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Abstract

Automated IC image segmentation for hardware assurance remains challenging due to
nanoscale complexity, low error tolerance, and the limited interpretability of current deep-
learning–based segmentation methods. Existing CNN-based error detectors analyze whole
images, making it difficult to localize specific faults. We introduce an explainable GNN-based
framework that converts each connected component of a segmentation mask into a feature-
annotated graph, enabling localized reasoning and component-level error classification. This
graph formulation allows the model to detect outlier components and precisely highlight
erroneous regions. Experiments across diverse IC layouts and imaging conditions show that
the method is robust, generalizable, and provides accurate, interpretable error detection.

1 Introduction

The rapid advancement of semiconductor technology has led to increasingly complex integrated circuit (IC)
designs with smaller feature sizes and higher integration density (Mack, 2011). Accurate segmentation of
IC structures from scanning electron microscope (SEM) images is essential for applications such as failure
analysis and hardware assurance (Huang & Jing, 2007; Cai et al., 2018; Wilson et al., 2022).

However, segmentation algorithms often produce errors that can significantly impact downstream function-
level analysis, which relies on accurately segmented circuit structures (Zhang et al., 2016). The complex
structures of modern ICs, including multi-level interconnects, varying material contrasts, and noise artifacts
during SEM imaging, make accurate segmentation difficult (see Fig. 1 for examples). Moreover, segmentation
errors, such as short and open circuits, can have subtle visual manifestations that are challenging to detect
using conventional image analysis techniques (Doudkin et al., 2005; Lee & Yoo, 2008; Cheng et al., 2018;
2019a;b; Hong et al., 2019; Wilson et al., 2020; Yu et al., 2022). Therefore, the detection of such segmentation
errors is a crucial task.

Correcting such errors typically requires manual visual inspection by experts. However, a single IC chip could
have millions of SEM images, making manual review impractical, posing a major bottleneck for large-scale
industrial deployment. In this paper, our main objective is to perform:

• Error Detection in (given) IC image segmentation.

In contrast to IC image segmentation, the problem of error detection is less studied. Zhang et al. (2023) has
proposed a CNN-based automatic error detection. Such an approach is holistic in nature, i.e., full images are
used for both training and testing. A decision is made on the feature representation of the whole image.

However, like the “spot the difference” game,1 segmentation errors in IC images are typically local in nature
(cf. Fig. 1), while holistic approaches offer limited explainability regarding which specific circuit elements
are erroneous. Furthermore, unlike natural images, the foreground components, such as metal lines (i.e.,
conductive metal pathways that interconnect transistors and other components on a chip), exhibit minimal
variation in appearance features like color, intensity, texture, or shape. Instead, they are primarily defined by

1https://en.wikipedia.org/wiki/Spot_the_difference
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(a) Input IC image (b) Ground-truth (c) Predicted mask

Figure 1: For the IC image (a), its ground-truth segmentation mask is (b). The segmentation task is
challenging due to noise and imaging artifacts, which may result in short or open circuits. Notably, the
predicted mask (cf. (c)) often appears visually coherent, even when errors are present, making them difficult
to detect through direct visual means. To address this, we propose a graph-based approach to identify local
topological anomalies.

their structural topology and spatial arrangement. This observation motivates a graph-based approach to
error detection, which naturally aligns with the structural characteristics of IC images.

For the high-level idea, we encode each (metal-line) component C in an IC image or a binary mask using a
graph G, which is a 1-dimensional skeleton of the component (see Fig. 2 and Fig. 4 below). The functionality
of the component C is fully determined by its connectivity, and hence captured by the topology of G. We
encode other information, such as position, thickness, and orientation, as features of G. Therefore, the error
detection problem can be re-interpreted as a graph classification or outlier detection problem, for which we
can employ Graph Neural Network (GNN) models (Defferrard et al., 2016; Kipf & Welling, 2017).

The proposed graph-based method offers several advantages. It provides inherent explainability by operating
on individual connected components, allowing precise localization of segmentation errors. When an error is
detected, the method can identify the specific nodes and edges in the graph that contribute to the classification
decision. Moreover, it demonstrates superior generalization capability by focusing on topological features
rather than image-level characteristics. This allows the method to handle datasets with varying image
complexity and different numbers of connected components without requiring retraining. The graph-based
representation is more robust (Hamilton et al., 2017) to variations in imaging conditions and noise artifacts
that commonly affect SEM images.

Our contributions can be summarized as follows:

• Our work offers a novel graph-based perspective on IC image analysis, potentially paving the way for
future research in this direction.

• We propose an efficient pipeline for converting a segmentation mask (for an IC) into a set of graphs.
We describe how the mask information can be encoded with node and edge features.

• We design a tailored GNN model for our specific task. In particular, it leverages edge features for
message passing in usual GNN models.

• We discuss why our approach is “explainable” and demonstrate that our approach can be applied in
conjunction with computer vision (CV) models for the detection task.

2 Preliminaries

2.1 Problem: error detection in IC image segmentation

Given an IC image I, a segmentation model generates a binary mask M of the foreground components, most
notably metal lines (see Fig. 4 left panel). For the error detection problem, we want to decide whether there
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is an error in the given binary mask M, without accessing I. Moreover, it is preferably able to pinpoint the
error component/location with minimal human intervention.

As we have highlighted in Section 1, unlike natural images, the correctness of structural topology is a more
important aspect for the functionality of an IC. Therefore, we propose to use graph-based methods, which
are well-suited for such a need.

2.2 Graph neural networks

As outlined in Section 1, we shall encode foreground components as graphs with features, which can be
further processed with graph neural networks (GNNs). In this subsection, we give a brief overview of GNNs.

Graph neural networks (GNNs) have emerged as powerful tools for analyzing structured data with complex
relationships and topological properties (Defferrard et al., 2016; Veličković et al., 2017), which is particularly
helpful for our setting. At the high level, many GNN models consist of layers of message-passing and feature
aggregation (Xu et al., 2019). More specifically, given a graph G = (V, E) and initial node features represented
by x

(0)
v for each v ∈ V , the node features can then be updated in the l-th layer as follows:

x(l)
v = σ

(
W (l)AGGR({x(l−1)

u | u ∈ N (v)})
)

(1)

where σ is an activation function, W (l) are the learnable weights in the l-th layer and N (v) is the neighbor
set of v. AGGR is a message aggregation function, such as a weighted average (Kipf & Welling, 2017) or a
weighted sum (Xu et al., 2019). The latter is the backbone of the graph isomorphism network (GIN). For a
graph-level task, one may retrieve a graph feature by applying a global pooling function (e.g., summation,
average) to the output node features of the last layer.

As a preview, in the context of IC images, graph edges approximate metal lines and possess inherent
attributes. To accommodate this, we refine the general formulation in (1) by integrating edge features, thereby
constructing a model specifically tailored to the IC image analysis task.

3 Methodology

3.1 Why the graph approach: an overview

In this subsection, we outline the motivation for adopting a graph-based approach and provide a high-level
overview of our model. To maintain clarity and avoid delving into technical concepts from metric geometry
(Bridson & Haefliger, 1999) and algebraic topology (Hatcher, 2001), we keep the discussion informal here. A
detailed and rigorous theoretical treatment is provided in Appendix A.

For a mask M of an IC image, a (metal-line) component C is usually regular in shape. Therefore, many of
its essential functionalities, such as connectivity, can be captured with an embedded 1-dimensional metrical
graph (i.e., a graph with a metric) G ⊂ C. To be more specific, for a small ϵ > 0, we call G an ϵ-approximation
of C if (a) points on C are within ϵ distance to points in G; (b) C can be continuously deformed to G without
breaking (see Fig. 2).

Therefore, if we approximate each component in ground-truth mask M by a metrical graph, we obtain an
arrangement of a collection of graphs GM = {Gi | 1 ≤ i ≤ c}, where c is the number of components of M.
Intuitively, consider a segmentation mask M′ and let GM′ = {G′

i | 1 ≤ i ≤ c′} be the collection of graphs
similarly derived from M. If M′ contains errors such as open or short circuits, then some graph G′

i ∈ GM′

does not have a comparable counterpart in GM (see Fig. 2), i.e., being outliers in reference to GM.

In other words, suppose M′ is the segmentation mask and M is the ground-truth mask M. A graph G′
i in

the graph collection GM′ is comparable to Gj in the ground-truth graph collection GM if the following holds:

(a) G′
i and Gj are located close to each other.

(b) G′
i and Gj are similar as both topological spaces and metric spaces.

3



Under review as submission to TMLR

M M′

G1 G2 G′
1

Figure 2: In these examples, we have graphs the components of the masks. If a short circuit occurs for the
segmentation mask M′, then the graph G′

1 is not comparable to any graph derived from M.

If we do not have a one-to-one correspondence between GM and GM′ of comparable graph pairs, then M′ is
likely to have errors such as open or short circuits. A more rigorous formulation and its proof are provided in
Appendix A.

The upshot is that if no errors (e.g., open or short circuits) are present, then the graphs in the mask M′ are
likely to have been “seen before”. If, across a dataset, graphs derived from ground-truth masks of different
images follow a similar distribution, error detection can then be framed as identifying “unseen graphs”,
effectively reducing the task to a two-class classification problem.

To encode the “comparability” conditions defined above, the following features of component graphs are
potentially useful for classification:

• locations (for positional proximity),

• lengths of edges and turning angles (for similarity in topology and geometric shape).

Additional visual information can be helpful, and more details are given in the next subsection.

Input Mask

Components Skeletons Graphs/features

GNN

Figure 3: An input mask is converted into graphs with features, which are fed into a GNN. The figure
summarizes the pipeline. An explicit example is given in Fig. 4.

The above discussions inspire us to adopt a graph-based strategy for error detection by framing the task
as a classification problem over feature-annotated graphs, each derived from a connected component of the
binary mask. It offers explainability by directly indicating anomalous components. This approach naturally
decomposes into two core modules: (a) image-to-graph conversion, and (b) graph classification via GNNs,
which we detail in the following subsections. A visual summary of our model pipeline is in Fig. 3.
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3.2 Image-to-graph conversion

Suppose I is an IC image of dimension H × W . Given a binary segmentation mask M ∈ {0, 1}H×W , we
extract individual connected components using 8-connectivity analysis. This means that two pixels p1, p2
are adjacent if p2 is one of the 8 neighbors (including 4 diagonal neighbors) of p1. They belong to the same
component if there is a sequential path of pixels from p1 to p2 consisting of adjacent pixels.

Each component C represents a distinct metal-line structure. We apply the morphological thinning operation
with the skeletonization algorithm in Zhang & Suen (1984), to reduce each component C to single-pixel-width
medial axis representations S while preserving topological connectivity (see Fig. 4).

However, each skeleton S usually consists of a large collection of pixels, which does not represent a proper
graph structure. To better represent the rectilinear nature of integrated circuit layouts, we convert the
skeletons S into a graph G = (V, E) with a small node set V as follows.

Figure 4: In the example, we are given the binary segmentation mask M (left panel). Skeletonization generates
the skeletons of the components (middle panel), each of which contains an excessive number of nodes. The
refinement greatly reduces the number of nodes and yields the final graph structures (red nodes, blue edges
in the right panel).

The node set V We categorize V into three sub-types:

• End points. These are pixels with exactly one neighbor belonging to the skeleton S (among 8-neighbors).
Intuitively, they represent the end points of the graph G.

• Junctions. These are pixels with three or more neighbors belonging to S. Intuitively, they are
connection points for different branches.

• Corners. These are pixels with two neighbors where the path direction makes a significant turn (see
details below). Intuitively, they represent the turning corner locations of the metal line (see Fig. 4
right panel).

More on corners. For a pixel p0 with two neighbors, let N be the g × g neighborhood grid of p0. The skeleton
S intersects the boundary of N at two pixels p1, p2. We compute the angle θ between the vectors −−→p0p1 and
−−→p0p2. The pixel p0 is a corner if θ is within 90◦ ± ∆◦. Large θ indicates that there is no directional change,
while a very small θ is unlikely, as meta-lines rarely reverse direction abruptly. Our implementation chooses
g = 5 and ∆ = 30.

The edge set E Edges are constructed by tracing paths between nodes in V using breadth-first search on
the skeleton S. This prevents the connection of far-away nodes and thus faithfully captures the topology of
the component.
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The edge construction skips many topologically unimportant pixels. To compensate, we encode their informa-
tion as features, which we discuss next.

Node and edge features For each node v ∈ V , we concatenate the following numerical information as a
node feature vector h(0)

v = [xv, yv, zv, θv]:

• (xv, yv) is the coordinate of the pixel location, normalized with the image dimension.

• zv is the one-hot encoding of node type: end point, junction, or corner.

• The angles between edges incident at v are recorded in a clockwise direction as a vector θv of
dimension d. Here, d is a prescribed upper bound on the number of incident edges (usually d = 4 is
sufficient). We use 0 padding if the number of incident edges at v is less than d.

As we have pointed out, it is crucial to use edge features to compensate for the information loss in graph
conversion. For an edge (vi, vj) ∈ E, its feature vector

eij = [ℓij , µij , νij , Mij , mij ] (2)

encodes geometric and width information as follows:

• ℓij is the Euclidean distance between the pixels for vi, vj .

• For a number k, we identify equally spaced k-points P = {p1, . . . , pk} on the edge (vi, vj). The width
of the binary mask perpendicular to (vi, vj) and passing through each p ∈ P is recorded as a vector
wij = (w1, . . . , wk) (see Fig. 5 for an example). Then µij , νij , Mij , mij are the average, variance, max
and min of wij , respectively.
Intuitively, these features encode visual information of the original binary mask.

Remark 1. The converted graphs may have small artifacts, e.g., small addendum edges, inherited from
skeletonization. However, as such an edge has a short length, its contribution during feature aggregation
almost vanished due to the continuous nature of the GNN. Therefore, such an artifact does not pose a serious
challenge.

In the next subsection, we describe how to incorporate node and edge features into a GNN for the error
detection task.

w1 w2 . . . wk

Figure 5: As shown in the example, the perpendicular width w1, . . . , wk of different locations on the skeleton
(red) are used to form edge features.

3.3 Edge-aware graph isomorphism network

As in the “overview” subsection, we cast the explainable error detection problem as a classification problem
of feature-annotated graphs with two types, either normal or abnormal. This is slightly different from the
1-class classification for anomaly detection (Zhao & Akoglu, 2021; Qiu et al., 2022), as we have both positive
and negative training samples.
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The GIN model is proven to be a powerful model for graph classification with node features. Our tailor-made
model is in the style of GIN. To highlight the incorporation of edge features, we call our model Edge-aware
Graph Isomorphism Network (EA-GIN).

An essential design requirement is to incorporate the edge features eij (2) into the model. A natural idea is
to convert them into attention weights for node feature aggregation in message passing. Therefore, the l-th
EA-GIN layer performs the following updates for the node vi:

a
(l)
ij = MLP(l)

1 (eij), (3)

â
(l)
ij = D−1/2

ii · a
(l)
ij · D−1/2

jj , (4)

h(l+1)
i = MLP(l+1)

2

(
(1 + ϵ(l))h(l)

i +
∑

j∈N (i)

â
(l)
ij h(l)

j

)
. (5)

In the model, we use two learnable multilayer perceptrons (with ReLU activation): MLP(l)
1 converts edge

features into attention weights a
(l)
ij , and MLP(l+1)

2 updates node representations. The parameter ϵ(l) is
learnable as in GIN. The weights a

(l)
ij are normalized by the diagonal entries of the degree matrix D of the

graph. As usual, the aggregation is performed in the 1-hop neighbor N (i) of vi.

For a graph-level downstream task, a READOUT function (e.g., summation or another pooling function (Ying
et al., 2018)) aggregates node features of the last layer {h(L)

i | vi ∈ V } to generate the graph representation:

hG = READOUT({h(L)
i | vi ∈ V }). (6)

In our case, hG is used for a two-class classification. It is passed through an MLP to generate two probability
weights for the classes. The predictions are further used in the standard cross-entropy loss or weighted
cross-entropy loss (when there is label imbalance) for training.

Although the model is not equipped with a complex mechanism, it seamlessly integrates all key elements. Its
effectiveness is demonstrated through numerical results in the next section.

4 Experimental results

4.1 Datasets and experiment overview

Our model is evaluated across four IC image datasets: A1, A2, S1, and S2. Each dataset contains binary
segmentation masks, ground-truth masks, and ground-truth labels for error detection. The datasets exhibit
varying design characteristics in terms of circuit topology, feature density, and error types. In Table 1, we
show the size of positive (i.e., with errors) and negative samples in each dataset. We notice that all datasets
are highly class-imbalanced, and we evaluate model performance with the F1-score.

Table 1: Sizes of positive (i.e., with errors) and negative samples in each IC image dataset (img.) and the
converted graph (graph) dataset.

+ve img. -ve img. +ve graph -ve graph
A1 190 31197 921 170609
A2 102 29277 721 116602
S1 10526 22643 22310 376329
S2 2575 37269 6822 144335

We perform the following studies in the subsections below:
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• We combine graph conversion and EA-GIN as a full-fledged error detection model in IC image
segmentation. We evaluate its performance on error detection by comparing it with several similarly
constructed GNN-based detection models.

• We compare the performance of EA-GIN with CV (Zhang et al., 2023) and dedicated anomaly
detection models (Qiu et al., 2022), and study their ability for cross-data generalization (i.e., training
and testing performed on different datasets).

• We study the explainability of EA-GIN by analyzing its ability to pinpoint error locations, and
explore the possibility of using EA-GIN to assist a CV-based model.

4.2 Error detection in IC image segmentation: GNN models

Details for EA-GIN For our model, we use 3 EA-GIN layers (3)-(5) for feature aggregation. In the edge
encoder (3), MLP1 has one hidden layer with 8 hidden units (and ReLU activation). On the other hand,
MLP2 in (5) has one hidden layer with 64 hidden units. The “Summation” function is used as the READOUT
function in (6). Finally, due to label imbalance, we use the weighted cross-entropy for training (Ling & Sheng,
2011) by assigning a higher weight to positive samples.

Experimental setting and evaluation protocol A dataset consists of multiple images with a segmented
binary mask, and we retrieve multiple graphs from each mask. As described earlier, each graph is converted
from a connected component in the segmentation mask. We obtain the ground-truth label for the graphs
from the ground-truth segmentation mask.

For the downstream error detection task in IC image segmentation, all (component) graphs for a single image
should be collectively used either for training, validation or testing. Therefore, for each dataset (i.e., A1, A2,
S1, S2), we split all images into training/validation/testing sets such that the corresponding split of graphs is
approximately 70%/20%/10%.

We train EA-GIN and tune hyperparameters with the training/validation set. For testing, given a test image
I with segmentation mask M, we apply EA-GIN to the set GM of component graphs of M. The segmentation
is deemed erroneous if there is at least one graph in GM of error type. The resulting model is also called
EA-GIN. The F1-score on the testing set is used as the evaluation metric.

The experiments are performed on a server with GPU: NVIDIA RTX A5000, 24GB memory.

Results We compare EA-GIN with our backbone model GIN (Xu et al., 2019), and GNN models using
edge information: GINE (Brossard et al., 2020), EGAT (Wang et al., 2021), and CensNet (Jiang et al., 2019).
For any benchmark GNN model, the same procedure described above is applied for the downstream error
detection task.

The results are shown in Table 2. We see that the models generally perform better on the A1 and A2 datasets.
The IC structures in these two datasets are simpler with less variety. It is observed that our EA-GIN performs
much better than its backbone GIN. Moreover, GINE also has a relatively good performance. Therefore, it is
beneficial to incorporate edge features into the models.

EA-GIN generally outperforms benchmarks by a clear margin, and in the following subsection, we study
other aspects of the model as outlined in Section 4.1.

4.3 Cross-data generalization: CV and anomaly detection models

Cross-data generalization plays a key role in hardware assurance, as ground-truth is often obtained from
different batches of data in practice. This underscores the need for robust models. For the study, we compare
with the CV benchmark ED-ResNet2 dedicated to the error detection problem (Zhang et al., 2023). As the

2We call it error detection with ResNet, abbreviated ED-ResNet for convenience.
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Table 2: Results (F1-score) on error detection in IC image segmentation. The best performance is boldfaced
and the 2nd best is underlined.

A1 A2 S1 S2
GIN 0.6274 0.8089 0.7316 0.6853

GINE 0.9356 0.9498 0.7825 0.7614
EGAT 0.4316 0.7503 0.4591 0.4401

CensNet 0.6458 0.8551 0.7189 0.6243
EA-GIN 0.9884 0.9953 0.9183 0.8990

Figure 6: Examples of segmentation missed by ED-ResNet, while identified by EA-GIN. Left panels: ground-
truth, right panels: segmentation mask, and error locations detected by EA-GIN are boxed.

problem is closely related to anomaly detection, we also compare it with the graph anomaly detection model
OCGTL (Qiu et al., 2022).3 We show test results and cross-data generalization results in Table 3.

From the results, we see that the CV-approach ED-ResNet and our graph approach EA-GIN have their
respective advantages. ED-ResNet performs well when trained on larger and more complex datasets, whereas
EA-GIN demonstrates strong generalization even when trained on smaller datasets, for example, when trained
on A1 or A2 and evaluated on the larger dataset S1. This may be because the number of metal-line connection
structures/patterns is limited, and hence, a small dataset may have given enough component graphs to
capture feasible metal-line topologies. On the other hand, a CV model that requires a large amount of visual
information may need more training data to identify essential features for detection.

For EA-GIN, it is interesting to notice that to test on S2, training on A1 or A2 yields a better result than
training on S2 itself. This suggests that sufficiently many positive and negative patterns may be seen in A1
or A2, while training on the much larger S2 may overfit the model to a certain extent.

For illustration, we show examples of segmentation missed by ED-ResNet, while identified by EA-GIN in
Fig. 6. It is observed that EA-GIN can capture small errors resembling noise, and this may be due to the local
nature of the graph approach. The CV and graph approaches potentially contribute to the error detection
problem in different ways, supplementing each other. Therefore, it can be beneficial to combine them, which
we shall study in the next subsection.

3EA-GIN and ED-ResNet have a slight edge over OCGTL, as anomaly detection is one-class classification and does not
utilize the small set of positive samples.
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Table 3: Comparison of error detection models for IC image segmentation. The performance is measured by
the F1-score. Cross-data generalization results are also reported.

Train. Test. ED-ResNet OCGTL EA-GIN
A1 A1 0.9823 0.9877 0.9884

A2 0.9956 0.9961 0.9962
S1 0.6598 0.8699 0.9070
S2 0.9118 0.8762 0.9369

A2 A1 0.9534 0.8979 0.9827
A2 0.9872 0.9270 0.9953
S1 0.6543 0.8505 0.9396
S2 0.9261 0.8650 0.9385

S1 A1 0.9726 0.9093 0.9580
A2 0.9936 0.9950 0.9775
S1 0.9795 0.8615 0.9183
S2 0.9732 0.8805 0.9155

S2 A1 0.9666 0.7640 0.8951
A2 0.9939 0.9273 0.9887
S1 0.7657 0.8516 0.8230
S2 0.9951 0.8842 0.8990

4.4 Explainability

An important feature of the graph-based approach is its inherent explainability. This is particularly useful in
practice to assist manual checking. In this study, we consider the following sequential merging of the CV and
graph-based models. Specifically, for a dataset, we consider the set S+ of all test images correctly predicted to
be erroneous by the CV model ED-ResNet. For each image in S+, we use EA-GIN to generate the probability
score of a component being abnormal. The components with the top-κ highest scores are flagged for further
manual checking.

Table 4: F1-scores for the detection of error components with varying κ.

κ A1 A2 S1 S2
1 1.00 1.00 0.9249 0.9187
2 1.00 1.00 0.9492 0.9774
3 1.00 1.00 0.9724 0.9911

Figure 7: We show error localization of the examples in Fig. 1. The (highlighted) error components in the
segmentation mask can be identified via their converted graphs. Left panels: ground-truth masks, middle
panels: segmentation masks, right panels: skeletons of detected error components.
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In Table 4, we show the results, measured by F1-scores, for whether the above procedure can correctly identify
the error components when the budget κ = 1, 2 or 3. We see that for A1 and A2, the graph approach can
always correctly identify the error components, conditioned on knowing that the image contains errors. While
for S1 and S2, increasing κ to 3 yields reasonably good detection performance.

We show examples of the error localization in Fig. 7, in which the error components are correctly identified.
In conclusion, our graph-based approach can be used as a stand-alone model or together with CV tools for
automated error detection.

5 Conclusions

We propose an explainable graph-based framework for error detection in IC images segmentation, addressing
key limitations of prior methods. Our approach introduces (i) a mask-to-graph conversion pipeline that
encodes topological and geometric information into feature-annotated graphs, and (ii) a tailored EA-GIN
model that incorporates edge features into the powerful GIN model for accurate graph classification. The
method achieves strong cross-dataset performance and precise component-level error localization, offering
scalability, robustness, and interpretability.

Future work includes enhancing graph representations with hierarchical or semantic information, exploring
graph transformers, and integrating spatial cues from raw images. Real-time inference, uncertainty quantifica-
tion, and adaptation to domains such as biological or road networks present promising directions, as does the
development of interactive tools for quality assurance in manufacturing.
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A Theoretical framework

In this appendix, we establish a theoretical framework for the study of IC segmentation masks. We employ
formal mathematical concepts, enabling us to study IC segmentation-related problems rigorously and
systematically.

A.1 Geometry and topology for IC segmentation masks

For an IC image I of size H × W , we model a segmentation mask M as a binary function (on the continuous
domain):

M : [0, H] × [0, W ] → {0, 1}

such that the following holds: M−1(1) has finitely many compact connected components, each with continuous
boundaries.

We use CM = {C1, . . . , Cm} to denote the set of components of M−1(1). They correspond to the set of
metal-line components of the image.

To proceed, we need a few important concepts from metrical geometry Bridson & Haefliger (1999).
Definition 1. In a metric space (X, d), the Hausdorff distance between two subsets S1, S2 is

dH(S1, S2) = max{ sup
x1∈S1

d(x1, S2), sup
x2∈S2

d(S1, x2)}.

For two metric spaces (X1, d1) and (X2, d2), their Gromov-Hausdorff distance is defined as:

dGH(X1, X2) = inf
f,g,M

dH(f(X1), g(X2)),

where the infimum is taken over isometric embeddings of X1, X2 into the same metric space M as: f : X1 → M
and g : X2 → M .

For ϵ > 0, we call M or CM ϵ-separated if for i ̸= j ≤ m, dH(Ci, Cj) > ϵ. Intuitively, the conditions imply
that the metal-line components on the segmentation mask are well-separated without ambiguity.

For each component Ci, an embedded subgraph Gi ⊂ Ci (i.e., a subset homeomorphic to a graph) is an
ϵ-approximation for some (small) ϵ > 0 if the following holds:

• Consider Gi, Ci as subsets of [0, W ] × [0, H] with the Euclidean metric:

dH(Gi, Ci) ≤ ϵ;

• Gi is a homotopy retract of Ci (Hatcher, 2001).

Intuitively, the two conditions ensure the metrical and topological fidelity of Gi.

Fix ϵ > 0. For each Ci, let the graph Gi be an ϵ-approximation. We use GM to denote the set {G1, . . . , Gm}.

We next formalize open and short circuits. For this, we assume M is the ground-truth mask and M′ is a
segmentation mask (to be tested). Accordingly, we have CM′ = {C ′

1, . . . , C ′
m′} and GM′ = {G′

1, . . . , G′
m′},

which are defined similarly.

Fix a small threshold ϵ > 0. We say that M′ does not have open or short circuits if the following holds:
for any Ci ∈ CM and C ′

j ∈ CM ′ such that Ci ∩ C ′
j ̸= ∅, then each connected component of their symmetric

difference Ci∆C ′
j = (Ci\C ′

j) ∪ (C ′
j\Ci) has diameter bounded by ϵ.

Notice that for different concepts, the “error parameter ϵ” is used independently in the respective definition.
However, they may be related to each other if we bring all the concepts together.
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Regarding open and short circuits, intuitively, as the masks are ϵ-separated, a large component in the
symmetric difference can only occur if there are open or short circuits.

Aside from the above common errors affecting IC functionality, there are other types of errors, likely to be
caused by image artifacts: a component C ′

j ∈ CM ′ is a noise if C ′
j ∩ Ci = ∅ for every Cu ∈ CM. Moreover,

C ′
j ∈ CM ′ contains a hole if it contains a component of M′−1(0) within its interior, while none of Ci ∈ CM

does so.

Intuitively, noise corresponds to small additional artifacts in the IC images, e.g., caused by dust. Holes in
the segmentation can result from lighting conditions, where parts of a metal line appear dark during image
capture

In summary, we consider 4 main error types:

• open circuits

• short circuits

• noise

• holes.

For the ground-truth mask M, a graph Gi ∈ GM usually has a tree structure, as it is the homotopy retract of
a metal-line component, which by design, is unlikely to have holes inside. If this is true for each Gi ∈ GM, we
call GM consists of trees. Such a property is topological. In general, the 1st Betti number (Hatcher, 2001) is
sufficient to encode such a property for a graph. For the simplified definition in the case of graphs, the 1st
Betti number b1(G) counts the number of (closed) loops in a graph G. For example, b1(G) = 0 if G is a tree.

A.2 Analysis of Segmentation Errors

In this subsection, we discuss a result that gives conditions on segmentation errors, using the above theoretical
framework. We keep the notations and assumptions of the previous subsection. For an error, we assume that
it belongs to one of the types described in the previous section, which most commonly occurs in IC image
segmentation.
Theorem 1. If any of the below holds, then there is an error in the segmentation mask M:

(a) The number of components m ̸= m′.

(b) GM consists of trees and for some Ci ∩ C ′
j ̸= ∅, b1(Gi) ̸= b1(G′

j).

(c) Let K be an upper bound on the number of components for any symmetric differences, and assume
the largest diameter of any component is bounded by ϵ′ ≤ ϵ. For some Ci ∩ C ′

j ̸= ∅, there does not
exist any construction of G′

j such that dGH(Gi, G′
j) ≤ Kϵ′/2.

Notice that the three conditions are arranged in order of increasing difficulty of verification. (a) can be
interpreted as matching the 0th Betti number of the segmentation mask, while (b) is the matching of the 1st
Betti number of each graph component. Both of them are topological in nature, which are coarser. On the
other hand, (c) matches the graph components metrically, which is a more refined condition.

Proof. Suppose m ̸= m′ and there is no noise, then for each C ′
j , there is a Ci such that Ci ∩ C ′

j ̸= ∅. As
m ̸= m′, we have either of the following cases:

• For j1 ̸= j2, Ci ∩ C ′
j1

̸= ∅ and Ci ∩ C ′
j2

̸= ∅.

• For i1 ̸= i2, Ci1 ∩ C ′
j ̸= ∅ and Ci2 ∩ C ′

j ̸= ∅.
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Ci C ′
i

Gi
G′

i

Figure 8: Due to possible small perturbations of C ′
i, we modify Gi accordingly depending on the perturbation

type.

The former corresponds to an open circuit, as the diameter of some components of Ci\Cj1 is > ϵ by the
ϵ-separability of M′. Similarly, for the latter case, there is a closed circuit, as the diameter of some components
of C ′

J\Ci1 is > ϵ by the ϵ-separability of M′. Hence, there is always an error if m ̸= m′. This handles (a).

For the rest of the proof, we assume that m = m′. Consider condition (b). Re-order the indices if necessary,
we assume that Ci ∩ C ′

i ̸= ∅ for any i ≤ m and for some i ≤ m, b1(Gi) ̸= b1(G′
i). As Gi and G′

i are the
respective homotopy retracts of Ci and C ′

i, the 1st Betti numbers of b1(Gi) ̸= b1(G′
i) by the assumption, so

are b1(Ci) and b1(C ′
i) (Hatcher, 2001). Therefore, as Gi is a tree and thus the b1(Ci) = 0, we have b1(C ′

i) > 0.
Hence, there is at least an error type of a hole in C ′

i.

For (c), suppose the condition holds for an index i ≤ m. We assume that there is no noise or holes in the
segmentation mask M′. We claim that there is an open or short circuit. The strategy is to modify Gi to
construct an ϵ-approximation G′

i of C ′
i such that dGH(Gi, G′

i) ≤ ϵ. This will contradict the assumption.

For this, we need an equivalent definition of the Gromov-Hausdorff distance (Tuzhilin, 2020). For two metric
spaces, a correspondence is a relation R ⊂ X × Y such that the projections (from R to X or Y ) pX , pY

satisfy: pX(R) = X and pY (R) = Y . The distortion of the correspondence R is defined as:

δ(R) = sup{|d(x, x′) − d(y, y′) | (x, y), (x′, y′) ∈ R|}. (7)

Then, dGH(X, Y ) = infR δ(R)/2, where the infimum is taken over all correspondences R. In particular, if for
some R, δ(R) ≤ 2ϵ, then dGH(X, Y ) ≤ ϵ.

If there is no open or short circuit, then the symmetric difference Ci∆C ′
i has at most K components, each with

diameter bounded by ϵ′. For each such component, we construct an ϵ-approximation G′
i of C ′

i by modifying a
small segment ℓ of Gi by one of the following two ways (see Fig. 8 for an illustration):

• Replace ℓ by a union ℓ′ of small segments whose total length is within ϵ′ of ℓ, and set the linear
correspondence between ℓ and ℓ′.

• Add a small linear segment ℓ′ of length at most ϵ′ to be point u0 on Gi. Let every point ℓ′ correspond
to v.

Now, for any pair of corresponding points (u, v) and (u, v′) on Gi × G′
i, the geodesic path (i.e., shortest path)

connecting u, u′ differs from that of v, v′ by crossing at most K modifications. Therefore, |d(u, u′) − d(v, v′| ≤
Kϵ′. By (7) and its consequence, we have that dGH(Gi, G′

i) ≤ Kϵ′/2, which contradicts the assumption.

The practical implication of the result is that errors can be detected if we identify closely located components
in M and M′, while their corresponding graphs (i.e., approximations) are either topologically or metrically
dissimilar. This prompts the use of GNN for error detection.
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