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Abstract
Abstract visual reasoning (AVR) enables humans
to quickly discover and generalize abstract rules
to new scenarios. Designing intelligent systems
with human-like AVR abilities has been a long-
standing topic in the artificial intelligence commu-
nity. Deep AVR solvers have recently achieved re-
markable success in various AVR tasks. However,
they usually use task-specific designs or parame-
ters in different tasks. In such a paradigm, solv-
ing new tasks often means retraining the model,
and sometimes retuning the model architectures,
which increases the cost of solving AVR problems.
In contrast to task-specific approaches, this paper
proposes a novel Unified Conditional Generative
Solver (UCGS), aiming to address multiple AVR
tasks in a unified framework. First, we prove that
some well-known AVR tasks can be reformulated
as the problem of estimating the predictability of
target images in problem panels. Then, we illus-
trate that, under the proposed framework, training
one conditional generative model can solve vari-
ous AVR tasks. The experiments show that with a
single round of multi-task training, UCGS demon-
strates abstract reasoning ability across various
AVR tasks. Especially, UCGS exhibits the ability
of zero-shot reasoning, enabling it to perform ab-
stract reasoning on problems from unseen AVR
tasks in the testing phase.

1. Introduction
Abstract visual reasoning (AVR) is a fundamental cognitive
ability that enables humans to identify visual concepts, infer
underlying abstract rules, and generalize the rules to new
scenarios effectively (Cattell, 1963; Zhuo & Kankanhalli,
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2021; Małkiński & Mańdziuk, 2022a). This ability is pivotal
in cognitive activities like decision-making, visual analogy
and spatial reasoning (Gray & Thompson, 2004; McCloskey,
1983). Many psychological tests are designed to assess the
AVR ability of humans, which often requires the subject to
discover specific rules that connect different visual concepts
(Raven & Court, 1938; McMillen, 2007; Nie et al., 2020).
For example, Raven’s Progressive Matrix (RPM) (Raven
& Court, 1938) focuses on assessing generalization ability,
as the tests include unseen combinations of visual concepts
and rules, which is a classical intelligence quotient test.

Developing models that reveal human-like AVR ability re-
mains a significant challenge in artificial intelligence re-
search (Zheng et al., 2019; Chollet, 2019; Małkiński &
Mańdziuk, 2022b). Many AVR benchmarks have been pro-
posed to evaluate intelligent systems in a way that mirrors
human-like AVR ability (Barrett et al., 2018; Hill et al.,
2019; Zhang et al., 2019; Nie et al., 2020). These bench-
marks usually adopt the problem structure of traditional psy-
chological tests and provide programs to generate a large
number of problems automatically, e.g., the RAVEN dataset
generates RPM problems by combining predefined visual
concepts and abstract rules (Zhang et al., 2019). In recent
years, deep AVR solvers have achieved remarkable progress
on the proposed AVR benchmarks (Barrett et al., 2018; Zhuo
& Kankanhalli, 2021; Mondal et al., 2023). However, they
often rely on task-specific inductive biases of model archi-
tecture and hyperparameters, and solving different tasks
typically means training different instances of models. This
task-specific paradigm arouses interest in exploring a more
unified framework for AVR solvers (Webb et al., 2024).

AVR tasks take different structures of problem panels to as-
sess the subject’s ability to understand abstract rules. RPM-
style tasks (Barrett et al., 2018; Zhang et al., 2019) require
discovering abstract rules of a 3×3 image matrix and select-
ing answers from a candidate panel to complete the matrix
via analogy. Odd-one-out problems (McMillen, 2007) test
the ability to identify the image that violates the abstract
rules of a sequence. In addition, AVR tasks can be distin-
guished as generative tasks and selective tasks. Generative
tasks require the synthesizing or reconstruction of images
(Bar et al., 2022; Dedhia et al., 2023; Bai et al., 2023), while
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selective tasks provide predefined options for the selection
of answers (Barrett et al., 2018; Hill et al., 2019; Nie et al.,
2020). These AVR tasks have different structures and goals,
posing challenges in proposing a unified problem-solving
framework.

Conditional generative models can discover the latent struc-
ture of observations, capture complex conditional dependen-
cies between latent factors, and generate outputs conditioned
on specific input variables or context (Mirza, 2014; Sohn
et al., 2015; Chen et al., 2016). This ability is beneficial
for AVR tasks that require understanding the abstract rules
underlying the problem panels, where the latent structures
can represent the abstract rules like shape transformations
and spatial arrangements. Conditional generative models
offer a powerful tool for solving AVR problems. Previous
works have shown that both generative and selective AVR
tasks can be tackled via conditional generation (Pekar et al.,
2020; Shi et al., 2021; 2024). The solvers can generate the
missing part of the panel and then compare it with the can-
didates to select the correct answer of an RPM test, which
sheds light on unifying selective and generative AVR tasks.

We propose a novel framework, Unified Conditional Gener-
ative Solver (UCGS), to address multiple AVR tasks within
a unified framework. UCGS frames various AVR tasks
as a conditional generation process, which does not need
repeated model training or task-specific hyperparameters
when solving different AVR tasks. We prove that some
classical AVR tasks, including RPM (Zhang et al., 2019;
Barrett et al., 2018), Visual Analogy Problem (VAP) (Hill
et al., 2019), Odd-One-Out (O3) (Mańdziuk & Żychowski,
2019) and Synthetic Visual Reasoning Task (SVRT) (Fleuret
et al., 2011), can be solved by estimating the probability of
generating the target images conditioned on the remaining
images within a problem panel. We design a conditional
generative network to instantiate the proposed framework,
which can infer visual concepts from image patches and
conduct abstract visual reasoning in terms of the concepts.
The experiments demonstrate that UCGS exhibits not only
the abstract reasoning ability on in-distribution tasks, but
also the zero-shot reasoning ability to handle unseen tasks
during the test phase.

2. Related Work
Abstract Visual Reasoning. Abstract visual reasoning
(AVR) tasks are taken to measure the ability of abstract rule
learning and problem-solving through analogical reasoning.
Some early models (Lovett et al., 2010; Little et al., 2012)
relied on artificially designed features to perform abstract
visual reasoning. In recent years, a large number of models
based on deep features have emerged (Barrett et al., 2018;
Wang et al., 2020; Yun et al., 2020; Zhuo & Kankanhalli,
2021; Depeweg et al., 2024). Different abstract features,

such as hierarchical features (Zheng et al., 2019; Benny
et al., 2021; Hu et al., 2021), disentangled representations
(Van Steenkiste et al., 2019; Wu et al., 2020), and object-
centric representations (Mondal et al., 2023; Webb et al.,
2024), have been introduced as cues for abstract reasoning.
Some approaches solve RPMs based on neuro-symbolic
architectures (Hersche et al., 2023). On the other hand, some
approaches focus on solving generative AVR tasks (Pekar
et al., 2020; Shi et al., 2021; Zhang et al., 2021a;b; Shi
et al., 2023; 2024). They directly complete problem panels
from the given contexts and select answers by comparing
the generated results with candidates. Inspired by language-
prompted LLMs (Brown et al., 2020), visual in-context
learners have been proposed to solve analogical reasoning
problems in visual data (Bar et al., 2022; Dedhia et al.,
2023; Bai et al., 2023; Zhao et al., 2023). Compared with
the previous solvers, UCGS focuses on solving AVR tasks
in a unified conditional generation framework.

Deep Conditional Generative Models. Deep generative
models learn distributions of entire datasets, then they can
generate novel samples that do not appear in the training
stage (Kingma & Welling, 2013; Goodfellow et al., 2014;
Du & Mordatch, 2019; Rombach et al., 2022). Deep condi-
tional generative models (DCGMs) estimate the conditional
probability distribution of the output given a certain input
(Mirza, 2014; Sohn et al., 2015; Chen et al., 2016). Con-
ditional Generative Adversarial Network (CGAN) (Mirza,
2014) is a classical type of DCGM, where a generator pro-
duces data conditioned on the input, and a discriminator dis-
tinguishes between the real and generated data. Conditional
Variational Autoencoder (CVAE) (Sohn et al., 2015) intro-
duces conditional inputs to conventional VAE (Kingma &
Welling, 2013), where conditional inputs are encoded with
input data into a latent space, and the latent representation is
decoded to generate new samples in terms of the conditional
inputs. Conditional generative models reveal a deep under-
standing of complex structures behind conditional inputs
and data. Some DCGMs discover the underlying structure
behind complex data by predicting the missing part of the
data from the given context. Masked autoencoder (MAE)
(He et al., 2022) is given an input where some portions are
masked, and the task is to generate the missing pieces. The
NP family (Garnelo et al., 2018; Kim et al., 2019; Dutordoir
et al., 2023) can simulate a continuous function based on
given points. In this paper, UCGS solves different AVR
tasks with a unified conditional generative model, which
extends the application of DCGMs in learning underlying
structures from data.

3. Methods
In this section, we illustrate how to solve commonly used
AVR tasks through conditional generation and leverage a
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(a) Raven’s Progressive Matrix (RPM) (b) Visual Analogy
Problem (VAP)

(c) Odd-One-Out
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(d) Synthetic Visual Reasoning 
Task (SVRT)

Figure 1: An illustration of abstract visual reasoning (AVR) tasks. This paper involves four AVR tasks, despite their
differences in the predefined visual concepts (e.g., object shape and color) and abstract rules (e.g., progressive change and
logical rule), all assess the ability to infer abstract rules from visual stimuli. (a) Raven’s Progressive Matrices (RPMs)
are visual puzzles where participants are given a problem panel with one missing piece. The task is to select the correct
image (e.g., the 6th candidate image in the example) from the candidate panel that completes the problem panel. (b) Visual
Analogy Problems (VAPs) are similar to RPMs. The participant must choose candidate images that complete the analogy
and fit the missing piece of problem panels. (c) In an Odd-One-Out (O3) problem, solvers are given a problem panel to find
the odd image that breaks the abstract rule (e.g., the 2nd image in the example panel). (d) A problem of Synthetic Visual
Reasoning Task (SVRT) consists of two problem panels following different abstract rules. The task is to deduce the rule that
differentiates the problem panels, and solvers are required to categorize the query image into the left or right panel.

unified conditional generative network for abstract visual
reasoning. We then introduce an instance of UCGS, where
the conditional generative network can generate missing
panels from context across various tasks.

3.1. Unified Conditional Generative Solver

As shown in Figure 1, the AVR tasks define different visual
concepts and the abstract rules on the concepts, which test
the understanding of abstract rules in different ways of ob-
taining answers. We will introduce how to solve different
AVR tasks in a unified way as follows.

Definition 3.1. Ip = {Ip
i |i = 1, . . . , N} is a problem panel

where Ip
i is the i-th panel image of Ip. The correctness of

Ip is the joint probability p(Ip). Ip is rule-compliant if
p(Ip) is large, and rule-violating if p(Ip) → 0.

By modeling the correctness of a problem panel as a joint
probability over panel images, we can define the conditional
probability of predicting a specific image in the panel.

Definition 3.2. For panel Ip, the predictability p(x|Ip
¬i)

indicates the probability that the i-th panel image is x given
the context Ip

¬i, where Ip
¬i = {Ip

j}j ̸=i.

Estimating and sampling results from the predictability can
solve generative RPM problems, since the problems require
solvers to generate answers from the context (Pekar et al.,
2020). But the predictability cannot directly solve selective
RPM problems where the solvers must pick answers from

candidate panels (Zhang et al., 2019). Let Ip
i→x be the

panel created by replacing the i-th image of the panel Ip

to x. Using Definitions 3.1 and 3.2, UCGS can solve the
following selective tasks by estimating the predictability.

Proposition 3.3. Given the problem panel Ip and candidate
panel Is of an RPM test or VAP, where N = |Ip|, the
correct answer x⋆ = argmax x∈Is p(x|Ip

¬N ).

Proof. The context panel Ip
¬N is created by removing the

last image from Ip. The modified panels {Ip
N→x|x ∈ Is}

are created by placing the candidate images to the removed
position. The correctness of Ip

N→x is

p(Ip
N→x) = p(x|Ip

¬N )p(Ip
¬N ) ∝ p(x|Ip

¬N ). (1)

The correct answer x⋆ make up the modified panel with the
largest correctness, given by argmax x∈Is p(x|Ip

¬N ).

Proposition 3.4. Given the panel Ip of an O3 problem, the
index of the odd image i⋆ = argmin i=1,··· ,N p(Ip

i |I
p
¬i),

where N = |Ip|.

Proof. We create context panels {Ip
¬i|i = 1, · · · , N} by

removing each image from Ip. The correctness of Ip
¬i is

p(Ip
¬i) =

p(Ip)

p(Ip
i |I

p
¬i)

∝ 1

p(Ip
i |I

p
¬i)

. (2)

If Ip
i is the odd image, p(Ip

¬i) will be large since the rule-
breaking image is removed, otherwise Ip

¬i is still rule-
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violating and p(Ip
¬i) → 0. Hence the index of the odd

image is i⋆ = argmin i=1,··· ,N p(Ip
i |I

p
¬i).

Proposition 3.5. Given a left problem panel I l, a right
problem panel Ir and a query panel Iq of SVRT, where
N = |I l| = |Ir|, the query image x ∈ Iq belongs to the
panel I⋆ = argmax Ip∈{Il,Ir} p(x|I

p).

Proof. By appending the query image x ∈ Iq to the end of
the problem panels I l and Ir, we get the extended panels
I l
+x and Ir

+x . The correctness of the extended panels is

p(I l
+x) = p(x|I l)p(I l),

p(Ir
+x) = p(x|Ir)p(Ir).

(3)

If x belongs to Ip, the extended panel Ip
+x remains rule-

compliant because the panel rule is not changed. Therefore,
Ip
+x has the largest correctness. Consider that I l and Ir are

sampled from the dataset D uniformly without overlap, in
Equation 3 we have p(I l) = p(Ir) = 1/|D|. Therefore, x
belongs to the panel I⋆ = argmax Ip∈{Il,Ir} p(x|I

p).

Propositions 3.3, 3.4, and 3.5 demonstrate that although the
answers to AVR problems have different forms, they can
be converted into the estimation of predictability on panel
images. In this way, answer selection and generation are uni-
fied. If the i-th image of an RPM problem panel is missing,
we can generate answers by sampling from p(x|Ip

¬i), as
well as select answers by filling in the candidate x and com-
puting the panel correctness p(Ip

i→x) = p(x|Ip
¬i)p(I

p
¬i).

With a unified predictability estimator, UCGS can solve
different AVR problems after a round of multi-task train-
ing, preventing repeated training or tuning of AVR solvers.
The core of UCGS is a shared predictability estimator and
training-free judgment functions. The predictability estima-
tor is a conditional generative network trained on different
AVR tasks to estimate the predictability of panel images.
As shown in Propositions 3.3, 3.4, and 3.5, the judgment
functions transform outputs of the predictability estimator to
obtain the final results, which are task-specific. In the next
sections, we provide an instance of UCGS and introduce the
architecture of the conditional generative network in detail.

3.2. Instantiation of UCGS

We instantiate UCGS with a Transformer-based conditional
generative network, called UCGS-T. Figure 2a illustrates the
architecture of UCGS-T via an RPM problem. The problem
panel of an RPM contains N = 9 images, where we leave
one as the prediction target and the others as the context.
We denote the index of the target image as t, and the indices
of the context images as a set C. The objective of UCGS-T
is to estimate the predictability p(Ip

t |I
p
C). UCGS-T consists

of five modules, which will be introduced as follows.

3.2.1. IMAGE ENCODER AND DECODER

Figure 2b depicts the architecture of the image encoder and
decoder. UCGS-T learns patch representations of the in-
put image by mapping continuous representations into a
finite set of discrete codes, which is then decoded back into
the original data space (Van Den Oord et al., 2017; Razavi
et al., 2019). The image encoder extracts a feature map
with M visual features from Ip

i using a CNN-based neural
network, which are projected to the nearest vectors in a fixed-
size codebook e = (e1, e2, . . . , eL) to obtain M quantized
patch representations Zi = {Zi,1,Zi,2, . . . ,Zi,M}. The
image decoder takes the quantized patch representations
as input and reconstructs the image from the discrete rep-
resentation space. The input images are compressed into
quantized patch representations to learn more abstract and
general representations for reasoning. We can estimate the
predictability p(Ip

t |I
p
C) over the high-dimensional images

through p(Zt|ZC) on the patch representations to reduce
the complexity of reasoning.

3.2.2. PATCH ENCODER

The quantized patch representations focus on local regions
of the image, potentially corresponding to a specific geomet-
ric shape or pattern learned by the codebook. As shown in
Figure 2c, the patch encoder computes the relation between
the local patch representations to understand the role of each
patch in the overall image and extract the image-level visual
concepts (e.g., the number of entities in the image). We add
M learnable positional embeddings to the patches of each
panel image, which is projected to the high-dimensional rep-
resentations Z̃ by a linear network to encode spatial position
information, where Z̃i,m is the position-augmented repre-
sentations of Zi,m for i = 1, . . . , N and m = 1, . . . ,M .
Z̃i are passed through a Transformer decoder to capture
global dependencies and relationships between the patches.
In addition to the patch representations, we introduce class
tokens {CLS1, . . . ,CLSK} as learnable slots to aggregate
global information from the patches and obtain the visual
concepts Si = {Si,k|k = 1, . . . ,K} where

Si,k = TransformerDecoder(CLSk, Z̃i). (4)

The independent slots capture K visual concepts from the
patches. The Transformer decoder updates the slots based
on attention mechanisms, where the slots act as queries and
the patch representations Z̃i are keys and values. The final
output of the patch encoder is the visual concepts Si that
consider relationships across the patches of the entire image.

3.2.3. CONCEPT ENCODER

The concept encoder combines the visual concepts of the
context images (i.e., context concepts) SC = {Si|i ∈ C},
understanding the overall layout and abstract rule within the
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Figure 2: An Overview of UCGS-T. The image encoder extracts high-level features from each context panel image, which
are mapped into discrete context patch representations via vector quantization. The patch encoder captures image-level
visual concepts from context patches that encode local information. The panel encoder integrates visual concepts of the
context images, understanding abstract rules on the panel, and predicting visual concepts for the target image. The patch
decoder generates patch representations of the target image from the target visual concepts predicted by the panel encoder.
The image decoder reconstructs the target image from the target patches.

panel, and predicting the visual concepts of the target image
(i.e., target concepts) St. Figure 2d displays the architecture
of the concept encoder. First, the input context concepts
SC are reorganized into K groups {G1, . . . ,GK} in terms
of the concepts, where the k-th group Gk = {Si,k|i ∈ C}.
We group the context concepts since the abstract rules are
typically global and shared among different visual con-
cepts (Wu et al., 2020; Shi et al., 2024), e.g., the tuples
(Triangle, Square, Pentagon) and (Small, Middle, Large)
point to the same abstract rule Increase. To encode the
position of concepts within the group Gk, learnable po-
sitional embeddings are added to the visual concepts in
Gk, followed by a linear projection to produce the position-
augmented representations G̃k. Each group is processed
independently by a shared Transformer decoder to capture
concept-specific abstract rules and predict the target visual
concepts St = {St,k|k = 1, . . . ,K} where

St,k = TransformerDecoder(PEt, G̃k). (5)

PEt is a learnable target positional embedding. The output
St is used to reconstruct the patches of the target image.

3.2.4. PATCH DECODER

The patch decoder in Figure 2e generates target patches from
the target visual concepts St in an autoregressive manner
(Yan et al., 2021). The predictability is factorized by

p(Zt|ZC) =

M∏
m=1

p(Zt,m|Zt,<m,ZC) (6)

where a learnable token Zt,0 is used to indicate the begin-
ning of the autoregressive decoding process. The process
generates the patch sequence one step at a time, where
the m-th step depends on the previously generated patches
Zt,<m and the target concepts St computed from ZC . The
m-th step p(Zt,m|Zt,<m,ZC) is parameterized by a Trans-
former decoder with a prediction head:

Z̃t,<m = PostionalEmbedding (Zt,<m) ,

H = TransformerDecoder
(
Z̃t,<m,St

)
,

πm = Softmax (Linear (Hm)) ,

Zt,m = e [cm] , where cm ∼ Categorical (πm) .

(7)
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The output of the Transformer decoder is passed through a
prediction head, which maps the hidden representations into
the probabilities over the discrete codes in the codebook.
The final prediction of the target patch Zt,m is given by
querying the cm-th vector e[cm] in the codebook.

3.2.5. MODEL TRAINING

The total loss of the model consists of an image reconstruc-
tion loss Lrecon and a patch prediction loss Lpred. We adopt
the training objective of VQVAE (Van Den Oord et al.,
2017) as the image reconstruction loss to ensure that the in-
put image can be correctly reconstructed from its quantized
discrete representations. Lrecon is defined as the distance
between the input images and the reconstructions with a
commitment loss to ensure the continuous representations
are not too far from the codebook vectors. The patch pre-
diction loss evaluates the difference between the predicted
target patches (discrete codes) and the target patches en-
coded from the image encoder. Lpred is defined as

Lpred = −
M∑

m=1

log p(Zt,m|Zt,<m,ZC). (8)

By combining the image reconstruction loss and patch pre-
diction loss, the total loss is given as

Ltotal = Lpred + λ · Lrecon (9)

where λ is a hyperparameter that balances the losses. The
image encoder and decoder are pretrained before training
the remaining modules. We can set λ > 0 to finetune the
image encoder and decoder in the following training stage.
But we find that freezing their parameters is the best choice.

4. Experiments
In this section, we compare UCGS-T with ablation base-
lines, task-specific solvers and Multimodal LLMs (MLLMs)
on four classical AVR tasks shown in Figure 1. We also con-
duct qualitative experiments to illustrate the performance
of UCGS-T in answer generation tasks by visualizing the
generation results of RAVEN and PGM.

Datasets. The models are evaluated on RAVEN (Zhang
et al., 2019) and PGM (Barrett et al., 2018) to assess their
reasoning abilities on RPM tasks. The ability to reason over
O3 problems is tested using the G1-set dataset (Mańdziuk
& Żychowski, 2019). Performance on the remaining AVR
tasks is evaluated using the VAP (Hill et al., 2019) and
SVRT (Fleuret et al., 2011) datasets. RAVEN and PGM
are used for both training and testing, while G1-set, VAP,
and SVRT are used only during testing to assess the zero-
shot reasoning capabilities of the models. In addition to
the public datasets, we construct three new datasets, i.e.,
O3-ID, VAP-ID, and SVRT-ID, based on RAVEN. These

datasets are designed to evaluate the ability to reason on
unseen AVR tasks that share in-distribution visual concepts
and abstract rules with the training data. See Appendix A
for more details on the dataset construction.

Metric. We compute the selection accuracy, a standard met-
ric that evaluates model performance on AVR tasks (Barrett
et al., 2018). This metric is applicable to both selective
and generative solvers. For selective solvers, which predict
the index of answers, selection accuracy can be calculated
straightforwardly. Although candidate panels guarantee a
unique correct answer, many AVR problems admit multiple
valid solutions, making it challenging to enumerate all possi-
ble correct answers when evaluating generative solvers (Shi
et al., 2024). We consider the output of a generative solver
to be correct if it is the closest match to the ground truth
answer among the candidate panels. Accordingly, both se-
lective and generative solvers are evaluated using selection
accuracy in our experiments.

Ablation Baselines. We employ three backbone architec-
tures and two conditional generative solvers to construct a
set of ablation baselines. One of the backbones is the patch-
based backbone (Patch) used in UCGS-T. Given that recent
task-specific solvers (Mondal et al., 2023; Webb et al., 2024)
have demonstrated strong performance using object-centric
representations, we introduce an object-centric backbone
(OCL) (Locatello et al., 2020; Yuan et al., 2023), which
extracts slot representations to capture individual objects in
panel images. We also incorporate a monolithic backbone
(Mono) that encodes each panel image as a single represen-
tation. We introduce two baseline conditional generative
solvers for predictability estimation. The Transformer-based
solver (TF) maps context images to target images using a
Transformer encoder-decoder architecture. The ANP-based
solver (ANP) (Kim et al., 2019) models the distribution
over image panels using stochastic functions where context
images are used to infer the functions, and target images are
sampled from fixed locations of the functions. By combin-
ing the backbones and conditional generative solvers, we
construct six ablation baselines. Further details of UCGS-T
and these baselines are provided in Appendix B. UCGS-T
and the ablation baselines are trained under a multi-task
setting using all seven configurations of RAVEN and the
neutral configuration of PGM. The models are evaluated on
VAP, G1-set, and SVRT without retraining or fine-tuning to
assess zero-shot reasoning ability. We conduct qualitative
experiments by visualizing the target images generated by
the models to illustrate and compare the answer-generation
capabilities of UCGS-T and the ablation baselines.

Task-specific Solvers and MLLMs. Since UCGS-T is de-
signed to handle both selective and generative tasks, we
compare it against several task-specific solvers that sup-
port both answer selection and generation: PrAE (Zhang
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Table 1: Selection accuracy (%) on AVR tasks. ID tasks have only in-distribution visual concepts and abstract rules, while
OOD tasks contain out-of-distribution visual concepts and abstract rules. The problems of zero-shot tasks only appear in the
testing stage. The models marked with * are evaluated on subsets of the datasets.

ID TASKS ID AND ZERO-SHOT TASKS OOD AND ZERO-SHOT TASKS

MODEL RAVEN PGM O3-ID VAP-ID SVRT-ID G1-SET VAP SVRT

ANP + MONO 6.0 14.1 11.9 5.8 51.9 32.9 30.7 48.4
ANP + OCL 8.3 12.3 13.3 8.5 49.4 29.3 30.4 49.8
ANP + PATCH 10.5 12.3 11.7 10.9 49.8 30.6 30.9 51.0
TF + MONO 11.2 14.1 13.6 6.5 56.4 32.7 30.2 50.8
TF + OCL 7.4 12.3 12.7 7.1 49.6 33.7 30.6 50.0
TF + PATCH 21.0 15.6 35.8 15.5 71.8 30.5 27.1 51.4
UCGS-T 64.6 38.1 33.6 35.8 84.6 30.4 28.8 52.8

GPT-4O* 12.6 21.4 30.4 12.6 40.8 52.9 29.3 64.2
UCGS-T* 60.9 37.8 32.7 34.0 85.9 30.4 30.1 52.8

RANDOM GUESS 12.5 12.5 11.1 12.5 50.0 22.5 25.0 50.0

et al., 2021a), NVSA (Hersche et al., 2023), GCA (Pekar
et al., 2020), ALANS (Zhang et al., 2021b), and RAISE
(Shi et al., 2024). To ensure consistency with the experimen-
tal setup used for UCGS-T and the ablation baselines, all
task-specific solvers are trained and tested on each dataset
separately, without supervision from rule or attribute an-
notations. In addition, we include GPT-4o (Achiam et al.,
2023), a powerful general-purpose multimodal language
model (MLLM), as a reference point for comparison. Task-
specific prompts for GPT-4o are designed based on the prior
benchmark study (Cao et al., 2024).

4.1. Performance on AVR Tasks

The experiments evaluate model performance across four
AVR tasks. We categorize the evaluation settings into the
following three groups. In-Distribution (ID) Tasks include
problems that are seen during training, whose abstract rules
and visual concepts are also encountered during training.
In-Distribution Zero-Shot (ID-ZS) Tasks are not used during
training, but their abstract rules and visual concepts are
present in the training data. Out-of-Distribution Zero-Shot
(OOD-ZS) Tasks are the most challenging tasks, which are
entirely unseen during training and involve novel abstract
rules or visual concepts. We compare UCGS-T with both
ANP-based ablation baselines (ANP + Mono, ANP + OCL,
ANP + Patch) and Transformer-based baselines (TF + Mono,
TF + OCL, TF + Patch), as well as GPT-4o. For reference,
we also include a random guess baseline.

4.1.1. IN-DISTRIBUTION TASKS

UCGS-T and the baselines are trained on RAVEN and PGM,
whose test splits are treated as in-distribution (ID) tasks.
While the training and testing samples of RAVEN and PGM

are generated using the same sets of abstract rules and visual
concepts, the rules and concepts are composed differently
between the splits. The purpose of the ID tasks is to evaluate
the ability to reason over the abstract rules and visual con-
cepts that have been learned during training. As shown in
Table 1, Transformer-based baselines outperform their ANP-
based counterparts, with TF + Patch achieving the strongest
results among them. UCGS-T further achieves 64.6% ac-
curacy on RAVEN and 38.1% on PGM, demonstrating the
abstract reasoning capabilities on ID tasks. In contrast,
ANP-based baselines perform poorly, with accuracies close
to random guessing. This suggests that ANP-based models
struggle with compositional reasoning in AVR tasks such as
RAVEN and PGM.

4.1.2. IN-DISTRIBUTION ZERO-SHOT TASKS

We introduce ID-ZS tasks to evaluate the ability of models
to generalize their reasoning capabilities to novel tasks. In
this setting, all models are trained on RPM tasks and evalu-
ated on other types of AVR tasks. They are required to solve
problems from zero-shot tasks that contain in-distribution
abstract rules and visual concepts. We construct three ID-
ZS datasets, i.e., O3-ID, VAP-ID, and SVRT-ID, which fol-
low the forms of O3, VAP, and SVRT, respectively. These
datasets are built on the abstract rules and visual concepts of
RAVEN. Across all ID-ZS tasks, models exhibit a noticeable
drop in performance compared to ID tasks, highlighting the
difficulty of transferring learned reasoning abilities to new
task formats. Transformer-based baselines continue to out-
perform their ANP-based counterparts. UCGS-T achieves
the best results overall, with accuracies of 33.6% on O3-ID,
35.8% on VAP-ID, and 84.6% on SVRT-ID. These results
suggest that UCGS-T is more effective at generalizing rea-
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soning abilities from the training data to novel tasks. For
example, UCGS-T can perform abstract reasoning on VAPs
with six-image panels, despite having been trained solely
on RPMs with nine-image panels.

4.1.3. OUT-OF-DISTRIBUTION ZERO-SHOT TASKS

OOD-ZS tasks evaluate models on novel abstract rules and
visual concepts that are entirely unseen during training, with
test problems presented in forms that differ from those used
in the training phase. We use the G1-set, VAP, and SVRT
datasets to assess the out-of-distribution and zero-shot rea-
soning capabilities of models. As shown in Table 1, both
UCGS-T and the baselines experience a substantial drop in
performance compared to the ID tasks. On G1-set and VAP,
UCGS-T and the baselines achieve accuracies around 30%,
which is 5–8% higher than random guessing. This indi-
cates that the UCGS framework enables a certain degree of
generalization in abstract reasoning. UCGS-T slightly out-
performs the other baselines on SVRT, a task that requires
holistic pattern recognition based on spatial relationships
among randomly generated abstract shapes. This require-
ment is similar to image-level visual concept recognition
in datasets such as PGM and RAVEN (e.g., recognizing
the number of objects in a scene). The results on SVRT
suggest that UCGS-T may benefit from its panel encoder,
which is specifically designed to extract high-level image
abstractions. Furthermore, UCGS-T achieves a large accu-
racy improvement over the baselines in ID tasks, while the
performance gains are relatively smaller in OOD tasks. We
suppose that the unseen visual concepts and abstract rules
in OOD tasks lead to a significant drop in accuracy for both
UCGS-T and the baselines, thereby narrowing the perfor-
mance gap that arises from different model architectures.

4.1.4. COMPARISON WITH GPT-4O

Table 1 also presents the results of the general-purpose sys-
tem GPT-4o. We randomly sampled subsets from the test
sets of RAVEN, PGM, and VAP to evaluate both GPT-4o
and UCGS-T. The results show that UCGS-T outperforms
GPT-4o significantly on ID and ID-ZS tasks, while GPT-4o
achieves better performance on OOD-ZS tasks. This may be
attributed to GPT-4o’s ability to recognize unseen visual con-
cepts or abstract rules. However, this does not necessarily
imply that GPT-4o possesses stronger zero-shot reasoning
ability, as it is difficult to determine whether similar visual
concepts or rules were encountered during its training. In
contrast, UCGS-T is trained on a clearly defined and con-
trolled set of samples, making its evaluation setting more
transparent. Notably, GPT-4o shows weaker generalization
on ID-ZS tasks, suggesting that UCGS-T is more effective at
transferring its reasoning capabilities to novel task formats.
In this experiment, GPT-4o is provided with task-specific
prompts, following the setup in (Cao et al., 2024). We also

Table 2: Selection accuracy (%) of UCGS-T and the task-
specific solvers on RAVEN and PGM. The task-specific
solvers are trained and tested separately on each dataset.
They are trained without additional annotations to keep
consistent with the experimental setup of UCGS-T and base-
lines. PrAE and ALANS only define the architecture to
solve RAVEN. The codebase of NVSA is not applicable to
PGM, and the reported accuracy on PGM is obtained by
using additional annotation information. We only report
their performance on RAVEN here.

MODEL RAVEN PGM

PRAE (ZHANG ET AL., 2021A) 13.6 -
NVSA (HERSCHE ET AL., 2023) 11.5 -
GCA (PEKAR ET AL., 2020) 37.3 31.7
ALANS (ZHANG ET AL., 2021B) 50.1 -
RAISE (SHI ET AL., 2024) 54.5 14.0
UCGS-T 64.6 38.1

RANDOM GUESS 12.5 12.5

incorporate prior knowledge in the prompts, such as stat-
ing that an RPM problem is a 3 × 3 matrix, which is not
provided to UCGS-T during either training or testing. Prior
work (Cao et al., 2024) has shown that GPT-4o achieves
a notable performance boost (approximately 20%) when
provided with language descriptions of candidate images.
Although GPT-4o is a powerful general-purpose model, it
is not specifically designed for AVR tasks. Its performance
on RPM tasks may benefit from more advanced prompt
engineering and chain-of-thoughts design. Appendix B.4
provides the prompts used in this experiment.

4.1.5. COMPARISON WITH TASK-SPECIFIC SOLVERS

This experiment compares UCGS-T with classic generative
task-specific RPM solvers. Table 2 shows the experimental
results where UCGS-T outperforms the task-specific solvers
under the same experimental setup. The experimental re-
sults reveal that, without additional annotation information,
the performance of generative task-specific solvers drops
significantly. For example, PrAE achieves an accuracy of
65.0% with rule supervision during training (Zhang et al.,
2021a), but its accuracy drops to 13.6% in our experiment.
The reasoning process of GCA is specifically designed for
predicting the bottom-right image in an RPM matrix, which
limits its ability to generalize to other AVR tasks. Addi-
tionally, models like PrAE, ALANS, and NVSA rely on
predefined rules and explicit representations tailored to spe-
cific datasets, making it difficult for them to handle unseen
or undefined visual concepts and abstract rules. UCGS-T
does not rely on manually designed concepts or rules. It
performs an independent reasoning process over each visual
concept, inferring both the underlying visual concepts and
abstract rules without the need for additional annotations.
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(a) RAVEN

TF-Patch TF-OCL TF-Mono

ANP-MonoANP-OCLANP-Patch

Sample UCGS-T

TF-Patch TF-OCL TF-Mono

Sample

ANP-MonoANP-OCLANP-Patch

UCGS-T

(b) PGM

Figure 3: Comparison of generation results on RAVEN (left) and PGM (right). In the visualization result of each
model, the bottom-right position is the prediction and the remaining context images are ground truths. The figure illustrates
qualitative differences between models, with errors and artifacts appearing in some results predicted by baselines. Note that
there is noise in the problem panel, therefore the generated result of UCGS-T on PGM is correct though it is a little different
from the ground truth.

4.2. Answer Generation on RAVEN and PGM

Figure 3 visualizes the generated answers produced by
UCGS-T and the baselines. UCGS-T can generate rule-
compliant answers from the context on RAVEN and PGM.
While TF-Patch is capable of generating clear and reason-
able outputs on the PGM example, it fails to produce the
correct answer for the RAVEN problem. Other baselines
often generate images containing incorrect visual concepts.
For instance, the solutions predicted by TF-Mono and ANP-
Mono on RAVEN display scenes with four objects, whereas
the correct answer should contain three objects. Models
using the object-centric backbone generally struggle to gen-
erate high-quality outputs where the mismatch between pre-
dicted target slots and the true scene structure significantly
degrades the pixel reconstruction quality. We observe that
UCGS-T and TF-Patch are better at capturing diversity in
answer generation. Since RAVEN and PGM introduce a
degree of randomness or noise in data generation, UCGS-
T’s outputs may differ slightly from the ground truth but
still conform to the task rules. For example, in Figure 3a,
the answer should contain three objects, but their positions
within the panel may vary without affecting correctness.

5. Conclusion and Limitations
We propose UCGS, a unified AVR framework to solve multi-
ple AVR tasks using a single conditional generative network.
We instantiate UCGS with a model that infers visual con-
cepts from image patches to perform reasoning on the prob-
lem panel. Experimental results demonstrate that UCGS not
only exhibits abstract reasoning ability on ID tasks but also
zero-shot generalization, enabling it to solve unseen tasks
during testing, even when those tasks involve OOD visual
concepts and abstract rules.

Limitations. While UCGS-T outperforms the generative
task-specific RPM solvers, its accuracy is still lower than
state-of-the-art selective solvers. Reducing the performance
gap remains an important direction for future work. We
believe this paper provides a unified perspective for solv-
ing AVR tasks. This work does not address AVR tasks in-
volving real-world scenes. Real-world problems introduce
more complex visual concepts and abstract rules, which
may require more powerful image tokenizers and decoders.
Effectively discovering and utilizing such rules in realistic
settings remains a challenge for future investigation.
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A. Datasets
In this section, we will introduce the datasets used for model training and testing. Tables 3 and 4 introduce the training,
validation, and test splits of the datasets.

Table 3: The ID tasks used to train and evaluate the baselines, task-specific solvers and UCGS-T. #Samples = number
of samples per dataset, #Images = number of images per problem, #Candidates = number of candidate per problem.

Dataset RAVEN PGM

Split Train Valid Test Train Valid Test

#Samples 42K 14K 14K 1.4M 5K 200K

#Images 9 9

#Candidates 8 8

Image Size 128×128 128×128

Table 4: The ID-ZS and OOD-ZS tasks used to evaluate the baselines and UCGS-T. #Samples = number of samples per
dataset, #Images = number of images per problem, #Candidates = number of candidate per problem.

Dataset G1-set VAP SVRT O3-ID VAP-ID SVRT-ID

Split Test Test Test Test Test Test

#Samples 1K 200K 253 14K 14K 14K

#Images 4∼5 6 8 5 6 8

#Candidates NA 4 2 NA 8 2

Image Size 128×128 128×128 128×128 128×128 128×128 128×128

Table 5: The subsets used to evaluate GPT-4o and UCGS-T. The datasets noted with * are subsets sampled from the
corresponding complete datasets. #Samples = number of samples per dataset, #Images = number of images per problem,
#Candidates = number of candidate per problem.

Dataset RAVEN* PGM* G1-set VAP* SVRT O3-ID VAP-ID SVRT-ID

Split Test Test Test Test Test Test Test Test

#Samples 700 1K 1K 1K 253 700 700 700

#Images 9 9 4∼5 6 8 5 6 8

#Candidates 8 8 NA 4 2 NA 8 2

Image Size 128×128 128×128 128×128 128×128 128×128 128×128 128×128 128×128

A.1. ID Tasks

RAVEN (Zhang et al., 2019). The RAVEN dataset is inspired by the widely used RPM tests. RAVEN provides a structured
and systematically generated set of problems with clearly defined rules and visual concepts. Each RAVEN problem consists
of a nine-image matrix (3× 3 grid) where the bottom-right image is removed. The task is to infer the missing image from a
set of candidate choices based on the underlying abstract rules. RAVEN contains seven configurations, each containing
10K problems with a specific scene structure. The configurations incorporate five concepts that define problem variations:
Shape (e.g., triangle, square, pentagon, etc.), Size (relative scale of objects), Color (e.g., white, gray, black, etc.) and
Position/Number (spatial arrangement and number of objects within each image). Each problem follows one or more
concept-specific rules that govern changes in these visual concepts: Constant (the concept remains unchanged), Progression
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(the concept changes sequentially), Arithmetic (the concept follows a mathematical relationship) and Distribution-of-Three
(the concept has three permutable values). We use problems from all seven configurations of RAVEN to train and test the
models.

PGM (Barrett et al., 2018). The PGM dataset is a large-scale RPM-like dataset. The problem structure of PGM problems
is similar to RAVEN. A PGM problem also consists of a nine-image matrix, with the bottom-right image removed. The
models infer the missing image based on the abstract rules of the given context and choose the correct answer from eight
candidate images. The dataset contains 1.4M unique problems. The visual concepts are shape and line of the color, number,
position, size and type. The visual concepts follow systematically defined rules, which have five categories: progression,
XOR, OR, AND, and consistent union. The PGM dataset provides eight generalization regimes, and we use the neutral
regime for model training and evaluation.

A.2. ID-ZS Tasks

Replace

RAVEN Problem Panel

RAVEN Candidate Panel

Problem Panel

RAVEN Problem Panel

Problem PanelRAVEN Candidate Panel Candidate Panel

RAVEN Problem Panel

Remove
the first row

Left Panel

Right Panel

Split
Extract the bottom 
right images

Left Problem Panel

Right Problem Panel

Query Panel

(a) Construct O3-ID

(b) Construct VAP-ID

(c) Construct SVRT-ID

Figure 4: Construction of the ID tasks.

O3-ID. As shown in Figure 4a, we replace the bottom-right image of each 3 × 3 image panel with a randomly selected
distractor from the candidate panel to construct odd-one-out tests from RAVEN. This process transforms the bottom-right
image into a rule-breaking image by modifying a specific visual concept of the correct image. The constructed O3-ID
dataset shares the same visual concepts and abstract rules as RAVEN but follows the form of odd-one-out, where the models
must identify the image breaking the rule of the problem panel.
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VAP-ID. The construction of the VAP-ID task is relatively straightforward in Figure 4b. Unlike RAVEN, a VAP presents a
2× 3 image matrix as its problem panel, and the abstract rules can change different visual concepts in different rows. Here,
we construct VAP problems using RAVEN’s design of analogy. Specifically, we remove the final row and retain the first
two rows (i.e., the first six images) of each RAVEN problem panel to generate a problem of VAP-ID. In this way, VAP-ID
problems preserve the same in-distribution visual concepts and abstract rules as RAVEN, while adopting a different structure
of problem panels. These problems are designed to assess whether models can still parse the learned abstract rules and
complete the task when the structure of problem panels is changed.

SVRT-ID. In Figure 4c, we split each RAVEN problem panel into two parts to construct SVRT-style problems. The first
two rows form the left panel, and the last two rows form the right panel. We then extract the bottom-right image from both
panels to form the query panel, while the remaining images are kept as the corresponding problem panels. In this way of
construction, the left and right problem panels exhibit different abstract rules of the same type. Therefore, the association
between the query images and the problem panels is typically unambiguous.

A.3. OOD-ZS Tasks

G1-set (Mańdziuk & Żychowski, 2019). The G1-set dataset evaluates the AVR ability of models through odd-one-out
problems. Unlike RPMs, where the task is to infer missing images, an odd-one-out problem requires the models to recognize
the oddest figure in a panel based on relational differences in visual concepts. In G1-set, the odd figure can differ on
the visual concepts size, shape, shading, rotation, etc. To ensure the problems are well-defined, the G1-set problems are
constructed using a strict rule. In each problem with N figures, there is one subset of N − 1 figures that share a common
set of 1 ∼ 3 features. The remaining figure is the odd image that lacks this commonality. The difficulty of problems is
controlled by the number of figures and the number of shared features.

VAP (Hill et al., 2019). The VAP dataset evaluates the analogy-making ability of models. Inspired by previous human and
machine reasoning tasks like RPMs, VAP requires the models to identify abstract rules and apply them across different visual
concepts. Each problem panel consists of a source sequence and a target sequence. The source sequence has three images
where an abstract rule is instantiated. The target sequence has two images where the removed position must be completed
according to the rule of the source sequence. The candidate panel provides four candidate answer images, including one
correct answer and three distractors. The goal is to select the correct answer that best completes the target sequence by
analogy with the source sequence. The core challenge in VAP is to apply learned rules across different visual domains. VAP
defines four logical or mathematical abstract rules: XOR, OR, AND and progression. The abstract rules can be instantiated in
seven different visual concepts: line type, line color, shape type, shape color, shape size, shape quantity and shape position.
Each visual concept contains 10 possible values to increase the complexity of problems.

SVRT (Fleuret et al., 2011). The SVRT dataset evaluates the relational visual reasoning ability of models. Unlike
traditional image classification tasks that rely on texture, SVRT problems require holistic pattern recognition based on
spatial relationships among randomly generated abstract shapes. Each of the 23 problems in the dataset requires assigning a
query image to one of two panels, where the distinction is defined by an abstract rule governing the global arrangement of
parts. Importantly, these rules are not based on the appearance, location, or topology of individual parts but on how multiple
parts interact as a whole. The problems in SVRT involve relational concepts rather than low-level features. Some examples
of reasoning principles used in the dataset include: proximity (are two or more shapes close to each other), similarity (do
multiple shapes share the same size/form), symmetry (are the parts arranged symmetrically), topology (are certain shapes
enclosed within others), counting (does the image contain an even or odd number of objects) and identity relations (do two
objects have the same shape or orientation). For example, one problem might require distinguishing two identical shapes vs.
two different images.

B. Details of Models
B.1. UCGS-T

This section describes the architectures of learnable networks in UCGS-T and the choice of hyperparameters. We introduce
the networks in the order of image encoder, image decoder, patch encoder, panel encoder and patch decoder.

• Image Encoder:

– 4 × 4 Conv, stride 2, padding 1, 64, ReLU
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– 4 × 4 Conv, stride 2, padding 1, 64, ReLU
– 4 × 4 Conv, stride 2, padding 1, 128, ReLU
– 3 × 3 Conv, stride 1, padding 1, 128
– ResBlock, hidden 32, 128
– ResBlock, hidden 32, 128, ReLU
– 4 × 4 Conv, stride 2, padding 1, 64, ReLU
– 4 × 4 Conv, stride 2, padding 1, 128, ReLU
– 3 × 3 Conv, stride 1, padding 1, 128
– ResBlock, hidden 32, 128
– ResBlock, hidden 32, 128, ReLU
– 1 × 1 Conv, stride 1, 64

• Image Decoder:

– 3 × 3 Conv, stride 1, padding 1, 128, ReLU
– ResBlock, hidden 32, 128
– ResBlock, hidden 32, 128, ReLU
– 4 × 4 Deconv, stride 2, padding 1, 64, ReLU
– 4 × 4 Deconv, stride 2, padding 1, 128
– ResBlock, hidden 32, 128
– ResBlock, hidden 32, 128, ReLU
– 4 × 4 Deconv, stride 2, padding 1, 64, ReLU
– 4 × 4 Deconv, stride 2, padding 1, 64, ReLU
– 4 × 4 Deconv, stride 2, padding 1, 3

• Patch Encoder: The linear network to encode position information is

– LayerNorm, 128
– Fully Connected, 128, ReLU
– Fully Connected, 128

The patch encoder is a 12-layer Transformer decoder where the hidden size is 128 and the number of attention heads is 8.

• Panel Encoder: The panel encoder is a 12-layer Transformer decoder with the hidden size 128 and the number of
attention heads 8. We use a linear layer to convert the input keys and values to hidden vectors. Another linear layer is
introduced to convert the input queries to hidden vectors.

• Patch Decoder: The panel encoder is a 12-layer Transformer decoder with the hidden size 128 and the number of
attention heads 8. We use a linear layer to convert the input keys and values to hidden vectors. Another linear layer is
introduced to convert the input queries to hidden vectors. The output of the Transformer decoder is projected to the
index of the discrete vector in the codebook e by a linear layer without the bias parameter.

The image encoder and image decoder are first trained by setting the learning rate as 4× 10−4 and batch size as 64, referring
to the original configuration in VQVAE (Van Den Oord et al., 2017). Then we freeze the parameters of the image encoder
and image decoder, training the remaining part by setting the learning rate as 3× 10−4, batch size as 128. We monitor the
performance of UCGS-T on the validation set after each training epoch and save the checkpoint with the best validation
accuracy. The parameters are updated by Adam optimizer (Kingma & Ba, 2014).

B.2. Ablation Baselines

Besides the patch-based backbone of UCGS-T, we introduce another two backbones. The object-centric backbone can
distinguish objects in scenes and extract representations for individual objects. We adopt the encoder of STSN (Mondal et al.,
2023) as the object-centric backbone, and train the backbone using the official code1. The monolithic backbone encodes a

1https://github.com/Shanka123/STSN/tree/main
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scene into one representation. The encoder and decoder of the monolithic backbone consist of continuous convolutional
layers that map the image into a single representation of size 512. We call the slots and representations extracted from
the object-centric and monolithic backbones as patches for convenience. We introduce two types of baseline conditional
generative solvers: the Transformer-based solver (Vaswani et al., 2017) and the ANP-based solver (Kim et al., 2019). All
the parameters are updated by Adam optimizer (Kingma & Ba, 2014).

Transformer-based Solver (Vaswani et al., 2017). The Transformer-based conditional generative network inputs all context
patches Zc = {Zc

i |i = 1, . . . , Nc} to a Transformer encoder. The output of the Transformer decoder is the key and query
of a Transformer decoder, and the embeddings of the target positions {PEi|i = 1, . . . , Nt} are regarded as the query of the
Transformer decoder. The generative process is

hkv
i = fKV (Zc

i ) , i = 1, ..., Nc,

ĥ
kv

= TFEncoder
(
hkv

)
,

hq
i = fQ (PEi) , i = 1, . . . , Nt,

ĥ
q
= TFDecoder

(
hq, ĥ

kv
)
,

Zt
i = fO

(
ĥ
q

i

)
, i = 1, . . . , Nt.

(10)

In the generative process, fKV, fQ, and fO are single-layer feedforward networks. We set the hidden size of the Transformer
encoder and decoder as 512, the number of Transformer layers as 12, and the number of attention heads as 8.

ANP-based Solver (Kim et al., 2019). The ANP conditional generative baseline regards the mapping from context patches
to target patches as stochastic functions. The context slots are used to construct the context of stochastic functions, and
the model will sample a function from the posterior to map the embeddings of target positions into target patches. We set
the size of the global latent as 512, the number of attention layers as 12, and the number of attention heads as 8, and other
hyperparameters and the model architecture follow the 2D regression configuration in (Kim et al., 2019).

B.3. Task-specific Solvers

We use the official codes of PrAE2, NVSA3, GCA4, ALANS5 and RAISE6 in the experiments. All task-specific solvers
are trained without additional annotation information. To stabilize the training process, ALANS is trained based on the
pretrained checkpoint provided by the authors.

B.4. GPT-4o

We design task-specific prompts for GPT-4o, which are illustrated in Figure 5. In the prompts, we will provide the
information about the problem structures, e.g., the problem panel of PGM is a 3× 3 matrix and the problem panel of VAP is
a 2× 3 matrix. Each panel is regarded as an input image of GPT-4o.

B.5. Computational Resource

All the models are trained on a single 24GB NVIDIA GeForce RTX 4090 GPU and implemented using PyTorch (Paszke
et al., 2019).

C. Additional Experimental Results
C.1. Answer Generation

We provide additional examples of answer generation. Figures 6 and 7 show the generated results for various AVR problems
on the RAVEN and PGM datasets, respectively. Overall, the generated results on RAVEN are more accurate, corresponding

2https://github.com/WellyZhang/PrAE
3https://github.com/IBM/neuro-vector-symbolic-architectures-raven
4https://github.com/nivPekar/Generating-Correct-Answers-for-Progressive-Matrices-Intelligence-Tests
5https://github.com/WellyZhang/ALANS
6https://github.com/FudanVI/generative-abstract-reasoning/tree/main/raise
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to the selection accuracy, primarily because the problems of RAVEN contain less noise, which has been discussed in previous
works. UCGS-T achieves the best generation performance on both RAVEN and PGM. UCGS-T can handle the uncertainty
caused by noise effectively. For example, in the 4th sample of PGM, the shape and position of the generated object differ
from the ground truth. TF-Patch generates relatively accurate results on RAVEN, but it tends to produce rule-violating
answers on PGM. Overall, TF-Patch generates fewer artifacts in the images. Baselines using the object-centric backbone
(TF-OCL and ANP-OCL) struggle to generate clear images, often producing large black regions. Baselines based on the
monolithic backbone tend to produce samples that deviate significantly from the ground truths.
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Each task consists of a question image with
a 3 × 3 matrix. Eight of the nine resulting cells
contain an abstract shape, while one cell on the
bottom right-hand side of the matrix is empty.
Your task is to complete the matrix by finding
the missing shape among multiple possible
alternatives. One of the option images is the
correct answer The first image is the question
image The second image is the option images,
where the options are given from left to right,
and the index of the first image is 1. Please
output the index of the correct answer in the
following JSON format: {"Result": "Index"}

{"Result": "1"}

(a) RPM

Each task consists of a question image with
a 2 × 3 matrix. Five of the six resulting cells
contain an abstract shape, while one cell on the
bottom right-hand side of the matrix is empty.
Your task is to complete the matrix by finding
the missing shape among multiple possible
alternatives. One of the option images is the
correct answer. The first image is the question
image. The second image is the option images,
where the options are given from left to right,
and the index of the first image is 1. Please
output the index of the correct answer in the
following JSON format: {"Result": "Index"}

{"Result": "1"}

(b) VAP

The input is a question panel containing N
images, where each image contains an abstract
shape. Your task is to identify the single image
that does not share the common attribute,
pattern, category, or relationship exhibited by
the other N–1 images. The images are given
from left to right, and the index of the first
image is 1. Please output the index of the
answer in the following JSON format:
{"Result": "Index"}

{"Result": ”2"}

(c) Odd-one-out

Each task consists of two question panels
and a query panel. Each question panel
contains 8 images. Each image contains
simple geometric shapes. The two question
panels show sets of geometric shapes
organized according to different rules. The
query panel has two query images. Your task
is to determine which question panel’s rule
matches the rule displayed in the query image.
The input images are question panel 1,
question panel 2 and query panel in order.
The images in panels are given from left to
right, and the index of the first image is 1.
Please output which panel the query images
belong to. Using the following JSON format:
{"Query1": "Index", "Query2": "Index"}

{"Query1": ”1", 
"Query2": ”2"}

(d) SVRT

Figure 5: Task-specific prompts of GPT-4o.
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Figure 6: Comparison of generation results on RAVEN.
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Figure 7: Comparison of generation results on PGM.
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