GDCF: A Generalizable Digital Cognition Framework Incorporating
Teacher Model Generated Pseudo-label Verification into Instruction Tuning

Anonymous ACL submission

Abstract

To address the semantic gap between special-
ized terminology in cultural heritage and ev-
eryday public language, this paper innovatively
proposes the Generalizable Digital Cognition
Framework (GDCF), focusing on overcoming
cross-domain semantic alignment challenges
in low-resource scenarios. By leveraging a
teacher-student model architecture and instruc-
tion tuning techniques, GDCF achieves ac-
curate mapping from everyday language to
domain-specific vocabulary in a few-shot set-
ting with only 100 annotated samples. The
teacher model generates initial pseudo-labels,
while a dynamic label masking strategy guides
the smaller student model through instruction
tuning, enabling it to achieve performance com-
parable to the teacher model. Remarkably,
when both teacher and student models use the
same parameter size, the student model can
even outperform the teacher model. Experi-
ments show that this method achieves a key-
word extraction accuracy of 0.39 on a cultural
heritage review dataset, marking a 73% im-
provement over the baseline LLM. More sig-
nificantly, this framework pioneers a 3D visu-
alization space that integrates semantic vectors
with cognitive dynamics, uncovering deep se-
mantic relationships between public discourse
and professional terminology. Its modular de-
sign has been successfully validated for trans-
ferability in architectural heritage conservation
assessments, providing a scalable benchmark
paradigm for interdisciplinary digital humani-
ties research.

1 Introduction

Cultural heritage, a key carrier of human civiliza-
tion, influences how culture is shared. Profession-
als use structured terminology to describe archi-
tectural heritage, while the public relies on infor-
mal expressions, creating a gap that limits the dis-
semination of academic insights and complicates
the extraction of cultural knowledge from pub-

lic discourse. Existing cultural heritage databases
largely provide one-way information flow, lacking
dynamic interaction between expert semantics and
public language.

Cross-lingual and cross-domain semantic align-
ment in cultural heritage faces three challenges:
(1) Static mappings—predefined vocabularies fail
to adapt to evolving terminology, causing seman-
tic gaps; (2) Low domain adaptability—general-
purpose models struggle with specialized data,
particularly ancient architectural terms; (3) Uni-
directional cognition—current systems translate
expert language into public expressions but
rarely extract professional semantics from unstruc-
tured commentary, failing to complete a "profes-
sional-public—professional" feedback loop.

To address these challenges, this paper intro-
duces the Generalizable Digital Cognition Frame-
work (GDCF), which transforms unstructured ev-
eryday language into professional terminology
through a three-stage process, creating a com-
putable, interactive 3D semantic space for cross-
domain research.

Task 1: Domain-Specific Dictionary Construc-
tion — Using the cultural heritage domain, which is
highly specialized but data-scarce, as a case study,
we develop a transferable domain dictionary sys-
tem. This system systematically integrates special-
ized vocabulary from cultural and mixed heritage
sections of the World Heritage List, establishing the
first automatically generated semantic ontology for
world cultural heritage, filling a gap in structured
knowledge representation in this field.

Task 2: Mapping from Everyday Language to
Professional Vocabulary — Using a teacher-student
model and instruction tuning, a 0.5B-parameter
model is fine-tuned on only 100 samples. This
model is then applied to 30,000 Weibo comments
on cultural heritage, extracting keywords that map
everyday language to professional terminology.

Task 3: 3D Semantic Space Modeling —



Based on the 30,000 Weibo comments, we con-
struct a three-dimensional model that integrates
professional semantics and cognitive dynamics.
This framework pioneers mathematical modeling
and dynamic visualization of the "everyday-to-
professional" semantic space in the humanities and
social sciences. Its modular design allows rapid
transferability to fields such as history and art, pro-
viding a scalable benchmark paradigm for interdis-
ciplinary digital research.

2 Related Work

2.1 Instruction Tuning

Instruction tuning refers to the process of adjusting
a language model to better follow natural-language
instructions. Unlike traditional supervised learning,
which requires large task-specific datasets, instruc-
tion tuning trains models on a broad range of tasks
formulated as instructions. This enables greater
adaptability and generalization, allowing models
to handle new tasks with minimal or no additional
training.

(Ouyang et al., 2022) introduce a fine-tuning
approach that incorporates human feedback to im-
prove instruction adherence. Their method includes
supervised fine-tuning with human-written exam-
ples, training a reward model based on human-
labeled response preferences, and applying rein-
forcement learning with human feedback (RLHF)
using Proximal Policy Optimization (PPO). This
process effectively aligns model behavior with user
expectations, reducing biases and improving re-
sponse truthfulness. Notably, their results show
that a 1.3B parameter InstructGPT model outper-
forms the much larger 175B GPT-3 in human evalu-
ations. However, challenges such as annotator bias
and computational cost highlight the need for more
efficient alignment methods.

(Wang et al., 2023) propose SELF-INSTRUCT,
an instruction tuning framework that reduces
reliance on human-written datasets by having
the model generate and refine its own instruc-
tions. Through an iterative process, the model
generates task instructions, synthesizes input-
output pairs, and filters low-quality instructions
before fine-tuning. Applied to GPT-3, SELF-
INSTRUCT produced 52K instructions, lead-
ing to a 33% improvement on the SUPER-
NATURALINSTRUCTIONS benchmark, nearly
matching OpenATI’s InstructGPT-001. While scal-
able, this method faces challenges such as potential

biases and lack of human oversight, suggesting the
need for hybrid human-machine validation.

These works demonstrate two key directions
in instruction tuning: leveraging human feedback
for fine-tuning and automating instruction genera-
tion. While both approaches significantly enhance
instruction-following capabilities, the trade-offs be-
tween human supervision, scalability, and bias mit-
igation remain open challenges, motivating further
research into more efficient, scalable, and aligned
instruction tuning methods.

2.2 Keyword Extraction

Keyword extraction is a core task in NLP, iden-
tifying key terms from unstructured text to build
structured dictionaries. Traditional methods rely on
statistical features (e.g., TF-IDF, TextRank) or rule-
based templates but struggle with domain adapt-
ability and low-frequency terms.

Recent unsupervised approaches combine sta-
tistical features with semantic patterns for cross-
domain extraction. YAKE assigns term weights
based on position, frequency, and word associa-
tions, making it effective in resource-limited set-
tings (Campos et al., 2020). Pretrained models like
BERT (Devlin et al., 2019) and FastText (Joulin
et al., 2016) enhance dictionary quality by learn-
ing semantic representations from large corpora.
FastText, similar to CBOW (Mikolov et al., 2013),
maps words to vectors, averages them, and feeds
them into a classifier using softmax for probability
distribution.

(Zhu et al., 2024) propose a pretrained language
model (PLM) integrating domain-specific hetero-
geneous knowledge. By combining unstructured,
semi-structured, and structured texts, the model
captures richer contextual information. It simul-
taneously models entity descriptions, titles, and
knowledge triples within a shared space, overcom-
ing traditional text-only limitations. An unsuper-
vised pretraining strategy enhances entity and topic
knowledge representation, improving performance
in complex document analysis tasks.

While NLP advances enable efficient keyword
extraction, cultural heritage still lacks specialized
dictionaries enriched with domain knowledge and
knowledge graph associations. Dictionary con-
struction remains largely manual, with limited
machine-assisted applications.



2.3 Lexical Semantic Mapping

Lexical semantic mapping establishes correspon-
dences between domain-specific terms and their
generalized expressions while preserving key con-
cepts. Traditional methods rely on manually con-
structed semantic networks or bilingual dictionar-
ies, which lack scalability. Embedding-based meth-
ods address this by projecting words into contin-
uous vector spaces, where cosine similarity and
Euclidean distance quantify semantic relationships
for automated term alignment.

(Bosc and Vincent, 2018) propose a recursive au-
toencoder model (CPAE) that leverages dictionary
definitions for term embedding. Without large cor-
pora, CPAE encodes semantic similarities and dis-
tinctions into a generalized semantic space. For ex-
ample, hostage (“‘a prisoner held to ensure terms”)
is mapped near prisoner while retaining unique-
ness, providing an efficient approach to semantic
normalization.

(Trifonov et al., 2018) enhance cross-domain
interpretability with a sparse sentence embedding
method using k-Sparse and Sparsemax constraints.
Their approach captures semantic units and quanti-
fies semantic correlations, making it adaptable to
lexical alignment tasks.

By integrating structured knowledge (e.g., dic-
tionary definitions) with sparse semantic encoding,
these methods improve accuracy and interpretabil-
ity in cross-domain lexical mapping.

3 Dataset
3.1 Data Design

We constructed two datasets with sharply contrast-
ing characteristics to encompass the broad linguis-
tic contexts of both experts and the general public.
Dataset a is a specialized expert-language corpus,
characterized by high credibility and rigor, while
dataset b contains everyday-language texts related
to the World Cultural Heritage sites “the Imperial
Palace” and “the Potala Palace”, as well as the
Chinese cultural heritage site “the Old Summer
Palace”. In this way, dataset b reflects linguistic
features from a non-expert perspective.

3.2 Data Collection

For dataset a, we referenced the UNESCO World
Heritage List and excluded natural heritage en-
tries, selecting only the official introductory arti-
cles for cultural and mixed heritage sites. A total
of 953 articles were included. For dataset b, we

used publicly available data from the Chinese so-
cial media platform Sina Weibo (whose monthly
active users reached 598 million according to its
Q4 2023 financial report). We collected all user-
generated posts containing the keywords “the Impe-
rial Palace”, “the Potala Palace”, and “the Old Sum-
mer Palace” from June to December 2023. Based
on this, we formed three sub-datasets: bl for the
imperial palace, b2 for the Potala Palace, and b3
for the Old Summer Palace, thereby assembling a
rich non-expert corpus.

3.3 Data Cleaning

To improve data quality and facilitate model adapta-
tion, we used a range of noise-reduction strategies.
First, we removed duplicate sentences to maintain
independence across data samples. We then elimi-
nated irrelevant symbols and noise, such as HTML
tags, garbled text, advertisements, copyright no-
tices, and navigation content introduced by online
sources. We also corrected spelling errors. Lastly,
we removed unlabeled multilingual content to keep
the corpus consistent in its primary language.

3.4 Data Annotation

First, we performed partial manual annotation on
the dataset to facilitate few-shot instruction tun-
ing in the subsequent large-model fine-tuning mod-
ule. We labeled keywords from 90 professional
sentences in dataset A and randomly selected 10
sentences from dataset B, marking them with pro-
fessional terms. The 100 annotated sentences were
then compiled into dataset C.

Weibo Corpus
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Figure 1: Weibo Corpus Annotation

For these sentences, we annotated all profession-
ally relevant terms, including but not limited to
entity nouns, domain-specific concepts, and pro-
fessional roles. This annotation strategy ensures
that the dataset meets the requirements for domain
knowledge extraction and model training.

After obtaining a fully machine-generated



Domain-Specific
953 Articles Text Rank Dictionary N/ PCA
1
[ e e :
s
S ] :
1 o=
Teacher LLM : E
1 (=]
Stage2 I
|
|
. ! / [token]
Weibo Corpus ) | ) [token] =
o [token] ‘l
Below are the candidate keywords gen- N tHokent N
erated by the teacher model. Please Ftokent N
verify whether these candidate keywords N
are correct, and only keep the correct and I N <
non-duplicated keywords, ensuring that [token]: - n\\ L
each keyword appears only once without accepted tokens SO S
any additional content. Hrodeent: T
Text: {example['text']} . p . ;
Teacher-generated candidate keywords: rejected tokens 3D Semantic Spdce
{example['teacher_keywords']}
Correct Answer:

Figure 2: Overall architecture of the Generalizable Digital Cognition Framework

domain-specific dictionary, we further refined it un-
der expert supervision, removing non-informative
words (e.g., "this is," "this one," etc.) to maintain
high-level domain specificity.

4 Method

4.1 Network Architecture Diagram

GDCEF aims to transform everyday language into
domain-specific vocabulary so that professionals
in the field can more efficiently utilize everyday-
language corpora. As shown in Figure 2, GDCF
is composed of three modules: a domain-specific
dictionary generation module, a large-model fine-
tuning module, and a 3D semantic space genera-
tion module. Because no training set is available,
the dictionary generation module first combines
keywords extracted by a traditional TextRank algo-
rithm with those extracted by a large model, pro-
ducing a domain-specific dictionary in an unsuper-
vised manner. Experts then add scope-based an-
notations—such as dynasties, emperors, and reign
titles—to ensure the dictionary covers multiple di-
mensions of professional terms.

Next, the large-model transfer module employs
an innovative teacher—student distillation approach
combined with instruction tuning to enhance the
smaller-parameter LLLM’s ability to comprehend
the deeper meanings of everyday language, en-
abling it to accurately map everyday language
to specialized vocabulary. Finally, the generated
domain-specific dictionary is used by the 3D se-
mantic space generation module to construct a se-

mantic space, in which the transformed domain-
specific vocabulary is placed. By analyzing the
positions of these terms in the vector space, do-
main experts can better understand the semantic
distances underlying everyday language.

4.2 Domain-Specific Dictionary Generation
Module

This module aims to generate high-quality key-
words from textual data and evaluate the predic-
tions by comparing them with the annotations of
90 professional sentences in dataset C, supporting
subsequent downstream tasks.

HanL P is one of the most advanced Chinese
keyword extraction toolkits, utilizing the TextRank
algorithm. In this step, we call the HanLP RESTful
API to extract keywords, setting the number of
keywords per sentence to top, = 5, generating
Dictionary A.

To further enhance the professionalism and ro-
bustness of the extracted keywords and to ensure
consistency with the output of the large model fine-
tuning module, we employ the same Qwen-7B-
Instruct model used in the teacher model of the
subsequent module. A prompt is carefully con-
structed to instruct the model to return only domain-
specific keywords, requiring the output to be sep-
arated strictly by English commas and ensuring
that all extracted keywords appear in the original
sentence. The model generates output determin-
istically with a temperature of 0, ensuring stable
results, forming Dictionary B.



Instruction Tuning

Teacher Model + Instruction Tuning

System Message:

You are a high-level keyword extraction assis-
tant in the field of cultural heritage.

User Message:

Please only return a list of professional key-
words related to cultural heritage, with key-
words separated solely by English commas, and
do not include any other text, punctuation, or ex-
planations, with each keyword appearing only
once. All keywords must appear directly in the
following sentence.

Sentence: {example[’text’]}

Keywords:

System Message:

You are a high-level keyword validation and ex-
traction assistant in the field of cultural heritage.
User Message:

Task: Below are candidate keywords generated
by a teacher model. Please check whether these
candidate keywords are correct, and only retain
the correct and non-duplicated keywords, then
output the final list of keywords.

Text: {example[’text’]}

Teacher generated candidate keywords: {exam-
ple[’teacher_keywords’]}

Correct answer:

Table 1: Instruction Tuning and Teacher Model + Instruction Tuning Comparison

HanLP Keyword Extraction
(TextRank Algorithm)

| | |
2

Domain-Specific Dictionary
Generation Module

LLM-Based Keyword Extraction

Expert Annotation (Qwen-7B-Instruct)

Figure 3: Domain-Specific Dictionary Module

Finally, Dictionaries A and B are merged and
deduplicated, followed by expert annotation to in-
corporate dynasties, emperors, and reign titles, re-
sulting in the final domain-specific dictionary.

4.3 Large Model Fine-Tuning Module

This module aims to generate pseudo-labels using
a teacher model and optimize them through instruc-
tion tuning of a student model. The process con-
sists of two steps: the teacher—student distillation
process and the instruction tuning of the student
model.

Step 1: We use the larger Qwen2.5-7B (Team,
2024) as the teacher model, combined with the
vLLM module (Kwon et al., 2023) to generate
pseudo-labels. For each input text, we construct a
specific prompt, as shown in Table 1.

We then use the vLLM generation interface for
sampling. The sampling parameters are set as tem-
perature = (.7, top_p = 1.0, and a maximum gener-
ation length of 128 tokens. The probability distri-
bution used in this generation process follows the
formula:

o)

STy

p(w; | context) =

After processing and segmentation, the gener-
ated teacher pseudo-labels form the matrix @) €
RN xC .

Step 2: We fine-tune the smaller Qwen2.5-
0.5B model (Team, 2024) using instruction tun-
ing, enabling it to evaluate the teacher-generated
pseudo-labels ) and retain only correct, non-
redundant keywords. To achieve this, we construct
an instruction-based prompt that combines the orig-
inal text, the teacher-generated pseudo-labels @,
and dataset C as the final reference.

During training, we apply a label masking strat-
egy, where the labels corresponding to the prompt
tokens are set to -100, ensuring that only the target
tokens contribute to the cross-entropy loss:

1
L= logPyi | z,y<i)
€T

where 7 represents the indices of the target to-
kens. The student model is trained with a learning
rate of 5 x 107, a batch size of 1, and for 3 epochs.
A custom data collector dynamically pads inputs to
maintain consistent input and label lengths across
batches. After fine-tuning, the student model is ca-
pable of correctly identifying the final set of accu-
rate, non-redundant professional keywords based
on both the input text and the teacher’s pseudo-
labels.

By integrating these two steps, the teacher model
provides candidate keywords for each input text,
though some noise and redundancy may be present.
The student model, through instruction tuning,
learns to assess and filter the teacher’s output, pro-
ducing a refined list of professional keywords from



everyday language. This design not only leverages
the generative power of large models but also en-
ables the small model to strike a balance between
efficiency and robustness through instruction tun-
ing, offering a novel approach to handling imbal-
anced and complex textual data.

o the Potala Palace
o the Imperial Palace
e the Old Summer Palace

Figure 4: 3D Semantic Space

4.4 3D Semantic Space Generation Module

To illustrate the mapping relationship between ev-
eryday language and domain-specific vocabulary,
we employ a keyword mapping and visualization
approach using a pretrained model and dimension-
ality reduction techniques. First, to construct a
stable vector space for keyword mapping, we ob-
tain the domain-specific dictionary from the dic-
tionary generation module and compute the vec-
tor representation of each keyword using the pre-
trained model ’shibing624/text2vec-base-chinese-
paraphrase’ (Xu, 2023). Since the output vectors
from this model have high dimensionality, we ap-
ply Principal Component Analysis (PCA) to reduce
them to three dimensions, forming a base 3D vector
space.

After constructing the base vector space, we
define a keyword mapping function. This func-
tion obtains the vector representation of any given
keyword using the same pretrained model, then
projects it into the 3D space using the trained PCA
model. Formally, given a keyword w with its origi-
nal vector representation E,,, its 3D mapped vector
is expressed as:

vec(w) = PCA(Ey)

Next, we perform frequency statistics on sam-
pled keywords and select the Top-N most frequent
ones (e.g., N = 100, 200, 500). For each of these
selected keywords, we apply the mapping function
to convert them into 3D vectors while recording
their keyword labels, frequencies, and 3D coordi-
nates.

To visualize the spatial distribution of Top-N
keywords from different CSV files, we use Mat-
plotlib’s 3D plotting tools. By setting multiple
viewing angles within the same plot and using dif-
ferent colors to distinguish different data sources,
we effectively illustrate how semantic relationships
between everyday language and domain-specific
vocabulary are distributed in the reduced 3D space.

5 Results and Discussion

5.1 Analysis of Domain-Specific Dictionary
Generation

In the comparison of the three domain-specific dic-
tionaries, after removing duplicate extracted terms,
the statistical results show that HanLP extracted
5,024 terms, LLLM extracted 3,496 terms, and the
final merged and expert-processed dictionary con-
tained 6,904 terms.

Method Vocabulary Size
HanLP 5,024
LLM 3,496
Domain-Specific Dictionary 6,904

Table 2: Vocabulary size comparison of different meth-
ods. The vocabulary size represents the number of pro-
fessional terms extracted by each method. The best
result is shown in bold.

From these results, we observe the following: (1)
Using only traditional keyword extraction methods
(HanLP) can capture some domain-specific infor-
mation, but due to predefined rules and algorith-
mic limitations, the number of extracted candidate
terms is relatively small, making it difficult to com-
prehensively cover domain knowledge. (2) The
LLM-based extraction method benefits from large-
scale pretraining and demonstrates an advantage
in keyword generation. However, the number of
terms it generates remains relatively low, suggest-
ing potential limitations in the model’s coverage
of specialized domain knowledge. (3) The merged
approach with expert refinement significantly in-
creases the size of the domain-specific dictionary,
indicating that combining traditional methods with



Task Acc F1 Recall
Evaluation Metric Accu.t F1 Scoret Recallt
Llama-3.1-8B-Instruct 0.140 0.135 0.149
Qwen2.5-7B-Instruct 0.482 0.410 0.374
Qwen2.5-0.5B-Instruct 0.225 0.065 0.047
Qwen2.5-0.5B-Instruct+tune 0.096 0.071 0.078
Qwen2.5-0.5B-Instruct+teacher0.5B  0.364 0.301 0.272
GDCF 0.390 0.264 0.210

Table 3: Results of LLM performance

deep learning-based generation models, along with
expert validation, can leverage the strengths of each
approach to produce a more comprehensive and
accurate dictionary. These findings validate the
effectiveness of the hybrid method in improving
both the coverage and quality of domain-specific
dictionaries.

5.2 Ablation Study on the Large Model
Fine-Tuning Module

We conduct ablation experiments using Llama-3.1-
8B-Instruct (Dubey et al., 2024), Qwen2.5-7B-
Instruct (Team, 2024), and Qwen2.5-0.5B-Instruct
(Team, 2024), where Qwen2.5-7B-Instruct and
Qwen2.5-0.5B-Instruct serve as teacher models,
and Qwen2.5-0.5B-Instruct is used as the student
model. The 100 annotated samples from dataset
C are split into a 70:30 ratio for training and test-
ing, and experiments are conducted in a few-shot
setting. The results are shown in Table 3.

(1) Since the dataset consists of Chinese text,
models are tested for their Chinese language com-
prehension ability. Llama-3.1-8B-Instruct per-
forms relatively weaker, likely due to its inferior
Chinese understanding.

(2) Qwen2.5-7B-Instruct, when used as the
teacher LLM, achieves the best keyword generation
performance, with an F1 score of 0.410. This indi-
cates that LLMs, with their large-scale parameters
and extensive knowledge, have a natural advan-
tage in understanding text and extracting domain-
specific information related to cultural heritage.

(3) When Qwen2.5-0.5B-Instruct is fine-tuned
without a teacher model, accuracy (ACC) drops sig-
nificantly to 0.096. This decline is mainly due to
the small parameter size (0.5B), where fine-tuning
in the Instruct setting makes it difficult for the
model to properly understand and generate accurate
outputs.

(4) The introduction of a teacher model, whether

7B or 0.5B, significantly improves the performance
of instruction fine-tuning. When using 7B as the
teacher model, the student model does not surpass
the teacher model but achieves performance close
to it, despite being constrained by the 0.5B param-
eter bottleneck.

(5) When using 0.5B as the teacher model, it
avoids the performance degradation caused by re-
lying solely on instruction fine-tuning while also
benefiting from training two models of the same
size together, leading to better results than the orig-
inal model.

This ablation study strongly validates that in-
corporating a teacher model enhances the model’s
ability to understand instruction semantics during
fine-tuning and mitigates interpretation biases that
arise from small parameter sizes.

5.3 Cultural Cognition Interpretability
Analysis in Semantic Space

the Potala Palace matched
the 01d Summer Palace matched

the Imperial Palace matched

the Potala Palace predictions

the Imperial Palace predictions

the 01d Summer Palace predictions .\

>rroce

Figure 5: 3D Vector Space Distribution of Keywords
from Different Cultural Heritage Categories

Figure 5 illustrates the center point distributions



of keywords from three categories (Potala Palace,
Old Summer Palace, and the Imperial Palace) in a
3D vector space. The circular markers (matched)
represent the center points of professional terms ob-
tained through semantic similarity transformation
from keywords extracted from everyday language
using traditional methods. The triangular mark-
ers (predictions) indicate the center points of pro-
fessional terms fully generated by GDCF. Dashed
lines connect the two center points of the same
category. Table 4 presents the Euclidean distances
between these two sets of center points for each cat-
egory. It can be observed that the predictions group
center points are farther from the origin, suggest-
ing that the GDCF-generated dictionary is more
diverse and semantically richer.

Distance Value
Potala Palace - Imperial Palace 0.5075
Potala Palace - Old Summer Palace 0.3645
Imperial Palace - Old Summer Palace  0.2077

Table 4: Distance Between Cultural Heritage Sites

From the Euclidean distances in Table 4, we
see that the variation between center points differs
across categories. For example, if the Potala Palace
category shows a larger distance between matched
and predictions, this may indicate that the seman-
tic distribution of predicted keywords significantly
deviates from the originally matched keyword dis-
tribution. In contrast, if the Old Summer Palace
and Imperial Palace categories show smaller dif-
ferences, it suggests that the predicted results for
these two categories are more aligned with their
original matches in semantic space.

This spatial distribution characteristic reveals a
dual cultural cognition mechanism: (1) The histori-
cal narrative coupling effect causes the shared Qing
Dynasty imperial architectural symbols to exert a
strong semantic gravitational pull in the word vec-
tor space; (2) The political-religious hybrid func-
tion of the Potala Palace leads to cross-cultural se-
mantic shifts of Tibetan architectural terms within
Weibo corpora, which predominantly operate in a
Chinese-language context.

6 Conclusion

Using UNESCO cultural heritage experts and their
reports as data sources, GDCF extracts semantic
features of words within the domain context, con-
structing a semantic space that accurately repre-

sents cultural heritage terminology.

Traditional dictionaries are compiled by linguists
who define word meanings through sentence-based
explanations, clarifying their actual meaning and
position within the language system. However, this
approach may be influenced by expert subjectiv-
ity, potentially leading to interpretations that de-
viate from real-world usage. In contrast, GDCF
leverages fine-tuned large models to transform and
define semantic attributes in the most objective
manner. For instance, terms like "Acropolis of
Athens" or "Baroque abbatial churches" are repre-
sented as vectors in the semantic space, directly
extracted from original texts authored by cultural
heritage experts. This method preserves word us-
age, definitions, and contextual semantics, ensuring
faithfulness to expert discourse.

Moreover, since our model determines the spa-
tial position of words and phrases through dimen-
sionality reduction, we can identify the closest
translation equivalents in a cross-lingual setting.
This effectively addresses the longstanding chal-
lenge of accurately translating domain-specific dic-
tionaries across languages.

More importantly, the model is not limited to the
cultural heritage domain but exhibits broad cross-
domain applicability. By integrating an advanced
teacher-student model with instruction tuning, it
facilitates the conversion of everyday language
into professional vocabulary across different fields.
This provides an efficient solution for rapidly edu-
cating both Al models and humans in specialized
linguistic paradigms across various disciplines.

Limitations

The effectiveness of GDCF relies on UNESCO re-
ports and domain expert texts, which may not fully
cover cultural heritage knowledge specific to cer-
tain regions or communities. In areas with limited
expert literature, the model’s performance may be
constrained. The teacher-student model with in-
struction tuning reduces dependence on large-scale
annotated data, but it still requires a certain amount
of high-quality labeled data, which remains a chal-
lenge in extremely low-resource scenarios.
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Figure 6: Top 100 Keywords in 3D Semantic Space from Different Angles

10



e the Potala Palace

e the Imperial Palace

e the Old Summer Palace

10.0

Figure 7: Top 500 Generated Keywords in 3D Semantic Space
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Figure 8: Comparative Analysis of Center Point Distributions for Potala Palace, Old Summer Palace, and the
Imperial Palace in 3D Semantic Space
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