
Generating Fine-Grained Causality in Climate Time Series Data
for Forecasting and Anomaly Detection

Dongqi Fu 1 Yada Zhu 2 3 Hanghang Tong 1 Kommy Weldemariam 4 Onkar Bhardwaj 3 Jingrui He 1

Abstract
Understanding the causal interaction of time
series variables can contribute to time series
data analysis for many real-world applications,
such as climate forecasting and extreme weather
alerts. However, causal relationships are dif-
ficult to be fully observed in real-world com-
plex settings, such as spatial-temporal data from
deployed sensor networks. Therefore, to cap-
ture fine-grained causal relations among spatial-
temporal variables for further a more accu-
rate and reliable time series analysis, we first
design a conceptual fine-grained causal model
named TBN Granger Causality, which adds
time-respecting Bayesian Networks to the previ-
ous time-lagged Neural Granger Causality to off-
set the instantaneous effects. Second, we propose
an end-to-end deep generative model, named
TacSas, which discovers TBN Granger Causal-
ity in a generative manner to help forecast time
series data and detect possible anomalies during
the forecast. For evaluations, besides the causal-
ity discovery benchmark Lorenz-96, we also test
TacSas on climate benchmark ERA5 for climate
forecasting and the extreme weather benchmark
of NOAA for extreme weather alerts.

1. Introduction
“Climate science investigates the structure and dynamics of
earth’s climate system and seeks to understand how global,
regional, and local climates are maintained as well as the
processes by which they change over time”,1 where the cor-
responding data are usually stored in the format of time
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series, recording the climate features, geo-locations, time
attributes, etc.

In time series data, variables often exhibit high-
dimensional characteristics, and correlation between vari-
ables tends to be intricate, hard to obtain, and encom-
passing aspects such as non-linearity and time dependency.
Taking the climate time series data as an example, multi-
ple variables such as temperature, wind gust, atmospheric
water content, and solar radiation co-appear on the time
axis. Although we can access their tabular representations,
their interactions are typically complex (e.g., non-linear,
time-dependent), making it difficult to understand and cap-
ture the time series evolution trend and latent distribution
of values. As a result, this complexity may lead to sub-
optimal performance in time series analysis, such as time
series forecasting and anomaly detection.

Structure learning has recently gained much attention, such
as (Li et al., 2018; Wu et al., 2020; Zhao et al., 2020;
Cao et al., 2020; Shang et al., 2021; Deng & Hooi, 2021;
Marcinkevics & Vogt, 2021; Geffner et al., 2022; Tank
et al., 2022; Spadon et al., 2022; Fu & He, 2022; Zhou
et al., 2022; Gong et al., 2023; Fu et al., 2023; Li et al.,
2023b; Fu et al., 2024). Among others, causal graphs as
a directed acrylic graph structure provide more explicit
and interpretable correlations between variables, thus en-
abling a better understanding of the underlying physical
mechanisms and dynamic systems for time series (Kofi-
nas et al., 2023; 2021). As a widely applied causal struc-
ture in time series understanding and explanation, Granger
Causality (Granger, 1969; Arnold et al., 2007) discovers
causal relations among variables in an autoregressive (or
time-lagged) manner. The discovered Granger causal struc-
tures can help many time series analysis tasks, like build-
ing parsimonious prediction models such as Earth Sys-
tem (Runge et al., 2019). Moreover, real-world time series
data can have many variables, and their causal relations can
be even more complex, i.e., non-linear and instantaneous,
which require complex causality discovery beyond the clas-
sic Granger model. Although some nascent non-linear (or
neural) Granger models have been proposed (Nauta et al.,
2019; Xu et al., 2019; Tank et al., 2022; Khanna & Tan,
2020; Huang et al., 2020; Pamfil et al., 2020; Marcinke-
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vics & Vogt, 2021; Geffner et al., 2022), how to effectively
integrate instantaneous causal effects with neural Granger
models has the great research potential (Moneta et al.,
2013; Wild et al., 2010; Dahlhaus & Eichler, 2003; Ma-
linsky & Spirtes, 2018; Assaad et al., 2022) and remains
largely underexplored (Pamfil et al., 2020; Gong et al.,
2023).

Motivated by the above analysis, in this paper, we start
from the tensor time series data as shown in Figure 1(a),
in which the 3D structure contains higher dimensions than
typical 2D multivariate time series data. For example,
tensor time series can represent multivariate climate time
series data (e.g., time plus temperature, wind, and atmo-
spheric water content) with corresponding spatial informa-
tion (e.g., longitude, latitude, and geocode). After that, we
aim to build a comprehensive causality model for this ten-
sor time series, which could not only capture non-linear and
time-lagged causality (like the Granger model (Granger,
1969; Tank et al., 2022)) but also offset the ignored instan-
taneous causal effects at each timestamp, as shown in Fig-
ure 1(b). Our ultimate goal is to leverage the discovered
comprehensive causality to understand the trend and latent
distribution of the historical tensor time series and finally
contribute to the analysis tasks like tensor time series fore-
casting and anomaly detection.

To this end, we first propose a comprehensive causal model
named Time-Respecting Bayesian Network Augmented
Neural Granger Causality, i.e., TBN Granger Causality.
Theoretically, discovering TBN Granger Causality relies
on a bi-level optimization. The inner optimization discov-
ers a sequence of Bayesian Networks at each timestamp t
respectively for representing the instantaneous causal ef-
fects among variables (i.e., which causality is responsible
for the instantaneous feature generation). Then, the outer
optimization realizes integrating time-respecting Bayesian
Networks with time-lagged neural Granger causality in an
autoregressive manner.

Second, to embed TBN Granger Causality into guiding
the tensor time series analysis tasks like forecasting and
anomaly detection, we propose an end-to-end deep gener-
ative model, called Time-Augmented Causal Time Series
AnalysiS Model, i.e., TacSas. TacSas fits more real-world
application scenarios (e.g., climate or transportation) by in-
vestigating how to capture good causal structures without
the ground-truth structures guidance. Furthermore, TacSas
is end-to-end, meaning that it can not only discover TBN
Granger Causality from the observed time series but also
seamlessly use the discovery to forecast future time series
and detect possible anomalies.

To evaluate TacSas, we first use the synthetic benchmark,
Lorenz-96 (Lorenz, 1996), to verify that TacSas can indeed
discover ground-truth causal structures with high accuracy.

Figure 1: (a) Tensor Time-Series Data: The Red Cell
Means the Possible Anomaly. (b) Visualization of (Neural)
Granger Causality’s Time-Lagged Property without Instan-
taneous Effects.

Then, we extend to the real-world setting and test if TacSas
can utilize the discovered causality to conduct tensor time
series forecasting and identify anomalies. We use four ten-
sor time series datasets from the hourly climate benchmark
database ERA5 (Hersbach et al., 2018) and align them with
the extreme weather database of NOAA2 based on geoin-
formation and contribute a new benchmark for climate sci-
ence. The results show that TacSas outperforms both state-
of-the-art forecasting and detection baselines.

2. Preliminary
Tensor Time Series. As shown in Figure 1(a), we have
tensor time series data stored in X ∈ RN×D×T . Note that
a slice of X , i.e., X (i, :, :) ∈ RD×T , i ∈ {1 . . . , N}, is
typically denoted as the common multivariate time series
data (Su et al., 2019; Zhao et al., 2020). In this way, ten-
sor time series can be understood as multiple multivariate
time series data. Such tensor time series data can usually
be found in the real world. For example, in each element
X (i, d, t) of the nationwide weather dataX , i ∈ {1 . . . , N}
can be the spatial locations (e.g., counties), d ∈ {1 . . . , D}
can be the weather features (e.g., temperature and humid-
ity), and t ∈ {1 . . . , T} can be the time dimension (e.g.,
hours). Throughout the paper, we use the calligraphic let-
ter to denote a 3D tensor (e.g., X ) and the bold capital letter
to denote a 2D matrix (e.g., X).

Problem Definition. In this paper, we aim to discover
and utilize comprehensive causal structures for tensor time-
series analysis tasks, including forecasting and anomaly
detection. To be more specific, given the tabular data
X ∈ RN×D×T as shown in Figure 1, we aim to forecast
the future data X ′ ∈ RN×D×τ , where τ is a forecasting
window. Additionally, with the forecasted X ′, we also aim
to detect if X ′ contains abnormal values.

2https://www.ncdc.noaa.gov/stormevents/
ftp.jsp
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3. TacSas: Discovering TBN Granger
Causality via Generative Learning

In this section, we introduce how TacSas discovers TBN
Granger Causality in the historical tensor time series and
utilizes it to guide tensor time series forecasting and
anomaly detection. The overall framework of TacSas is
shown in Figure 2.

The upper component of Figure 2 represents the data pre-
processing part (i.e., converting raw inputX to latent repre-
sentation H) of TacSas through a pre-trained autoencoder.
The goal of this component is leveraging comprehensive
causality (e.g., TBN Granger Causality) to achieve seam-
less forecasting and anomaly detection. The theoretical
reasoning and necessity are introduced in Sec.3.3, and the
empirical validation is demonstrated in Appendix B.2.

The lower component of Figure 2 shows how TacSas dis-
covers TBN Granger Causality in the historical tensor time
series (in the form of H other than X ) and generates fu-
ture tensor time series. In brief, the optimization of TacSas
is bi-level. First, the inner optimization captures instanta-
neous effects among variables at each timestamp, respec-
tively, which describes the inner-time feature generation.
These causal structures are then stored in the form of a se-
quence of Bayesian Networks. The details are introduced
in Sec.3.1. Second, the outer optimization discovers the
Neural Granger Causality among variables in a time win-
dow with the support of a sequence of Bayesian Networks
(i.e., TBN Granger Causality). After introducing details
in Sec.3.2, we derive the formal equation of TBN Granger
Causality, Eq. 7.

3.1. Inner Optimization of TacSas for Identifying
Instantaneous Causal Relations in Time Series

Generally speaking, the inner optimization produces a se-
quence of Bayesian Networks for each observed times-
tamp. At time t, the instantaneous causality is discovered
based on input features H(:, :, t) = H(t) ∈ RN×H , and
is represented by a directed acyclic graph G(t) = (A(t) ∈
RN×N ,H(t) ∈ RN×H). To be specific, A(t) is a weighted
adjacency matrix of the Bayesian Network at time t, and
each cell represents the coefficient of causal effects be-
tween variables u and v ∈ {1, . . . , N}. The features (e.g.,
H(v, :, t)) are transformed from the input raw features (e.g.,
X (v, :, t)). The transformation is causality-agnostic but
necessary for downstream time series analysis tasks, with
details introduced in Sec.3.3.

The reasoning for discovering the instantaneous causal
effects in the form of the Bayesian Network originates
from a widely adopted assumption of causal graph learn-
ing (Zheng et al., 2018; Yu et al., 2019; Guo et al., 2021;
Geffner et al., 2022; Gong et al., 2023): there exists a

ground-truth causal graph S(t) that specifies instantaneous
parents of variables to recover their value generating pro-
cess. Therefore, in our inner optimization, the goal is to
discover the causal structure S(t) at each time t by recov-
ering the generation of input features H(t). Specifically,
given the observed H(t), we aim to estimate a structure
A(t), through which a certain distribution Z(t) could gen-
erate H(t) for t ∈ {1, . . . , T}. In this way, the instanta-
neous causal effects are discovered, and the corresponding
structures are encoded in A(t). The generation function is
expressed as follows.∑
t

logP(H(t)) =
∑
t

log

∫
P(H(t)|Z(t))P(Z(t))dZ(t)

(1)
where the generation likelihood P(H(t)|Z(t)) also takes
A(t) as input. The complete formula is shown in Eq. 3.

For Eq 1, on the one hand, it is hard to get the prior dis-
tribution P(Z(t)), which is highly related to the distribu-
tion of ground-truth causal graph distribution P(S(t)) at
time t (Geffner et al., 2022). On the other hand, for the
generation likelihood P(H(t)|Z(t)), the actual posterior
P(Z(t)|H(t)) is also intractable. Thus, we resort to the
variational autoencoder (VAE) (Kingma & Welling, 2014).
In this way, the actual posterior P(Z(t)|H(t)) can be re-
placed by the variational posterior Q(Z(t)|H(t)), and the
prior distribution P(Z(t)) is approximated by a Gaussian
distribution. Furthermore, the inside encoder and decoder
modules should take the structure A(t) as the input. This
design can be realized by various off-the-shelf variational
graph autoencoders such as VGAE (Kipf & Welling, 2016),
etc. However, the inner optimization is coupled with the
outer optimization, i.e., the instantaneous causality will be
integrated with cross-time Granger causality to make in-
ferences. The inner complex neural architectures and pa-
rameters may render the outer optimization module hard to
train, especially when the outer module itself needs to be
complex. Therefore, we extend the widely-adopted linear
Structural Equation Model (SEM) (Zheng et al., 2018; Yu
et al., 2019; Geffner et al., 2022; Gong et al., 2023) to the
time-respecting setting as follows.

For Q(Z(t)|H(t)), the encoder equation is expressed as

Z(t) = (I −A(t)⊤)f
θ
(t)
enc

(H(t)) (2)

For P(H(t)|Z(t)), the decoder equation is expressed as

H(t) = f
θ
(t)
dec

((I −A(t)⊤)−1Z(t)) (3)

As analyzed above3, f
θ
(t)
enc

and f
θ
(t)
dec

do not need compli-
cated neural architectures. Therefore, we can use two-layer

3The complete forms of Q(Z(t)|H(t)) and P(H(t)|Z(t)) are
QA(t)(Z(t)|H(t)) and PA(t)(H(t)|Z(t)), we omit the subscript
A(t) for brevity.
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Figure 2: Working Flow of TacSas: Discovering and Utilizing the TBN Granger Causality through a Bi-Level Optimization
for Tensor Time Series Forecasting and Anomaly Detection.

MLPs for them. Then, the objective functionL(t)
DAG for dis-

covering the instantaneous causality at time t is expressed
as follows, which corresponds to the inner optimization.

min
θ
(t)
enc,θ

(t)
dec,A

(t)

L(t)
DAG = DKL(Q(Z(t)|H(t))∥P(Z(t)))

−EQ(Z(t)|H(t))[logP(H(t)|Z(t))]

s.t.
∑
t

Tr[(I +A(t) ◦A(t))N ]−N = 0, for t ∈ {1, . . . , T}

(4)

where the first term in L(t)
DAG is the KL-divergence mea-

suring the distance between the distribution of generated
Z(t) and the pre-defined Gaussian, and the second term
is the reconstruction loss between the generated Z(t) with
the original input H(t). Note that there is an important
constraint, i.e., Tr[(I + A(t) ◦ A(t))N ] − N = 0, on
A(t) ∈ RN×N . Tr(·) is the trace of a matrix, and ◦ de-
notes the Hadamard product. The meaning of the con-
straint is explained as follows. The constraint in Eq. 4, i.e.,
Tr[(I+A(t)◦A(t))N ]−N = 0 regularizes the acyclicity of
A(t) during the optimization process, i.e., the learned A(t)

should not have any possible closed-loops at any length.

Lemma 3.1. Let A(t) be a weighted adjacency matrix
(negative weights allowed). A(t) has no N -length loops,
if Tr[(I +A(t) ◦A(t))N ]−N = 0.

The intuition is that there will be no k-length path from
node u to node v on a binary adjacency matrix }(u, v) = 0.
Compared with original acyclicity constraints in (Yu et al.,
2019), our Lemma 3.1 gets rid of the λ condition. Then we
can denote α(A(t)) = Tr[(I +A(t) ◦A(t))N ]−N and use

Lagrangian optimization for Eq. 4 as follows.

min
θ
(t)
enc,θ

(t)
dec,A

(t)

L(t)
DAG = DKL(Q(Z(t)|H(t))∥P(Z(t)))

−EQ(Z(t)|H(t))[logP(H(t)|Z(t))]

+λ α(A(t)) +
c

2
|α(A(t))|2, for t ∈ {1, . . . , T}

(5)

where λ and c are two hyperparameters, and larger λ and c
enforce α(A(t)) to be smaller.

Theorem 3.2. If the ground-truth instantaneous causal
graph S(t) at time t generates the features of variables fol-
lowing the normal distribution, then the inner optimization
(i.e., Eq. 4) can identify S(t) under the standard causal dis-
covery assumptions (Geffner et al., 2022).

3.2. Outer Optimization of TacSas for Integrating
Instantaneous Causality with Neural Granger

Given the inner optimization, Bayesian Networks can be
obtained at each timestamp t, which means that multiple
instantaneous causalities are discovered. Thus, in the outer
optimization, we integrate these evolving Bayesian Net-
works into Granger Causality discovery. First, the clas-
sic Granger Causality (Granger, 1969) is discovered in
the form of the variable-wise coefficients across different
timestamps (i.e., a time window) through the autoregres-
sive prediction process. The prediction based on the linear
Granger Causality (Granger, 1969) is expressed as follows.

H(t) =

L∑
l=1

W (l)H(t−l) + e(t) (6)
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where H(t) ∈ RN×D denotes the features of N variables
at time t, e(t) is the noise, and L is the pre-defined time lag
indicating how many past timestamps can affect the values
of H(t). Weight matrix W (l) ∈ RN×N stores the cross-
time coefficients captured by Granger Causality, i.e., matrix
W (l) aligns the variables at time t − l with the variables
at time t. To compute those weights, several linear meth-
ods are proposed, e.g., vector autoregressive model (Arnold
et al., 2007).

Facing non-linear causal relationships, neural Granger
Causality discovery (Tank et al., 2022) is recently pro-
posed to explore the nonlinear Granger Causality effects.
The general principle is to represent causal weights W by
deep neural networks. To integrate instantaneous effects
with neural Granger Causality discovery, our TBN Granger
Causality is expressed as follows.

Ĥ(i, :)(t) = fΘi [(A
(t−1),H(t−1)), . . . , (A(t−L),H(t−L))]

(7)
where L is the lag (or window size) in the Granger Causal-
ity, and i is the index of the i-th variable. fΘi

is a neural
computation unit with all parameters denoted as Θi, whose
input is an L-length time-ordered sequence of (A,H).
And fΘi

is responsible for discovering the TBN Granger
Causality for variable i at time t from all variables that oc-
curred in the past time lag l. The choice of neural unit fΘi

is flexible, such as MLP and LSTM (Tank et al., 2022). Dif-
ferent neural unit choices correspond to different causal-
ity interpretations. In our proposed TacSas model, we use
graph recurrent neural networks (Wu et al., 2021), and the
causality interpretations are introduced in Sec 3.3.

In the outer optimization, to evaluate the prediction under
the TBN Granger Causality, we use the mean absolute error
(MAE) loss on the prediction and the ground truth, which
is effective and widely applied to time-series forecasting
tasks (Li et al., 2018; Shang et al., 2021).

min
Θi,A(t−1),...,A(t−l)

Lpred =
∑
i

∑
t

|H(i, :)(t) − Ĥ(i, :)(t)|

(8)
where Θi,A

(t−1), . . . ,A(t−l) are all the parameters for the
prediction Ĥ(i, :)(t) of variable i at time t. The composi-
tion and update rules are expressed below.

For updating fΘi
, we employ the recurrent neural struc-

ture to fit the input sequence. Moreover, the sequential in-
puts also contain the structured data A. Therefore, we use
the graph recurrent neural architecture (Li et al., 2018) be-
cause it is designed for directed graphs, whose core is a

gated recurrent unit (Chung et al., 2014).

R(t) = sigmoid(WR∗A(t) [H(t) ⊕ S(t−1)] + bR)

C(t) = tanh(WC∗A(t) [H(t) ⊕ (R(t) ⊙ S(t−1))] + bC)

U (t) = sigmoid(WU∗A(t) [H(t) ⊕ S(t−1)] + bU )

S(t) = U (t) ⊙ S(t−1) + (I −U (t))⊙C(t)

(9)

where R(t), C(t), and U (t) are three parameterized gates,
with corresponding weights W and bias b. H(t) is the
input, and S(t) is the hidden state. Gates R(t), C(t), and
U (t) share the similar structures. For example, in R(t),
the graph convolution operation for computing the weight
WR∗A(t) is defined as follows, and the same computation
applies to gates U (t) and C(t).

WR∗A(t) =
K∑

k=0

θRk,1(D
(t)
out

−1
A(t))k+θRk,2(D

(t)
in

−1
A(t)⊤)k

(10)
where θRk,1, θRk,2 are learnable weight parameters; scalar k is
the order for the stochastic diffusion operation (i.e., similar

to steps of random walks); D(t)
out

−1
A(t) and D

(t)
in

−1
A(t)⊤

serve as the transition matrices with the in-degree matrix
D

(t)
in and the out-degree matrix D

(t)
out;−1 and⊤ are inverse

and transpose operations.

For updating each of {A(t−1), . . . ,A(t−l)}, we take
A(t−l) as an example to illustrate. The optimal A(t−l)

stays in the space of {0, 1}N×N . To be specific, each
edge A(t−l)(i, j) can be parameterized as θ(t−l)

i,j following
the Bernoulli distribution. However, N2l is hard to scale,
and the discrete variables are not differentiable. There-
fore, we adopt the Gumbel reparameterization from (Jang
et al., 2017; Maddison et al., 2017). It provides a con-
tinuous approximation for the discrete distribution, which
has been widely used in the graph structure learning (Kipf
et al., 2018; Shang et al., 2021). The general repa-
rameterization form can be written as A(t−l)(i, j) =
softmax(FC((H(i, :)(t−l)||H(j, :)(t−l)) + g)/ξ), where
FC is a feedforward neural network, g is a scalar drawn
from a Gumbel(0, 1) distribution, and ξ is a scaling hy-
perparameter. Different from (Kipf et al., 2018; Shang
et al., 2021), in our setting, the initial structure input is con-
strained by the causality discovery, which originates from
the inner optimization step. Hence, the structure learning
in the outer optimization takes the adjacency matrix from
the inner optimization as the initial input, which is

A
(t−l)
outer(i, j) = softmax(A

(t−l)
inner(i, j) + g)/ξ) (11)

where A
(t)
inner(i, j) is the structure learned by our inner

optimization through Eq. 4, A
(t)
outer(i, j) is the updated

structure, and g is a vector of i.i.d samples drawn from
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a Gumbel(0, 1) distribution. In outer optimization, Eq. 8
fine-tunes the evolving Bayesian Networks to make the
intra-time causality fit the cross-time causality well. Note
that, the outer optimization w.r.t. A(t) may break the
acyclicity, and another round of inner optimization may be
necessary.

3.3. Deployment of TacSas for Time Series Forecasting
and Anomaly Detection

In this section, we introduce how TacSas achieves tensor
time series forecasting and anomaly detection in threefold:
data preprocessing, neural architecture selection, and train-
ing procedure.

First (data preprocessing), in addition to forecasting, Tac-
Sas is also for anomaly detection. Thus, we design the hid-
den feature H extraction in TacSas motivated by the Ex-
treme Value Theory (Beirlant et al., 2004) or so-called Ex-
treme Value Distribution in stream (Siffer et al., 2017).

Remark 3.3. According to the Extreme Value Distribu-
tion (Fisher & Tippett, 1928), under the limiting forms of
frequency distributions, extreme values have the same kind
of distribution, regardless of original distributions.

An example (Siffer et al., 2017) can help interpret and un-
derstand the Extreme Value Distribution theory. Maximum
temperatures or tide heights have more or less the same
distribution even though the distributions of temperatures
and tide heights are not likely to be the same. As rare
events have a lower probability, there are only a few possi-
ble shapes for a general distribution to fit. Inspired by this
observation, we can design a simple but effective module
in TacSas to achieve anomaly detection, i.e., a pre-trained
autoencoder model that tries to explore the distribution of
normal features in X as shown in Figure 2. As long as this
autoencoder model can capture the latent distribution for
normal events, then the generation probability of a piece of
time series data can be utilized as the condition for detect-
ing anomaly patterns. This is because the extreme values
are identified with a remarkably low generation probability.
To be specific, after the forecast H(t) is output, the gener-
ation probability of H(t) into X(t) through the pre-trained
autoencoder can be used to detect the anomalies at t.

Second (neural architecture selection), we encode fΘi

into a sequence-to-sequence model (Sutskever et al., 2014).
That is, given a time window (or time lag), TacSas could
forecast the corresponding features for the next time win-
dow. Moreover, with W (l) in Eq. 6 and fΘi

in Eq. 7,
we can observe that the classical linear Granger Causal-
ity W (l) can be discovered for each time lag. In other
words, each time lag has its own discovered coefficients,
but fΘi is shared by all time lags. This sharing manner
is designed for scalability and is called Summary Causal
Graph (Marcinkevics & Vogt, 2021; Assaad et al., 2022).

The underlying intuition is that the causal effects mainly
depend on the near timestamps. Further, for the neu-
ral Granger Causality interpretation in fΘi

, we follow the
rule (Tank et al., 2022) that if the j-th row of (WR∗A(t) ,
WC∗A(t) , and WU∗A(t) ) are zeros, then variable j is not
the Granger-cause for variable i in this time window.

Third (training procedure), as shown in Figure 2, the au-
toencoder can be pre-trained with reconstruction loss (e.g.,
MSE) ahead of the inner and outer optimization, to obtain
H for the feature latent distribution representation. By uti-
lizing all inputH, the inner optimization learns the sequen-
tial Bayesian Networks, and the outer optimization aligns
Bayesian Networks with the neural Granger Causality to
produce all the forecast H′. The inner and outer optimiza-
tion can be trained interchangeably.

4. Experiments
The ground-truth causality discovery experiments in the
synthetic benchmark, Lorenz 96 System (Lorenz, 1996),
are shown in Appendix B.1, where our TacSas can capture
the true causality with the competitive high accuracy. Then,
in this section, we test TacSas on utilizing its discovery for
time series forecasting and anomaly detection.

4.1. Experiment Setup

Datasets. Our forecasting data (i.e., hourly tensor time
series data) originates from climate domain benchmark
ERA5 (Hersbach et al., 2018)4. To be specific, we se-
lect four datasets covering 45 weather features (i.e., wind
gusts, rain, etc.) from 2385 counties in the United States
of America during 2017–2020. Moreover, we choose thun-
derstorms as the anomaly pattern to be detected after fore-
casting. The thunderstorm record is identified in NOAA
database6 hourly and nationwide, i.e., 1 means a thunder-
storm happens in the corresponding hour at a certain lo-
cation, and 0 means no thunderstorm happens. We pro-
cessed the geocode to align weather features in ERA5 with
anomaly patterns in NOAA. The geographic distribution
and anomaly pattern frequency distribution are shown in
Appendix D.

Baselines. Besides the causality discovery baseline in Ap-
pendix B, the first category is for tensor time series fore-
casting: (1) GRU (Chung et al., 2014) is a classical se-
quence to sequence generation model. (2) DCRNN (Li

4https://cds.climate.copernicus.eu/
cdsapp#!/home

5100 of 238 counties are top-ranked counties for the thunder-
storm (anomaly label) frequency, and the rest are randomly se-
lected.

6https://www.ncdc.noaa.gov/stormevents/
ftp.jsp
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Table 1: Forecasting Error (MAE, 10−2)

ERA5-2017 (↓) ERA5-2018 (↓) ERA5-2019 (↓) ERA5-2020 (↓)
GRU 1.8834 ± 0.0126 1.9764 ± 0.1466 1.6194 ± 0.2645 1.7859 ± 0.2324

DCRNN 0.0819 ± 0.0025 0.0797 ± 0.0049 0.0799 ± 0.0035 0.0826 ± 0.0033
GTS 0.0777 ± 0.0054 0.0766 ± 0.0029 0.0760 ± 0.0031 0.0742 ± 0.0021

TacSas 0.0496 ± 0.0017 0.0499 ± 0.0017 0.0502 ± 0.0016 0.0488 ± 0.0019
ST-SSL 0.0345 ± 0.0051 0.0330 ± 0.0018 0.0361 ± 0.0021 0.0348 ± 0.0020

TacSas++ 0.0271 ± 0.0004 0.0276 ± 0.0004 0.0282 ± 0.0003 0.0265 ± 0.0004

et al., 2018) is a graph convolutional recurrent neural net-
work, of which the input graph structure is given, not
causal, and static (i.e., shared by all timestamps). In this
viewpoint, we let each node randomly distribute its unit
weights to others. (3) GTS (Shang et al., 2021) is also a
graph convolutional recurrent neural network that does not
need the input graph but learns the structure based on the
node features, but the learned structure is also shared by
all timestamps and is not causal. To compare the perfor-
mance of DCGNN (Li et al., 2018) and GTS (Shang et al.,
2021) with TacSas, causality is the control variable since
we make all the rest (e.g., neural network type, number
of layers, etc.) identical for them. The second category
is for anomaly detection on tensor time series: (1) Deep-
SAD (Ruff et al., 2020), (2) DeepSVDD (Ruff et al., 2018),
and (3) DROCC (Goyal et al., 2020). Since these three
have no forecast abilities, we let them use the ground-truth
observations, and our TacSas utilizes the forecast features
during anomaly detection experiments. Also, these three
baselines are designed for multi-variate time-series data,
not tensor time-series. Thus, we flatten our tensor time
series along the spatial dimension and report the average
performance for these three baselines over all locations.

Next, we introduce forecasting and anomaly detection per-
formance. Details about split and hyperparameters are in
Appendix C. More ablation studies can be found in Ap-
pendix B.3.

4.2. Forecasting Performance

In Table 1, we present the forecasting performance in terms
of mean absolute error (MAE) on the testing data of three
algorithms, namely DCGNN (Li et al., 2018), GTS (Shang
et al., 2021), ST-SSL (Ji et al., 2023), our TacSas, and Tac-
Sas++ (i.e., TacSas with persistence forecast constraints).
Here, we set the time window as 24, meaning that we use
the past 24 hours tensor time series to forecast the future
24 hours in an autoregressive manner. Moreover, for base-
lines and TacSas, we set fΘi in Eq.7 shared by all weather
variables to ensure the scalability, such that we do not need
to train N recurrent graph neural networks for a single pre-
diction. In Table 1, we can observe a general pattern that
our TacSas outperforms the baselines with GTS performing
better than DCGNN. For example, with 2017 as the testing

data, our TacSas performs 39.44% and 36.16% better than
DCRNN and GTS. An explanation is that the temporally
fine-grained causal relationships can contribute more to the
forecasting accuracy than non-causal directed graphs, since
DCGNN, GTS, and our TacSas all share the graph recurrent
manner. TacSas however, discovers causalities at different
timestamps, while DCGNN and GTS use feature similarity
based connections. Moreover, ST-SSL achieves compet-
itive forecasting performance via contrastive learning on
time series. Motivated by contrastive manner, TacSas++
is proposed by persistence forecast constraints. That is, the
current forecast of TacSas is further calibrated by its near-
est time window (i.e., the last 24 hours in our setting). The
detailed implementation is provided in Appendix C.

Figure 3: Time-Respecting Bayesian Networks of at the
Same Hour of Two Consecutive Days.

To evaluate our explanation, we visualize causal connec-
tions at different times in Figure 3. Specifically, we show
the Bayesian Network of 238 counties at the same hour on
two consecutive days in the training data (i.e., May 1st and
May 2nd, 2018). Interestingly, we can observe that two pat-
terns in Figure 3 are almost identical at first glance. That
could be the reason why DCRNN and GTS can perform
well using the static structure. However, upon closer in-
spection, we find that these two are quite different to some
extent if we zoom in, such as, in the upper right corner.
Although the values have a tiny divergence, their volume
is quite large. In two matrices of Figure 3, the number of
different cells is 28,509, and the corresponding percentage
is 28509

238×238 ≈ 0.5033. We suppose that discovering those
value-tiny but volume-big differences makes TacSas out-
perform, to a large extent.
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Table 2: Anomaly Detection Performance (AUC-ROC)

NOAA-2017 (↑) NOAA-2018 (↑) NOAA-2019 (↑) NOAA-2020 (↑)
DeepSAD 0.5305 ± 0.0481 0.5267 ± 0.0406 0.5563 ± 0.0460 0.6420 ± 0.0054

DeepSVDD 0.5201 ± 0.0045 0.5603 ± 0.0111 0.6784 ± 0.0112 0.5820 ± 0.0205
DROCC 0.5319 ± 0.0661 0.5103 ± 0.0147 0.6236 ± 0.0992 0.5630 ± 0.1082
TacSas 0.5556 ± 0.0010 0.5685 ± 0.0011 0.6298 ± 0.0184 0.6745 ± 0.0185

4.3. Anomaly Detection

After forecasting, we can have the hourly forecast of
weather features at certain locations, denoted as X ′. Then,
we use the encoder-decoder model in Figure 2 to calculate
the feature-wise generation probability using mean squared
error (MSE) between X ′ and its generation X̄ ′. Thus,
we can calculate the average of feature-wise generation
probability as the condition of anomalies to identify if an
anomaly weather pattern (e.g., a thunderstorm) happens in
an hour in a particular location. In Table 2, we use the Area
Under the ROC Curve (i.e., AUC-ROC) as the metric, re-
peat the experiments four times, and report the performance
of TacSas with baselines.

From Table 2, we can observe that the detection module of
TacSas achieves very competitive performance. An expla-
nation is that, based on the anomalies distribution shown in
Table 3, it can be observed that the anomalies are very rare
events. Our generative manner could deal with the very rare
scenario by learning the feature latent distributions instead
of the (semi-)supervised learning manner. For example,
the maximum frequency of occurrences of thunderstorms
is 770 (i.e., Jun 2017), which is collected from 238 coun-
ties over 30× 24 = 720 hours, and the corresponding per-
centage is 770

238×30×24 ≈ 0.45%. Recall Remark 3.3, facing
such rare events, we possibly find a single distribution to fit
various anomaly patterns.

5. Related Work
Noteworthy applications of graph learning techniques in
time series forecasting span in climate domains, including
but not limited to heatwave prediction (Li et al., 2023a),
and frost forecasts (Lira et al., 2022). To improve the the
time series analysis effectiveness, there has been a grow-
ing focus on structured learning in the context of tabular
time series data (Li et al., 2018; Wu et al., 2020; Zhao
et al., 2020; Cao et al., 2020; Shang et al., 2021; Deng
& Hooi, 2021; Marcinkevics & Vogt, 2021; Geffner et al.,
2022; Tank et al., 2022; Spadon et al., 2022; Gong et al.,
2023), which learned structures contribute to various time
series analysis tasks like forecasting, anomaly detection,
imputation, etc. As a directed and interpretable structure,
causal graphs attract much research attention in this re-
search topic (Guo et al., 2021). Granger Causality is a clas-
sic tool for discovering the cross-time variable causality in

time series (Granger, 1969; Arnold et al., 2007). Facing
complex patterns in time series data, different upgraded
Granger Causality discovery methods emerge in different
directions. Also, neural Granger Causality tools are re-
cently proposed (Tank et al., 2022; Nauta et al., 2019;
Khanna & Tan, 2020; Marcinkevics & Vogt, 2021; Xu
et al., 2019; Huang et al., 2020), which utilizes the deep
neural network to discover the nonlinear Granger causal
coefficients and serve for the time-series forecasting tasks
better. For example, in (Tank et al., 2022), authors intro-
duce how to use multi-layer perception (MLPs) and long
short-term memory (LSTMs) to realize the Neural Granger
Causality for the forecasting task and how to interpret the
Granger causal coefficients from neurons in deep networks.
However, Granger Causality or Neural Granger Causal-
ity focuses on cross-time variable causality discovery and
overlooks the instantaneous (or intra-time) variable causal-
ity. Also, how to utilize the discovered comprehensive
causality to contribute to the downstream time series anal-
ysis tasks is under-explored mainly, especially in a setting
where the ground-truth causal structures are hardly avail-
able for evaluation.

6. Conclusion
In this paper, we first propose TBN Granger Causality
to align the instantaneous causal effects with time-lagged
Granger causality. Moreover, we design TacSas to use
TBN Granger Causality on time series analysis tasks like
forecasting and anomaly detection in the real-world tensor
time-series data and perform extensive experiments, where
the results show the effectiveness of TacSas.
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Chung, J., Gülçehre, Ç., Cho, K., and Bengio, Y. Empiri-
cal evaluation of gated recurrent neural networks on se-
quence modeling. CoRR, abs/1412.3555, 2014. URL
http://arxiv.org/abs/1412.3555.

Dahlhaus, R. and Eichler, M. Causality and graphical mod-
els in time series analysis. Oxford Statistical Science Se-
ries, pp. 115–137, 2003.

Deng, A. and Hooi, B. Graph neural network-based
anomaly detection in multivariate time series. In Thirty-
Fifth AAAI Conference on Artificial Intelligence, AAAI
2021, Thirty-Third Conference on Innovative Applica-
tions of Artificial Intelligence, IAAI 2021, The Eleventh
Symposium on Educational Advances in Artificial Intel-
ligence, EAAI 2021, Virtual Event, February 2-9, 2021,
pp. 4027–4035. AAAI Press, 2021. doi: 10.1609/aaai.
v35i5.16523. URL https://doi.org/10.1609/
aaai.v35i5.16523.

Fisher, R. A. and Tippett, L. H. C. Limiting forms of the
frequency distribution of the largest or smallest member
of a sample. In Mathematical proceedings of the Cam-
bridge philosophical society, volume 24, pp. 180–190.
Cambridge University Press, 1928.

Fu, D. and He, J. Natural and artificial dynamics
in graphs: Concept, progress, and future. Fron-
tiers Big Data, 5, 2022. doi: 10.3389/FDATA.2022.
1062637. URL https://doi.org/10.3389/
fdata.2022.1062637.

Fu, D., Xu, Z., Tong, H., and He, J. Natural and artificial
dynamics in gnns: A tutorial. In Chua, T., Lauw, H. W.,
Si, L., Terzi, E., and Tsaparas, P. (eds.), Proceedings
of the Sixteenth ACM International Conference on Web
Search and Data Mining, WSDM 2023, Singapore, 27
February 2023 - 3 March 2023, pp. 1252–1255. ACM,
2023. doi: 10.1145/3539597.3572726. URL https:
//doi.org/10.1145/3539597.3572726.

Fu, D., Hua, Z., Xie, Y., Fang, J., Zhang, S., Sancak,
K., Wu, H., Malevich, A., He, J., and Long, B. Vcr-
graphormer: A mini-batch graph transformer via vir-
tual connections. CoRR, abs/2403.16030, 2024. doi:
10.48550/ARXIV.2403.16030. URL https://doi.
org/10.48550/arXiv.2403.16030.

Geffner, T., Antorán, J., Foster, A., Gong, W., Ma, C., Kici-
man, E., Sharma, A., Lamb, A., Kukla, M., Pawlowski,
N., Allamanis, M., and Zhang, C. Deep end-to-end
causal inference. CoRR, abs/2202.02195, 2022. URL
https://arxiv.org/abs/2202.02195.

Gong, W., Jennings, J., Zhang, C., and Pawlowski,
N. Rhino: Deep causal temporal relationship learn-
ing with history-dependent noise. In The Eleventh In-
ternational Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=i_1rbq8yFWC.

Goyal, S., Raghunathan, A., Jain, M., Simhadri, H. V.,
and Jain, P. DROCC: deep robust one-class classifi-
cation. In Proceedings of the 37th International Con-
ference on Machine Learning, ICML 2020, 13-18 July
2020, Virtual Event, volume 119 of Proceedings of
Machine Learning Research, pp. 3711–3721. PMLR,
2020. URL http://proceedings.mlr.press/
v119/goyal20c.html.

Granger, C. W. Investigating causal relations by economet-
ric models and cross-spectral methods. Econometrica:
journal of the Econometric Society, pp. 424–438, 1969.

Guo, R., Cheng, L., Li, J., Hahn, P. R., and Liu, H. A
survey of learning causality with data: Problems and
methods. ACM Comput. Surv., 53(4):75:1–75:37, 2021.

9

https://doi.org/10.1145/1281192.1281203
https://doi.org/10.1145/1281192.1281203
https://proceedings.mlr.press/v180/assaad22a.html
https://proceedings.mlr.press/v180/assaad22a.html
https://proceedings.neurips.cc/paper/2020/hash/cdf6581cb7aca4b7e19ef136c6e601a5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/cdf6581cb7aca4b7e19ef136c6e601a5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/cdf6581cb7aca4b7e19ef136c6e601a5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/cdf6581cb7aca4b7e19ef136c6e601a5-Abstract.html
http://arxiv.org/abs/1412.3555
https://doi.org/10.1609/aaai.v35i5.16523
https://doi.org/10.1609/aaai.v35i5.16523
https://doi.org/10.3389/fdata.2022.1062637
https://doi.org/10.3389/fdata.2022.1062637
https://doi.org/10.1145/3539597.3572726
https://doi.org/10.1145/3539597.3572726
https://doi.org/10.48550/arXiv.2403.16030
https://doi.org/10.48550/arXiv.2403.16030
https://arxiv.org/abs/2202.02195
https://openreview.net/forum?id=i_1rbq8yFWC
https://openreview.net/forum?id=i_1rbq8yFWC
http://proceedings.mlr.press/v119/goyal20c.html
http://proceedings.mlr.press/v119/goyal20c.html


Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection

doi: 10.1145/3397269. URL https://doi.org/
10.1145/3397269.

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi,
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A. Theoretical Analysis
A.1. Proof of Lemma 3.1

Following (Yu et al., 2019), at each time t, we can extend (I +A(t) ◦A(t))N by binomial expansion as follows.

(I +A(t) ◦A(t))N = I +

N∑
k=1

(
N
k

)
(A(t))k (12)

Since
I ∈ RN×N (13)

then
Tr(I) = N (14)

Thus, if
(I +A(t) ◦A(t))N −N = 0 (15)

then
(A(t))k = 0, for any k (16)

Therefore, A(t) is acyclic, i.e., no closed-loop exists in A(t) at any possible length. Overall, the general idea of Lemma 3.1
is to ensure that the diagonal entries of the powered adjacency matrix have no 1s. There are also other forms for acyclicity
constraints obeying the same idea but in different expressions, like exponential power form in (Zheng et al., 2018).

A.2. Sketch Proof of Theorem 3.2

According to Theorem 1 from (Geffner et al., 2022), the ELBO form as our Eq. 4 could identity the ground-truth causal
structure S(t) at each time t. The difference between our ELBO and the ELBO in (Geffner et al., 2022) is entries in the
KL-divergence. Specifically, in (Geffner et al., 2022), the prior and variational posterior distributions are on the graph level.
Usually, the prior distribution of graph structures is not easy to obtain (e.g., the non-IID and heterophyllous properties).
Then, we transfer the graph structure distribution to the feature distribution that the Gaussian distribution can model. That’s
why our prior and variational posterior distributions in the KL-divergence are on the feature (generated by the graph) level.

B. Empirical Analysis
B.1. Ground-Truth Causality Discovery Ability of TacSas

Lorenz-96 model (Lorenz, 1996) is a famous synthetic system of multivariate time-series, e.g., X ∈ RP×T is a P -
dimensional time series whose dynamics can be modeled as follows.

dX(i, t)

dt
= (X(i+ 1, t)−X(i− 2, t))X(i− 1, t)−X(i, t) + F, for i ∈ {1, 2, . . . , P} (17)

where X(0, t) = X(P, t), X(−1, t) = X(P − 1, t), X(P + 1, t) = X(1, t), and F is the forcing constant determining
the level of nonlinearity and chaos in the time series. With the above modeling, the corresponding ground-truth Granger
causal structures can be simulated, involving multivariate, nonlinear, and sparse (Tank et al., 2022).

To generate the ground-truth causal structures, there are two parameters, i.e., the number of variables (i.e., P ) and the
number of timestamps (i.e., T ). Therefore, we control these two parameters and report the accuracy of TacSas discovered
causal structures against the ground-truth ones (i.e., 0/1 adjacency matrices), compared with the state-of-the-art causality
discovery method GVAR (Marcinkevics & Vogt, 2021). The comparison is shown in Figure 4 after eight experiment trials
with mean and variance computed, where we can observe our TacSas achieve the competitive accuracy of discovering the
ground-truth causal structures. Also, by comparing Figure 4(a) and (b) (and Figure 4(c) and (d)), we can see that fixing the
number of variables (i.e., P ), increasing the time series length (i.e., T ) may help discover the causality. And by comparing
Figure 4(a) and (c) (and Figure 4(b) and (d)), we can see that fixing the time length (i.e., T ), increasing the number of
variables (i.e., P ) may make the causality easier to be discovered.
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(a) P=10, T=500 (b) P=10, T=800

(c) P=20, T=500 (d) P=20, T=800

Figure 4: Accuracy of Causality Discovery in Lorenz-96 with Varying Number of Variables (P ) and Timestamps (T ).

B.2. Validation of Anomaly Detection Ability of TacSas

Figure 5: Ablation of TacSas on Cross-Validation
Group #2 (i.e., 2018 as testing)

Besides forecasting, another capability of TacSas is anomaly
detection. Based on the analysis of Remark 3.3, the detec-
tion function of TacSas originates from the accurate expres-
sion of the feature distribution. Although our forecast features
have better accuracy than selected baselines (e.g., DCGNN and
GTS), we need to verify if the forecast features still have a
negligible divergence from the ground-truth features in terms
of distribution. If so, we can safely use the forecast features
to detect anomalies. Therefore, we design the ablation study.
We remove the forecasting part of TacSas i.e., we let the en-
coder and decoder in Figure 2 directly learn the distribution
of ground-truth features (instead of forecast features) and then
test reconstruction loss on ground-truth features. In Figure 5,
we show the feature reconstruction loss (i.e., mean squared er-
ror) curve of the encoder and decoder on the validation set as
the epoch increases. After the training of the encoder and de-
coder is converged, we can also observe that the ground-truth
feature reconstruction loss does not have a very large divergence from the forecast features. Now, we are ready to do the
following anomaly detection experiments.
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B.3. Ablation Study

As shown in Table 1, the GRU (Chung et al., 2014) method does not perform well. A latent reason is that it can not take
any structural information from the time series. Motivated by this guess, we designed the following ablation study on
the forecasting task. The ablated TacSas is designed by only keeping the forget gate in Eq. 9, i.e., the last equation in
Eq. 9, then all the rest of the gates follow the GRU method. As shown in Figure 6, we can see that only taking partial
time-respecting causal structural information could not enable TacSas to achieve the best performance, but accepting this
partial information can help GRU improve the performance compared with Table 1.

Figure 6: Ablation Study on Forecasting Task.

C. Implementation
C.1. Hyperparameter Search

In Eq. 5, instead of fixing the hyperparameter λ and c during the optimization. Increasing the values of hyperparameter λ
and c can reduce the possibility that learned structures break the acyclicity (Yu et al., 2019), such that one iterative way to
increase hyperparameters λ and c during the optimization can be expressed as follows.

λi+1 ← λi + ciα(A
(t)
i ) (18)

and

ci+1 =

{
ηci if |α(A(t)

i )| > γ|α(A(t)
i−1)|

ci otherwise
(19)

where η > 1 and 0 < γ < 1 are two hyperparameters, the condition |α(A(t)
i )| > γ|α(A(t)

i−1)| means that the current

acyclicity α(A
(t)
i ) at the i-th iteration is not ideal, because it is not decreased below the γ portion of α(A(t)

i−1) from the last
iteration i− 1.

C.2. Reproducibility

For forecasting and anomaly detection, we have four cross-validation groups. For example, focusing on an interesting time
interval each year (e.g., from May to August is the season for frequent thunderstorms), we set group #1 with [2018, 2019,
2020] as training, [2021] as validation, and [2017] as testing. Thus, we have 8856 hours, 45 weather features, and 238
counties in the training set. The rest three groups are {[2019, 2020, 2021], [2017], [2018]}, {[2020, 2021, 2017], [2018],
[2019]}, and {[2021, 2017, 2018], [2019], [2020]}, respectively. Therefore, TacSas and baselines are required to forecast
the testing set and detect the anomaly patterns in the testing set.

The persistence forecasting can be expressed as

X
(t)
TacSas++ = αX

(t)
TacSas + (1− α)X(t−τ) s.t. X(t)

TacSas = TacSas(X(t−τ)) (20)

15



Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection

where τ is the time window, for example, in the experiments, τ = 24h.

TacSas is published 7. The experiments are programmed based on Python and Pytorch on a Windows machine with 64GB
RAM and a 16GB RTX 5000 GPU.

D. Tensor Time Series Dataset
D.1. Geographic Distribution of the Time Series Data

The geographic distribution of 238 selected counties in the United States of America is shown in Figure 7, where the
circle with numbers denotes the aggregation of spatially near counties. Of 238 selected counties, 100 are selected for the
top-ranked counties based on the yearly frequency of thunderstorms. The rest are selected randomly and try to provide
extra information (e.g., causality discovery).

Figure 7: Geographic Distribution of Covered Counties in the Time Series Dataset (The number in the circle stands for the
aggregation of nearby counties).

D.2. Abnormal Patterns of the Time Series Data

Table 3: Statistics of Anomaly Weather Patterns (i.e., Thunderstorm Winds) Occurrence in 238 Selected Counties in US.

Year 2017 2018 2019 2020 2021
Jan 26 3 2 41 7
Feb 53 6 9 50 8
Mar 85 16 26 63 62
Apr 93 44 140 170 60
May 245 207 263 175 218
Jun 770 302 348 331 452
Jul 306 291 457 453 701

Aug 294 269 415 354 435
Sep 61 80 122 29 123
Oct 32 32 82 60 55
Nov 20 22 9 114 11
Dec 5 15 11 8 58

7https://github.com/DongqiFu/TacSas
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