
Published as a workshop paper at ICLR 2025

ACCELERATING MODEL-BASED REINFORCEMENT
LEARNING WITH STATE-SPACE WORLD MODELS

Maria Krinner∗, Elie Aljalbout∗, Angel Romero & Davide Scaramuzza
Robotics and Perception Group, University of Zurich, Switzerland

ABSTRACT

Model-based RL (MBRL) simultaneously learns a policy and a world model that
captures the environment’s dynamics and rewards. The world model can either
be used for planning, for data collection, or to provide first-order policy gradients
for training. Leveraging a world model significantly improves sample efficiency
compared to model-free RL. However, training a world model alongside the pol-
icy increases the computational complexity, leading to longer training times that
are often intractable for complex real-world scenarios. In this work, we propose
a new method for accelerating model-based RL using state-space world models.
Our approach leverages state-space models (SSMs) to parallelize the training of
the dynamics model, which is typically the main computational bottleneck. Ad-
ditionally, we propose an architecture that provides privileged information to the
world model during training, which is particularly relevant for partially observable
environments. We evaluate our method in several real-world agile quadrotor flight
tasks, involving complex dynamics, for both fully and partially observable envi-
ronments. We demonstrate a significant speedup, reducing the world model train-
ing time by up to 10 times, and the overall MBRL training time by up to 4 times.
This benefit comes without compromising performance, as our method achieves
similar sample efficiency and task rewards to state-of-the-art MBRL methods.

1 INTRODUCTION

h hh h1
1 2 L-1

L2 3
a a a

Sequential World Model Training

Recurrent State-Space Model

Parallelized World Model Training

State-Space World Model (Ours)

z z z z1

1 1 2 3 L

1:L

2 3 L

2 3 L

A

C

D

B

State-Space Model

o o o o o

s

o o o

1:L 1:L

1:L 1:L1:L

o z

u yx
1:La

Encoder Decoder

Figure 1: Most model-based RL
methods employ recurrent state-
space models (RSSMs) as the
world model backbone, which are
slow in training due to the sequen-
tial nature of RNNs. We leverage
state-space models (SSMs) to par-
allelize the sequence dimension of
the world model.

Robot learning has proven to be a very successful paradigm
for acquiring complex robotic skills. Recent work has demon-
strated the applicability of reinforcement learning (RL) ap-
proaches to manipulation Andrychowicz et al. (2020); Handa
et al. (2023); Aljalbout et al. (2024a); O’Neill et al. (2024), lo-
comotion Tan et al. (2018); Hwangbo et al. (2019), and aerial
robotics Kaufmann et al. (2023); Song et al. (2023). For such
methods to succeed, they either require encoding the task into
a reward function or access to a dataset of expert demonstra-
tions. Learning control policies reduces the barrier to skill ac-
quisition in robotics, requiring less human interventions and
efforts to equip a robot with a new skill. In addition, RL meth-
ods impose minimal constraints in the design of reward func-
tions. As a result, they allow for greater flexibility in the design
of robotic systems, which can lead to outperforming classical
control approaches Song et al. (2023); Lee et al. (2020a). De-
spite their success, one major challenge in robot learning is
the need for large amounts of physical interaction data, which
can be very expensive and challenging to obtain. In addi-
tion, RL suffers from high-variance gradients, often leading
to unstable training and raising the need for even more data
samples. This problem is further exacerbated when learning
vision-based control policies due to the high-dimensionality

∗Equal Contribution.

1

Published as a workshop paper at ICLR 2025

of image-based observations. To alleviate this problem, multiple solutions have been proposed to
leverage prior knowledge in RL. These solutions range from pretraining the policy or parts of it
using either imitation learning Xing et al. (2024) or self-supervised learning objectives Yarats et al.
(2021); Aljalbout et al. (2021); Lee et al. (2020b), to embedding inductive biases into RL policy
architectures and training pipelines to reduce the policy complexity Lutter et al. (2021); Funk et al.
(2022). Model-based RL has emerged as a promising alternative to improve sample efficiency in
comparison to model-free RL Deisenroth et al. (2011); Heess et al. (2015); Hafner et al. (2020);
Aljalbout et al. (2024b).

However, model-based RL methods are typically slower in training than their model-free counter-
parts because they additionally train the world model (WM), which can be slow due to the sequential
nature of the dynamics. This aspect limits the applicability of MBRL, particularly for cases where
fast training is desirable.

In this work, we propose a method for accelerating model-based reinforcement learning (MBRL).
We leverage state-space models (SSMs) to parallelize the sequence dimension of the world model,
thereby reducing the computational complexity of MBRL. We build on the family of Dreamer-based
MBRL methods Hafner et al. (2020; 2023). In our approach, we replace the recurrent state-space
model (RSSM) with a modern parallelizable SSM as the dynamics model.

To evaluate our approach, we perform experiments in a drone racing environment, involving com-
plex dynamics, for both fully and partially observable environments. We then compare our method
to state-of-the-art model-free and model-based RL methods. Our method achieves a significant
speedup, reducing the overall training time by up to 4 times. This benefit comes without compromis-
ing performance, as our method attains similar sample efficiency and task rewards as state-of-the-art
methods.

2 RELATED WORK

While model-free RL methods, such as proximal policy optimization (PPO), have been prevalent in
robot learning Hwangbo et al. (2019); Andrychowicz et al. (2020); Alles & Aljalbout (2022); Song
et al. (2023); Handa et al. (2023); Aljalbout et al. (2024a), model-based RL is gaining popularity
due to its sample efficiency. The main difference between the two paradigms is that MBRL learns a
model of the environment’s dynamics, in addition to the policy Sutton & Barto (2018). This model,
known as world model, can either be used for i) planning and control Nagabandi et al. (2018);
Hansen et al. (2022), ii) sampling environment interactions for policy training Janner et al. (2019);
Yu et al. (2020); Kidambi et al. (2020), or iii) obtaining first-order policy gradients through imagi-
nation Heess et al. (2015); Hafner et al. (2020; 2023). World models play a crucial role in MBRL,
with recurrent neural networks (RNNs) being the most widely adopted architecture. One popular
RNN-based world model architecture is the Recurrent State-Space Model (RSSM), introduced in
the Dreamer framework Hafner et al. (2019). However, RSSMs struggle to scale efficiently to long
sequences, as their computational complexity increases significantly with the sequence length.

Recent works have explored alternative architectures, such as Transformers and SSMs. Transform-
ers, in particular, have been widely adopted as world model backbones in MBRL, showing advan-
tages both for sample efficiency and computational complexity Robine et al. (2023); Zhang et al.
(2023); Micheli et al. (2023); Chen et al. (2022). Similarly, in Deng et al. (2024) an S4-based world
model is introduced. However, this work does not explore the usage of such world models for MBRL
and focuses on mastering predictions in long-range memory tasks.

One of the earliest applications of MBRL to robotics was shown on a low-cost manipulator and
using a Gaussian process-driven policy representation Deisenroth et al. (2011). Later work adopted a
combination of deep dynamics models with model predictive control to scale this concept to vision-
based robotics tasks Wahlström et al. (2015). Nagabandi et al. (2018) proposed using MBRL to
gather expert data for training an initial policy using model-free methods. By doing so, they managed
to alleviate the inferior task performance of MBRL methods. Chua et al. (2018) proposed using
ensembles of dynamics model to enable uncertainty propagation during trajectory sampling. These
approaches have also been extended to jointly learn a value function together with the dynamics
sequence model Hansen et al. (2022; 2024). Most of these methods perform receding horizon control
with a sampling scheme.

2

Published as a workshop paper at ICLR 2025

Another line of work leverages first-order policy gradients that are backpropagated through a learned
latent dynamics model Heess et al. (2015); Hafner et al. (2020; 2023), which has been successfully
applied to multiple robotic tasks in manipulation, locomotion, and drone flight Wu et al. (2023);
Becker-Ehmck et al. (2020); Brunnbauer et al. (2022); Richard et al. (2022); Aljalbout et al. (2024b);
Bi & D’Andrea (2024); Yamada et al. (2024).

3 PRELIMINARIES

State space models (SSMs) provide an efficient framework for sequence modeling tasks and have
shown great success in capturing long-term temporal and spatial dependencies Gu et al. (2022);
Smith et al. (2023); Patro & Agneeswaran (2024). At time t, a first-order linear system maps the
input u(t) ∈ RH to the output y(t) ∈ RP via the following system dynamics,

dx(t)

dt
= Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t),
(1)

where A,B,C,D are learnable parameters which capture the specific dependencies in the data, and
x(t) is the hidden state. To model sequences with a fixed time step ∆, the system is discretized as
follows,

xt = Āxt−1 + B̄ut

yt = C̄xt + D̄ut,
(2)

where Ā, B̄, C̄, D̄ are the discretized matrices, computed as functions of the continuous-time matri-
ces A,B,C,D.

Given a sequence of inputs e1:L, the parallel scan operation efficiently applies an associative binary
operator, •, to its inputs. Specifically, for a sequence of length L, the parallel scan computes:

[e1, e1 • e2, e1 • e2 • e3, . . . , e1 • e2 • · · · • eL]. (3)

Equation 3 can be computed in O(log(L)) using L parallel processors. S5 Smith et al. (2023) is an
SSM that leverages the parallel scan to compute the sequence of hidden states x1:L. In the context
of S5, the binary operator is defined as

ai • aj = (aj,a ⊙ ai,a, aj,a ⊗ ai,b + aj,b), (4)

where ⊙ represents matrix-matrix multiplication and ⊗ represents matrix-vector multiplication. The
operator is applied to the initial elements ek, which are given by the pairs of matrices

ek = (ek,a, ek,b) := (Ā, B̄uk). (5)

Using this definition, the sequence of hidden states x1:L is computed iteratively as

e1 = (Ā, B̄u1) = (Ā, x1)

e1 • e2 = (Ā2, Āx1 + B̄u2) = (Ā2, x2)

e1 • e2 • e3 = (Ā3, Āx2 + B̄u3) = (Ā3, x3).

(6)

In general, matrix-matrix multiplications with a matrix Ā would incur a time complexity of O(P 3).
However, by diagonalizing the system’s matrices, the complexity is reduced to O(PL), where P is
the size of the matrix and L is the length of the sequence. As a result, the parallel scan operation is
computed in O(log(PL)), making it scalable to long sequences.

4 METHODOLOGY

In this work, we propose a model-based RL approach that leverages state-space world models. At
each training step, we sample data from the replay buffer to train the world model as explained in
section 4.1 and the actor-critic as explained in section 4.2.

3

Published as a workshop paper at ICLR 2025

4.1 STATE-SPACE WORLD MODEL

The proposed world model is based on DreamerV3 Hafner et al. (2023). However, we replace the
recurrent state-space model (RSSM) Hafner et al. (2019) with an SSM as the sequence model ap-
proximating the transition dynamics. Our model includes an encoder for latent variable inference,
which maps the observations ot, to posterior stochastic representations zt. For a prediction horizon
H , the sequence model predicts the deterministic representations yt+1 : t+H given the corresponding
actions at : t+H−1, and previous posterior zt : t+H−1. We then infer the prior stochastic representa-
tion ẑt from yt. In addition, the model includes reward and episode continuation predictors as well
as an observation decoder,

Encoder: zt ∼ qϕ (· | ot)
Sequence model: xt, yt = SSM(zt−1, at−1, ct−1, xt−1)

Dynamics: ẑt ∼ pϕ (· | yt)
Decoder: ôt ∼ pϕ (· | yt, zt)
Reward prediction: r̂t ∼ pϕ (· | yt, zt)
Continue prediction: ĉt ∼ pϕ (· | yt, zt) .

(7)

We fuse zt and at using a multi-layer perceptron (MLP) which outputs a single vector ut. We then
feed ut as input to the SSM Block (see Appendix F).

Unlike RSSMs, which process the sequence one step at a time, SSMs parallelize over the sequence
dimension, making them particularly efficient for training on long sequences. Among the different
SSM architectures, we specifically choose S5 Smith et al. (2023), which employs the parallel scan
operation. One key advantage of S5 is its ability to reset the hidden state, which is not possible
in other SSMs, such as S4 Gu et al. (2022). This is crucial for preventing the model from carrying
over irrelevant information from previous episodes, which is particularly relevant in scenarios where
sequence boundaries or discontinuities must be handled. We leverage the associative operator intro-
duced in Lu et al. (2024), which enables efficient resetting of the hidden state. We extend the initial
elements ek from equation 5 to include the continuity predictions ck ∈ {0, 1},

ek = (ek,a, ek,b, ek,c) := (Ā, B̄uk, 1− ck), (8)
where ek,c represents whether the episode is done. We then adapt the binary operator from 4 to
incorporate the continuity predictors,

ai • aj =
{
(aj,a ⊙ ai,a, aj,a ⊗ ai,b + aj,b, ai,c) if aj,c = 0,

(aj,a, aj,b, aj,c) if aj,c = 1.
(9)

Using these definitions, we compute the sequence of hidden states x1:L as in equation 6. Since our
world model uses an S5 backbone for sequence modeling, we refer to our method as S5WM.

For optimizing the world model, we use the same loss function as in Hafner et al. (2023), which is
derived based on the evidence lower bound of the marginal data likelihood. The loss combines a
prediction loss Lpred, a dynamic loss Ldyn, and a representation loss Lrep,

L(ϕ) .
= Eqϕ

[T∑
t=1

βpredLpred(ϕ) + βdynLdyn(ϕ) + βrepLrep(ϕ)

]
, (10)

where βpred, βdyn, and βrep are hyperparameters that modulate the effects of the different loss
components,

Lpred(ϕ)
.
= − ln pϕ (ot | yt, zt)− ln pϕ (rt | yt, zt)

− ln pϕ (ct | yt, zt)
Ldyn(ϕ)

.
= max

(
1, DKL [sg(qϕ (zt | ot)) ∥ pϕ (zt |xt)]

)
Lrep(ϕ)

.
= max

(
1, DKL [qϕ (zt | ot)) ∥ sg(pϕ (zt |xt))]

)
,

(11)

where DKL refers to the Kullback-Leibler divergence, and sg to the stop gradient operation.

Each component of L(ϕ) contributes to training a different component of the state-space world
model. The representation loss ensures that the encoder learns an informative posterior stochastic
latent qϕ (zt | ot). The dynamic loss helps the world model learn the transition dynamics by encour-
aging the prior stochastic latent pϕ (zt |xt), to align with the posterior. The prediction loss trains
the decoder, as well as the reward and continue prediction heads, guiding the model to accurately
predict next states.

4

Published as a workshop paper at ICLR 2025

y

r r r rv v v v

yy y
1

1 2 3 L1 2 3 L1 2 3 L-1

L2 3

a a a a

z z z z1

1

2 3 L

o
Figure 2: To train the actor and critic, we leverage imaginations in the latent state and using our state-
space world model. We obtain these imaginations by encoding the initial observation and rolling out
the sequence model in the latent space. Despite the possibility of training the world model in a
parallel fashion, the imagination step (needed to train the actor-critic) cannot be parallelized due to
the dependence on the policy to generate actions needed for rolling out the trajectories.

4.2 ACTOR-CRITIC TRAINING

In practice, the world model serves as an approximate differentiable simulator providing first-order
gradients for policy updates Xu et al. (2022). This helps reduce variance estimation, especially for
systems with smooth dynamics Suh et al. (2022). Unlike model-free RL methods, which rely solely
on actual environment interactions, in model-based RL, the actor-critic is trained using imagined
trajectories generated by the world model. For a given horizon length H , we generate imagined
trajectories by stepping through the world model, starting from the initial states {ẑ0, x0}. For t ∈
{1, H},

xt, yt = SSM(ẑt−1, at−1, ĉt−1, xt−1)

ẑt ∼ pϕ (· | yt)
r̂t ∼ pϕ (· | yt, ẑt)
ĉt ∼ pϕ (· | yt, ẑt)
at ∼ πθ (· | yt, ẑt) .

(12)

Unlike during world model training (see equation (7)), where we have access to the posterior
stochastic latent zt, during imagination, we rely solely on the prior stochastic latent ẑt. We sample
the initial states {ẑ0, x0}, from the data used during world model training while ensuring sufficient
context to generate meaningful predictions, and enough diversity among the initial states to learn a
robust value function.

The actor πθ is conditioned on both the deterministic representations yt, and the prior stochastic
latent ẑt, as shown in equation (12). The policy follows a Gaussian distribution, with actions sampled
as at ∼ πθ (· | yt, ẑt). In practice, the policy is represented with an MLP outputting the mean and
variance of a Gaussian distribution of actions.

The critic, similarly conditioned on yt and ẑt, as well as r̂t and ĉt, is trained to predict the boot-
strapped λ-returns Sutton & Barto (2018), as proposed in Hafner et al. (2020). The critic’s loss
function is given by

L(ψ) .= −
∑T
t=1 ln pψ

(
V λt

∣∣xt)
V λt

.
= r̂t + γĉt

(
(1− λ)vt + λV λt+1

)
,

(13)

where γ is the discount factor, vt
.
= E[vψ (. | yt, ẑt)] is the predicted value from the critic, and

V λT
.
= vT .

The actor is trained to maximize the expected returns, which are estimated using a combination of
short-horizon imagined trajectories and the value function for long-term value prediction (see Fig. 2).

5

Published as a workshop paper at ICLR 2025

0.0 0.5 1.0
Env Steps 1e7

0

50

100

150

Ta
sk

 R
ew

ar
d

State-Based Split-S

S5WM
DreamerV3
PPO

0.5 1.0
Env Steps 1e7

0

40

80

120

Ta
sk

 R
ew

ar
d

Vision-Based Figure-8

S5WM
S5WM-P
DreamerV3
DreamerV3-P
PPO

Figure 3: Task reward over the number of en-
vironment interactions for S5WM, DreamerV3,
and PPO.

Total WM AC0

250

500

750

T
im

e
[m

s]

7 0 1

State-Based Split-S

S5WM
DreamerV3
PPO

Total WM AC0

400

800

1200

T
im

e
[m

s]

0

Vision-Based Figure-8

S5WM
S5WM-P
DreamerV3
DreamerV3-P
PPO

Figure 4: Each training step is divided into: i)
training the world model (WM), ii) optimizing
the policy (AC), and iii) collecting new data. We
show the times for each stage, as well as the over-
all duration per step, averaged over 5×105 steps.

To encourage exploration, an entropy regularization term −ηH[at|ẑt] is introduced in the actor’s
loss function to penalize deterministic policies and to promote more diverse actions for improved
exploration,

L(θ) .= Epϕ,pθ
[∑H−1

t=1

(
− V λt − ηH[at|ẑt]

)]
, (14)

Unlike DreamerV3 Hafner et al. (2023), we use the first-order gradients backpropagated through the
dynamics model.

4.3 PRIVILEGED WORLD MODELS

In environments with high-dimensional and partially observable inputs, such as the ones encountered
in vision-based RL, learning informative latent representations is challenging. Additional supervi-
sion signals are typically required to help the model learn meaningful representations, which are
essential for efficient policy optimization Lillicrap (2015); Kalashnikov et al. (2018).

When training policies in simulation, it is possible to take advantage of additional observations
that are rarely available during real-world deployments, such information is typically referred to
as privileged information and can be used in various ways to boost the training performance in
simulation Pinto et al. (2018); Chen et al. (2020); Yamada et al. (2024). We explore the use of
privileged information for training the world model. In this setup, the world model has access to
privileged information during training, which is not available during real-world deployment.

In this work, we specifically explore the use of privileged state observations in a vision-based setting.
During training, the image observation, ot, is encoded into a posterior stochastic state, zt, to be
processed by the sequence model (see section 4.1). We then replace the decoder from equation (7)
with a privileged decoder that reconstructs the privileged state observation, st, rather than the image
observation,

Privileged decoder: ŝt ∼ p(·|yt, zt), (15)
Reconstructing the state involves predicting s ∈ R24, which is computationally more tractable than
inferring a high dimensional image using an expensive convolutional neural network (CNN) decoder.
Furthermore, learning to reconstruct state observations, rather than images, provides a stronger sig-
nal for training the encoder. This encourages the latent representation to capture information that is
more relevant for policy optimization, rather than optimizing for accurate image reconstruction.

5 EXPERIMENTS

5.1 SETUP

Our setup is consistent across all experiments and utilizes the same quadrotor configuration. We
first perform training in a simulation environment. We then validate our approach in the real

6

Published as a workshop paper at ICLR 2025

Table 1: Lap Time (LT) [s] and Success Rate (SR) [%] for S5WM (Ours), DreamerV3 Hafner
et al. (2023) and PPO Schulman et al. (2017) in both simulation, as well as for the real-world
experiments. For PPO, the state-based Split-S was not available for real-world deployment, while
for vision-based Figure-8, the asymmetric PPO crashes after the first lap and does not learn to
consistently fly through the full track.

Task Env S5WM DreamerV3 PPO
LT SR LT SR LT SR

State-based Split-S Sim 4.82 100 4.79 100 4.76 100
Real 4.87 100 4.92 100 - -

Vision-based Figure-8 Sim 3.77 100 3.87 100 4.62 44
Real 3.81 100 3.74 100 - -

world. For the environment setup, we use a combination of the Flightmare Song et al. (2020)
and Agilicious Foehn et al. (2022) software stacks. All experiments were conducted on the same
hardware under uniform conditions.

5.1.1 TASKS

We investigate two tasks, both involving a quadrotor flying in a drone racing environment.

For the first task, termed state-based Split-S, the quadrotor flies through the Split-S track and has
access to the full-state observations. This task presents highly complex dynamics, requiring the
policy to push the drone’s agility to the physical limits of the platform. Due to the complexity of the
track, the task demands both long-term memory and high precision, as the drone must plan ahead to
navigate the complex maneuvers at high speeds.

The second task, termed vision-based Figure-8, involves flying through the Figure-8 track and
involves simpler dynamics, with the drone flying at a slower pace. However, the challenge in this
task lies in learning the dynamics model from high-dimensional image observations, which can be
challenging due to the partial observability of the resulting environment.

5.2 BASELINES

We compare our approach against both model-based and model-free baselines. For the model-
based baseline, we use DreamerV3 Hafner et al. (2023); Romero et al. (2025), while for the model-
free baseline, we choose PPO Schulman et al. (2017). For the vision-based task, we introduce
an additional baseline that modifies DreamerV3 to decode privileged state information instead of
observation decoding. We refer to this baseline as ”DreamerV3-P”. We also compare against a
variant of our method which omits decoding the privileged information and instead decodes raw
observations. Our approach uses the same model architecture and hyperparameters as DreamerV3,
with the exception of the world model configuration, where we replace the RSSM with S5WM, as
introduced in section 4. We design S5WM to have a comparable number of parameters to RSSM.
We tune the hyperparameters of the baselines to ensure a fair comparison. For the state-based Split-S
task, we use standard PPO, and for the vision-based Figure-8 task, we use PPO with the asymmetric
actor-critic architecture Pinto et al. (2018), which provides privileged information to the critic, and
employs the same CNN encoder architecture as used in our method and DreamerV3. We train the
CNN encoder jointly with the policy. For each task, all models share the same observation, action,
and reward configurations, as described in Section 5.1.

5.3 SIMULATION RESULTS

We train the policies in a high-fidelity simulator on an A100 GPU. For all experiments, we simulate
50 environments in parallel and limit the number of interactions with the environment to 107. We
use a fixed-size replay buffer containing 106 samples, from which we uniformly sample at each

7

Published as a workshop paper at ICLR 2025

Figure 5: TODO: quality is really bad

Figure 6: Imagined trajectories for S5WM on the state-based Split-S (top) and vision-based Figure-
8 (bottom) tasks over H = 50 imagination steps, initialized with a context length C = 16.

training step. During evaluation, we rollout the policy over 1000 steps, which corresponds to 20s
of flight given a 50Hz control rate. We report the average task reward obtained per episode. We
evaluate our approach based on performance, accuracy and training efficiency.

5.3.1 PERFORMANCE

In Fig. 3, we evaluate the average task reward over the number of environment interactions for each
task. Overall, we observe a clear advantage of MBRL approaches in terms of sample efficiency. This
result corroborates previous findings from the MBRL literature Hafner et al. (2020); Janner et al.
(2019); Yu et al. (2020). For the state-based Split-S task, we find that both S5WM and DreamerV3
achieve similar sample efficiency and converge to the maximum reward, while PPO struggles to
yield competitive policies within the limited data budget.

For the vision-based Figure-8 task, we compare both S5WM and DreamerV3 with and without
the privileged world model, as well as the asymmetric PPO. We find that leveraging privileged
information results in higher sample efficiency for both S5WM and DreamerV3. These benefits are
more pronounced for S5WM, where the posterior stochastic latent zt is inferred directly from the
observation. In contrast, RSSMs also leverage the deterministic state yt to infer the posterior zt.
Overall, our method performs on par with the DreamerV3 variants while being substantially faster
to train as we discuss in the next section. This is evident from the final lap time and success rate
achieved by our method compared to the baselines, as shown in Table 1.

For both tasks, we find that the most difficult part is completing the track after learning how to fly
through the gates. Additionally, for the vision-based Figure-8 task, the drone struggles to transition
from Gate 3 to Gate 4, as it tends to overshoot and is unable to see the next gate.

5.3.2 TRAINING EFFICIENCY

We profile S5WM, along with the baselines, to assess the differences in training times. Each training
step is divided into three stages: i) training the world model (observation), ii) optimizing the policy
(imagination), and iii) collecting new data by interacting with the environment. Fig. 4 shows the
average times for each stage, as well as the overall duration per step. We find that S5WM outper-
forms DreamerV3 in terms of overall training speed in both tasks, as the observations in S5WM are
parallelized over the sequence length. In the state-based Split-S task, the observation step is up to
10 times faster, leading to an overall speedup of up to 4 times. In the vision-based Figure-8 task, the
observation step is up to 4 times faster, leading to an overall speedup of up to 2 times. These benefits
are most pronounced when the main computational bottleneck lies in modeling the dynamics, such
as in the state-based Split-S task. In tasks that require learning a latent representation from complex
visual inputs, such as the vision-based Figure-8 task, parallelizing the sequence model contributes
less to the overall speedup.

8

Published as a workshop paper at ICLR 2025

5.3.3 PREDICTION ACCURACY

We further evaluate the prediction accuracy of the world model. We provide an initial context
length C = 16 to build a history of hidden states x1:C , followed by imagination over the horizon H .
During the context period, the world model has access to the true observations from the environment,
while during the imagination period, the world model predicts the trajectory without access to the
observations. Fig. 10 shows the trajectories imagined by S5WM for H = 50 for different parts of
the track, along with the ground truth, which is obtained by interacting with the environment.

5.4 REAL WORLD DEPLOYMENT

We test our approach in the real world using a high-performance racing drone Foehn et al. (2022).
We select the best policy obtained during training and deploy it in the real world. A video of
the real-world deployment of both tasks can be found in the supplementary material. In addition,
Fig. 8 shows the trajectories from the real-world experiments. For the state-based Split-S task, the
Split-S maneuver at x = −4.3m and y = −5.1m, stands out as a critical test of each approach’s
characteristics. This complex maneuver requires the drone to fly through a higher gate and then
immediately descend through a second gate located directly below the first one, with both gates
sharing the same x, y coordinates. This is the most challenging maneuver of the Split-S track,
significantly influencing the overall lap time.

For the vision-based Figure-8 task, we use a hardware-in-the-loop (HIL) setup, where images are
rendered in real-time from the simulator based on state estimation from a motion-caption system
estimating the position of the real robot. For both tasks, our method enables high-speed flight on
very smooth trajectories.

6 CONCLUSION

Despite their notable sample efficiency, model-based reinforcement learning methods can be ex-
tremely slow to train, which limits their usability in robotic systems. This paper introduces S5WM,
a state-space world model designed to accelerate training in model-based reinforcement learning.
We adapt the S5 SSM architecture to handle resetability at the episode boundaries, and use it as a
sequence model of the dynamics in our world model. Additionally, we introduce asymmetry in the
world model by providing privileged state information during training in simulation.

We compare our approach against model-based and model-free baselines, focusing on training time,
performance, and sample efficiency. Our method achieves faster training times without compro-
mising performance and sample efficiency. Additionally, we test our approach on a drone racing
environment and conduct real-world experiments for two distinct tasks involving both state and
image observations. Our results demonstrate that S5WM performs well in challenging real-world
scenarios. Furthermore, we conduct a series of ablations to highlight the key components of our
approach.

While the presented approach shows promising results, we identify several directions for future
work. For instance, one valuable area of research would be to speed up the actor-critic training
in MBRL. Additionally, our proposed approach is not as robust to hyperparameter changes as more
mature MBRL methods such as Dreamer. Future work could investigate modifications to our method
to improve its robustness to hyperparameter choice. Furthermore, it would be interesting to apply
and evaluate our method on different robotic domains such as locomotion and manipulation.

In summary, our method offers a promising framework for accelerating model-based reinforcement
learning, combining high sample efficiency with faster training times, making it more feasible for
real-world robotic deployment.

9

Published as a workshop paper at ICLR 2025

REFERENCES

Elie Aljalbout, Ji Chen, Konstantin Ritt, Maximilian Ulmer, and Sami Haddadin. Learning vision-
based reactive policies for obstacle avoidance. In Conference on Robot Learning, pp. 2040–2054.
PMLR, 2021.

Elie Aljalbout, Felix Frank, Maximilian Karl, and Patrick van der Smagt. On the role of the action
space in robot manipulation learning and sim-to-real transfer. IEEE Robotics and Automation
Letters, 2024a.

Elie Aljalbout, Nikolaos Sotirakis, Patrick van der Smagt, Maximilian Karl, and Nutan Chen. Limt:
Language-informed multi-task visual world models. arXiv preprint arXiv:2407.13466, 2024b.

Marvin Alles and Elie Aljalbout. Learning to centralize dual-arm assembly. Frontiers in Robotics
and AI, 9:830007, 2022.

OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning
dexterous in-hand manipulation. The International Journal of Robotics Research, 39(1):3–20,
2020.

Philip Becker-Ehmck, Maximilian Karl, Jan Peters, and Patrick van der Smagt. Learning to fly via
deep model-based reinforcement learning. arXiv preprint arXiv:2003.08876, 2020.

Thomas Bi and Raffaello D’Andrea. Sample-efficient learning to solve a real-world labyrinth game
using data-augmented model-based reinforcement learning. In 2024 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 7455–7460. IEEE, 2024.

Axel Brunnbauer, Luigi Berducci, Andreas Brandstátter, Mathias Lechner, Ramin Hasani, Daniela
Rus, and Radu Grosu. Latent imagination facilitates zero-shot transfer in autonomous racing. In
2022 international conference on robotics and automation (ICRA), pp. 7513–7520. IEEE, 2022.

Chang Chen, Yi-Fu Wu, Jaesik Yoon, and Sungjin Ahn. Transdreamer: Reinforcement learning
with transformer world models. arXiv preprint arXiv:2202.09481, 2022.

Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp Krähenbühl. Learning by cheating. In Con-
ference on Robot Learning, pp. 66–75. PMLR, 2020.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. Advances in neural information
processing systems, 31, 2018.

Marc Deisenroth, Carl Rasmussen, and Dieter Fox. Learning to control a low-cost manipulator using
data-efficient reinforcement learning. Robotics: Science and Systems VII, 2011.

Fei Deng, Junyeong Park, and Sungjin Ahn. Facing off world model backbones: Rnns, transformers,
and s4. Advances in Neural Information Processing Systems, 36, 2024.

Philipp Foehn, Elia Kaufmann, Angel Romero, Robert Penicka, Sihao Sun, Leonard Bauersfeld,
Thomas Laengle, Giovanni Cioffi, Yunlong Song, Antonio Loquercio, and Davide Scaramuzza.
Agilicious: Open-source and open-hardware agile quadrotor for vision-based flight. Science
Robotics, 7(67), 2022. doi: 10.1126/scirobotics.abl6259.

Niklas Funk, Georgia Chalvatzaki, Boris Belousov, and Jan Peters. Learn2assemble with struc-
tured representations and search for robotic architectural construction. In Conference on Robot
Learning, pp. 1401–1411. PMLR, 2022.

Ismail Geles, Leonard Bauersfeld, Angel Romero, Jiaxu Xing, and Davide Scaramuzza. Demon-
strating agile flight from pixels without state estimation. arXiv preprint arXiv:2406.12505, 2024.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=uYLFoz1vlAC.

10

https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC

Published as a workshop paper at ICLR 2025

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International conference on
machine learning, pp. 2555–2565. PMLR, 2019.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=S1lOTC4tDS.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Ankur Handa, Arthur Allshire, Viktor Makoviychuk, Aleksei Petrenko, Ritvik Singh, Jingzhou Liu,
Denys Makoviichuk, Karl Van Wyk, Alexander Zhurkevich, Balakumar Sundaralingam, et al.
Dextreme: Transfer of agile in-hand manipulation from simulation to reality. In 2023 IEEE
International Conference on Robotics and Automation, pp. 5977–5984. IEEE, 2023.

Nicklas Hansen, Hao Su, and Xiaolong Wang. TD-MPC2: Scalable, robust world models for contin-
uous control. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=Oxh5CstDJU.

Nicklas A Hansen, Hao Su, and Xiaolong Wang. Temporal difference learning for model predictive
control. In International Conference on Machine Learning, pp. 8387–8406. PMLR, 2022.

Nicolas Heess, Gregory Wayne, David Silver, Timothy Lillicrap, Tom Erez, and Yuval Tassa. Learn-
ing continuous control policies by stochastic value gradients. Advances in neural information
processing systems, 28, 2015.

Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis, Vladlen
Koltun, and Marco Hutter. Learning agile and dynamic motor skills for legged robots. Science
Robotics, 4(26):eaau5872, 2019.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. Advances in neural information processing systems, 32, 2019.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Scalable deep reinforce-
ment learning for vision-based robotic manipulation. In Conference on robot learning, pp. 651–
673. PMLR, 2018.

Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen Koltun, and
Davide Scaramuzza. Champion-level drone racing using deep reinforcement learning. Nature,
620(7976):982–987, Aug 2023. ISSN 1476-4687.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. Advances in neural information processing systems, 33:
21810–21823, 2020.

Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter. Learning
quadrupedal locomotion over challenging terrain. Science robotics, 5(47):eabc5986, 2020a.

Michelle A Lee, Yuke Zhu, Peter Zachares, Matthew Tan, Krishnan Srinivasan, Silvio Savarese,
Li Fei-Fei, Animesh Garg, and Jeannette Bohg. Making sense of vision and touch: Learning
multimodal representations for contact-rich tasks. IEEE Transactions on Robotics, 36(3):582–
596, 2020b.

TP Lillicrap. Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Chris Lu, Yannick Schroecker, Albert Gu, Emilio Parisotto, Jakob Foerster, Satinder Singh, and
Feryal Behbahani. Structured state space models for in-context reinforcement learning. Advances
in Neural Information Processing Systems, 36, 2024.

11

https://openreview.net/forum?id=S1lOTC4tDS
https://openreview.net/forum?id=Oxh5CstDJU

Published as a workshop paper at ICLR 2025

Michael Lutter, Johannes Silberbauer, Joe Watson, and Jan Peters. Differentiable physics models for
real-world offline model-based reinforcement learning. In 2021 IEEE International Conference
on Robotics and Automation (ICRA), pp. 4163–4170. IEEE, 2021.

Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample-efficient world
models. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=vhFu1Acb0xb.

Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural network dynamics
for model-based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE interna-
tional conference on robotics and automation (ICRA), pp. 7559–7566. IEEE, 2018.

Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham
Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-embodiment:
Robotic learning datasets and rt-x models: Open x-embodiment collaboration 0. In 2024 IEEE
International Conference on Robotics and Automation (ICRA), pp. 6892–6903. IEEE, 2024.

Badri Narayana Patro and Vijay Srinivas Agneeswaran. Mamba-360: Survey of state space models
as transformer alternative for long sequence modelling: Methods, applications, and challenges.
arXiv preprint arXiv:2404.16112, 2024.

Lerrel Pinto, Marcin Andrychowicz, Peter Welinder, Wojciech Zaremba, and Pieter Abbeel. Asym-
metric actor critic for image-based robot learning. Robotics: Science and Systems XIV, 2018.

Antoine Richard, Stéphanie Aravecchia, Matthieu Geist, and Cédric Pradalier. Learning behaviors
through physics-driven latent imagination. In Conference on Robot Learning, pp. 1190–1199.
PMLR, 2022.

Jan Robine, Marc Höftmann, Tobias Uelwer, and Stefan Harmeling. Transformer-based world mod-
els are happy with 100k interactions. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=TdBaDGCpjly.

Angel Romero, Ashwin Shenai, Ismail Geles, Elie Aljalbout, and Davide Scaramuzza. Dream
to fly: Model-based reinforcement learning for vision-based drone flight. arXiv preprint
arXiv:2501.14377, 2025. URL https://arxiv.org/abs/2501.14377.

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain,
Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv Batra. Habitat: A
platform for embodied ai research. 2019. URL https://arxiv.org/abs/1904.01201.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. 2017. URL https://arxiv.org/abs/1707.06347.

Jimmy T.H. Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for se-
quence modeling. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=Ai8Hw3AXqks.

Yunlong Song, Selim Naji, Elia Kaufmann, Antonio Loquercio, and Davide Scaramuzza. Flight-
mare: A flexible quadrotor simulator. In Conference on Robot Learning, 2020.

Yunlong Song, Angel Romero, Matthias Müller, Vladlen Koltun, and Davide Scaramuzza. Reaching
the limit in autonomous racing: Optimal control versus reinforcement learning. Science Robotics,
8(82):eadg1462, 2023.

Hyung Ju Suh, Max Simchowitz, Kaiqing Zhang, and Russ Tedrake. Do differentiable simulators
give better policy gradients? In International Conference on Machine Learning, pp. 20668–
20696. PMLR, 2022.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, Steven Bohez,
and Vincent Vanhoucke. Sim-to-real: Learning agile locomotion for quadruped robots. Robotics:
Science and Systems XIV, 2018.

12

https://openreview.net/forum?id=vhFu1Acb0xb
https://openreview.net/forum?id=TdBaDGCpjly
https://arxiv.org/abs/2501.14377
https://arxiv.org/abs/1904.01201
https://arxiv.org/abs/1707.06347
https://openreview.net/forum?id=Ai8Hw3AXqks

Published as a workshop paper at ICLR 2025

Niklas Wahlström, Thomas B. Schön, and Marc P. Deisenroth. From pixels to torques: Policy
learning with deep dynamical models. In Deep Learning Workshop at ICML 2015, 2015. URL
https://arxiv.org/abs/1502.02251.

Philipp Wu, Alejandro Escontrela, Danijar Hafner, Pieter Abbeel, and Ken Goldberg. Daydreamer:
World models for physical robot learning. In Conference on robot learning, pp. 2226–2240.
PMLR, 2023.

Jiaxu Xing, Angel Romero, Leonard Bauersfeld, and Davide Scaramuzza. Bootstrapping reinforce-
ment learning with imitation for vision-based agile flight. In 8th Annual Conference on Robot
Learning, 2024. URL https://openreview.net/forum?id=bt0PX0e4rE.

Jie Xu, Miles Macklin, Viktor Makoviychuk, Yashraj Narang, Animesh Garg, Fabio Ramos, and
Wojciech Matusik. Accelerated policy learning with parallel differentiable simulation. In In-
ternational Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=ZSKRQMvttc.

Jun Yamada, Marc Rigter, Jack Collins, and Ingmar Posner. Twist: Teacher-student world model
distillation for efficient sim-to-real transfer. In 2024 IEEE International Conference on Robotics
and Automation (ICRA), pp. 9190–9196. IEEE, 2024.

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Improv-
ing sample efficiency in model-free reinforcement learning from images. In Proceedings of the
aaai conference on artificial intelligence, volume 35, pp. 10674–10681, 2021.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129–14142, 2020.

Weipu Zhang, Gang Wang, Jian Sun, Yetian Yuan, and Gao Huang. Storm: Efficient stochastic
transformer based world models for reinforcement learning. In 37th Conference on Neural Infor-
mation Processing Systems (NeurIPS 2023), 2023.

13

https://arxiv.org/abs/1502.02251
https://openreview.net/forum?id=bt0PX0e4rE
https://openreview.net/forum?id=ZSKRQMvttc
https://openreview.net/forum?id=ZSKRQMvttc

Published as a workshop paper at ICLR 2025

A HYPERPARAMETERS

The RSSM is configured as in DreamerV3 Hafner et al. (2023), whereas the parameters related to
the world model have been adjusted for the S5WM.

S5WM RSSM
General
Steps 107 107

Optimizer Adam Adam
Activation SiLU SiLU
MLP units 512 512
MLP layers 2 2
Batch Size 32 16
Batch Length 128 128
Dataset Size 106 106

Num. Environments 50 50
Discount Factor γ 0.997 0.997
Dynamic Factor βdyn 0.5 0.5
Representation Factor βrep 0.1 0.1

World Model
Learning Rate 5 x 10−4 1 x 10−4

Deterministic State y 512 512
Stochastic State z 32x32 32x32
Imagination Horizon H 10 10
Imagination Gradient Dynamics Dynamics
Context Length 32 32

State Space Model
Hidden State x 256 -
Activation Half GLU -
Num. Layers 1 -
Degree 1 -
Learning Rate 5 x 10−4 -

Actor
Activation Tanh Tanh
Distribution Gaussian Gaussian
Entropy Coefficient η 2 x 10−3 2 x 10−3

Learning Rate 3 x 10−5 3 x 10−5

Critic
Activation Tanh Tanh
Distribution symlog disc symlog disc
Learning Rate 3 x 10−5 3 x 10−5

Table 2: Hyperparameters for the state-based Split-S task.

14

Published as a workshop paper at ICLR 2025

S5WM (x106) RSSM (x106)

Encoder 0.28 0.28
Dynamics 3.55 3.94
Reward 1.44 1.44
Continuity 1.05 1.05
Decoder 1.06 1.06
Actor 1.05 1.05
Critic 1.18 1.18

Total 8.62 8.94

Table 3: Number of parameters by network component for the state-based Split-S task.

B IMAGINATION PREDICTION

0 10 20 30 40
6

8

10

p x

0 10 20 30 40

0

10

v x

0 10 20 30 40

0

1

x

0 10 20 30 40
Imagination Steps

0

5

x

0 10 20 30 40
0.0

2.5

5.0

p y

0 10 20 30 40
20

0v y

0 10 20 30 40

1.0

0.5

y

0 10 20 30 40
Imagination Steps

2.5

0.0

y

0 10 20 30 40
1.5

2.0

p z

Ground Truth
Prediction

0 10 20 30 40

2

0

v z

0 10 20 30 40

0.25

0.50

0.75

z

0 10 20 30 40
Imagination Steps

2

0z

State-based

0 10 20 30 40

2.5

0.0

p x

0 10 20 30 40
0

5

v x

0 10 20 30 40

0.5

1.0x

0 10 20 30 40
Imagination Steps

4

2

0

x

0 10 20 30 40
0

1

2

p y

0 10 20 30 40

5

0

5

v y

0 10 20 30 40

0.2

0.0y

0 10 20 30 40
Imagination Steps

4

2

0

y

0 10 20 30 40
1.2

1.4

1.6

p z Ground Truth
Prediction

0 10 20 30 40
1.0

0.5

0.0

v z

0 10 20 30 40

0.5

1.0

1.5

z

0 10 20 30 40
Imagination Steps

0.75

0.50

z

Vision-based

Figure 7: Imagined state for S5WM on state-based Split-S and vision-based Figure-8 tasks over
H = 50 steps.

15

Published as a workshop paper at ICLR 2025

S5WM RSSM
General
Steps 107 107

Optimizer Adam Adam
Activation SiLU SiLU
MLP units 768 768
MLP layers 4 4
Batch Size 32 16
Batch Length 128 128
Dataset Size 106 106

Num. Environments 50 50
Discount Factor γ 0.997 0.997
Dynamic Factor βdyn 0.5 0.5
Representation Factor βrep 0.1 0.1

World Model
Learning Rate 10−3 10−4

Deterministic State y 1024 1024
Stochastic State z 32x32 32x32
Imagination Horizon H 10 10
Imagination Gradient Dynamics Dynamics
Context Length 32 32

State Space Model
Hidden State x 512 -
Activation Half GLU -
Num. Layers 2 -
Degree 1 -
Learning Rate 5 x 10−4 -

Actor
Activation Tanh Tanh
Distribution Gaussian Gaussian
Entropy Coefficient η 2 x 10−3 2 x 10−3

Learning Rate 3 x 10−5 3 x 10−5

Critic
Activation Tanh Tanh
Distribution symlog disc symlog disc
Learning Rate 3 x 10−5 3 x 10−5

Table 4: Hyperparameters for the vision-based Figure-8 task.

C OBSERVATION SPACE

For the state-based Split-S task, we define the observation s = [p, R̃, v, ω, i, d, aprev] ∈ R24, where
p ∈ R3 is the position of the drone, R̃ ∈ R6 contains the first two columns of the rotation matrix,
v ∈ R3 is the linear velocity, and ω ∈ R3 is the angular velocity. The vector i ∈ R2 encodes the
gate index using sine-cosine encoding to address the periodicity of the track. The continuous gate
index ic is defined as

ic = i+
2

1 + exp(k · d)
, (16)

where d ∈ R is the distance to the next gate, and aprev ∈ R4 represents the previous action.

For the vision-based Figure-8 task, the observation space is given by RGB images of size 64×64×3,
rendered from the simulator Savva et al. (2019). The raw pixel-level input is then processed through
a CNN encoder to extract relevant features. Similarly to Geles et al. (2024), we include the previous

16

Published as a workshop paper at ICLR 2025

S5WM (x106) RSSM (x106)

Encoder 0.69 0.69
Dynamics 13.05 12.60
Reward 3.94 3.94
Continuity 3.35 3.35
Decoder 3.37 3.37
Actor 3.35 3.35
Critic 3.54 3.54

Total 31.29 30.84

Table 5: Number of parameters by network component for the vision-based Figure-8 task.

6
3

0
3

6
9

12

x
6

3

0

3

6

y

2

4z

5

10

15

20

Sp
ee

d
[m

/s
]

3

0

3

6

9

x

3

0

3

y

2z

2

4

6

8

10

Sp
ee

d
[m

/s
]

Figure 8: Real world flight trajectories with S5WM: State-based Split-S task (left) and Vision-based
Figure-8 task (right).

3 actions in the observation to provide historical context.

D ACTION SPACE

For both tasks, we define a = [c, ωdes] ∈ R4, where c is the mass-normalized collective thrust and
ωdes ∈ R3 represents the desired body rates. These commands are then processed by a low-level
controller, which outputs the desired motor speeds.

Figure 9: TODO: quality is really bad

Figure 10: Imagined trajectories for S5WM on the state-based Split-S (top) and vision-based Figure-
8 (bottom) tasks over H = 50 imagination steps, initialized with a context length C = 16.

17

Published as a workshop paper at ICLR 2025

E REWARD

Similar to prior works on drone racing Kaufmann et al. (2023); Song et al. (2023), we encode the
task using a dense reward function rt,

rt =

rcrash crashed
rpass gate passed
rprog + romega + rcmd + r∆cmd otherwise.

(17)

where rcrash is a terminal penalty for collisions, rpass encourages passing a gate, rprog encourages
progress along the track, romega penalizes excessive body rates, rcmd penalizes aggressive actions,
and r∆cmd encourages smooth actions.

E.1 REWARD COMPONENTS

i. Progress Reward: Encourages the drone to progress along the track as fast as possible,

rprog = λ1(dt−1 − dt), (18)

where dt is the distance from the position at time t to the next gate, and λ1 = 1.
ii. Omega Penalty: Penalizes large angular velocities,

romega = λ2

(
∥ω∥

∥ωmax∥

)2

, (19)

where ω is the angular velocity, ωmax is the maximum angular velocity, and λ2 = −0.05.
iii. Command Omega Penalty: Penalizes large desired angular velocity values (actions),

rcmd = λ3

(
∥ωdes∥
∥ωmax∥

)2

, (20)

where ωdes is the desired angular velocity command, ωmax is the maximum angular veloc-
ity, and λ3 = −0.025.

iv. Command Difference Penalty: Penalizes abrupt changes between consecutive actions to
encourage smooth signals,

r∆cmd = λ4

(
∥∆at∥
∥amax∥

)2

, (21)

where ∆at = at − at−1, at ∈ R4 is the control action at time t, amax is the maximum
control action, and λ4 = −0.05.

v. Crash Penalty: Terminal reward that penalizes collisions with the gates,

rcrash = −4. (22)

vi. Passing Reward: Encourages the drone to pass through the gate successfully,

rpass = 10. (23)

F S5 SEQUENCE LAYER

For the Gated Linear Unit (GLU), we use a specific gating function, defined as half GLU, which
maps its input u to the output y as follows,

x1 = GELU(u) (24)

y = u · σ(WTx1) (25)

where W represents the weights of a linear layer, GELU is a standard Gaussian Error Linear Unit,
and σ is the sigmoid function.

18

Published as a workshop paper at ICLR 2025

GELU

Dropout

LayerNorm

S5

GLU

Linear

Dropout

Figure 11: Schematic representation of the S5 sequence layer, composed of the resettable S5 SSM
described in 4.1, nonlinearities, and gating operations.

G TRAJECTORIES

19

Published as a workshop paper at ICLR 2025

6 3 0 3 6 9 12

x

6

3

0

3

6

y

S5WM

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Sp
ee

d
[m

/s
]

6 3 0 3 6 9 12

x

6

3

0

3

6

y

DreamerV3

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Sp
ee

d
[m

/s
]

6 3 0 3 6 9

x

6

3

0

3

6

y

PPO

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Sp
ee

d
[m

/s
]

Figure 12: State-based Split-S task: Comparison for S5WM, with baselines: DreamerV3 and
PPO.

H ABLATIONS

We discuss several key components that we find to be essential to the success of our approach.

H.1 HORIZON LENGTH

In model-based RL, the actor-critic uses the world model to plan over a prediction horizon, which
can substantially improve sample efficiency compared to model-free RL. While a longer horizon
is typically preferred, prediction errors tend to compound over time and therefore limit the effec-
tiveness of imagination. Additionally, imagination steps are computationally expensive and cannot
be parallelized, making longer horizons computationally more expensive. To investigate the in-
fluence of the horizon length on our method, we train the state-based Split-S task using different
horizon lengths. Fig. 14 shows the task reward over the number of environment interactions for
H ∈ {5, 10, 15}, as well as the time it takes till convergence. We find that H = 10 offers a good
balance between sample efficiency and computational complexity, and we therefore use it for all of
our experiments.

H.2 REWARD SMOOTHING

Reward smoothing is essential for enhancing training. In model-free RL, it is common to adapt the
reward function during training to increase the task difficulty. While this helps the agent adapt to
progressively harder settings, we find that directly altering the reward function in a model-based RL
setting can be counterproductive, because the world model needs to unlearn the old reward signal
and relearn the new one.

To address this issue, we propose a smoothing strategy that decouples the total reward into two
complementary components,

r = rnom + raug, (26)
where rnom (the nominal reward) is active from the start of training, and raug (the smoothing reward)
is learned as well from the start but only applied once the agent becomes sufficiently proficient.
Initially, the value function only receives rnom, and later raug is also added. We use this strategy to
encourage smoother actions, which is particularly important for real-world deployment. We define

rnom = rprog + romega + rcmd

raug = r∆cmd,
(27)

where we follow the definitions from section E.1. We apply raug halfway through training, after
5 × 106 steps. If raug is instead applied from the beginning, the agent struggles to learn the task.
By delaying the smoothing reward, the agent first explores to discover a feasible solution, and later
refines it to produce smoother actions. Fig. 15 shows the actions learned with and without reward
smoothing. By introducing this smoothing curriculum, we significantly improve the smoothness of

20

Published as a workshop paper at ICLR 2025

3 0 3 6 9
x

3

0

3

y

S5WM

2

4

6

8

10

Sp
ee

d
[m

/s
]

3 0 3 6 9
x

3

0

3

y

DreamerV3

2

4

6

8

10

Sp
ee

d
[m

/s
]

3 0 3 6 9
x

3

0

3

y

PPO

0

2

4

6

8

10

Sp
ee

d
[m

/s
]

Figure 13: Vision-based Figure-8 task: Comparison for S5WM (privileged), with baselines:
DreamerV3 (privileged) and PPO (asymmetric). The asymmetric PPO crashes after the first
lap and does not learn to consistently fly through the track.

the control commands, preventing motor damage and reducing the sim-to-real gap by ensuring the
policy does not learn infeasible command sequences in simulation.

H.3 RECURRENT VS PARALLEL

One main difference between our S5WM architecture (see section 4.1) and RSSMs lies in how the
posterior stochastic latent zt is computed. In RSSMs, each step computes a prior ẑt ∼ pϕ (· | yt) and
a posterior zt ∼ qϕ (· | yt, ot)), both of which include the deterministic representation yt. Therefore,
the posterior receives the same information as the prior plus access to the latest observation ot. By
contrast, since S5WM processes the entire sequence in parallel, the posterior is determined only
from the observation, zt ∼ qϕ (· | ot), and does not have access to historical context encoded in yt.
To compensate for this, we append past actions to ot, as explained in section D, providing S5WM
with additional temporal context.

We investigate this difference by implementing a recurrent S5WM variant where the posterior also
depends on yt, i.e., zt ∼ qϕ (· | yt, ot). We compare the recurrent S5WM to the standard parallel
S5WM on the vision-based Figure-8 task. Note that the recurrent S5WM reintroduces the sequential
dependencies of RSSMs, and therefore offers no speed-up in training. This comparison is included
mainly to highlight the importance of historical context in partially observable environments.

21

Published as a workshop paper at ICLR 2025

Total WM AC0

60

120

180

Ti
m

e
[m

s]

State-Based Split-S

H=5
H=10
H=15

0.0 0.5 1.0
Env Steps 1e7

0

50

100

150

Ta
sk

 R
ew

ar
d

State-Based Split-S

H=5
H=10
H=15

Figure 14: Task reward over the number of environment interactions on S5WM for different imagi-
nation horizon lengths H ∈ {5, 10, 15}.

0 5 10 15

4

0

4

de
s,

x

0 5 10 15

de
s,

y

0 5 10 15

de
s,

z

Without Reward Smoothing

0 5 10 15
Time [s]

4

0

4

de
s,

x

0 5 10 15
Time [s]

de
s,

y

0 5 10 15
Time [s]

de
s,

z

With Reward Smoothing

Figure 15: Desired body rates (actions) learned with and without reward smoothing on the state-
based Split-S task.

22

Published as a workshop paper at ICLR 2025

Total WM AC0

500

1000

1500

Ti
m

e
[m

s]

Vision-Based Figure-8

S5WM-P
S5WM-P (recurrent)

0.5 1.0
Env Steps 1e7

0

40

80

120
Ta

sk
 R

ew
ar

d

Vision-Based Figure-8

S5WM-P
S5WM-P (recurrent)

Figure 16: Task reward over the number of environment interactions for parallel and recurrent vari-
ants of S5WM.

23

	Introduction
	Related Work
	Preliminaries
	Methodology
	State-Space World Model
	Actor-Critic Training
	Privileged World Models

	Experiments
	Setup
	Tasks

	Baselines
	Simulation Results
	Performance
	Training Efficiency
	Prediction Accuracy

	Real World Deployment

	Conclusion
	Hyperparameters
	Imagination Prediction
	Observation Space
	Action Space
	Reward
	Reward components

	S5 Sequence Layer
	Trajectories
	Ablations
	Horizon Length
	Reward Smoothing
	Recurrent vs Parallel

