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Abstract001

To address the semantic gap between special-002
ized terminology in cultural heritage and ev-003
eryday public language, this paper innovatively004
proposes the Generalizable Digital Cognition005
Framework (GDCF), focusing on overcoming006
cross-domain semantic alignment challenges007
in low-resource scenarios. By leveraging a008
teacher-student model architecture and instruc-009
tion tuning techniques, GDCF achieves ac-010
curate mapping from everyday language to011
domain-specific vocabulary in a few-shot set-012
ting with only 100 annotated samples. The013
teacher model generates initial pseudo-labels,014
while a dynamic label masking strategy guides015
the smaller student model through instruction016
tuning, enabling it to achieve performance com-017
parable to the teacher model. Remarkably,018
when both teacher and student models use the019
same parameter size, the student model can020
even outperform the teacher model. Experi-021
ments show that this method achieves a key-022
word extraction accuracy of 0.39 on a cultural023
heritage review dataset, marking a 73% im-024
provement over the baseline LLM. More sig-025
nificantly, this framework pioneers a 3D visu-026
alization space that integrates semantic vectors027
with cognitive dynamics, uncovering deep se-028
mantic relationships between public discourse029
and professional terminology. Its modular de-030
sign has been successfully validated for trans-031
ferability in architectural heritage conservation032
assessments, providing a scalable benchmark033
paradigm for interdisciplinary digital humani-034
ties research.035

1 Introduction036

Cultural heritage, a key carrier of human civiliza-037

tion, influences how culture is shared. Profession-038

als use structured terminology to describe archi-039

tectural heritage, while the public relies on infor-040

mal expressions, creating a gap that limits the dis-041

semination of academic insights and complicates042

the extraction of cultural knowledge from pub-043

lic discourse. Existing cultural heritage databases 044

largely provide one-way information flow, lacking 045

dynamic interaction between expert semantics and 046

public language. 047

Cross-lingual and cross-domain semantic align- 048

ment in cultural heritage faces three challenges: 049

(1) Static mappings—predefined vocabularies fail 050

to adapt to evolving terminology, causing seman- 051

tic gaps; (2) Low domain adaptability—general- 052

purpose models struggle with specialized data, 053

particularly ancient architectural terms; (3) Uni- 054

directional cognition—current systems translate 055

expert language into public expressions but 056

rarely extract professional semantics from unstruc- 057

tured commentary, failing to complete a "profes- 058

sional–public–professional" feedback loop. 059

To address these challenges, this paper intro- 060

duces the Generalizable Digital Cognition Frame- 061

work (GDCF), which transforms unstructured ev- 062

eryday language into professional terminology 063

through a three-stage process, creating a com- 064

putable, interactive 3D semantic space for cross- 065

domain research. 066

Task 1: Domain-Specific Dictionary Construc- 067

tion – Using the cultural heritage domain, which is 068

highly specialized but data-scarce, as a case study, 069

we develop a transferable domain dictionary sys- 070

tem. This system systematically integrates special- 071

ized vocabulary from cultural and mixed heritage 072

sections of the World Heritage List, establishing the 073

first automatically generated semantic ontology for 074

world cultural heritage, filling a gap in structured 075

knowledge representation in this field. 076

Task 2: Mapping from Everyday Language to 077

Professional Vocabulary – Using a teacher-student 078

model and instruction tuning, a 0.5B-parameter 079

model is fine-tuned on only 100 samples. This 080

model is then applied to 30,000 Weibo comments 081

on cultural heritage, extracting keywords that map 082

everyday language to professional terminology. 083

Task 3: 3D Semantic Space Modeling – 084
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Based on the 30,000 Weibo comments, we con-085

struct a three-dimensional model that integrates086

professional semantics and cognitive dynamics.087

This framework pioneers mathematical modeling088

and dynamic visualization of the "everyday-to-089

professional" semantic space in the humanities and090

social sciences. Its modular design allows rapid091

transferability to fields such as history and art, pro-092

viding a scalable benchmark paradigm for interdis-093

ciplinary digital research.094

2 Related Work095

2.1 Instruction Tuning096

Instruction tuning refers to the process of adjusting097

a language model to better follow natural-language098

instructions. Unlike traditional supervised learning,099

which requires large task-specific datasets, instruc-100

tion tuning trains models on a broad range of tasks101

formulated as instructions. This enables greater102

adaptability and generalization, allowing models103

to handle new tasks with minimal or no additional104

training.105

(Ouyang et al., 2022) introduce a fine-tuning106

approach that incorporates human feedback to im-107

prove instruction adherence. Their method includes108

supervised fine-tuning with human-written exam-109

ples, training a reward model based on human-110

labeled response preferences, and applying rein-111

forcement learning with human feedback (RLHF)112

using Proximal Policy Optimization (PPO). This113

process effectively aligns model behavior with user114

expectations, reducing biases and improving re-115

sponse truthfulness. Notably, their results show116

that a 1.3B parameter InstructGPT model outper-117

forms the much larger 175B GPT-3 in human evalu-118

ations. However, challenges such as annotator bias119

and computational cost highlight the need for more120

efficient alignment methods.121

(Wang et al., 2023) propose SELF-INSTRUCT,122

an instruction tuning framework that reduces123

reliance on human-written datasets by having124

the model generate and refine its own instruc-125

tions. Through an iterative process, the model126

generates task instructions, synthesizes input-127

output pairs, and filters low-quality instructions128

before fine-tuning. Applied to GPT-3, SELF-129

INSTRUCT produced 52K instructions, lead-130

ing to a 33% improvement on the SUPER-131

NATURALINSTRUCTIONS benchmark, nearly132

matching OpenAI’s InstructGPT-001. While scal-133

able, this method faces challenges such as potential134

biases and lack of human oversight, suggesting the 135

need for hybrid human-machine validation. 136

These works demonstrate two key directions 137

in instruction tuning: leveraging human feedback 138

for fine-tuning and automating instruction genera- 139

tion. While both approaches significantly enhance 140

instruction-following capabilities, the trade-offs be- 141

tween human supervision, scalability, and bias mit- 142

igation remain open challenges, motivating further 143

research into more efficient, scalable, and aligned 144

instruction tuning methods. 145

2.2 Keyword Extraction 146

Keyword extraction is a core task in NLP, iden- 147

tifying key terms from unstructured text to build 148

structured dictionaries. Traditional methods rely on 149

statistical features (e.g., TF-IDF, TextRank) or rule- 150

based templates but struggle with domain adapt- 151

ability and low-frequency terms. 152

Recent unsupervised approaches combine sta- 153

tistical features with semantic patterns for cross- 154

domain extraction. YAKE assigns term weights 155

based on position, frequency, and word associa- 156

tions, making it effective in resource-limited set- 157

tings (Campos et al., 2020). Pretrained models like 158

BERT (Devlin et al., 2019) and FastText (Joulin 159

et al., 2016) enhance dictionary quality by learn- 160

ing semantic representations from large corpora. 161

FastText, similar to CBOW (Mikolov et al., 2013), 162

maps words to vectors, averages them, and feeds 163

them into a classifier using softmax for probability 164

distribution. 165

(Zhu et al., 2024) propose a pretrained language 166

model (PLM) integrating domain-specific hetero- 167

geneous knowledge. By combining unstructured, 168

semi-structured, and structured texts, the model 169

captures richer contextual information. It simul- 170

taneously models entity descriptions, titles, and 171

knowledge triples within a shared space, overcom- 172

ing traditional text-only limitations. An unsuper- 173

vised pretraining strategy enhances entity and topic 174

knowledge representation, improving performance 175

in complex document analysis tasks. 176

While NLP advances enable efficient keyword 177

extraction, cultural heritage still lacks specialized 178

dictionaries enriched with domain knowledge and 179

knowledge graph associations. Dictionary con- 180

struction remains largely manual, with limited 181

machine-assisted applications. 182
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2.3 Lexical Semantic Mapping183

Lexical semantic mapping establishes correspon-184

dences between domain-specific terms and their185

generalized expressions while preserving key con-186

cepts. Traditional methods rely on manually con-187

structed semantic networks or bilingual dictionar-188

ies, which lack scalability. Embedding-based meth-189

ods address this by projecting words into contin-190

uous vector spaces, where cosine similarity and191

Euclidean distance quantify semantic relationships192

for automated term alignment.193

(Bosc and Vincent, 2018) propose a recursive au-194

toencoder model (CPAE) that leverages dictionary195

definitions for term embedding. Without large cor-196

pora, CPAE encodes semantic similarities and dis-197

tinctions into a generalized semantic space. For ex-198

ample, hostage (“a prisoner held to ensure terms”)199

is mapped near prisoner while retaining unique-200

ness, providing an efficient approach to semantic201

normalization.202

(Trifonov et al., 2018) enhance cross-domain203

interpretability with a sparse sentence embedding204

method using k-Sparse and Sparsemax constraints.205

Their approach captures semantic units and quanti-206

fies semantic correlations, making it adaptable to207

lexical alignment tasks.208

By integrating structured knowledge (e.g., dic-209

tionary definitions) with sparse semantic encoding,210

these methods improve accuracy and interpretabil-211

ity in cross-domain lexical mapping.212

3 Dataset213

3.1 Data Design214

We constructed two datasets with sharply contrast-215

ing characteristics to encompass the broad linguis-216

tic contexts of both experts and the general public.217

Dataset a is a specialized expert-language corpus,218

characterized by high credibility and rigor, while219

dataset b contains everyday-language texts related220

to the World Cultural Heritage sites “the Imperial221

Palace” and “the Potala Palace”, as well as the222

Chinese cultural heritage site “the Old Summer223

Palace”. In this way, dataset b reflects linguistic224

features from a non-expert perspective.225

3.2 Data Collection226

For dataset a, we referenced the UNESCO World227

Heritage List and excluded natural heritage en-228

tries, selecting only the official introductory arti-229

cles for cultural and mixed heritage sites. A total230

of 953 articles were included. For dataset b, we231

used publicly available data from the Chinese so- 232

cial media platform Sina Weibo (whose monthly 233

active users reached 598 million according to its 234

Q4 2023 financial report). We collected all user- 235

generated posts containing the keywords “the Impe- 236

rial Palace”, “the Potala Palace”, and “the Old Sum- 237

mer Palace” from June to December 2023. Based 238

on this, we formed three sub-datasets: b1 for the 239

imperial palace, b2 for the Potala Palace, and b3 240

for the Old Summer Palace, thereby assembling a 241

rich non-expert corpus. 242

3.3 Data Cleaning 243

To improve data quality and facilitate model adapta- 244

tion, we used a range of noise-reduction strategies. 245

First, we removed duplicate sentences to maintain 246

independence across data samples. We then elimi- 247

nated irrelevant symbols and noise, such as HTML 248

tags, garbled text, advertisements, copyright no- 249

tices, and navigation content introduced by online 250

sources. We also corrected spelling errors. Lastly, 251

we removed unlabeled multilingual content to keep 252

the corpus consistent in its primary language. 253

3.4 Data Annotation 254

First, we performed partial manual annotation on 255

the dataset to facilitate few-shot instruction tun- 256

ing in the subsequent large-model fine-tuning mod- 257

ule. We labeled keywords from 90 professional 258

sentences in dataset A and randomly selected 10 259

sentences from dataset B, marking them with pro- 260

fessional terms. The 100 annotated sentences were 261

then compiled into dataset C. 262

Figure 1: Weibo Corpus Annotation

For these sentences, we annotated all profession- 263

ally relevant terms, including but not limited to 264

entity nouns, domain-specific concepts, and pro- 265

fessional roles. This annotation strategy ensures 266

that the dataset meets the requirements for domain 267

knowledge extraction and model training. 268

After obtaining a fully machine-generated 269
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Figure 2: Overall architecture of the Generalizable Digital Cognition Framework

domain-specific dictionary, we further refined it un-270

der expert supervision, removing non-informative271

words (e.g., "this is," "this one," etc.) to maintain272

high-level domain specificity.273

4 Method274

4.1 Network Architecture Diagram275

GDCF aims to transform everyday language into276

domain-specific vocabulary so that professionals277

in the field can more efficiently utilize everyday-278

language corpora. As shown in Figure 2, GDCF279

is composed of three modules: a domain-specific280

dictionary generation module, a large-model fine-281

tuning module, and a 3D semantic space genera-282

tion module. Because no training set is available,283

the dictionary generation module first combines284

keywords extracted by a traditional TextRank algo-285

rithm with those extracted by a large model, pro-286

ducing a domain-specific dictionary in an unsuper-287

vised manner. Experts then add scope-based an-288

notations—such as dynasties, emperors, and reign289

titles—to ensure the dictionary covers multiple di-290

mensions of professional terms.291

Next, the large-model transfer module employs292

an innovative teacher–student distillation approach293

combined with instruction tuning to enhance the294

smaller-parameter LLM’s ability to comprehend295

the deeper meanings of everyday language, en-296

abling it to accurately map everyday language297

to specialized vocabulary. Finally, the generated298

domain-specific dictionary is used by the 3D se-299

mantic space generation module to construct a se-300

mantic space, in which the transformed domain- 301

specific vocabulary is placed. By analyzing the 302

positions of these terms in the vector space, do- 303

main experts can better understand the semantic 304

distances underlying everyday language. 305

4.2 Domain-Specific Dictionary Generation 306

Module 307

This module aims to generate high-quality key- 308

words from textual data and evaluate the predic- 309

tions by comparing them with the annotations of 310

90 professional sentences in dataset C, supporting 311

subsequent downstream tasks. 312

HanLP is one of the most advanced Chinese 313

keyword extraction toolkits, utilizing the TextRank 314

algorithm. In this step, we call the HanLP RESTful 315

API to extract keywords, setting the number of 316

keywords per sentence to topk = 5, generating 317

Dictionary A. 318

To further enhance the professionalism and ro- 319

bustness of the extracted keywords and to ensure 320

consistency with the output of the large model fine- 321

tuning module, we employ the same Qwen-7B- 322

Instruct model used in the teacher model of the 323

subsequent module. A prompt is carefully con- 324

structed to instruct the model to return only domain- 325

specific keywords, requiring the output to be sep- 326

arated strictly by English commas and ensuring 327

that all extracted keywords appear in the original 328

sentence. The model generates output determin- 329

istically with a temperature of 0, ensuring stable 330

results, forming Dictionary B. 331
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Instruction Tuning Teacher Model + Instruction Tuning
System Message: System Message:
You are a high-level keyword extraction assis-
tant in the field of cultural heritage.

You are a high-level keyword validation and ex-
traction assistant in the field of cultural heritage.

User Message: User Message:
Please only return a list of professional key-
words related to cultural heritage, with key-
words separated solely by English commas, and
do not include any other text, punctuation, or ex-
planations, with each keyword appearing only
once. All keywords must appear directly in the
following sentence.
Sentence: {example[’text’]}
Keywords:

Task: Below are candidate keywords generated
by a teacher model. Please check whether these
candidate keywords are correct, and only retain
the correct and non-duplicated keywords, then
output the final list of keywords.
Text: {example[’text’]}
Teacher generated candidate keywords: {exam-
ple[’teacher_keywords’]}
Correct answer:

Table 1: Instruction Tuning and Teacher Model + Instruction Tuning Comparison

Figure 3: Domain-Specific Dictionary Module

Finally, Dictionaries A and B are merged and332

deduplicated, followed by expert annotation to in-333

corporate dynasties, emperors, and reign titles, re-334

sulting in the final domain-specific dictionary.335

4.3 Large Model Fine-Tuning Module336

This module aims to generate pseudo-labels using337

a teacher model and optimize them through instruc-338

tion tuning of a student model. The process con-339

sists of two steps: the teacher–student distillation340

process and the instruction tuning of the student341

model.342

Step 1: We use the larger Qwen2.5-7B (Team,343

2024) as the teacher model, combined with the344

vLLM module (Kwon et al., 2023) to generate345

pseudo-labels. For each input text, we construct a346

specific prompt, as shown in Table 1.347

We then use the vLLM generation interface for348

sampling. The sampling parameters are set as tem-349

perature = 0.7, top_p = 1.0, and a maximum gener-350

ation length of 128 tokens. The probability distri-351

bution used in this generation process follows the352

formula:353

p(wi | context) =
exp

(
logit(wi)

0.7

)
∑

j exp
(
logit(wj)

0.7

)354

After processing and segmentation, the gener- 355

ated teacher pseudo-labels form the matrix Q ∈ 356

RN×C . 357

Step 2: We fine-tune the smaller Qwen2.5- 358

0.5B model (Team, 2024) using instruction tun- 359

ing, enabling it to evaluate the teacher-generated 360

pseudo-labels Q and retain only correct, non- 361

redundant keywords. To achieve this, we construct 362

an instruction-based prompt that combines the orig- 363

inal text, the teacher-generated pseudo-labels Q, 364

and dataset C as the final reference. 365

During training, we apply a label masking strat- 366

egy, where the labels corresponding to the prompt 367

tokens are set to -100, ensuring that only the target 368

tokens contribute to the cross-entropy loss: 369

L = − 1

N

∑
i∈T

logP (yi | x, y<i) 370

where T represents the indices of the target to- 371

kens. The student model is trained with a learning 372

rate of 5×10−5, a batch size of 1, and for 3 epochs. 373

A custom data collector dynamically pads inputs to 374

maintain consistent input and label lengths across 375

batches. After fine-tuning, the student model is ca- 376

pable of correctly identifying the final set of accu- 377

rate, non-redundant professional keywords based 378

on both the input text and the teacher’s pseudo- 379

labels. 380

By integrating these two steps, the teacher model 381

provides candidate keywords for each input text, 382

though some noise and redundancy may be present. 383

The student model, through instruction tuning, 384

learns to assess and filter the teacher’s output, pro- 385

ducing a refined list of professional keywords from 386
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everyday language. This design not only leverages387

the generative power of large models but also en-388

ables the small model to strike a balance between389

efficiency and robustness through instruction tun-390

ing, offering a novel approach to handling imbal-391

anced and complex textual data.392

Figure 4: 3D Semantic Space

4.4 3D Semantic Space Generation Module393

To illustrate the mapping relationship between ev-394

eryday language and domain-specific vocabulary,395

we employ a keyword mapping and visualization396

approach using a pretrained model and dimension-397

ality reduction techniques. First, to construct a398

stable vector space for keyword mapping, we ob-399

tain the domain-specific dictionary from the dic-400

tionary generation module and compute the vec-401

tor representation of each keyword using the pre-402

trained model ’shibing624/text2vec-base-chinese-403

paraphrase’ (Xu, 2023). Since the output vectors404

from this model have high dimensionality, we ap-405

ply Principal Component Analysis (PCA) to reduce406

them to three dimensions, forming a base 3D vector407

space.408

After constructing the base vector space, we409

define a keyword mapping function. This func-410

tion obtains the vector representation of any given411

keyword using the same pretrained model, then412

projects it into the 3D space using the trained PCA413

model. Formally, given a keyword w with its origi-414

nal vector representation Ew, its 3D mapped vector415

is expressed as:416

vec(w) = PCA(Ew)417

Next, we perform frequency statistics on sam- 418

pled keywords and select the Top-N most frequent 419

ones (e.g., N = 100, 200, 500). For each of these 420

selected keywords, we apply the mapping function 421

to convert them into 3D vectors while recording 422

their keyword labels, frequencies, and 3D coordi- 423

nates. 424

To visualize the spatial distribution of Top-N 425

keywords from different CSV files, we use Mat- 426

plotlib’s 3D plotting tools. By setting multiple 427

viewing angles within the same plot and using dif- 428

ferent colors to distinguish different data sources, 429

we effectively illustrate how semantic relationships 430

between everyday language and domain-specific 431

vocabulary are distributed in the reduced 3D space. 432

5 Results and Discussion 433

5.1 Analysis of Domain-Specific Dictionary 434

Generation 435

In the comparison of the three domain-specific dic- 436

tionaries, after removing duplicate extracted terms, 437

the statistical results show that HanLP extracted 438

5,024 terms, LLM extracted 3,496 terms, and the 439

final merged and expert-processed dictionary con- 440

tained 6,904 terms. 441

Method Vocabulary Size
HanLP 5,024
LLM 3,496
Domain-Specific Dictionary 6,904

Table 2: Vocabulary size comparison of different meth-
ods. The vocabulary size represents the number of pro-
fessional terms extracted by each method. The best
result is shown in bold.

From these results, we observe the following: (1) 442

Using only traditional keyword extraction methods 443

(HanLP) can capture some domain-specific infor- 444

mation, but due to predefined rules and algorith- 445

mic limitations, the number of extracted candidate 446

terms is relatively small, making it difficult to com- 447

prehensively cover domain knowledge. (2) The 448

LLM-based extraction method benefits from large- 449

scale pretraining and demonstrates an advantage 450

in keyword generation. However, the number of 451

terms it generates remains relatively low, suggest- 452

ing potential limitations in the model’s coverage 453

of specialized domain knowledge. (3) The merged 454

approach with expert refinement significantly in- 455

creases the size of the domain-specific dictionary, 456

indicating that combining traditional methods with 457
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Task Acc F1 Recall
Evaluation Metric Accu.↑ F1 Score↑ Recall↑
Llama-3.1-8B-Instruct 0.140 0.135 0.149
Qwen2.5-7B-Instruct 0.482 0.410 0.374
Qwen2.5-0.5B-Instruct 0.225 0.065 0.047
Qwen2.5-0.5B-Instruct+tune 0.096 0.071 0.078
Qwen2.5-0.5B-Instruct+teacher0.5B 0.364 0.301 0.272
GDCF 0.390 0.264 0.210

Table 3: Results of LLM performance

deep learning-based generation models, along with458

expert validation, can leverage the strengths of each459

approach to produce a more comprehensive and460

accurate dictionary. These findings validate the461

effectiveness of the hybrid method in improving462

both the coverage and quality of domain-specific463

dictionaries.464

5.2 Ablation Study on the Large Model465

Fine-Tuning Module466

We conduct ablation experiments using Llama-3.1-467

8B-Instruct (Dubey et al., 2024), Qwen2.5-7B-468

Instruct (Team, 2024), and Qwen2.5-0.5B-Instruct469

(Team, 2024), where Qwen2.5-7B-Instruct and470

Qwen2.5-0.5B-Instruct serve as teacher models,471

and Qwen2.5-0.5B-Instruct is used as the student472

model. The 100 annotated samples from dataset473

C are split into a 70:30 ratio for training and test-474

ing, and experiments are conducted in a few-shot475

setting. The results are shown in Table 3.476

(1) Since the dataset consists of Chinese text,477

models are tested for their Chinese language com-478

prehension ability. Llama-3.1-8B-Instruct per-479

forms relatively weaker, likely due to its inferior480

Chinese understanding.481

(2) Qwen2.5-7B-Instruct, when used as the482

teacher LLM, achieves the best keyword generation483

performance, with an F1 score of 0.410. This indi-484

cates that LLMs, with their large-scale parameters485

and extensive knowledge, have a natural advan-486

tage in understanding text and extracting domain-487

specific information related to cultural heritage.488

(3) When Qwen2.5-0.5B-Instruct is fine-tuned489

without a teacher model, accuracy (ACC) drops sig-490

nificantly to 0.096. This decline is mainly due to491

the small parameter size (0.5B), where fine-tuning492

in the Instruct setting makes it difficult for the493

model to properly understand and generate accurate494

outputs.495

(4) The introduction of a teacher model, whether496

7B or 0.5B, significantly improves the performance 497

of instruction fine-tuning. When using 7B as the 498

teacher model, the student model does not surpass 499

the teacher model but achieves performance close 500

to it, despite being constrained by the 0.5B param- 501

eter bottleneck. 502

(5) When using 0.5B as the teacher model, it 503

avoids the performance degradation caused by re- 504

lying solely on instruction fine-tuning while also 505

benefiting from training two models of the same 506

size together, leading to better results than the orig- 507

inal model. 508

This ablation study strongly validates that in- 509

corporating a teacher model enhances the model’s 510

ability to understand instruction semantics during 511

fine-tuning and mitigates interpretation biases that 512

arise from small parameter sizes. 513

5.3 Cultural Cognition Interpretability 514

Analysis in Semantic Space 515

Figure 5: 3D Vector Space Distribution of Keywords
from Different Cultural Heritage Categories

Figure 5 illustrates the center point distributions 516
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of keywords from three categories (Potala Palace,517

Old Summer Palace, and the Imperial Palace) in a518

3D vector space. The circular markers (matched)519

represent the center points of professional terms ob-520

tained through semantic similarity transformation521

from keywords extracted from everyday language522

using traditional methods. The triangular mark-523

ers (predictions) indicate the center points of pro-524

fessional terms fully generated by GDCF. Dashed525

lines connect the two center points of the same526

category. Table 4 presents the Euclidean distances527

between these two sets of center points for each cat-528

egory. It can be observed that the predictions group529

center points are farther from the origin, suggest-530

ing that the GDCF-generated dictionary is more531

diverse and semantically richer.532

Distance Value
Potala Palace - Imperial Palace 0.5075
Potala Palace - Old Summer Palace 0.3645
Imperial Palace - Old Summer Palace 0.2077

Table 4: Distance Between Cultural Heritage Sites

From the Euclidean distances in Table 4, we533

see that the variation between center points differs534

across categories. For example, if the Potala Palace535

category shows a larger distance between matched536

and predictions, this may indicate that the seman-537

tic distribution of predicted keywords significantly538

deviates from the originally matched keyword dis-539

tribution. In contrast, if the Old Summer Palace540

and Imperial Palace categories show smaller dif-541

ferences, it suggests that the predicted results for542

these two categories are more aligned with their543

original matches in semantic space.544

This spatial distribution characteristic reveals a545

dual cultural cognition mechanism: (1) The histori-546

cal narrative coupling effect causes the shared Qing547

Dynasty imperial architectural symbols to exert a548

strong semantic gravitational pull in the word vec-549

tor space; (2) The political-religious hybrid func-550

tion of the Potala Palace leads to cross-cultural se-551

mantic shifts of Tibetan architectural terms within552

Weibo corpora, which predominantly operate in a553

Chinese-language context.554

6 Conclusion555

Using UNESCO cultural heritage experts and their556

reports as data sources, GDCF extracts semantic557

features of words within the domain context, con-558

structing a semantic space that accurately repre-559

sents cultural heritage terminology. 560

Traditional dictionaries are compiled by linguists 561

who define word meanings through sentence-based 562

explanations, clarifying their actual meaning and 563

position within the language system. However, this 564

approach may be influenced by expert subjectiv- 565

ity, potentially leading to interpretations that de- 566

viate from real-world usage. In contrast, GDCF 567

leverages fine-tuned large models to transform and 568

define semantic attributes in the most objective 569

manner. For instance, terms like "Acropolis of 570

Athens" or "Baroque abbatial churches" are repre- 571

sented as vectors in the semantic space, directly 572

extracted from original texts authored by cultural 573

heritage experts. This method preserves word us- 574

age, definitions, and contextual semantics, ensuring 575

faithfulness to expert discourse. 576

Moreover, since our model determines the spa- 577

tial position of words and phrases through dimen- 578

sionality reduction, we can identify the closest 579

translation equivalents in a cross-lingual setting. 580

This effectively addresses the longstanding chal- 581

lenge of accurately translating domain-specific dic- 582

tionaries across languages. 583

More importantly, the model is not limited to the 584

cultural heritage domain but exhibits broad cross- 585

domain applicability. By integrating an advanced 586

teacher-student model with instruction tuning, it 587

facilitates the conversion of everyday language 588

into professional vocabulary across different fields. 589

This provides an efficient solution for rapidly edu- 590

cating both AI models and humans in specialized 591

linguistic paradigms across various disciplines. 592

Limitations 593

The effectiveness of GDCF relies on UNESCO re- 594

ports and domain expert texts, which may not fully 595

cover cultural heritage knowledge specific to cer- 596

tain regions or communities. In areas with limited 597

expert literature, the model’s performance may be 598

constrained. The teacher-student model with in- 599

struction tuning reduces dependence on large-scale 600

annotated data, but it still requires a certain amount 601

of high-quality labeled data, which remains a chal- 602

lenge in extremely low-resource scenarios. 603
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Figure 6: Top 100 Keywords in 3D Semantic Space from Different Angles
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Figure 7: Top 500 Generated Keywords in 3D Semantic Space

Figure 8: Comparative Analysis of Center Point Distributions for Potala Palace, Old Summer Palace, and the
Imperial Palace in 3D Semantic Space
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