN,
CDAN achieve state-of-the-art performance on several benchmarks, including Office-31, Office-
home and VisDa-2017.
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Nicolas Courty, Rémi Flamary, Devis Tuia, and Alain Rakotomamonjy. Optimal transport for do-
main adaptation. IEEE transactions on pattern analysis and machine intelligence, 39(9):1853–
1865, 2016.
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