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ABSTRACT

Wind energy stands out as a promising clean and renewable energy alternative, not
only for its potential to combat global warming but also for its capacity to meet the
ever-growing demand for energy. However, analysis of wind data to fully harness
the benefits of wind energy demands tackling several related challenges: (1) Cur-
rent data resolution is inadequate for capturing the detailed information needed
across diverse climatic conditions; (2) Efficient management and storage of real-
time measurements are currently lacking; (3) Extrapolating wind data across spa-
tial specifications enables analysis at costly-to-measure, unobserved points is nec-
essary. In response to these challenges, we introduce a modality-agnostic learning
framework utilizing implicit neural networks. Our model effectively compresses
a large volume of climate data into a manageable latent codec. It also learns
underlying continuous climate patterns, enabling reconstruction at any scale and
supporting modality transfer and fusion. Extensive experimental results show con-
sistent performance improvements over existing baselines.

1 INTRODUCTION

The escalating challenge of climate change necessitates immediate and strategic action to mitigate
its impacts and steer towards sustainable development (Rolnick et al., 2022; Kaack et al., 2022). As
the Earth’s climate experiences higher temperatures, rising sea levels, and more extreme weather
events, the transition to renewable energy sources becomes inevitable. Wind energy, in particular,
offers a notable solution with its ability to deliver a clean power supply while greatly cutting down
greenhouse gas emissions (Stengel et al., 2020; Ramesh et al., 2022b). However, the deployment
and optimization of wind energy face several challenges:

1. Resolution: Identifying the most suitable sites for wind turbines necessitates data with a reso-
lution as detailed as 1 square kilometer or finer (Irrgang et al., 2021; Kashinath et al., 2021).
However, most wind farm simulations do not achieve this resolution, limiting our capacity to
enhance the efficiency of wind energy farms.

2. Data Storage: As the granularity of simulated data and the accumulation of field measurements
increase (Klöwer et al., 2021; Huang & Hoefler, 2023), the resulting growth in data size requires
advanced storage solutions.

3. Generalization: Setting up wind measurement stations in specific locations can be challeng-
ing due to the high costs of transportation and maintenance. This necessitates cross-altitude
inference, such as estimating high-altitude wind speeds from ground-level measurements.

Advancements in deep learning present promising solutions to these challenges. Techniques such as
deep learning-based super-resolution can enhance low-resolution data, providing the detailed repre-
sentations needed for precise analysis (Vandal et al., 2017; Gao et al., 2022; Diaconu et al., 2022).
Additionally, deep learning-based data reduction can compress extensive datasets into latent for-
mats, reducing memory and hardware demands. However, most existing deep learning approaches,
like convolutional neural networks and autoencoders, are grid-based and fail to offer a continuous
representation of wind fields (Nguyen et al., 2023; Requena-Mesa et al., 2021). Due to the inher-
ently continuous nature of wind fields, there is a crucial need for methodologies that can generate
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and work with continuous data representations (Reichstein et al., 2019; Luo et al., 2023; 2024b).
Additionally, recent advancements in multi-modal deep learning necessitate its use in the efficient
and comprehensive analysis of wind data, including the examination of wind patterns at multiple
altitudes (Summaira et al., 2021; Xu et al., 2023).

In this paper, we present a novel deep learning model designed for the efficient dimension reduc-
tion and continuous reconstruction of multi-altitude climate data. Our approach utilizes modality-
agnostic implicit neural networks within an encoder-decoder (transfer)-decoder (continuous re-
constructor) framework to process multi-altitude climate data. The encoder segment of the
three-dimensional implicit neural network functions as a nonlinear data compressor, and the de-
coder (transfer) segment functions as a modality transfer network that exploits inter-altitude data re-
lationships to improve feature extraction. The decoder (continuous reconstructor) employs implicit
neural representations to reconstruct continuous fields. Overall our contributions are as follows:

• We design a novel, parameter-efficient deep encoder-decoder (transfer)-decoder (continuous
reconstructor) framework for simultaneous dimension reduction and continuous reconstruction
via super-resolution of multi-altitude climate data.

• We design a three-dimensional implicit neural network for transforming data from one modal-
ity/altitude to another modality/altitude. Due to this structure of our designed implicit neural
network, our proposed model is scalable to datasets consisting of a large number of modalities,
unlike traditional multi-modal deep learning models which face severe scalability issues.

• We employ Gaussian Adaptive Attention Mechanism (Ioannides et al., 2024) in the de-
coder (transfer) segment of our proposed three-dimensional implicit neural network as a
parameter-efficient alternative to regular query-key-value based attention mechanisms (Vaswani
et al., 2017), which to the best of our knowledge has not been tested in super-resolution task.

• We employ a Kolmogorov-Arnold Network (Liu et al., 2024) as a superior alternative to tra-
ditional multi-layer perceptron neural network (Hornik et al., 1989) within the state-of-the-art
Local Implicit Image Function (LIIF) (Chen et al., 2021) based decoder (continuous reconstruc-
tor), which also has not been employed in data reduction or super-resolution tasks.

2 RELATED WORK

Climate Downscaling is a critical process in climate science, allowing for the translation of global
climate model outputs into finer, local-scale projections. The main methods for downscaling can
be categorized into dynamical downscaling and statistical downscaling (Keller et al., 2022; Harder
et al., 2023). Dynamical downscaling, while comprehensive, demands significant computational
power and depends on the accuracy of the global climate model data (Chau et al., 2021; Chen
et al., 2022). Statistical downscaling, in contrast, is more computationally efficient and faster but
assumes historical relationships will persist, potentially missing changes in climate variability and
extremes (Groenke et al., 2020; Liu et al., 2020).

Alternatively, Deep Learning-based Super-resolution techniques are revolutionizing the enhance-
ment of climate data, delivering unparalleled detail and precision in climate models and remote
sensing imagery. Different deep neural networks specialize in analyzing both spatial and tempo-
ral climate data’s complex patterns, enhancing model accuracy and details beyond what traditional
downscaling achieves (Vandal et al., 2017; Requena-Mesa et al., 2021; Stengel et al., 2020; Gao
et al., 2022; Diaconu et al., 2022). However, these methods often rely on fixed resolutions, high-
lighting the need for models that offer resolution-independent, continuous climate pattern represen-
tations (Luo et al., 2023).

Implicit Neural Representation (INR) uses neural networks to model continuous signals, tran-
scending traditional discrete methods like pixel and voxel grids (Xie et al., 2022; Huang & Hoefler,
2023). This approach has recently made significant strides in climate data analysis, enabling high-
resolution reconstructions beyond fixed enhancement scales. In Luo et al. (2024b), a context-aware
indexing mechanism was introduced to enhance the efficiency of INR in reconstructing fields from
sparse observations. In Schwarz et al. (2023), a novel compression algorithm is introduced, utilizing
INR within a universal approach to data handling, that effectively generates compact yet compre-
hensive latent depictions of ERA5 climate data. These advancements highlight INR’s capability in
precise, scalable data representation. In the meantime, Neural Operator and INR have been applied
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for solving PDEs and enhancing spatio-temporal resolution (Li et al., 2021; Kovachki et al., 2021).
INR-based PDE solvers like MeshfreeFlowNet (Esmaeilzadeh et al., 2020) and MAgnet (Boussif
et al., 2022) reconstruct continuous spatio-temporal data from sparse or discrete low-resolution in-
puts but lack focus on cross-spatial or cross-temporal reconstruction.

Deep Multi-modal Learning transforms machine perception by concurrently integrating diverse
data sources such as text, images, audio, and video, unlike of traditional single-modal approaches.
Multi-modal deep learning has shown impressive performance across different domains (Ngiam
et al., 2011; Jing et al., 2021; Ramesh et al., 2022a; Boussioux et al., 2022; Tu et al., 2022; Cao
& Gao, 2022; Ruan et al., 2023). In Qayyum et al. (2024), a novel multi-modal deep learning
method is introduced for simultaneous dimension reduction and continuous cross-altitude recon-
struction. However, as the number of modalities increases, the aforementioned multi-modal deep
learning models encounter scalability issues, highlighting the need for a parameter-efficient multi-
modal model capable of facilitating cross-altitude inference.

3 PRELIMINARIES

3.1 MULTI-ALTITUDE AS MULTI-MOADALITY

Traditionally, multi-modal data refers to the scenario of different data types from different modali-
ties, e.g. image/text, video/text. Similar to the definition used by Qayyum et al. (2024), we follow
a more flexible definition of multi-modality where data from each modality is acquired through dif-
ferent sensors, and we consider multi-altitude climate data as multi-modal data with each altitude as
a separate modality.

3.2 GAUSSIAN ADAPTIVE ATTENTION MECHANISM

Conventional attention mechanism calculates weights based on the dot-product between different
weight matrices (Vaswani et al., 2017), whereas Gaussian adaptive attention mechanism employs a
Gaussian-based modulation of input features, enabling improvement of the standard self-attention
mechanism in Transformers along with reduced number of trainable parameters and lower compu-
tational cost (Ioannides et al., 2024).
In GAAM (Gaussian Adaptive Attention Mechanism), multi-channel spatial feature F =
{f1, f2, · · · , fc} (c as the number of channels of the multi-channel spatial feature) goes through
the process of computation of mean and variance:

Mean, µ̂ =
1

c

C∑
s=1

fs (1) Variance, σ̂2 =
1

c

c∑
s=1

f2s (2)

The channel mean µ̂ is then adjusted by a learnable offset δ to learn ψ = δ + µ̂. Then, the attention
is computed through normalised fs, fnorm,s:

fnorm,s =
fs − ψ
√
σ̂
2
+ ϵ

(3) ga(fs) = exp

(
− fnorm,s

2ζ2

)
(4)

with a small ϵ > 0. The output of the Gaussian adaptive attention block:

G(F ) = {f1 ⊙ ga(f1), f2 ⊙ ga(f2), · · · , fs ⊙ ga(fs), · · · , fc ⊙ ga(fc)} (5)

3.3 THREE-DIMENSIONAL POSITIONAL ENCODER

Three-dimensional positional encoder P employs Fourier based positional encoding on 3D co-
ordinate points (Tancik et al., 2020). Considering v = (x, y, h) to denote a 3D coordi-
nate point, with x(c) = (x, y) being a point in the 2D coordinate space Xc, and h the al-
titude of the corresponding modality, the output of the 3D positional encoder is: P(v) =
[· · · , cos(2πσj/mv), cos(2πσj/mv), · · · ] for j ∈ {0, 1, · · · ,m − 1}, where m denotes the num-
ber of frequencies of the learned Fourier features, and σ denotes the frequency constant.

3.4 KOLMOGOROV-ARNOLD NETWORK

Traditional MLPs (Multi-Layer Perceptrons) model non-linearity through fixed activation functions
on nodes (Hornik et al., 1989), whereas KANs employ learnable activation functions on edges (Liu
et al., 2024). There is no linear weight whatsoever in KANs, each weight parameter is substituted
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with a univariate function that is parameterized as a spline function instead (d. Boor, 1978). For a
traditional MLP, the output at node j of layer l + 1, can be defined as

xl+1,j = σ

(
nl∑
i=1

wl+1,i,jxl,i

)
(6)

with σ as a non-linear activation function. For a KAN, the output at node j of layer l + 1, can be
defined as

xl+1,j =

nl∑
i=1

ϕl+1,i,j(xl,i), (7)

where the non-linear function ϕ can be defined as ϕ(x) = w(b(x) + spline(x)), with b(x) =
silu(x) = x/(1 + e−x) and spline(x) a linear combination of B-splines,

∑
i ciBi(x) with train-

able ci’s.

3.5 LOCAL IMPLICIT IMAGE FUNCTION

Figure 1: LIIF method.

Local implicit image function (LIIF) (Chen et al., 2021) is a deep
learning based continuous representation method from discrete image
or multi-channel two-dimensional feature representation. A decoding
function Dθ,liif is typically parameterized as a MLP and takes the form
s = Dθ,liif (z, x), where z is the observation of image pixel values or
features at 2D coordinate point x. Consider, our objective is to predict
the output at point x(c), with observed features zt at neighboring coor-
dinate points x(t), t = {00, 01, 10, 11}. St is the area of the rectangle
between x(c) and x(t

′) where t′ is diagonal to t (i.e. 00 to 11, 10 to 01).
Then, LIIF predicts the output at x(c) as:

s(x(c)) =
∑

t={00,01,10,11}

St

S
·Dθ,liif (zt, x

(c) − x(t)) (8)

S =
∑

t St is the total area of the four rectangles. Figure 1 illustrates this area-based interpolation
through Dθ,liif . Instead of applying the area-based interpolation through Dθ,liif directly on the
input image pixels, multi-channel features zt are first extracted using an EDSR (Lim et al., 2017)
model and then decoded through Dθ,liif .

4 PROBLEM STATEMENT

Let xH
k ∈ MH

k ⊂ Rh×w denote the discrete high resolution data representation of modality k with
MH

k being the discrete high resolution data space of modality k. We aim to achieve simultaneous
data dimension reduction and cross-modal/altitude continuous reconstruction of this data instance.
Our goal is to design a model capable of pertaining the following tasks:

1. Data Dimension Reduction: Execute xH
k → xL

k ∈ ML
k ⊂ Rh

d×w
d , where xL

k represents the
discrete low resolution representation of xH

k with ML
k being the discrete low resolution data

space of modality k and d being the dimension reduction factor.

2. Cross-Altitude/Modality Continuous Reconstruction: Execute xL
k → xC

l ̸=k(x
(c)) ∈

MC
l (x

(c)) ⊂ R. Let, x(c) ∈ Xc be any coordinate point in the continuous 2D coordinate
space Xc. Here xC

l (x
(c)) represents the target value at coordinate point x(c) for modality l and

MC
l (x

(c)) represents the data space of target values. The continuous nature of Xc makes this
task a continuous reconstruction from low dimensional representation xL

k .

We will use cross/multi-altitude and cross/multi-modality interchangably throughout the rest of the
paper.

5 METHOD

Overview. Our proposed encoder-decoder (transfer)-decoder (continuous reconstructor) frame-
work, Tθ, comprises three primary components:

4
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LIIF with KAN
Decoder

Residual
Implicit
Neural
Block

Implicit Super
Resolution Decoder

Residual
Implicit
Neural
Block

2D
Convolution
Block

2D
Convolution
Block

3D Encoder INN 3D Decoder INN

Channel-
wise

Gaussian
Adaptive
Attention
Block

Coordinate (x, y)
Multi-channel Spatial Feature

Modality Altitude (h1(Encoder)/h2(Decoder))

MLP

Positional
Encoder

Residual Implicit Neural Block

Reduction Transfer Continuous Reconstruction

Figure 2: Overview of the proposed method, which jointly enables (a) data reduction, (b) transfer
across modalities, and (c) continuous representation and arbitrary-scale super resolution.

• encoder: The three-dimensional implicit neural network, Eϕ, reduces dimension of the data
from input modality/altitude xH

in to xL
in. This compression is optimized to retain sufficient

information for downstream tasks. hin being the altitude of the input modality, we can define
the encoder mapping: xL

in = Eϕ(x
H
in, hin),Eϕ : MH

in → ML
in.

• decoder (transfer): The three-dimensional implicit neural network, Dtr, transforms the discrete
low resolution representation of the input modality/altitude xL

in to the discrete high resolution
representation of the target modality/altitude xH

out. hout being the altitude of the target modality,
we can define the mapping: xH

out = Dtr(x
L
in, hout),Dtr : ML

in → MH
out.

• decoder (continuous reconstructor): The implicit continuous decoder, Dcr, that uti-
lizes the modality/altitude-transferred discrete high resolution representation xH

out to pre-
dict wind data at specific coordinate xC

out(x
(c)).We can define this mapping: xC

out(x
(c)) =

Dcr(x
H
out, x

(c)),Dcr : MH
out ×Xc → MC

out.

Figure 2 summarizes the proposed model, Tθ := Dcr ◦ Dtr ◦ Eϕ. We describe the encoder-
decoder (transfer) segment, Dtr◦Eϕ in Section 5.1 and decoder (continuous reconstructor) segment
Dcr in Section 5.2.

5.1 THREE-DIMENSIONAL ENCODER-TRANSFER IMPLICIT NEURAL NETWORK

3D ETINN (Three-Dimensional Encoder-Transfer Implicit Neural Network) consists of the first two
segments of the overall framework: (i) encoder: a 3D encoder INN, Eϕ, and (ii) decoder (trans-
fer): a 3D decoder (transfer) INN, Dtr. Both the encoder and decoder (transfer) consist of (i) a
convolution block, Conv, and several (ii) residual implicit neural blocks, Rinn. 3D encoder INN,
Eϕ, consists of a convolutional block, Convin, followed by several residual implicit neural blocks,
Rin

inn,j={1,2,··· ,16}, and can be described as

Eϕ := Rin
inn,16 ◦ · · · ◦Rin

inn,2 ◦Rin
inn,1 ◦Convin (9)

3D decoder (transfer) INN, Dtr, consists of several residual implicit neural blocks,
Rout

inn,j={1,2,··· ,16}, followed by a convolutional block, Convout, and can be described as

Dtr := Convout ◦Rout
inn,16 ◦ · · · ◦Rout

inn,2 ◦Rout
inn,1 (10)

5.1.1 RESIDUAL IMPLICIT NEURAL BLOCK

Residual implicit neural block Rinn consists of a Gaussian adaptive attention block G, a three-
dimensional positional encoder P, and a 2-layer MLP network Dinn. Conventional implicit neural
networks use a two-dimensional positional encoder to process grid-like 2D data, such as images. In
contrast, the residual implicit neural block operates on two-dimensional data while utilizing a posi-
tional encoder, P, that accepts three-dimensional coordinate points as input. This approach allows
the flexibility in transforming 2D data across modalities.

5
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Let the input to Rinn be the multi-channel two-dimensional spatial feature, F ∈ Rc×h
d×w

d , and
G(F ) ∈ Rc×h

d×w
d be the output of the Gaussian adaptive attention block, G. G(F ) can be con-

sidered as a stack of hw
d2 numbers of c-dimensional features, [gfx(c) ]hw

d2
(visually illustrated in the

lower block of Figure 2). Let gfx(c) ∈ Rc be the local feature at 2D coordinate point x(c) of
G(F ), where c is the number of channels for the spatial feature. gfx(c) is then transformed into
Dinn({gfx(c) ,P(x, y, h)})+ gfx(c) , where Dinn is a 2-layer MLP network, h is the altitude for the
corresponding modality. Similar transformation is done for all those hw

d2 numbers of gf ’s. So, the
feature transformation through Rinn can be described as a two-step transformation:

1. Feature transformation through Gaussian Adaptive Attention, F → G(F ).
2. Transformation of G(F ) through residual neural network:

G(F ) = [gfx(c) ]hw
d2

→ Rinn(F ) = [Dinn({gfx(c) ,P(x, y, h)}) + gfx(c) ]hw
d2

(11)

5.2 IMPLICIT SUPER-RESOLUTION DECODER

Implicit super-resolution decoder, Dcr : MH
k × Xc → MC

k , takes the transformed discrete high-
resolution representation XH

k and any 2D coordinate point x(c) ∈ Xc and predicts the output at
coordinate point x(c), xC

k (x
(c)). We use a modified version of local implicit image function (LIIF)

based decoder, which is a coordinate based decoding approach (Chen et al., 2021). The original LIIF
decoder primarily consists of two components: (i) EDSR-based feature encoder (Lim et al., 2017),
and a (ii) MLP network. In our modified LIIF-KAN decoder, we replace the MLP network with a
KAN (Kolmogorov-Arnold Network)-based decoder (Liu et al., 2024).

Decoder (continuous reconstructor): EDSR-based (Lim et al., 2017) feature encoder, FE, en-
codes MH

out into the encoded feature space MF
out,FE : MH

out → MF
out. The KAN-based de-

coder, Dkan, then predicts the output at coordinate point x(c) following the similar methodology
followed in LIIF (Chen et al., 2021). The overall continuous reconstruction can be described as:
xC
out(x

(c)) = (Dkan ◦ FE)(xH
out, x

(c))

5.3 CROSS-ALTITUDE PREDICTION

Let, xH
in be a discrete high dimensional datapoint at altitude hin. For simultaneous dimension reduc-

tion and continuous cross-altitude reconstruction through super-resolution, we need to infer discrete
low-resolution representation xL

in, and xC
out(x

(c)), where x(c) can be any 2D coordinate point in Xc

at altitude hout. Then,
xL
in = Eϕ(x

H
in, hin) (12)

xC
out(x

(c)) = Dkan(FE(Dtr(x
L
in, hout)), x

(c)) (13)
hin ̸= hout refers to the cross-altitude prediction scenario. At a super-resolution scale s, we evaluate
DKAN on s2hw number of different x(c) ∈ Xc, resulting in a super-resolved output with dimension
Rsh×sw.

6 EXPERIMENTS

We first introduce the wind dataset that we used to evaluate our proposed model. Then we continue
to elaborate the optimization procedure and obtained results.

6.1 WIND DATA

National Renewable Energy Laboratory’s Wind Integration National Database (WIND) Toolkit
provides high spatial and temporal resolution wind power, wind power forecasting, and mete-
orological data for over 126,000 locations across the continental United States during a 7-year
span (Draxl et al., 2015). The simulated forecasts were developed using the Weather Research
and Forecasting Model, which operates on a 2-kilometer (km) by 2-kilometer (km) grid with a
10-meter(m) resolution from the ground to 200m above ground with several temporal resolutions
available at 1−hour, 4−hour, 6−hour, and day-ahead forecast horizons. The spatial resolution of
the WIND Toolkit is 2km × 1hr in spatio-temporal resolution. As a result, the wind dataset size
is 1602 (latitude) × 2976 (longitude) × 61368 (number of instances), or almost 1.2 TB per wind
component (wind data at different heights). We randomly cropped data to reduce the resolution to

6
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1500 (latitude) × 2000 (longitude) for each time instance. Wind velocity components at specific
direction were determined using the wind speed and direction at a specific height. For example, if
wind speed at height h is V at an angle θ◦ with northern direction, the northern and eastern compo-
nents are u = V cos θ◦, v = V sin θ◦ accordingly. In this paper, we only report the results with the
northern projection of wind speed data.

6.2 EXPERIMENTAL SETUP

Dataset: To evaluate the continuous reconstruction capability of our proposed method, we created
a dataset for multi-modal super-resolution tasks using simulated wind data. From 61368 instances,
we randomly sampled 1500 data points from various timestamps at heights of 10m, 60m, 160m and
200m. We used 1200 data points for training and 300 for testing. We used bicubic interpolation to
generate a pair of discrete and continuous high-resolution samples for each instance. For example,
if the discrete input dimension is (120 × 160) and the super-resolution scale is 2.5×, the contin-
uous output dimension is (300 × 400). During training, the continuous high-resolution sample is
created by cropping from the actual (1500× 2000) resolution data and then generating the discrete
high-resolution sample via bicubic interpolation. The discrete high-resolution dimension was set to
(120× 160), with super-resolution scales ranging from 1× to 3×. To avoid randomness during test-
ing, both continuous and discrete high-resolution samples were generated by bicubic interpolation
from the actual (1500× 2000) data.

Training Details: Adam was adopted as the optimizer (Kingma & Ba, 2017), to train the model
for 600 epochs. The learning rate during the optimization was set following the cyclical learn-
ing rate technique with a minimum learning rate of 10−5 and a maximum learning rate of 10−4

(Smith, 2017). At super-resolution scale s, the super-resolution ground truth xS
out has a dimension

of sh×sw. Coordinate-based implicit neural networks, e.g. LIIF (Chen et al., 2021), predict outputs
pixel-by-pixel instead of predicting the whole super-resolved image at a single forward pass. We ran-
domly selected 2048 coordinate points, at each optimization step, among the s2hw coordinate points
of the target super-resolved continuous representation, and optimized the parameters based on the
predictions x̂C

out(x
(c)) and the ground truth xC

out(x
(c)) on those coordinate points to extradite the op-

timization process. We used the L1 loss function, l1(x̂C
out,x

C
out, x

(c)) = |xC
out(x

(c)) − x̂C
out(x

(c))|,
to optimize the model. It took about 12 hours to train the model on a workstation with a single
NVIDIA A100 GPU.

Evaluation Metrics: We employed two metrics to evaluate the continuous reconstruction through
super resolution. Peak signal-to-noise ratio (PSNR) is the ratio of a signal’s maximum possible
value (power) to the power of distorting noise that affects the quality of its representation. Structural
similarity index (SSIM) is a perceptual metric that evaluates the degradation of image quality, that
compares the spatial structures between the target image and reproduced image. For evaluation of
the compression performance, we employed Compression Ratio (CR) metric which measures the
ratio between the required memory for storing the compressed versus the uncompressed data. These
evaluation metrics have been discussed in detail in the Appendix Section C.

6.3 EXPERIMENT 1: SUPER-RESOLUTION
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Figure 3: Results(Experiment 1)

Task. We evaluated the model’s con-
tinuous reconstruction capability by
performing super-resolution at differ-
ent scales on a test dataset containing
300 data points.

Setup. The high-resolution input di-
mension was set to 120 × 160, with
a dimension reduction factor d = 8,
yielding a low-resolution representa-
tion of 15 × 20. We focus on cross-
altitude predictions where the input
modality height hin is closer to the
ground (10m, 60m) and the output modality height hout is significantly higher (160m, 200m). Due to
the lack of existing methodologies for simultaneous dimension reduction and reconstruction through
super-resolution, we use the following two methods as baselines:
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• Multi-Altitude GEI-LIIF: Multi-altitude simultaneous reduction and continuous reconstruc-
tion through GEI-LIIF method proposed by Qayyum et al. (2024).

• GINO: Bicubic downscaling followed by Geometry-Informed Neural Operator (GINO) (Li
et al., 2024).

Result Summary. As shown in Figure 3, our model consistently outperforms both the baselines
across all cross-altitude scenarios and super-resolution scales. Performance is evaluated using two
metrics, and results are plotted with varying super-resolution scales on the x-axis, demonstrating
superior performance across the board. Results for super-resolution scales s ∈ [1, 3] and s ∈ (3, 5]
respectively illustrate the results for in-distribution scales and out-of-distribution scales.

6.4 EXPERIMENT 2: DATA COMPRESSION

Task. We evaluate the data compression performance of our model and compare it against existing
compression methods, focusing on cross-altitude predictions and reconstruction accuracy.

C
o
m
pre
ssio

n

R
e
co
nstru

ction

Figure 4: Data compression fol-
lowed by cross-altitude prediction
using wind power law.

Setup. We employed the Prediction by Partial Matching
(PPM) data compression algorithm with µ-law encoding at
various quantization levels (Q) for data compression and re-
construction, as described in Moffat (1990). Additionally,
we tested bicubic interpolation for compressing and decom-
pressing the data. For cross-altitude predictions, we used the
wind power law v1/v2 = (h1/h2)

α to transform the recon-
structed data from one height to another for both PPM and
bicubic methods. To assess performance, we measured the av-
erage compression ratio, PSNR, and SSIM over the test set.
Since traditional compression methods lack super-resolution
capabilities, we limit super-resolution comparison to the scale
s = 1 for our model.

Result Summary. Figure 4 illustrates the cross-altitude prediction methodology of these meth-
ods, while Table 1 presents a detailed comparison. For cross-altitude predictions where the in-
put modality height is 10m, our model outperforms the baseline methods across all three met-
rics—compression ratio, PSNR, and SSIM. In cases where the input modality height is 60m, while
our model does not achieve the best PSNR and SSIM, it significantly surpasses others in terms of
compression ratio. For bicubic models with a reduction factor d = 4, the low-resolution dimension is
30× 40. With a higher reduction factor (d = 8), bicubic models achieve a compression ratio similar
to ours but at the cost of lower PSNR and SSIM. Likewise, PPM models attain higher compres-
sion ratios at lower Q values, but at the expense of PSNR and SSIM. Only our model consistently
delivers a high compression ratio alongside either the best or near-best PSNR and SSIM. Detailed
comparison of data compression performances is provided in Table 3 of the Appendix Section G.

Table 1: Comparative compression performance at different cross-altitude prediction scenarios.

Hin = 10m→ Hout = 160m Hin = 10m→ Hout = 200m
Method PSNR ↑ SSIM ↑ CR ↑ PSNR ↑ SSIM ↑ CR ↑

PPMQ=16,α=0.16 28.3741 0.6147 92.3746 27.5924 0.5755 92.3746
Bicubicd=4,α=0.16 29.4141 0.6157 93.7500 28.7553 0.5914 93.7500
Proposed Method∗ 30.2967 0.6360 98.4375 29.7689 0.6222 98.4375

Hin = 60m→ Hout = 160m Hin = 60m→ Hout = 200m
Method PSNR ↑ SSIM ↑ CR ↑ PSNR ↑ SSIM ↑ CR ↑

PPMQ=16,α=0.16 30.0943 0.7205 93.2051 29.2434 0.6793 93.2051
Bicubicd=4,α=0.16 31.7323 0.7168 93.7500 31.0304 0.6917 93.7500
Proposed Method∗ 31.7500 0.6934 98.4375 31.2823 0.6808 98.4375

6.5 EXPERIMENT 3: MODALITY TRANSFER

Task. We evaluate the performance of our model without the 3D ETINN segment by designing
and training separate models for different altitude levels, then comparing them in cross-altitude
prediction tasks.
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Figure 5: (a) Methodology and (b) Results for Experiment 3.

Setup. We removed the 3D ETINN segment and developed four distinct models, each trained on data
from a specific height, following consistent optimization procedures. For cross-altitude predictions,
we used the wind power law (Touma, 1977) to transform the reconstructed data from one altitude to
another. For instance, for an input height hin = 10m and output height hout = 200m, we applied
the model trained at 10m to predict super-resolved wind data and then used the wind power law
to transform it to 200m. Figure 5a summarizes this cross-altitude prediction methodology without
the 3D ETINN. The downsampling architecture for dimension reduction followed the design of the
invertible UNet (Etmann et al., 2020), as depicted in Figure 5a. We tested different values of α for
cross-altitude predictions at various super-resolution scales.

Result Summary. Figure 5b presents the average PSNR and SSIM across the test set at different
super-resolution scales. In all cross-altitude prediction scenarios, the model incorporating the 3D
ETINN consistently outperforms the models without it, demonstrating the critical role of the 3D
ETINN in enhancing performance.

6.6 EXPERIMENT 4: ABLATION STUDIES

Residual
Implicit
Neural
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2D
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Block

3D Modality Transfer INN Implicit Super
Resolution Decoder

Figure 6: The integrated NN-based and bicubic interpolation-based dimension reduction encoders.
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Figure 7: Ablation of decoders.

Task 1: Ablation of Decoder. We evalu-
ate the performance of the proposed decoder
by comparing it against other implicit neural
network-based super-resolution models.

Setup. To benchmark the performance of our
model, we replaced the LIIF-KAN decoder
segment with the LIIF (Chen et al., 2021),
ITNSR (Yang et al., 2021), HiNOTE (Luo
et al., 2024a), SRNO (Wei & Zhang,
2023), DIINN (Nguyen & Beksi, 2023) and
LTE (Lee et al., 2022) models. We also tried
LTE-KAN, replacing MLP with KAN in the
LTE model, similar to the modfication done
in LIIF-KAN. All models were trained us-
ing the same optimization procedures. Fig-
ure 7 illustrates the average PSNR and SSIM
across the test set at varying super-resolution scales, with the x-axes of each plot showing the re-
spective scales.
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Result Summary. Our modified LIIF-based decoder, LIIF-KAN, consistently outperforms all other
implicit super-resolution models, including the original LIIF decoder. The results show a significant
performance improvement in both PSNR and SSIM, demonstrating that LIIF-KAN offers superior
super-resolution capabilities compared to existing models.

Task 2: Ablation of Encoder. We evaluate the effectiveness of our 3D encoder INN by comparing
it with other dimension reduction encoders.
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Figure 8: Ablation of encoders.

Setup. To benchmark performance, we re-
placed our 3D encoder INN with two alter-
native encoders: a Neural Network (NN)-
based encoder and a bicubic interpolation-
based encoder. The design of the NN-based
encoder follows the downsampling architec-
ture from the invertible UNet model (Et-
mann et al., 2020), as outlined in Figure 6.
We trained all encoders using the same pro-
cedures, and Figure 8 presents the average
PSNR and SSIM results across the test set
at various super-resolution scales, shown on
the x-axis of each plot.

Result Summary. The results demonstrate the comparative performance of each dimension reduc-
tion encoder. Our 3D encoder INN consistently achieves higher PSNR and SSIM scores than the
NN-based and bicubic interpolation-based encoders, particularly at higher super-resolution scales,
affirming its superior performance for dimension reduction tasks.

Task 3: Ablation of Attention Mechanisms. We assess the efficacy of the Gaussian adaptive
attention in the Residual Implicit Neural blocks by comparing it with other attention mechanisms.
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Figure 9: Ablation of attention mechanism.

Setup. We replaced the Gaussian adaptive
attention mechanism in the Residual Implicit
Neural blocks with the standard Query, Key,
Value (QKV) attention mechanism (Vaswani
et al., 2017), and also tested the performance
without any attention mechanism. All mod-
els were trained following identical proce-
dures. Figure 9 presents the results, showing
the performance of each variant.

Result Summary. The results clearly
demonstrate that our proposed method, in-
corporating the Gaussian adaptive attention
mechanism, consistently outperforms both
the QKV-based attention and the version without attention. This highlights the superior effectiveness
of the Gaussian adaptive attention in enhancing model performance.

7 CONCLUSION

We have developed an innovative deep learning approach for simultaneous continuous super-
resolution, data dimensionality reduction, and multi-altitude learning for climatological data. We
designed a three-dimensional implicit neural network specifically for learning continuous, rather
than discrete, representations of multi-altitude velocity fields used for wind farm power modeling
across the continental United States. Unlike traditional multi-modal deep learning models, which
handle only a limited number of modalities due to scalability issues, our three-dimensional implicit
neural network is scalable to large number of modalities. We employed two very recently proposed
techniques: Gaussian adaptive attention mechanism and Kolmogorov-Arnold network to design
our model and modify existing models. Experimental results have shown promising potential in
improving wind energy assessment for electricity generation, efficient large data storage via dimen-
sionality reduction, and extrapolation to inaccessible spatial areas. Both Gaussian adaptive attention
and Kolmogorov-Arnold networks have the potential to enhance interpretability in machine learning
models, making this an area for future research.
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A HYPERPARAMETER DETAILS

Table 2: List of hyperparamters.

Three-Dimensional Implicit Neural Network
Residual Implicit Neural Block 16

Residual Implicit Neural Block
GAAM Positional Encoder MLP

Feature 64 σ 25.0 Hidden Dimension 256
Head 1 m 30 Layer 2

Gaussian Function 1 Output Dimension 64

Implicit Super Resolution Decoder
EDSR Feature Encoder KAN Decoder

Feature 64 Hidden Layer 2
Residual Block 16 Neuron 32
Residual Scale 1 Grid size 5

Spline Order 3
Scale Noise 0.1
Base Scale 1.0

Spline Scale 1.0
Grid Epsilon 0.02
Grid Range [−1, 1]

B LIST OF NOTATIONS

xH
k Discrete high resolution data representation of modality k

MH
k Discrete high resolution data space of modality k

xL
k Discrete low resolution data representation of modality k

ML
k Discrete low resolution data space of modality k

Xc Two-dimensional coordinate space
x(c) Two-dimensional coordinate point
MC

l (x
(c)) Data space of target value at coordinate point x(c) for

modality l

C EVALUATION METRICS

Peak Signal to Noise Ratio(PSNR): PSNR measures the ratio between the peak signal power and
noise power present in the signal. For a super resolved predicted output x̂, and its corresponding
gournd-truth x, the peak signal to noise ratio is calculated using the following formula:

PSNR(x, x̂) = 10 log10

 (MAX(x)− MIN(x))
2

1

s2hw

∑
xc(x(x(c))− x̂(x(c)))2


Structural Similarity Index Measure(SSIM): SSIM measures the similarity between the simi-
larity between two images. SSIM is widely used metric for evaluation of super resolution of images
or uniform 2D grid like data. For a super resolved predicted output x̂, and its corresponding gournd-
truth x, the structural similarity index measure between the window wx of x and window wx̂ is
calculated using the following formula:

SSIM(xwx
, x̂wx̂

) =
(2µxµx̂ + c1)(2σxx̂ + c2)

(µ2
x + µ2

x̂ + c1)(σ2
x + σ2

x̂ + c2)

Here,
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• µx =Sample mean of window wx

• µx̂ =Sample mean of window wx̂

• σ2
x =Variance of window wx

• σx̂2 =Variance of window wx̂

• σxx̂ =Covariance of windows wx and wx̂

• c1 = (k1L)
2, c2 = (k2L)

2

• k1 = 0.01, k2 = 0.03

• L is the range of values for x and x̂, L = 2 is chosen as the range is [−1, 1]

Compression Ratio(CR): Compression ratio is the widely used metric for evaluation of data com-
pression. For the compressed data representation xcomp, and its corresponding uncompressed data
representation x, the compression ration can be calculated using the following formula:

CR =

(
1− memory size of xcomp

memory size of x

)
× 100

D EXPERIMENT: SPATIAL GENERALIZATION

A B

DC

Figure 10: Regions

Task: Region-based Generalization. We investigate the spatial generaliza-
tion performance of our model across different regions of the data for super-
resolution tasks.

Setup. The original dataset has a spatial dimension of 1500×2000, which we
partitioned into four distinct regions: A, B, C, and D, each sized 750× 1000
(illustrated in Figure 10). Four separate models were trained on data from
each of these regions, and we evaluated their super-resolution performance
across all regions, regardless of the model’s training source. Figure 11 depicts

the super-resolution outcomes for each model tested on each region.

Result Summary. The results reveal a clear regional bias: models trained on a specific region per-
form best when tested on data from that same region. For instance, the model trained on region A
exhibits superior performance when evaluated on test data from region A, as shown in Figure 11.
Similar trends are observed for the other regions. These findings underscore the need for future work
to focus on improving spatial generalization to enhance the ability of models to simultaneously per-
form data dimensionality reduction and cross-modal reconstruction through super-resolution tech-
niques.
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Figure 11: Results for spatial generalization test.

Task: Altitude-based Generalization. We investigate the altitude-based generalization perfor-
mance of our model for super-resolution tasks.
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Setup. The original dataset used in this paper has data from four different altitudes h =
{10m, 60m, 160m, 200m}. However, we want evaluate our model’s performance in zero-shot learn-
ing for cross-altitude continuous reconstruction. To evaluate this generalization test, we trained four
different models with single-altitude excluded dataset. For example, one model is trained with
data from altitudes h = {10m, 60m, 160m}, that is the model does not see any data from altitude
h = 200m. Then this model’s performance is evaluated in continuous cross-altitude reconstruction
on data from altitude h = 200m. Similarly, same experiments are conducted on other altitudes.

Result Summary. Our proposed approach exhibits potential for further enhancement in altitude-
based zero-shot learning. Models demonstrate superior performance at altitudes included in the
training set compared to those where data from the target altitude was absent during training. The
results of altitude-based generalization tests are illustrated in Figure 12.
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Figure 12: Results for altitude generalization test.

E ADDITIONAL COMPARATIVE RESULTS

Baseline Experimental Setup: The experimental setup for the two baseline methods used in this
paper is discussed below:

• GEI-LIIF: Unlike our proposed approach, the baseline GEI-LIIF method is not scalable to
higher number of data modalities. Even though the GEI-LIIF method can be designed to work
with 4 modalities, optimizing such a GEI-LIIF model is an infeasible approach. Instead, we
trained 4 different models, each trained with 2 modalities, where the pairs are formed with data
from altitudes: (10m, 160m), (10m, 200m), (60m, 160m), and (60m, 200m).

• GINO: For the Geometry-Informed Neural Operator (GINO) baseline, we use bicubic down-
sampling for downscaling the discrete high-resolution input data to discrete low-resolution rep-
resentations and then employ a GINO model (Li et al., 2024) for continuous reconstruction from
the low-resolution representations. The GINO model takes the low-resolution representations
and their corresponding three-dimensional coordinate points (altitude as the third axis) as its
input and predicts the output at target three-dimensional coordinate points.

Results: Figure 13a shows that our proposed method outperforms the baseline GEI-LIIF method in
those cross-altitude prediction scenarios where the height of the input modality is higher above from
the ground and the height of the output modality is closer to ground. Likewise, Figure 13b shows
that our proposed method outperforms the baseline GEI-LIIF method in intra-altitude prediction
scenarios too. Different super-resolution scales are shown at the x−axes of each plot.
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Figure 13: Comparative super resolution performance of our proposed method with baseline.

F ADDITIONAL ABLATION EXPERIMENTS

We also did some additional experiments with the Gaussian Adaptive Attention Mechanism within
the 3D encoder-transfer INN segment of our proposed approach. Results for this additional experi-
ment, also additional results of the previous ablation experiments is discussed here.

Implicit Super Resolution Decoder: We show the super resolution performance of different super
resolution decoders in the cross-altitude prediction scenarios where the height of the input modality
is much higher above from the ground and the height of the output modality is closer to the ground.
Figure 14a shows our proposed LIIF-KAN super resolution decoder outperforms other implicit neu-
ral network based super resolution decoders in these scenarios also. Likewise, Figure 14b shows our
proposed LIIF-KAN super resolution decoder outperforms its counterparts in intra-altitude predic-
tion scenarios too.
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Figure 14: Comparative super resolution performance with ablation experiments of Decoder (con-
tinuous reconstructor).
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Modality Transfer: We removed the 3D ETINN segment of our proposed model and designed 4
different models for 4 different heights, and trained these models following the same optimization
procedure of our model. For comparison of cross-altitude predictions, we used the wind power
law to transform the reconstructed data at one height to another height. Figure 15a summarizes the
average PSNR and SSIM over the test set for different super resolution scales in those cross-altitude
scenarios where the height of the input modality is much higher above from the ground and the
height of the output modality is closer to the ground. Unlike the inverse cross modal scenarios, the
models without 3D MTINN performs better than our proposed model in most of these cross modal
prediction scenarios. Figure 15b shows similar superior performances in intra-altitude prediction
scenarios.
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Figure 15: Comparative super resolution performance with ablation experiments of 3D ETINN.

Dimension Reduction Encoder: Figure 16a summarizes the average PSNR and SSIM over the test
set for different dimension reduction encoders at different super resolution scales for those cross-
altitude prediction scenarios where the height of input modality is higher above from the ground and
the height of output modality is closer to the ground. Similar results are observed in intra-altitude
prediction scenarios as shown in Figure 16b.
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Figure 16: Comparative super resolution performance with ablation experiments of dimension re-
duction encoders.

Attention Mechanism: Figure 17 summarizes the average PSNR and SSIM over the test set for
different attention mechanisms in 3D INN at different super resolution scales for those cross-altitude
prediction scenarios where the height of input modality is higher above from the ground and the
height of output modality is closer to the ground, and also in intra-altitude prediction scenarios.
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Figure 17: Comparative super resolution performance with ablation experiments of attention mech-
anisms.

Gaussian Adaptive Attention Mechanism: We adjusted the number of Gaussian functions in the
Gaussian Adaptive Attention blocks of the 3D encoder-transfer INN within our proposed model
architecture. All the results in this work as our proposed method uses single Gaussian function.
Figure 18 shows the super resolution performances of our proposed method with different number of
Gaussian functions. The results indicate minimal performance variation across models with differing
numbers of Gaussian functions. In some cross-altitude predictions, the model with 8 Gaussian
functions underperforms slightly compared to others. However, aside from this minor difference, the
performance across models remains largely consistent. Notably, increasing the number of Gaussian
functions results in longer inference times. Consequently, the variant with a single Gaussian function
was chosen to minimize computational cost.
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Figure 18: Comparative super resolution performance with ablation experiments of attention mech-
anisms.
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G DATA COMPRESSION PERFORMANCE

We tested our approach and compared its compression performance with other data compression
methods. We used prediction by the partial matching (PPM) data compression algorithm with the
µ-law based encoding at different quantization levels (Q) to compress and reconstruct data. We
also tested bicubic interpolation to compress and decompress the data. For comparison of cross-
modal predictions, we used the wind power law to transform the reconstructed data at one height to
another height with the PPM and bicubic methods. Table 3 shows comparative performance of these
compression models and our proposed model.

Hin = 10m→ Hout = 160m Hin = 10m→ Hout = 200m
Method PSNR ↑ SSIM ↑ CR ↑ PSNR ↑ SSIM ↑ CR ↑

PPMQ=4,α=0.08 14.7861 0.1834 96.5459 14.7896 0.1801 96.5459
PPMQ=8,α=0.08 25.7107 0.4375 94.9431 25.2910 0.4165 94.9431
PPMQ=12,α=0.08 27.8809 0.5647 93.3153 27.2358 0.5331 93.3153
PPMQ=16,α=0.08 29.1510 0.6313 92.3746 28.3580 0.5952 92.3746
PPMQ=4,α=0.16 14.7959 0.1908 96.5459 14.8000 0.1879 96.5459
PPMQ=8,α=0.16 24.1419 0.4104 94.9431 23.6673 0.3893 94.9431
PPMQ=12,α=0.16 26.6262 0.5402 93.3153 25.9743 0.5067 93.3153
PPMQ=16,α=0.16 28.3741 0.6147 92.3746 27.5924 0.5755 92.3746
PPMQ=4,α=0.24 14.7908 0.1948 96.5459 14.7914 0.1915 96.5459
PPMQ=8,α=0.24 22.1256 0.3789 94.9431 21.5227 0.3568 94.9431
PPMQ=12,α=0.24 24.6256 0.4971 93.3153 23.8819 0.4603 93.3153
PPMQ=16,α=0.24 26.5045 0.5704 92.3746 25.6755 0.5264 92.3746
Bicubicd=8,α=0.08 28.5727 0.5453 98.4375 27.9979 0.5292 98.4375
Bicubicd=4,α=0.08 29.1551 0.6073 93.7500 28.4866 0.5845 93.7500
Bicubicd=8,α=0.16 28.6436 0.5506 98.4375 28.0937 0.5341 98.4375
Bicubicd=4,α=0.16 29.4141 0.6157 93.7500 28.7553 0.5914 93.7500
Bicubicd=8,α=0.24 27.6741 0.5341 98.4375 27.0468 0.5144 98.4375
Bicubicd=4,α=0.24 28.4513 0.5961 93.7500 27.7140 0.5961 93.7500
Proposed Method∗ 30.2967 0.6360 98.4375 29.7689 0.6222 98.4375

Hin = 60m→ Hout = 160m Hin = 60m→ Hout = 200m
Method PSNR ↑ SSIM ↑ CR ↑ PSNR ↑ SSIM ↑ CR ↑

PPMQ=4,α=0.08 13.0141 0.2383 96.9004 13.0370 0.2354 96.9004
PPMQ=8,α=0.08 25.1141 0.4977 95.5889 24.8110 0.4782 95.5889
PPMQ=12,α=0.08 28.2098 0.6374 94.0468 27.6855 0.6050 94.0468
PPMQ=16,α=0.08 30.6537 0.7296 93.2051 29.8449 0.6907 93.2051
PPMQ=4,α=0.16 13.0192 0.2454 96.9004 13.0436 0.2438 96.9004
PPMQ=8,α=0.16 24.6593 0.4904 95.5889 24.2708 0.4699 95.5889
PPMQ=12,α=0.16 27.5075 0.6259 94.0468 26.8810 0.5913 94.0468
PPMQ=16,α=0.16 30.0943 0.7205 93.2051 29.2434 0.6793 93.2051
PPMQ=4,α=0.24 13.0240 0.2523 96.9004 13.0498 0.2517 96.9004
PPMQ=8,α=0.24 24.1300 0.4824 95.5889 23.6195 0.4605 95.5889
PPMQ=12,α=0.24 26.7056 0.6118 94.0468 25.9287 0.5739 94.0468
PPMQ=16,α=0.24 29.3359 0.7071 93.2051 28.3628 0.6619 93.2051
Bicubicd=8,α=0.08 30.3704 0.6305 98.4375 29.8115 0.6151 98.4375
Bicubicd=4,α=0.08 31.6032 0.7161 93.7500 30.8552 0.6915 93.7500
Bicubicd=8,α=0.16 30.3703 0.6299 98.4375 29.8462 0.6144 98.4375
Bicubicd=4,α=0.16 31.7323 0.7168 93.7500 31.0304 0.6917 93.7500
Bicubicd=8,α=0.24 30.1536 0.6257 98.4375 29.5740 0.6084 98.4375
Bicubicd=4,α=0.24 31.5744 0.7128 93.7500 30.8145 0.6853 93.7500
Proposed Method∗ 31.7500 0.6934 98.4375 31.2823 0.6808 98.4375

Table 3: Comprehensive comparative compression performance.
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