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Abstract

Reinforcement Learning Finetuning (RFT) has001
significantly advanced the reasoning capabili-002
ties of large language models (LLMs) by en-003
abling long chains of thought, self-correction,004
and effective tool use. While recent works at-005
tempt to extend RFT to vision-language models006
(VLMs), these efforts largely produce text-only007
reasoning conditioned on static image inputs,008
falling short of true multimodal reasoning in009
the response. In contrast, test-time methods010
like Visual Sketchpad incorporate visual steps011
but lack training mechanisms.012

We introduce VTool-R1, the first framework013
that trains VLMs to generate multimodal chains014
of thought by interleaving text and intermedi-015
ate visual reasoning steps. VTool-R1 integrates016
Python-based visual editing tools into the RFT017
process, enabling VLMs to learn when and how018
to generate visual reasoning steps that benefit019
final reasoning. Trained with outcome-based re-020
wards tied to task accuracy, our approach elicits021
strategic visual tool use for reasoning without022
relying on process-based supervision. Exper-023
iments on structured visual question answer-024
ing over charts and tables show that VTool-R1025
enhances reasoning performance by teaching026
VLMs to "think with images" and generate mul-027
timodal chain of thoughts with tools.028

1 Introduction029

Recent large language models (LLMs), notably030

DeepSeekR1 (DeepSeek-AI, 2025) and the GPT4o031

series (OpenAI, 2024), have demonstrated remark-032

able capabilities in text-based reasoning. Central to033

recent LLM reasoning advancements is Reinforce-034

ment Learning Finetuning (RFT), which enables035

these models to generate long chains of thought, en-036

gage in self-correction and verification for complex037

reasoning tasks (Kumar et al., 2025; Zeng et al.,038

2025). RFT has also shown promising results in039

effectively integrating external tool use, such as040

search engines (Jin et al., 2025; Chen et al., 2025b)041

and code interpreters (Feng et al., 2025), into the 042

reasoning process of LLMs: Through RFT train- 043

ing, LLMs can effectively learn when to invoke 044

the tools, how to use the tools, and more impor- 045

tantly, how to reason with the text output from 046

the tools. Moreover, effective tool use essentially 047

enriches LLMs with extra knowledge and special- 048

ized capabilities beyond what is embedded in their 049

parameters, expanding model capabilities beyond 050

narrow domains, such as math and programming. 051

Despite the rapid progress in LLM reasoning 052

with text brought by RFT, there has not yet been 053

a well-recognized breakthrough in improving mul- 054

timodal reasoning capabilities of vision-language 055

models (VLMs). Modern VLMs (Deitke et al., 056

2024; Bai et al., 2025; Grattafiori et al., 2024) typi- 057

cally consist of a strongly language-aligned image 058

encoder like CLIP (Radford et al., 2021) that maps 059

visual inputs into feature space and a connector 060

module further projects these visual features into 061

the token space of a decoder-only LLM. On top 062

of these architectures, post-training strategies like 063

visual instruction tuning (Xu et al., 2024) improve 064

VLMs’ ability to follow textual instructions. Build- 065

ing on these visual-language alignment efforts in 066

VLM design, concurrent works (Zhou et al., 2025; 067

Chen et al., 2025a; Zhang et al., 2025; Huang et al., 068

2025; Liu et al., 2025; Deng et al., 2025; Wang 069

et al., 2025) attempt to replicate the success of 070

LLMs with RFT in the VLM domain to enhance 071

multimodal reasoning. These efforts demonstrate 072

that RFT can be adapted to VLMs to improve their 073

multimodal reasoning capabilities. But which as- 074

pects of VLMs’ reasoning does RFT actually 075

improve? A closer look reveals that these concur- 076

rent works do not enable VLMs to generate truly 077

multimodal reasoning chains: This is because they 078

prepend image features as fixed tokens to the in- 079

put textual prompt, and train the model to generate 080

purely textual reasoning responses conditioned on 081

the input prompt. All generated reasoning remains 082
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text-only, and no step-by-step “thinking with im-083

ages” occurs during response generation. In con-084

trast, emerging inference-time frameworks like Vi-085

sual Sketchpad (Hu et al., 2024) and Refocus (Fu086

et al., 2025) demonstrate that incorporating inter-087

mediate visual reasoning steps during inference088

can improve performance beyond purely textual089

reasoning. However, these methods rely on highly090

capable models such as GPT-4o to produce mean-091

ingful visual steps, and they do not involve any092

training for reasoning with visual thoughts.093

In this paper, we present the first work that di-094

rectly enables VLMs to learn to think in images095

and texts and to be trained to generate multimodal096

chains of thoughts. We build our framework VTool-097

R1, where VLMs learn to generate intermediate098

visual reasoning steps through interaction with ex-099

ternal image editing tools implemented in Python100

code. These visual reasoning steps are interleaved101

with textual chains of thought, resulting in multi-102

modal reasoning in the model response. Following103

the design of DeepSeekR1 (DeepSeek-AI, 2025),104

VTool-R1 leverages RFT with outcome-based re-105

wards tied to final task accuracy, while avoiding106

process-based rewards to mitigate reward hacking.107

VTool-R1 successfully trains VLMs to learn when108

and how to generate visual reasoning steps via ex-109

ternal tool use and conduct chain of thought reason-110

ing also based on the generated intermediate visual111

thoughts.112

We demonstrate the effectiveness of VTool-113

R1 on challenging structured image understand-114

ing tasks, focusing on visual question answering115

(VQA) over tables and charts. Our experiments116

use a well-curated dataset and a visual editing tool117

set from Refocus (Fu et al., 2025). This toolset,118

which is directly callable by the VLM, enables119

selective attention on the image—simulating how120

humans process visual information through atten-121

tion and reasoning before forming final conclu-122

sions. Through RFT, the model learns to use these123

tools strategically to guide its multimodal chain of124

thought and enhance reasoning performance.125

Our key contributions can be summarized as126

follows:127

• To the best of our knowledge, our work is128

the first work that successfully enables VLMs129

to learn to integrate intermediate vision rea-130

soning steps into text-based chain of thoughts131

in the generated response (i.e. thinking with132

images and texts).133

• We present VTool-R1, a novel RFT frame- 134

work that supports VLM multimodal reason- 135

ing with visual editing tool use. We demon- 136

strate that RFT with outcome based reward 137

design can unexpectedly elicit visual reason- 138

ing steps for final reasoning accuracy. 139

• We conduct extensive experiments on chal- 140

lenging structured image understanding tasks. 141

With VTool-R1, 142

2 Related Works 143

2.1 Visual Chain of Thought Reasoning 144

Early works have demonstrated that incorporat- 145

ing visual intermediate steps—often generated via 146

external tools or Python scripts—can benefit a 147

wide range of visual question answering (VQA) 148

tasks, without any training. Pioneering efforts 149

such as ViperGPT (Surís et al., 2023) and Visual 150

Programming without Training (Gupta and Kemb- 151

havi, 2023) utilize Python-based visual tools to ma- 152

nipulate images during inference. More recently, 153

Visual Sketchpad (Hu et al., 2024) introduced a 154

framework that equips multimodal language mod- 155

els with a sketchpad and drawing tools. The model 156

is prompted to generate visual artifacts during in- 157

ference and uses them for iterative planning and 158

reasoning. While this approach successfully intro- 159

duces visual information into the reasoning process, 160

it operates solely at inference time and cannot be 161

trained or improved further. Refocus (Fu et al., 162

2025) takes a step forward by prompting the VLM 163

to invoke visual editing tools for selective attention 164

over images. These modified images are then used 165

as inputs for further reasoning. However, Refocus 166

does not train the model to reason with tools; in- 167

stead, it relies on oracle-edited images generated 168

by a commercially powerful model such as GPT-4o. 169

Smaller models cannot gain the capability of such 170

kind of tool use and reasoning. 171

2.2 LLM/VLM, Reinforcement Learning and 172

Tool Use 173

Reinforcement learning (RL) was first introduced 174

to LLM fine-tuning via RL from human feedback 175

(RLHF) (Ouyang et al., 2022), which fits a reward 176

model to human preferences, using Proximal Pol- 177

icy Optimization (PPO) (Schulman et al., 2017). 178

While effective, PPO requires an actor model and 179

involves multiple LLM optimizations in RL train- 180

ing. To make RL tuning easier, simpler alterna- 181

tives such as Direct Preference Optimization (DPO) 182
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(Rafailov et al., 2023), SimPO (Meng et al., 2024)183

have been proposed. These methods offer compu-184

tational efficiency but often suffer from off-policy185

bias and may underperform full RL approaches186

(Pang et al., 2024). Group Relative Policy Op-187

timization (GRPO) (Shao et al., 2024) mitigates188

these issues by foregoing the critic model and es-189

timating baselines from grouped scores. Beyond190

preference tuning, RL has recently been used to191

enhance tool-augmented reasoning in LLMs, en-192

abling models to learn when and how to invoke193

external tools such as calculators, code interpreters,194

and web search engines (Chen et al., 2025b; Feng195

et al., 2025; Jin et al., 2025). This line of work196

demonstrates that outcome-based RL rewards can197

effectively guide complex, multi-step reasoning in-198

volving external tools.199

In the vision-language domain, similar ideas200

are beginning to emerge. Concurrent works adapt201

RL for VLMs to incentivize multimodal reasoning202

behaviors (Zhou et al., 2025; Chen et al., 2025a;203

Zhang et al., 2025; Huang et al., 2025; Liu et al.,204

2025; Deng et al., 2025; Wang et al., 2025), but205

they primarily train VLMs to only generate textual206

chains of thought from visual inputs. The prob-207

lem of training VLMs to dynamically generate and208

reason over visual intermediate steps via external209

tools remains largely unexplored—motivating our210

proposed framework.211

3 VTool-R1212

VLM Preliminaries. A VLM policy can be de-213

noted as πθ parametrized with model weights θ.214

Given a text prompt sequence x and an image I ,215

the model can generate a text response sequence y,216

sampled from the πθ(I, x). Some VLMs support217

multiple image inputs; however, their capabilities218

in parsing and understanding multiple images vary219

significantly and are highly dependent on the train-220

ing procedure (Wang et al., 2024). In our setting,221

we require VLMs capable of processing multiple222

images because intermediate visual steps will serve223

as input.224

In the following sections, we present the detailed225

design of VTool-R1, covering inference and train-226

ing parts. In the Section 3.1, we show that how227

pre-trained VLM can be prompted to use visual228

editing tools and generate integrate intermediate vi-229

sual steps. We then go beyond inference in the Sec-230

tion 3.2: by extending the RFT objective, we train231

VLMs to use these tools and generate multimodal232

chains of thought during rollout by themselves. We 233

also introduce an outcome-based reward formu- 234

lation that encourages effective visual reasoning 235

while avoiding the pitfalls of process-based reward 236

hacking. 237

3.1 VLM Inference and Rollout with Visual 238

Chain of Thoughts 239

Refocus (Fu et al., 2025) demonstrates that a suf- 240

ficiently capable VLM, such as GPT-4o, can be 241

prompted to generate Python code for invoking 242

external tools and editing images, followed by rea- 243

soning over the modified visual input. Our in- 244

ference and rollout template closely follows their 245

prompting instructions. The full prompt is in the 246

Appendix. 247

VLM Inference/Rollout Prompts

<System Prompt><Python Codes Templates>
# GOAL #: Based on the above tools, I want you to
reason about how to solve the # USER REQUEST # and
generate the actions step by step (each action is a
python function call) to solve the request. You may
need to use the tools above to process the images and
make decisions based on the visual outputs of the
previous code blocks. You should only use the tools
above, you should not use other functions or code that
will not be executed.
# REQUIREMENTS #:
...3. If you think you got the answer, use ANSWER:
<your answer> Please extract the final answer in FINAL
ANSWER: <final answer> and ends with TERMINATE.
...8. If you do not think you have enough information
to answer the question on the images returned by the
tools, you should directly answer the question based
on the original image...
9. Only one turn of action, ACTION 0, is allowed. You
must provide the answer after a maximum one ACTION
call.
In-context Examples:
<Thought 0><Action 0><Observation><Edited
Image><Thought 1><Answer>
# USER Bounding Box Info: x_values_bbox, storing x
values and coordinates. y_values_bbox, storing x
values and coordinates. The x values in the image are:
<x_values>. The y values in the image are: <y_values>.
# USER IMAGE stored in image_1, as PIL image.

248

As illustrated in the prompt box above, we pro- 249

vide system instructions and task-specific goals to 250

guide the VLM in using visual tools for reason- 251

ing. The model is given the names and definitions 252

of visual editing functions, along with detailed de- 253

scriptions of their usage. Through in-context exam- 254

ples, the VLM is prompted to begin its reasoning 255

in Thought 0, which outlines where to focus in the 256

image. It then produces Action 0, which is either a 257

"no action needed" statement or a Python-like pseu- 258

docode snippet that invokes an appropriate visual 259

editing tool. 260

The tool call is executed externally in a Python 261

environment to generate a modified image, which 262

is then fed back into the model as additional input. 263
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The VLM continues its reasoning over this gen-264

erated intermediate visual step, forming a richer265

visual chain of thought that supports the final an-266

swer. As specified in the Requirement section of267

the prompt, the model is allowed to either respond268

directly or invoke a tool once to create an interme-269

diate visual step for further reasoning. In this work,270

we focus on single-turn tool use—i.e., the model271

may call a tool at most once and reason over the272

edited image. Extending this to multi-turn tool use,273

where the model iteratively edits and reasons for274

multiple rounds, is left for the future.275

This inference and rollout process is inherently276

iterative and cannot be completed in a single VLM277

call if the model chooses to use tools. Execution278

must pause for the external Python environment to279

run the generated code. Once the modified image280

is available, it has to be reintroduced into the same281

VLM instance as the second image input, rather282

than being inserted at the original location in the283

generated response sequence, as is common in prior284

tool-use approaches such as Search-R1 (Jin et al.,285

2025).286

Formally, if the VLM policy πθ decides to in-287

voke a tool from an external visual editing toolset288

T, the inference involves two rounds of model exe-289

cution. The first round samples an initial response290

containing tool calls, y′ ∼ πθ(· | I, x), where the291

input text prompt x includes tool descriptions. The292

tool calls are then executed in the Python environ-293

ment as I ′ = T(y′, I) to generate a modified image.294

In the second round, the VLM performs reasoning295

over both the original and edited images:296

y ∼ πθ(· | I, x; T) = πθ(· | I ⊕ I ′, x)

= πθ(· | I ⊕ T(y′, I), x)
(1)297

where
⊕

denotes the concatenation of the origi-298

nal image I and the updated image I ′ as dual image299

inputs to the model. If the VLM chooses not to in-300

voke any tools and instead answers the question301

directly, the final answer is obtained in the first302

round without needing a second inference pass:303

y ∼ πθ(· | I, x).304

3.2 RFT VLM to Generate Visual Chain of305

Thoughts306

VTool-R1 adopts RFT to train VLMs to explore307

flexible reasoning trajectories and learn to invoke308

visual editing tools effectively. Given the two-stage309

iterative inference structure, we explore multiple310

rollout strategies—optimizing either just the re- 311

sponse y with final answers, or both the interme- 312

diate tool-invoking output y′ and y jointly. We 313

maintain the notation introduced at the end of Sec- 314

tion 3.1. 315

In VTool-R1, we assume a reward model rϕ un- 316

der the Bradley-Terry formulation, and consider 317

the following RFT training objectives: 318

Optimize the final reasoning response y during 319

RL rollout: 320
321

max
πθ

E[I,x]∼D, y∼πθ(·|I,x;T)
[
rϕ(I, x, y)

]
322

− β DKL

[
πθ(· | I, x; T) ∥πref(· | I, x; T)

]
. (2) 323

where πθ is the policy VLM parametrized with 324

model weights θ. πref is the reference VLM pol- 325

icy. rϕ is the reward function. DKL is the KL- 326

divergence measure. β > 0 is the KL penalty 327

coefficient. The input [I, x] denotes multimodal 328

samples drawn from the dataset D. The generated 329

response in the rollout y ∼ πθ(· | I, x; T) = πθ(· | 330

I
⊕

I ′, x) = πθ(· | I
⊕

T(y′, I), x), if the model 331

chooses to use a tool; otherwise, when no tool 332

is invoked, the response simplifies to y ∼ πθ(· | 333

I, x; T) = πθ(· | I, x). 334

Unlike prior RFT that simply relies on 335

LLM/VLM policy to generate rollout during train- 336

ing (Ouyang et al., 2022), V-Tool-R1 explicitly 337

incorporates the visual editing tool use from the 338

toolset T in the rollout, and conditions the model 339

on the edited image input. We refer readers to Sec- 340

tion 3.1 for the formal definition and intuition of the 341

iterative tool-use rollout policy, which mirrors the 342

model inference pipeline. This iterative pipeline en- 343

ables more effective step-by-step reasoning across 344

both modalities: the model learns to modify the 345

image using tools to support its reasoning before 346

producing the final answer. 347

Note that we do not directly optimize the in- 348

termediate tool-invoking response y′ in our RFT 349

process, as our goal is to encourage the model to au- 350

tonomously decide whether using a tool improves 351

reasoning. This design supports a more end-to-end 352

training objective. 353

Our training approach is built upon a well- 354

established policy gradient method: Group Rel- 355

ative Policy Optimization (GRPO) (DeepSeek-AI, 356

2025; Shao et al., 2024), which offers improved 357

stability and eliminates the need for a separate 358

critic model. Unlike Proximal Policy Optimiza- 359

tion (Schulman et al., 2017), which estimates ad- 360

vantages using a learned critic, GRPO estimates 361
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Figure 1: Multi-Modal GRPO w. Tool Use Training Pipeline, where the input q is a multimodal query

the baseline from a group of sampled responses362

and reduces training resources. Specifically, for363

each input [I, x], GRPO samples a group of re-364

sponses {yi}Gi=1 ∼ πold(·|I, x;T ) from the old pol-365

icy model, and then optimize the current policy366

model by maximizing the following objective equa-367

tion 3:368

Here, ϵ and β are hyper-parameters, and Âi,t =369

r̃i = ri−mean(r)
std(r) denotes the normalized relative370

advantage computed within the group of sampled371

responses. This formulation avoids the need for372

critic model, while maintaining stable and reward-373

aligned policy updates by regularizing with the KL374

divergence between the updated policy πθ and the375

reference policy πref. Notably, GRPO performs this376

regularization by directly adding the KL divergence377

term into the loss function.378

We use inference template in the prompt box for379

training rollout as well. This template structures380

the model’s output, think before actions and let the381

model decide whether we need a tool call, with the382

system instructions and requirements. We make383

the template highly formatted and listed clearly384

thoughts, actions, tool use function blocks and final385

answers. We also include few shot examples for386

better instruction and format following.387

3.3 Reward Modeling388

Following Deepseek-r1 (DeepSeek-AI, 2025), we389

adopt an outcome-based reward design that relies390

solely on the correctness of the model’s final an-391

swer. For closed-ended tasks like factual QA, an392

exact string match works well. However, in our393

setting—structured visual understanding—the an- 394

swers are more free-form and not easily judged by 395

string match. To address this, we use a lightweight 396

LLM-based judge to assess the match between the 397

predicted answer and the ground truth. While not 398

strictly rule-based, this serves as a pseudo rule- 399

based reward appropriate for open-ended tasks such 400

as ChartQA. We reward score of 1 when the judge 401

thinks it is a match. 402

We also study process-based rewards that pe- 403

nalize incorrect tool use or reward successful in- 404

vocations. However, this often results in reward 405

hacking in RFT: models either avoid tools entirely 406

when penalties are applied, or exploit success crite- 407

ria by generating tool calls that superficially meet 408

expectations without contributing to reasoning. 409

We do not use format-based rewards, as our 410

models already learn to follow the structured for- 411

mat—Thoughts, Actions, Tools, and Final An- 412

swer—thanks to clear instruction templates. We 413

leave further exploration of format rewards to fu- 414

ture work, but find our current setup sufficient for 415

reliable rollout behavior. 416

4 Experiment 417

4.1 Dataset 418

Following Refocus (Fu et al., 2025), we evaluate 419

VTool-R1 on structured image understanding tasks 420

that are particularly suitable for assessing tool use. 421

Our evaluation focuses on chart and table-based 422

visual question answering (VQA), which poses sig- 423

nificant challenges for early VLM works (Liu et al., 424

2023, 2022). To ensure fair comparison, we strictly 425
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JGRPO(θ) =E[I,x]∼D,{yi}Gi=1∼πold(·|I,x;T ) (3)[
1

G

G∑
i=1

1

|yi|

|yi|∑
t=1

min
(
ri,t(θ)Âi,t, clip

(
ri,t(θ), 1−ϵ, 1+ϵ

)
Âi,t

)
− βDKL [πθ||πref]

]

adhere to the dataset choices made in Refocus.426

VWTQ. This dataset partition is derived from427

WikiTableQuestions (WTQ) (Pasupat and Liang,428

2015), featuring 750 QA pairs fetched directly from429

Wikipedia HTML. The table images are styled from430

the stylesheet of Wikipedia as screenshots.431

VWTQ_syn. To avoid potential data overlap with432

web-scraped training corpora in VLMs, Kim et al.433

(2024) generates 250 synthetic table images using a434

rendering engine that introduces random variations435

in layout, background color, font, and borders.436

VTabFact. This data partition is fetched from Tab-437

Fact dataset (Chen et al., 2019), that requires ver-438

ifying whether a given statement is entailed by a439

table or refuted. (Kim et al., 2024) renders visual440

table images with pseudo-HTML from the table441

content and collects 250 pairs in total.442

For all three table datasets, we randomly split443

70% of the data for training, named and 30% for444

testing. No separate validation set is created due to445

the limited overall size of the data.446

ChartQA – Horizontal Bar.. ChartQA (Masry447

et al., 2022) contains human-written questions448

grounded in real-world charts. The chart figures449

come from web-crawled results. We select 444 hor-450

izontal bar chart QA pairs from its test split, which451

involve logical and visual reasoning.452

ChartQA – Vertical Bar.. An additional 382 verti-453

cal bar chart QA pairs are extracted from ChartQA,454

focusing on similar reasoning skills.455

For Chart questions, we use all 444 + 382 ques-456

tions as the test set. In addition, we use 14,344 train-457

ing examples and 813 validation examples from the458

official training and validation splits. Validation ac-459

curacy is tracked throughout training.460

4.2 Visual Editing Toolset T461

While our long-term goal is to enable models to462

invoke arbitrary tools or APIs within a sandbox463

environment using outcome-based rewards, we be-464

gin by demonstrating VTool-R1’s capabilities with465

a set of simple but effective visual editing tools.466

These tools are implemented in Python and help467

simulate visual attention by modifying table or468

chart images. We adopt the same tool set used in469

Refocus. In our experiments for tabular problems,470

we utilize a variety of tools as follows: 471

Highlight Column/Row: overlays a semi- 472

transparent red on the selected columns/Rows. 473

Mask Column/Row: applies a white mask over ir- 474

relevant columns/rows. 475

Draw Column/Row: draws a solid red bounding 476

box around selected columns/rows. 477

For charts, we apply analogous operations to 478

highlight or mask individual bars, based on their 479

positions along the x-axis or y-axis. 480

The model is instructed to call one or multiple 481

tools at the same time, as many operations (e.g., 482

drawing bounding boxes on multiple positions) can 483

be performed in parallel and we involve at most 484

one round of tool call in the experiments. 485

These tools leverage external libraries such as 486

OpenCV to perform tasks like drawing bounding 487

boxes and identifying maskable regions based on 488

contours of bars or tables for selective attention in 489

our tasks. Looking ahead, we envision integrating 490

more advanced generative models as powerful tools 491

that can execute more generalized visual modifica- 492

tions directly from language prompts. 493

4.3 Experiment Setup 494

We demonstrate the effectiveness of our reinforce- 495

ment learning framework by training the state-of- 496

the-art open-source VLMs—Qwen-VL 2.5 mod- 497

els (Bai et al., 2025) at 3B, 7B, and 32B scales. 498

Training uses the open-source VeRL training infras- 499

tructure (Sheng et al., 2024). Training is conducted 500

with the AdamW optimizer, using an initial learn- 501

ing rate of 1e−6 and a weight decay of 1e−2. Due 502

to the large image sizes and long prompt sequences 503

(up to 16,384 tokens), we set the micro-batch size 504

to 2. The 3B/7B models are trained on 8/16 H100 505

GPUs; the 32B models are trained on 8 H200 GPUs. 506

We standardize decoding across rollout and evalua- 507

tion with temperature 1.0 and bf16 precision. 508

4.4 Baseline Models 509

We report several baselines to contextualize VTool- 510

R1’s performance in Table 1: 511

GPT-4o: Used as an upper bound across all bench- 512

marks. This is a powerful commercial model that 513
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Qwen2.5-VL (Bai et al., 2025)
3B 7B 32B GPT-4o

Pure Run Tool Use VTool-R1 Pure Run Tool Use VTool-R1 Pure Run Tool Use VTool-R1 Pure Run Tool Use

ChartQA (Masry et al., 2022) 51.8 24.6 64.0 76.2 53.4 73.1 88.0 85.0 86.7 82.9 80.5

TableVQA (Kim et al., 2024) 41.3 24.3 57.9 64.7 41.1 60.2 86.2 76.0 79.3 75.7 77.0

Table 1: Main Results of VTool-R1 and Baselines in Accuracy

has already shown remarkable tool use capability514

for reasoning in Refocus (Fu et al., 2025).515

Qwen2.5-VL (3B / 7B / 32B): Included without516

any RFT in two configurations:517

Prompted Tool-Use Inference: The model is518

prompted to use tools following our rollout tem-519

plate. However, prior to RFT, these models struggle520

to follow tool-use instructions. For fairness, when521

a tool call fails, we append a prompt indicating the522

failure and ask the model to regenerate its answer.523

Direct Inference (No Tools): Only the image524

and question are provided, with no tool-related525

prompts. Surprisingly, this setting of open-source526

model yields strong results across datasets—often527

outperforming even GPT-4o—especially for larger528

models like 32B.529

These findings about high pure run accuracy sug-530

gest that Qwen2.5-VL 3B and 7B may have been531

post-trained on VQA-style tasks or distilled from532

larger models, enabling strong direct-answering533

performance, but lacking the general-purpose tool-534

use capabilities seen in models like GPT-4o.535

4.5 Main RFT Results and Findings536

Qualitative Tool-use Example. Figure 2 presents537

a qualitative example where the VTool-R1 3B538

model successfully integrates intermediate visual539

steps through tool use as part of the reasoning pro-540

cess, ultimately arriving at the correct answer.541

RFT makes Better Tool Use for Reasoning.542

When comparing VTool R1 Model reasoning ac-543

curacy with non-trained baselines in Table 1, we544

observe a significant improvement in tool use ca-545

pability. After training, models learn to reason546

correctly with multimodal tool use, guided solely547

by outcome-based rewards. Remarkably, the 3B548

model, which initially failed to generate meaning-549

ful tool use (thoughts, actions, or tool calls), learns550

to use tools effectively to generate intermediate551

reasoning. This indicates that VTool-R1 not only552

improves final answer accuracy, but also enables553

models to internalize structured reasoning patterns.554

In several cases, VTool-R1 even outperforms the555

direct inference baseline.556

Better Tool Use, or Not? It’s Not Monotonic.557

Our goal goes beyond improving accuracy—we558

aim to teach the model when and how to use tools in 559

a way that meaningfully supports reasoning in the 560

RL training. As shown in Figure 3, VTool-R1 en- 561

ables models to make nuanced, context-aware tool- 562

use decisions. Interestingly, tool call frequency and 563

success rate do not increase monotonically when 564

the training proceeds and accuracy goes up. In- 565

stead, we observe fluctuations: models tend to 566

overuse tools early in training due to prompt in- 567

struction exposure but later learn to invoke them 568

more selectively. The 3B model becomes more cau- 569

tious with tool use over time, leading to higher rea- 570

soning accuracy. Crucially, the model also learns 571

when tools are unnecessary and confidently pro- 572

ceeds with direct reasoning. The 32B model (train- 573

ing curve shown in the Appendix) exhibits a higher 574

overall tool use rate but similarly shows periods of 575

decline, reflecting adaptive behavior. This adaptive 576

tool-use behavior for reasoning is a key outcome 577

of our RFT strategy. While the exact trends vary 578

between table and chart tasks, the overall pattern 579

remains consistent. 580

More Successful Tool Use or Not? Figure 3 also 581

presents the tool call success rates of the most rep- 582

resentative 3B model during RFT training on both 583

chart and table tasks. It is important to note that we 584

cannot evaluate tool call correctness with full pre- 585

cision and recall, as no oracle verifier is available. 586

Instead, we rely on a proxy metric to approximate 587

success: A tool call is considered successful if the 588

python commands executed did not raise any excep- 589

tions inside a sandbox environment with the given 590

functions, and a valid pillow image is returned from 591

the execution through passing the processed image 592

into the display function. According to this metric, 593

the success rate of tool use steadily increases on 594

table tasks, while for charts it fluctuates through- 595

out training. We would like to highlight the need 596

for future work to incorporate human-annotated 597

oracle verifier to more accurately evaluate tool-use 598

success. 599

Training Dynamics. Overall, the model’s accuracy 600

steadily improves throughout training, with minor 601

fluctuations. Performance gradually converges and 602

stabilizes around the final accuracy within approxi- 603

mately 50 training steps. The saturated step number 604
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Figure 2: Qualitative Example from VTool-R1 (3B): The Model Successfully Integrates Intermediate Visual Steps.

Figure 3: Multi-Modal GRPO w. Tool Use Training Dynamics, for 3B models

varies depending on the training configuration.605

Reward Design. We also explore alternative re-606

ward settings beyond the standard 0/1 outcome-607

based reward. When applying process-based re-608

wards—such as penalizing failed tool calls—we609

observe that the model quickly learns to avoid tool610

use entirely, driving the tool usage rate to zero.611

Conversely, when we add extra reward for success-612

ful tool use that leads to a correct answer, the model613

begins to exploit the verifier and hack to triggering614

a “success” signal. This holds even under stricter615

verifier criteria. These findings support our claims616

that outcome-based rewards tied solely to final task617

correctness serve as the most reliable and robust618

reward design for VTool-R1.619

5 Conclusion620

VTool-R1 demonstrates that RFT can effectively621

teach VLMs to reason multimodally by interleav-622

ing textual and visual steps. By integrating visual623

editing tools into the RL training loop and optimiz- 624

ing for outcome-based rewards, VTool-R1 enables 625

models to learn when and how to use tools to sup- 626

port their reasoning—without requiring process- 627

level supervision. Our experiments on structured 628

visual question answering show that VTool-R1 not 629

only improves final task accuracy but also equips 630

models with the ability to generate coherent, multi- 631

modal chains of thought. 632

Broader Impacts VTool-R1 is the first framework 633

to show that RFT can train VLMs to integrate vi- 634

sual reasoning steps by invoking visual editing 635

tools and generating intermediate visual states to 636

support their own reasoning goals. This opens up a 637

novel and promising direction for multimodal AI, 638

enabling models to reason more effectively across 639

modalities and potentially unlocking fundamentally 640

new capabilities that go beyond what is encoded in 641

model parameters, especially for more tasks. 642
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6 Limitations643

VTool-R1 holds strong potential for scaling to a644

broader range of toolsets and generalizing to more645

diverse datasets. However, in this work, we fo-646

cus on a straightforward task—selective attention647

in structured image understanding—as a starting648

point. We expect future extensions of the VTool-R1649

framework to support the execution of more com-650

plex and diverse tools. While our current frame-651

work is limited to only a single round of tool invo-652

cation, we envision future extensions that enable653

multi-turn tool usage.654
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A Appendix 837

LLM Use: We use LLM for grammar checks. 838

Figure 4: Multi-Modal GRPO w. Tool Use Training Dynamics, for 32B models

Prompts
Here are some tools that can help you. All are python codes. They are in
tools.py and will be imported for you. You will be given a table figure:
image_1 and a question. Notice that you, as an AI assistant, are not good at
answering questions when there are too many unnecessary and irrelevant
information. You should determine which are the relevant columns to the
question, and specify them in a python list. You should use the given column
headers. You should also determine which are the relevant rows to the
question, and specify them in a python list. You should use the given row
headers. You could select the tools to focus on some columns / rows, or mask
out some columns / rows. Use whichever tool you think is more appropriate.
Below are the tools in tools.py:

```python
def focus_on_columns_with_highlight(image , columns_to_focus_on ,

all_columns_bounding_boxes):
\"\"\"
This function is useful when you want to focus on some

specific columns of the image.

839
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It does this by adding light transparent red highlight to
the columns that need to be focused on.
For example , you can focus on the columns in a table that

are relevant to your analysis.
Return the drawed image.

Args:
image (PIL.Image.Image): the input image
columns_to_mask (List[str]): a list of column names to

focus on.
all_columns_bounding_boxes (Dict[Dict ]]): a dictionary

of bounding boxes for all columns in the image. key is column
name and value is the bounding box of that column. Each

bounding box is in the format {'x1 ': x1, 'y1 ': y1, 'x2 ': x2,
'y2 ': y2}.

Returns:
image_with_focused_columns (PIL.Image.Image): the image

with specified columns focused on

Example:
image = Image.open(" sample_img.jpg")
image_with_focused_columns =

focus_on_columns_with_highlight(image , ["Year", "Name"], {"
Year": {'x1 ': 0.1, 'y1 ': 0.1, 'x2 ': 0.3, 'y2 ': 0.9}, "Team":
{'x1 ': 0.4, 'y1 ': 0.1, 'x2 ': 0.6, 'y2 ': 0.9}, "Name": {'x1 ':
0.7, 'y1 ': 0.1, 'x2 ': 0.9, 'y2 ': 0.9}})

display(image_with_focused_columns)
\"\"\"

def focus_on_rows_with_highlight(image , rows_to_focus_on ,
all_rows_bounding_boxes):
\"\"\"
This function is useful when you want to focus on some

specific rows of the image.
It does this by adding light transparent red highlight to

the rows that need to be focused on.
For example , you can focus on the rows in a table that are

relevant to your analysis.
Return the drawed image.

Args:
image (PIL.Image.Image): the input image
rows_to_focus_on (List[str]): a list of row headers to

focus on.
all_rows_bounding_boxes (Dict[Dict]): a dictionary of

bounding boxes for all rows in the image. key is row header
and value is the bounding box of that row. Each bounding box
is in the format {'x1 ': x1, 'y1 ': y1, 'x2 ': x2, 'y2 ': y2}.
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Returns:
image_with_focused_rows (PIL.Image.Image): the image

with specified rows focused on

Example:
image = Image.open(" sample_img.jpg")
image_with_focused_rows = focus_on_rows_with_highlight(

image , ["1972"] , ["Year": {'x1 ': 0.1, 'y1 ': 0.1, 'x2 ': 0.9, '
y2 ': 0.15}, "1969": {'x1 ': 0.1, 'y1 ': 0.2, 'x2 ': 0.9, 'y2 ':
0.5}, "1972": {'x1 ': 0.1, 'y1 ': 0.6, 'x2 ': 0.9, 'y2 ': 0.9}])

display(image_with_focused_rows)
\"\"\"

def focus_on_columns_with_mask(image , columns_to_focus_on ,
all_columns_bounding_boxes):
\"\"\"
This function is useful when you want to focus on some

specific columns of the image.
It does this by masking out the columns that are not needed.
For example , you can focus on the columns in a table that

are relevant to your analysis and ignore the rest.
Return the masked image.

Args:
image (PIL.Image.Image): the input image
columns_to_mask (List[str]): a list of column names to

focus on.
all_columns_bounding_boxes (Dict[Dict ]]): a dictionary

of bounding boxes for all columns in the image. key is column
name and value is the bounding box of that column. Each

bounding box is in the format {'x1 ': x1, 'y1 ': y1, 'x2 ': x2,
'y2 ': y2}.

Returns:
image_with_focused_columns (PIL.Image.Image): the image

with specified columns focused on

Example:
image = Image.open(" sample_img.jpg")
image_with_focused_columns = focus_on_columns(image , ["

Year", "Name"], {"Year": {'x1 ': 0.1, 'y1 ': 0.1, 'x2 ': 0.3, '
y2 ': 0.9}, "Team": {'x1 ': 0.4, 'y1 ': 0.1, 'x2 ': 0.6, 'y2 ':
0.9}, "Name": {'x1 ': 0.7, 'y1 ': 0.1, 'x2 ': 0.9, 'y2 ': 0.9}})

display(image_with_focused_columns)
\"\"\"

def focus_on_rows_with_mask(image , rows_to_focus_on ,
all_rows_bounding_boxes):
\"\"\"
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This function is useful when you want to focus on some
specific rows of the image.
It does this by masking out the rows that are not needed.
For example , you can focus on the rows in a table that are

relevant to your analysis and ignore the rest.
Return the masked image.

Args:
image (PIL.Image.Image): the input image
rows_to_focus_on (List[str]): a list of row headers to

focus on.
all_rows_bounding_boxes (Dict[Dict]): a dictionary of

bounding boxes for all rows in the image. key is row header
and value is the bounding box of that row. Each bounding box
is in the format {'x1 ': x1, 'y1 ': y1, 'x2 ': x2, 'y2 ': y2}.

Returns:
image_with_focused_rows (PIL.Image.Image): the image

with specified rows focused on

Example:
image = Image.open(" sample_img.jpg")
image_with_focused_rows = focus_on_rows(image , ["1972"] ,

["Year": {'x1 ': 0.1, 'y1 ': 0.1, 'x2 ': 0.9, 'y2 ': 0.15},
"1969": {'x1 ': 0.1, 'y1 ': 0.2, 'x2 ': 0.9, 'y2 ': 0.5}, "1972":
{'x1 ': 0.1, 'y1 ': 0.6, 'x2 ': 0.9, 'y2 ': 0.9}])

display(image_with_focused_rows)
\"\"\"

def focus_on_columns_with_draw(image , columns_to_focus_on ,
all_columns_bounding_boxes):
\"\"\"
This function is useful when you want to focus on some

specific columns of the image.
It does this by drawing a red box around the columns that

need to be focused on.
For example , you can focus on the columns in a table that

are relevant to your analysis.
Return the drawed image.

Args:
image (PIL.Image.Image): the input image
columns_to_mask (List[str]): a list of column names to

focus on.
all_columns_bounding_boxes (Dict[Dict ]]): a dictionary

of bounding boxes for all columns in the image. key is column
name and value is the bounding box of that column. Each

bounding box is in the format {'x1 ': x1, 'y1 ': y1, 'x2 ': x2,
'y2 ': y2}.
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Returns:
image_with_focused_columns (PIL.Image.Image): the image

with specified columns focused on

Example:
image = Image.open(" sample_img.jpg")
image_with_focused_columns = focus_on_columns(image , ["

Year", "Name"], {"Year": {'x1 ': 0.1, 'y1 ': 0.1, 'x2 ': 0.3, '
y2 ': 0.9}, "Team": {'x1 ': 0.4, 'y1 ': 0.1, 'x2 ': 0.6, 'y2 ':
0.9}, "Name": {'x1 ': 0.7, 'y1 ': 0.1, 'x2 ': 0.9, 'y2 ': 0.9}})

display(image_with_focused_columns)
\"\"\"

def focus_on_rows_with_draw(image , rows_to_focus_on ,
all_rows_bounding_boxes):
\"\"\"
This function is useful when you want to focus on some

specific rows of the image.
It does this by drawing a red box around the rows that need

to be focused on.
For example , you can focus on the rows in a table that are

relevant to your analysis.
Return the drawed image.

Args:
image (PIL.Image.Image): the input image
rows_to_focus_on (List[str]): a list of row headers to

focus on.
all_rows_bounding_boxes (Dict[Dict]): a dictionary of

bounding boxes for all rows in the image. key is row header
and value is the bounding box of that row. Each bounding box
is in the format {'x1 ': x1, 'y1 ': y1, 'x2 ': x2, 'y2 ': y2}.

Returns:
image_with_focused_rows (PIL.Image.Image): the image

with specified rows focused on

Example:
image = Image.open(" sample_img.jpg")
image_with_focused_rows =

focus_on_columns_with_highlight(image , ["1972"] , ["Year": {'
x1 ': 0.1, 'y1 ': 0.1, 'x2 ': 0.9, 'y2 ': 0.15}, "1969": {'x1 ':
0.1, 'y1 ': 0.2, 'x2 ': 0.9, 'y2 ': 0.5}, "1972": {'x1 ': 0.1, '
y1 ': 0.6, 'x2 ': 0.9, 'y2 ': 0.9}])

display(image_with_focused_rows)
\"\"\"

```

# GOAL #: Based on the above tools, I want you to reason about how to solve
the # USER REQUEST # and generate the actions step by step (each action is a
python function call) to solve the request. You may need to use the tools
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above to process the images and make decisions based on the visual outputs of
the previous code blocks. You should only use the tools above, you should not
use other functions or code which will not be executed.
# REQUIREMENTS #:
1. The generated actions can resolve the given user request # USER REQUEST #
perfectly. The user request is reasonable and can be solved. Try your best to
solve the request.
2. The arguments of a tool must be the same format specified in # TOOL LIST #;
3. If you think you got the answer, use ANSWER: <your answer> Please extract
the final answer in FINAL ANSWER: <final answer> and ends with TERMINATE.
4. All images in the initial user request are stored in PIL Image objects named
image_1, image_2, ..., image_n. You can use these images in your code blocks.
Use display() function to show the image in the notebook for you too see.
5. Use as few tools as possible. Only use the tools for the use cases written
in the tool description. You can use multiple tools in a single action.
6. If you have multiple answers, please separate them with || marks. For
example, if the answer is ’Alice’ and ’Bob’, you should write ’Alice||Bob’.
7. When you focus on columns in the image, most like you need to look at
multiple columns instead of a single one.
8. If you do not think you have enough information to answer the question on
the images returned by the tools, you should directly answer the question
based on the original image.
Below are some examples of how to use the tools to solve the user requests.
You can refer to them for help. You can also refer to the tool descriptions
for more information.
9. Only one turn of action, ACTION 0, is allowed. You must provide the answer
after maximum one ACTION call.

# EXAMPLE: Simple question that does not require any tool
# USER REQUEST #: <A image here> What is the title of this table?
# USER Bounding Box Info: columns_bbox, where keys are column headers and
values are column bounding boxes. rows_bbox, where keys are row headers and
values are row bounding boxes. The columns in the image are: ["Grade",
"Mentor", "Salary"]. The rows in the image start with: ["Grade", "A", "B",
"C"].
# USER IMAGE stored in image_1, as PIL image.
# RESULT #:
THOUGHT 0: The question does not require any tool. I can see the title of the
table is "Customer Information".
ACTION 0: No action needed.
ANSWER: The title of the table is "Customer Information". FINAL ANSWER:
Customer Information. TERMINATE

# EXAMPLE: Focus on specific columns in the image
# USER REQUEST #: <A image here> Who had the same game version as John Roth?
# USER Bounding Box Info: columns_bbox, where keys are column headers and
values are column bounding boxes. rows_bbox, where keys are row headers and
values are row bounding boxes. The columns in the image are: [’Manager Name’,
’Game Version’, ’Game Score’]. The rows in the image start with: [’Manager
Name’, ’John Roth’, ’Alice Smith’, ’Bob Johnson’].
# USER IMAGE stored in image_1, as PIL image.
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# RESULT #:
THOUGHT 0: To identify who had the same game version as John Roth, I need to
focus on the ’Game Version’ column and the ’Manager Name’ column. Also, I need
to focus on all the rows so I do not need to focus on some specific rows.
ACTION 0:

```python
image_with_focused_columns = focus_on_columns_with_draw(image\_1

, ["Game Version", "Manager Name"], columns\_bbox)
display(image_with_focused_columns)
```

OBSERVATION: Execution success. The output is as follows:
<the image outputs of the code is added as the second image>
THOUGHT 1: Now I can see the ’Game Version’ column and the ’Manager Name’
column more clearly. The game version of John Roth is ’v1.2’. Other people
with the same game version are ’Alice Smith’ and ’Bob Johnson’.
ANSWER: ’Alice Smith’ and ’Bob Johnson’ had the same game version as John Roth
are. FINAL ANSWER: Alice Smith||Bob Johnson. TERMINATE

# EXAMPLE: Focus on specific rows in the image
# USER REQUEST #: <A image here> How many games did Josh win after 1996?
# USER Bounding Box Info: columns_bbox, where keys are column names and values
are column bounding boxes. rows_bbox, where keys are row headers and values
are row bounding boxes. The columns in the image are: ["Rank", "Year",
"Score", "Month"]. The rows in the image start with: ["Rank", "0", "1", "2",
"3", "4", "5"].
# USER IMAGE stored in image_1, as PIL image.
# RESULT #:
THOUGHT 0: This table is about the games played by Josh that he won. I do not
need to focus on any specific columns. I need to focus on the rows with the
year after 1996. Three rows have year after 1996: one has year 1997 and this
row starts with "3", one has year 1998 and this row starts with "4", and one
has year 1999 and this row starts with "5". So I will focus on the rows with
row starters "3", "4", and "5".
ACTION 0:

```python
image_with_focused_rows = focus_on_rows_with_highlight(image\_1,

["3", "4", "5"], rows\_bbox)
display(image_with_focused_rows)
```

OBSERVATION: Execution success. The output is as follows:
<the image outputs of the code is added as the second image>
THOUGHT 1: I can see that Josh won 3 games after 1996.
ANSWER: Josh won 3 games after 1996. FINAL ANSWER: 3. TERMINATE

# EXAMPLE: Focus on specific columns and specific rows in the image
# USER REQUEST #: <A image here> what is the sum of annual earnings after 2006?
# USER Bounding Box Info: columns_bbox where keys are column names and values
are column bounding boxes. rows_bbox, where keys are row headers and values
are row bounding boxes. The columns in the image are: ["Index", "Year",
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"Cost", "Earning"]. The rows in the image start with: ["Index", "0", "1", "2",
"3", "4", "5"].
# USER IMAGE stored in image_1, as PIL image.
# RESULT #:
THOUGHT 0: I need to focus on the ’Year’ column and the ’Earning’ column. I
also need to focus on the rows with years after 2006. The row with year being
2006 starts with "3". So I will focus on the rows starting with "4", and "5".
ACTION 0:

```python
image_with_focused_columns = focus_on_columns_with_mask(image\_1

, ["Year", "Earning"], columns\_bbox)
image_with_focused_rows = focus_on_rows_with_draw(

image_with_focused_columns , ["4", "5"], rows\_bbox)
display(image_with_focused_rows)
```

OBSERVATION: Execution success. The output is as follows:
<the image outputs of the code is added as the second image>
THOUGHT 1: I can see that the annual earnings after 2006 are $165,498 and
$198,765. The sum of the annual earnings after 2006 is $364,263.
ANSWER: The sum of the annual earnings after 2006 is $364,263. FINAL ANSWER:
364263. TERMINATE.
# USER Bounding Box Info: x_values_bbox, storing x values and coordinates.
y_values_bbox, storing x values and coordinates. The x values in the image
are: <x_values>. The y values in the image are: <y_values>.
# USER IMAGE stored in image_1, as PIL image.
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