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a b s t r a c t

Classical clusterwise linear regression is a useful method for investigating the relation-
ship between scalar predictors and scalar responses with heterogeneous variation of
regression patterns for different subgroups of subjects. This paper extends the classical
clusterwise linear regression to incorporate multiple functional predictors by represent-
ing the functional coefficients in terms of a functional principal component basis. We
estimate the functional principal component coefficients based on M-estimation and
K -means clustering algorithm, which can classify the data into clusters and estimate
clusterwise coefficients simultaneously. One advantage of the proposed method is that
it is robust and flexible by adopting a general loss function, which can be broadly applied
to mean regression, median regression, quantile regression and robust mean regression.
A Bayesian information criterion is proposed to select the unknown number of groups
and shown to be consistent in model selection. We also obtain the convergence rate of
the set of estimators to the set of true coefficients for all clusters. Simulation studies
and real data analysis show that the proposed method is easily implemented, and it
consequently improves previous works and also requires much less computing burden
than existing methods.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Functional data analysis (FDA) views data as realizations of random process and has become a growing statistical field
n recent years (Ramsay and Silverman, 2005). Regression with functional data is perhaps the most thoroughly researched
opic in FDA, and there exists an extensive literature on this topic. Among them, the functional linear regression model and
ts extensions have received considerable attention. The functional linear regression model characterizes the relationship
etween a scalar response and random predictor processes based on the underlying assumption that the regression
tructure is the same for all subjects. However, in some applications, clustered patterns of unobserved heterogeneity
re common and the relationships may be different across subgroups of individuals. For example, the ADNI study collects
ini-mental state examination (MMSE) scores reflecting cognitive mental status and fractional anisotropy (FA) curves

eflecting fiber density, axonal diameter, and myelination in white matter. The effects of white matter on the cognitive
unction can be different for different subgroups of people since these individuals are usually under different status of
isease. Controlling the unobserved heterogeneity in modeling based on their FA curves and MMSE scores is of paramount
mportance and can be used to identify progression of Alzheimer’s Disease.
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To detect potential cluster-level heterogeneity in functional linear models, we consider the clusterwise functional linear
egression model to deal with the group-specific regression patterns for functional data. Given a scalar response Y and
smooth random predictor processes {Xd(·), d = 1, . . . ,D} on a compact support T that are square integrable, we have

he model as follows:

Yi = µ0
k +

D∑
d=1

∫
T
Xdi(t)β0

dk(t)dt + ϵi, if the subject i belongs to the kth group C(n)
0k , (1)

where µ0
k is the intercept, β0

dk(t)s are the coefficient functions, C(n)
0k is the index set for the kth group and k = 1, . . . , K0.

Within each group, the regression coefficients are the same, while they may be different across different groups. The true
group membership C(n)

0 = {C(n)
01 , . . . , C

(n)
0K0

} and the number of groups K0 are often unknown.
Model (1) can be viewed as an extension of the clusterwise linear regression model to incorporate functional predictors.

As a useful method for investigating potential cluster-level heterogeneity, clusterwise linear regression involves distinct
linear relationships between scalar outcome and scalar predictors across clusters. There exists a huge number of different
cluster methods for clusterwise linear regression models with scalar covariates. Späth (1979), Wu and Zen (1999) and Rao
et al. (2007) combined K -means algorithm with classical estimation procedures, which enjoy the advantages of conceptual
simplicity and computational efficiency. DeSarbo and Cron (1988), Hennig (2000) and McLachlan and Peel (2004) proposed
mixture models and adopted EM-algorithm to estimate the parameters by specifying the underlying distribution for each
component. These methods are efficient when the underlying distribution is correctly specified, but can be susceptible
to model misspecification. Ma and Huang (2016), Ma and Huang (2017) and Zhang et al. (2019) proposed penalization
methods through penalizing the pairwise differences of coefficients across subjects. One advantage of the penalization-
based methods is that there is no need to pre-specify the number of clusters. However, such convenience comes at the
cost of heavy computational burden.

Although many different regression clustering methods for clusterwise linear regression models with scalar covariates
have been available, methods for model (1) remains relatively undeveloped in the literature with some exceptions. Preda
and Saporta (2005, 2007) proposed the clusterwise partial least square and principal components approaches for perfectly
observed functional predictors. However, these methods suffer from three limitations. First, they did not provide any
theoretical results about the selection of the number of groups and consistency of the estimators. Second, their least-
squares loss function is not robust to non-normal errors. Third, this is rarely the case that the functional covariate is
observed continuously and without measurement errors. Usually, functional data are observed intermittently and with
errors. Yao et al. (2010) and Ciarleglio and Ogden (2016) extended the classical mixture regression model to the functional
mixture model. Likewise, they had the restriction that no consistency result of the criterion is guaranteed for specifying
the number of clusters. Moreover, the assumption of a parametric conditional density of the response in the mixture
model approach is restrictive and difficult to meet in practice. Hence, there is a need for the development for clusterwise
functional linear regression from both practical and theoretical perspectives.

The focus of this paper is to introduce a computational efficient and robust estimation method for model (1) without
assumptions on the underlying distribution, and to provide throughout theoretical investigations with respect to both the
coefficient estimators and the estimator of the group number. By adopting the functional principal component analysis,
we are able to deal with the infinite-dimensional functional coefficients. We propose a general approach to estimate
the functional principal component coefficients based on M-estimation and K -means algorithm, which finds the cluster
label of each data point, identifies potentially different regression structures simultaneously. To be specific, given an
initial group membership of the data, we iteratively cluster functional data into groups which minimize the loss function
according to available regression patterns, and then update the regression in each cluster simultaneously until equilibrium
is attained. A Bayesian information criterion is proposed to determine the underlying number of clusters. To improve the
robustness of the estimation procedure in the presence of heavier-tailed error distributions, we adopt a general loss
function which covers mean regression, median regression, quantile regression and robust mean regression.

Compared with the existing literature, we make several major contributions. First, the proposed K -means based
algorithm is more robust and more computational convenient compared to existing methods, as evidenced by our
simulation studies and analysis of the ADNI dataset. Second, we establish the consistency of the Bayesian information
criterion. Third, we derive the consistency rate of the set of estimators in terms of the Hausdorff distance. In particular,
the set of estimators for the intercepts enjoys a parametric rate of convergence, whereas the set of estimators for the
functional coefficients possesses a nonparametric rate of convergence, which is shown to be optimal in the minimax
sense by Hall and Horowitz (2007). To the best of our knowledge, this work is the first to derive the consistency result
for model selection by the Bayesian information criterion and the rates of convergence for parameter estimators in the
context of clusterwise functional linear models or functional mixture models. In spite of their high importance, these
consistency results are relatively rare even for classical clusterwise linear regression models (Müller and Garlipp, 2005).
Fourth, the proposed method is applicable to intermittent and noisy trajectories at the price of a more complex theoretical
investigation. Meanwhile, it is flexible by choosing different criterion functions according to various interests, and the
theoretical results obtained are applicable to a general loss function. Although conceptually similar to Preda and Saporta
(2007), their method is restricted to least-squares loss function with perfectly observed functional variables and their
paper lacks theoretical results.
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The proposed method falls within a semisupervised clustering framework to functional data, which performs unsu-
ervised learning when it clusters data according to their respective unobserved regression structures, and supervised
earning when it fits regression patterns to the corresponding data clusters. The unknown group membership and
umber of clusters pose challenges and distinguish the proposed method from existing M-estimation based methods
or classical functional linear models, such as Huang et al. (2014), Shin and Lee (2016), Tang (2017) and Ma et al. (2019).
urthermore, the proposed method is conceptually different from the curve-based clustering or classification methods,
uch as in Abraham et al. (2003), Wang and Song (2018) and Delaigle et al. (2019). These methods classify trajectories
irectly, whereas the proposed method clusters the functional processes and the scalar response together according to
ossibly different regression patterns with an unknown group membership.
The rest of this paper is organized as follows. Detailed estimation method can be found in Section 2. In Section 3,

e establish the consistency of the Bayesian information criterion and convergence of the set of estimators. Section 4
emonstrates the practicality of the proposed method through finite sample simulation studies. We apply our method to
real dataset obtained from the ADNI study and to a dataset from an experiment on medfly fecundity in Section 5. All

he proofs can be found in the supplementary material.

. Estimation

In this section, we present the explicit estimation procedure and algorithm, which are easy to implement and do not
epend on the knowledge of the conditional density of the response.
Considering that for d = 1, . . . ,D, k = 1, . . . K , each βdk(t) lies in an infinite-dimensional space, dimension reduction is

mandatory. We apply the functional principal component analysis and represent the functional coefficients by functional
principal component basis functions. Specifically, for d = 1, . . . ,D, the functional predictor Xdi admits Xdi(t) = µxd(t) +∑

∞

m=1 ξdimϕdm(t), where ξdim =
∫
T {Xdi(t) − µxd(t)}ϕdm(t)dt is the functional principal component score of Xdi satisfying

E(ξdim) = 0 and Var(ξdim) = λdm with
∑
λdm < ∞, and {ϕdm(t)}m=1,2,... are orthonormal eigenfunctions. Hence, the

functional parameters βdks admit the representation βdk(t) =
∑

∞

m=1 bdkmϕdm(t) and can be approximated by a finite sum
of the leading mdn terms,

βdk(t) ≈

mdn∑
m=1

bdkmϕdm(t),

where mdn can be chosen according to the total variation explained up to a certain threshold.
With the above representation, model (1) becomes

Yi = µ0
k +

D∑
d=1

mdn∑
m=1

bdkmξdim + ϵ∗

i , if the subject i belongs to the kth group. (2)

Denote Π (n)
K = {C(n)

1 , . . . , C
(n)
K } as any possible partition of the n observations for K groups. Estimates of the partition and

coefficients µk and bdkm are obtained through

min
Π

(n)
K

min
µk,bdkm

1
n

K∑
k=1

∑
i∈C(n)

k

φ(yi − µk −

D∑
d=1

mdn∑
m=1

bdkmξdim), (3)

where φ is a general increasing function of the absolute value of the argument. Interesting special cases are least-squares
method φ(x) = x2, check loss function φ(x) = x(τ − I(x < 0)) for a given quantile level τ , and Huber’s function
φc(x) =

1
2x

2I(|x| ≤ c) + (cx −
1
2 c

2)I(|x| > c).
In practice, we do not have the entire trajectory {Xdi, d = 1, . . . ,D} but only intermittent noisy measurements

Xdij = Xdi(tdij) + edij, i = 1, . . . , n, j = 1, . . . , m̃di, (4)

where edijs are independent and identically distributed measurement errors independent of Xdi(tdij), satisfying E(edij) = 0
and Var(edij) = σ 2

xd. Estimation of the functional principal component scores has been previously studied in the literature.
For densely and noisily observed functional data, Hall and Hosseini-Nasab (2006) applied a local linear smoothing to each
individual curve and then employ functional principal component analysis to the smoothed curve. Specifically, the discrete
observations of Xdi(t) are pre-smoothed by fitting a local linear regression as follows,

(θ̂di0, θ̂di1) = arg min
(θdi0,θdi1)

m̃di∑
j=1

{Xdij − θdi0 − θdi1(tdij − t)}2K {(tdij − t)/hw},

here K (·) is a kernel function and hw is the bandwidth for the smoothing step. Then the estimate X̂di(t) = θ̂di0(t) is used
nstead of the true trajectory Xdi(t) to construct the covariance, eigen-system and functional principal component scores.
or sparse and noisy functional observations, Yao et al. (2005) applied the conditional expectation method, which can
ackle both dense and sparse observed observations with measurement errors. The two methods have similar performance
3
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numerically for dense design (Kong et al., 2016a). For computational and theoretical simplicity, we consider the first
approach to investigate the theoretical properties, and adopt the method proposed by Yao et al. (2005) to obtain the
estimates {(ϕ̂dm, λ̂dm)} and {ξ̂dim} in practice.

To derive the estimators, we take advantage of close connection between (3) and the well-known K -means clustering
lgorithm, and develop a computational efficient algorithm to solve (3). For a fixed K , we are now ready to provide the
lgorithm to solve (3) following the spirit of K -means type method as follows:

(1) Initially, randomly split the data into K groups Π (n)
K = {C(n)

1 , . . . , C
(n)
K }.

(2) For a given partition Π (n)
K = {C(n)

1 , . . . , C
(n)
K }, obtain the parameter estimates for the kth group by

(µ̂k, b̂dkm) = arg min
µk,bdkm

∑
i∈C(n)

k

φ(yi − µk −

D∑
d=1

mdn∑
m=1

bdkmξ̂dim).

(3) For each subject i, assign subject i to the k̃th group such that k̃ = argmink φ(yi − µ̂k −
∑D

d=1
∑mdn

m=1 b̂dkmξ̂dim), k =

1, . . . , K , and update the partition Π (n)
K correspondingly.

(4) Repeat the above two steps until that the partition Π (n)
K does not change. Obtain the estimates of the functional

parameters by β̂dk(t) =
∑mdn

m=1 b̂dkmϕ̂dm(t) for k = 1, . . . , K , d = 1, . . . ,D.

The proposed algorithm is computationally efficient by alternating between the ‘‘assignment’’ and ‘‘update’’ steps.
Specifically, each subject is assigned to the group k whose residual is the smallest. In the ‘‘ update’’ step, the parameters
are estimated through M-estimation. It can be a linear regression, a quantile regression or a robust regression due to
various interests. The proposed estimation procedure can be robust to non-normal and heavy-tailed errors by choosing
the median regression or the robust regression. Because the loss function is non-decreasing as the increase of iteration
numbers, numerical convergence is very fast.

To select the number of groups, we define the Bayesian information criterion for a partition Π (n)
K as follows:

bic(Π (n)
K ) = log

(1
n

K∑
k=1

∑
i∈C(n)

k

φ(yi − µ̂k −

D∑
d=1

mdn∑
m=1

b̂dkmξ̂dim)
)

+
q(K )An

n

( D∑
d=1

mdn + 1
)
,

where q(K ) is an increasing function of K and An is a sequence related to n. For example, one may take q(K ) = K and
An = log log n. Note that the term (

∑D
d=1 mdn+1) is the number of parameters involved in the regression structure within

groups. Then, we can obtain the estimate of the underlying number of groups K0 by

K̂n = argmin
K

min
Π

(n)
K

bic(Π (n)
K ).

o validate the use of the bic, we show that the proposed criterion can specify the true number of groups with probability
pproaching one as the sample size increases to infinity in next section.
Notably, Preda and Saporta (2007) considered a special case of the proposed method, but they neither took the noisy

bservations of the functional process into account, nor did they study the theoretical results of the estimators.

. Theoretical results

In this section, we present the consistency of the proposed bic and the consistency of the set of estimators. Denote
· ∥ as the Euclidean norm and ∥ · ∥L2 as the L2 norm.
Without loss of generality, we fix D = 1 and drop the subscript d for simplicity. An extension to the case of D > 1 is

traightforward. Recall that C(n)
0 = {C(n)

01 , . . . , C
(n)
0K0

} is the true group membership such that for i ∈ C(n)
0k , k = 1, . . . , K0, we

have

Yi = µ0
k +

∫
T
Xi(t)β0

k (t)dt + ϵi.

For k = 1, . . . , K0, each true functional coefficient admits the expansion β0
k (t) =

∑
∞

m=1 b
0
kmϕm(t) ≈

∑mn
m=1 b

0
kmϕm(t),

where mn is the number of functional principal component basis used, and {b0km}
∞

m=1 are the true Fourier coefficients. Let
nk = |C(n)

0k | be the number of observations in the kth group. Before investigating the theoretical results, we need to make
the following assumptions.

Assumption 1. The population comprises K0 < ∞ subpopulations with proportions π1, . . . , πK0 with πi > a0 > 0 and∑K0
i=1 πi = 1, where a0 is a constant.
4
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Assumption 2. The function φ(·) is convex and E[φ(ϵj)] is finite for j ∈ C(n)
0k and k = 1, . . . , K0. For any β,µ and

observations in C(n)
0k , lim infnk→∞

∑
j∈C(n)

0k
E[φ(ϵj − µ −

∫
Xj(t)β(t)dt) − φ(ϵj)]/nk ≥ g

(
(∥β∥

2
L2

+ µ2)1/2
)
, where g(·) is a

nonnegative convex function and strictly convex monotonic in a right neighborhood of 0.

Assumption 3. Let ψ(·) be the subgradient of φ(·) and U be the set of discontinuity points of ψ(·). The distribution
function Fi of ϵi is unimodal and satisfies Fi(U) = 0, Furthermore, E[ψ(ϵi)] = 0 and E[ψ2(ϵi)] < ∞.

Assumption 4. There exist some positive constants c1, c2, c3, and c4, such that as u → 0, E[ψ(ϵi + u)] = c1u + O(u2).
Also, E

(
[ψ(ϵi + u) − ψ(ϵi)]2

)
≤ c2|u|, and |ψ(v + u) − ψ(v)| ≤ c3 for any |u| ≤ c4 and v ∈ R.

ssumption 5. The eigenvalues {λm} satisfy c−1
5 m−a

≤ λm ≤ c5m−a and λm − λm+1 ≥ c−1
5 m−a−1 for m ≥ 1. Also, the

rue Fourier coefficients |b0km| ≤ c6m−b, where a > 1, b > a/2 + 1, and c5 and c6 are some positive constants.

Assumption 1 requires that the sample sizes of the subgroups are comparable, implying that a0n ≤ nk ≤ n for
k = 1, . . . , K0. Assumption 2 is parallel to the conditions in Rao et al. (2007) for the loss function. Assumptions 3–4 are
imposed on the subgradient of the loss function, which is commonly encountered in the literature of M-estimation (Rao
et al., 2007; Wu and Zen, 1999; Tang, 2017; He and Shi, 1996). Assumption 5 ensures the identifiability of eigenfunctions
and smoothness of the functional coefficients.

Similar to Kong et al. (2016b), we need the following assumptions to guarantee the asymptotic equivalence between
the estimators obtained from X̂i and those obtained from the true Xi. Recall that m̃i is the number of observations for Xi.
enote that m̃ = infi=1,...,n m̃i.

Assumption 6. For any C > 0, there exist an ϵ > 0 such that sups∈T {E|X(s)|C } < ∞, and sups,t∈T {E[(|s − t|−ϵ

X(s) − X(t)|)C ]} < ∞.

ssumption 7. X is twice continuously differentiable on T with probability 1, E(X(t)) = 0 and
∫
E(X (2)(t))4 dt < ∞,

here X (2)(t) denotes the second derivative of X(t).

ssumption 8. The observation points {tij, j = 1, . . . , m̃i} are deterministic and ordered increasingly for i = 1, . . . , n.
here exist densities gi uniformly smooth over i, satisfying

∫ 1
0 gi(t)dt = 1 and 0 < c1 < infi{inft∈T gi(t)} <

upi{supt∈T gi(t)} < c2 < ∞. The tijs are generated according to tij = G−1
i {j/(mi + 1)}, where G−1

i is the inverse of
ij =

∫ t
−∞

gi(s)ds. The kernel density function is smooth and compactly supported.

ssumption 9. supi sup{ti(j+1) − tij, j = 1, . . . , m̃i} = O(m̃−1), hw ∼ m̃−1/5, m̃n−5/4
→ ∞.

With the preparations above, we are able to derive the theoretical properties of the criterion and the estimators.

heorem 1. Suppose the conditions in Assumptions 1–9 are satisfied, if An → ∞ and Anmn/n → 0 as n → ∞, then
(K̂n = K0) → 1.

Theorem 1 establishes the consistency of the bic, which is new for clusterwise functional linear models and functional
ixture models. It guarantees that the proposed criterion can select the true number of clusters with probability
pproaching one. Once the true number of clusters is given, we can obtain the consistency of the set of estimators.
Denote A0

= {µ0
1, . . . , µ

0
K0

} and B0
= {β0

1 , . . . , β
0
K0

} as the sets of the true intercepts and functional coefficients,
espectively. Let Â = {µ̂1, . . . , µ̂K0} and B̂ = {β̂1, . . . , β̂K0}, where β̂k(t) =

∑mn
m=1 b̂kmϕ̂m(t), be the corresponding sets of

stimators when the true number of clusters K0 is given. The following theorem gives the rates of convergence for the
wo sets of estimators in terms of the Hausdorff metric.

heorem 2. If the conditions in Theorem 1 hold, and mn ∼ n1/(a+2b) as n → ∞, when the true number of groups K0 is given,
e have

H(Â,A0) = Op(n−1/2) and H(B̂,B0) = Op(n−(2b−1)/(2a+4b)),

here the Hausdorff distances are H(Â,A0) = supµ1∈Â infµ2∈A0 |µ1 − µ2| and H(B̂,B0) = supβ1∈B̂ infβ2∈B0 ∥β1 − β2∥L2 .

Theorem 2 shows that the proposed method can consistently estimate the set of true coefficients. Specifically, the
stimator of the set of true intercepts enjoys a parametric rate of convergence, whereas the estimator of the set of true
unctional coefficients enjoys the nonparametric rate of convergence n−(2b−1)/(2a+4b), which is the same as that of Hall and
orowitz (2007) and optimal in the minimax sense. Yao et al. (2010) also derived consistent parameter estimation by
mposing the conditional density, but they did not investigate the convergence rate. It is also worth mentioning that the
esults in Theorems 1 and 2 are applicable to a general loss function, which brings great flexibility in practical applications.
5
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Similar to the disadvantage of K -means type methods, the estimated group membership may not converge to the
opulation group membership, thereby leading to a nonzero group misclassification probability. An intuition is that when
he error term takes value from negative infinity to positive infinity, we cannot separate the clusters perfectly according
o the distance between the observation value and the sample mean (or even the population mean). In other words, the
luster boundaries are not very precisely located. However, given that observations near the cluster boundaries effectively
ontribute to the means of observations in both clusters (Pollard, 1982), we can consistently estimate the parameters.

. Simulation studies

We conduct simulation studies to illustrate the empirical performance of the proposed method. We choose least-
quares loss function φ(x) = x2, least absolute deviation loss function φ(x) = |x| and Huber loss function φc(x) =

1
2x

2I(|x| ≤

) + (cx −
1
2 c

2)I(|x| > c) with the commonly used c = 1.345. Denote the three choices as LS, LAD and HL, respectively.
For comparison, we also include the functional mixture regression (FMR) of Yao et al. (2010) and the clusterwise partial
least squares regression (PLS) of Preda and Saporta (2005). Following Yu et al. (2016), the number of PLS basis is obtained
by minimizing the Akaike information criterion. The number of functional principal scores of the functional processes is
truncated by the threshold of 90% of overall variation, and the number of groups is obtained by minimizing the proposed
bic. Following Zhang et al. (2019), we choose q(K ) = K and An = 10 log log n for least squares-loss function and Huber
oss function, and An = 5 log log n for least absolute deviation loss function.

To evaluate the performance of the above methods, we calculate several frequently used external validity measures,
amely, the rand index, adjusted rand index, Jaccard index, and the purity function. Denote the true positive (TP) to be
he number of pairs of subjects from the same cluster and assigned to the same cluster, the true negative (TN) to be
he number of pairs of subjects from different clusters and assigned to different clusters, the false positive (FP) to be the
umber of pairs of subjects from different clusters but assigned to the same cluster, and the false negative (FN) to be the
umber of pairs of subjects from the same cluster but assigned to different clusters. The rand index and Jaccard index are
efined by

RI =
TP + TN

TP + TN + FP + FN
, and Jaccard =

TP
TP + FP + FN

.

However, rand index tends to be large even under random partitions. The adjusted rand index (Hubert and Arabie, 1985;
Zhu et al., 2018) corrects this problem and is calculated as follows:

ARI =
RI − E(RI)

max(RI) − min(RI)
.

he purity function is defined by

Purity =
1
n

K∑
j=1

max
1≤k≤K0

|C(n)
0k ∩ C(n)

j |,

here {C(n)
01 , . . . , C

(n)
0K0

} are the index sets of the true classes, {C(n)
1 , . . . , C

(n)
K } are the estimated index sets, and |C(n)

0k ∩ C(n)
j | is

the number of samples in cluster j that belongs to original class k. For these external measures, a higher value indicates
a better agreement between the selected and the true group memberships.

Example 1. Samples are generated from

Yi =

∫
Xi(t)βk(t)dt + σ (Xi)ϵi, k = 1, 2, if the subject i belongs to the kth group.

Similar to Yao et al. (2010), the functional predictor has the form Xi(t) = ξi1ϕ1(t) + ξi2ϕ2(t), where ξi1 ∼ N(0, 1),
i2 ∼ N(0, 4) and ϕ1(t) = sin(π t/10)/

√
5, ϕ2(t) = sin(2π t/10)/

√
5. We assume that observation Xij is the realization

of Xi(t) at 100 evenly spaced points {tij, tij ∈ [0, 10]} with i.i.d. error eij ∼ N(0, 0.22). The functional coefficients are set to
be β1(t) = ϕ1(t)+ ϕ2(t) for the first n/2 subjects with n = 200, and β2(t) = ϕ1(t)− ϕ2(t) for the rest of the samples. We
consider σ (Xi) = 1 and σ (Xi) = 0.5ξi1+0.4ξi2, which correspond to homoscedastic and heteroscedastic cases, respectively.
Each ϵi is generated from 0.2N(0, 1), 0.2t(3) or 0.2(χ2(3) − 3). For the initial partition, we randomly assign the samples
nto groups with equal size. We repeat 200 times in each scenario, using R (version 3.3.2) on a Dell desktop computer
equipped with Intel(R) Core(TM) i5-4690S CPU@ 3.20 GHz, 8 GB RAM). On the basis of 200 replications, the means of
he aforementioned metrics and other summary statistics are calculated and reported.

Table 1 presents results for the homoscedastic cases. We also calculate the mean squared error for the functional
oefficient by using MSEβ = n−1 ∑n

i=1

∫
[β̂i(t) − β(t)]2dt . For normal errors, the proposed methods perform similarly

o the method of Yao et al. (2010), but better than the method of Preda and Saporta (2005). However, for models with
eavy-tailed and asymmetric errors, the proposed method based on the least absolute deviation consistently outperforms
he other methods and produces higher percentage of times for identifying the true number of groups, closer-to-truth
6
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Table 1
Results for the homoscedastic cases in Example 1.

Correctp K̂ RI ARI Purity Jaccard MisError MSEβ Time (s) Iteration

N(0, 1) FMR 0.995 2.005 0.847 0.693 0.916 0.736 0.084 0.330 0.475 13.720
PLS 0.980 2.025 0.799 0.597 0.886 0.665 0.115 0.459 56.591 7.465
LS 0.980 2.020 0.858 0.716 0.924 0.752 0.080 0.299 0.100 5.700
LAD 1.000 2.000 0.859 0.718 0.924 0.754 0.076 0.300 0.090 4.195
HL 1.000 2.000 0.863 0.727 0.926 0.760 0.074 0.290 0.135 4.680

t(3) FMR 0.750 2.265 0.808 0.615 0.895 0.675 0.115 0.414 0.366 21.920
PLS 0.980 2.010 0.768 0.535 0.865 0.624 0.136 0.545 56.230 7.530
LS 0.975 2.030 0.825 0.650 0.904 0.702 0.099 0.388 0.114 5.835
LAD 1.000 2.000 0.827 0.655 0.904 0.706 0.096 0.376 0.091 4.325
HL 0.990 2.010 0.825 0.650 0.903 0.702 0.098 0.381 0.135 5.140

χ2(3) FMR 0.775 2.225 0.736 0.472 0.847 0.579 0.165 0.603 0.397 24.210
PLS 0.970 1.990 0.717 0.435 0.827 0.563 0.175 1.025 53.820 7.720
LS 0.975 2.025 0.751 0.503 0.855 0.601 0.149 0.585 0.118 6.330
LAD 1.000 2.000 0.754 0.507 0.856 0.605 0.144 0.573 0.101 5.300
HL 1.000 2.000 0.758 0.517 0.859 0.611 0.141 0.561 0.141 5.720

Table 2
Results for the heterscedastic cases in Example 1.

Correctp K̂ RI ARI Purity Jaccard MisError MSEβ Time (s) Iteration

N(0, 1) FMR 0.410 2.850 0.796 0.591 0.914 0.639 0.177 0.339 0.319 39.430
PLS 0.975 2.030 0.812 0.624 0.895 0.684 0.107 0.427 58.150 8.080
LS 0.990 2.010 0.868 0.735 0.929 0.766 0.073 0.279 0.106 5.725
LAD 0.995 2.005 0.866 0.733 0.928 0.765 0.073 0.282 0.095 4.300
HL 0.990 2.010 0.866 0.732 0.928 0.764 0.074 0.283 0.148 5.000

t(3) FMR 0.255 3.095 0.778 0.556 0.898 0.614 0.179 0.404 0.282 40.160
PLS 0.980 2.020 0.797 0.595 0.885 0.664 0.116 0.472 58.250 8.435
LS 0.960 2.045 0.835 0.671 0.910 0.717 0.094 0.362 0.114 6.510
LAD 1.000 2.000 0.839 0.679 0.912 0.724 0.088 0.346 0.102 4.450
HL 0.995 2.005 0.841 0.682 0.913 0.726 0.088 0.342 0.150 5.270

χ2(3) FMR 0.040 3.540 0.720 0.439 0.870 0.514 0.263 0.535 0.160 43.380
PLS 0.970 1.980 0.776 0.553 0.867 0.641 0.134 0.596 32.300 8.250
LS 0.865 2.135 0.778 0.556 0.875 0.632 0.138 0.517 0.072 7.515
LAD 1.000 2.000 0.795 0.591 0.884 0.661 0.116 0.464 0.068 5.555
HL 0.975 2.025 0.788 0.576 0.880 0.649 0.123 0.482 0.169 6.520

K̂ , larger rand index, adjusted rand index, Jaccard index and purity, and smaller misclassification error. The results for
the heteroscedastic cases are summarized in Table 2. The proposed methods outperform the methods of Yao et al.
(2010) and Preda and Saporta (2005) in all aspects, and the proposed method based on the least absolute deviation
performs better than those based on least squares and Huber loss. Tables 1–2 also show that the proposed methods
are computationally more efficient than the other two methods with less computation times.

Furthermore, we conduct a sensitive study for An of the proposed methods for different loss functions. We choose
n = c log log n and c ∈ {1, 2, . . . , 25}.Fig. 1 gives the RI and MSE of the three methods under the heterscedastic cases for
ifferent errors. It shows that there exist stable regions of An for the three methods where RI or MSE behaves similarly
or different Ans. Meanwhile, we can see that c = 10 is suitable for LS and HL, and c = 5 is suitable for LAD.

xample 2. In this example, we consider different functional coefficients and intercepts across groups. We generate
amples from

Yi = µk +

∫
Xi(t)βk(t)dt + σ (Xi)ϵi, k = 1, 2, 3.

ifferent from Example 1 that the functional variables and the functional coefficients can be expressed in the first
ew eigenfunctions, here we consider Xi(t) =

∑50
ℓ=1 ξiℓϕℓ(t), where ϕ2ℓ−1(t) =

√
2 cos((2ℓ − 1)π t) and ϕ2ℓ(t) =

√
2 sin((2l − 1)π t) for ℓ = 1, . . . , 25 and ξiℓ ∼ N(0, 16ℓ−2). Also, the observation Xij is the realization of Xi(t) at 100

evenly spaced points {tij, tij ∈ [0, 1]} with i.i.d. error eij ∼ N(0, 0.22). We set β1(t) =
∑50

ℓ=1 b1ℓϕℓ(t) for the first n/3
subjects, β2(t) =

∑50
ℓ=1 b2ℓϕℓ(t) for the next n/3 subjects, and β3(t) =

∑50
ℓ=1 b3ℓϕℓ(t) for the last n/3 subjects. Specifically,

b11 = 1, b12 = 0.8, b13 = 0.6, b14 = 0.5, and b21 = 1, b22 = −0.8, b23 = −0.6, b24 = −0.5, and b31 = −1, b32 =

−0.8, b33 = −0.6, b34 = −0.5 and b1ℓ = b2ℓ = b3ℓ = 8(ℓ − 2)−4 for ℓ = 5, . . . , 50. Sample size n = 300 and a total of
200 replications are considered. The intercepts are chosen to be µ = 3, µ = −3 and µ = 0. We have σ (X ) = 1 for
1 2 3 i

7



T. Li, X. Song, Y. Zhang et al. Computational Statistics and Data Analysis 158 (2021) 107192
Fig. 1. RI (left) and MSE (right) of the proposed methods with different An = c log log n for the heterscedastic cases with top for LS, middle for LAD
and bottom for HL. The red line corresponds to the normal errors, and the green and black lines correspond to errors from t and χ2 distributions,
respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

homoscedastic cases, and σ (Xi) =
∫ 1
0 Xi(t)σ (t)dt with σ (t) =

∑50
ℓ=1 σℓϕℓ(t), where σ1 = 0.5, σ2 = 0.4, σ3 = 0.2, σ4 = 0.1

and σℓ = 4(ℓ − 2)−4 for ℓ = 5, . . . , 50. Except for mean squared errors for the functional coefficients, we also calculate
mean squared errors for the intercept term, defined as MSEµ = n−1 ∑n

i=1(µ̂i − µi)2.

Tables 3–4 present results for the homoscedastic and heterscedastic cases. Our methods outperform the methods of Yao
et al. (2010) and Preda and Saporta (2005) in almost all the scenarios, and the proposed method based on the least absolute
deviation and Huber loss function have advantage over other methods in the heterscedastic cases.
8
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Table 3
Results for the homoscedastic cases in Example 2.

Correctp K̂ RI ARI Purity Jaccard MisError MSEµ MSEβ Time (s) Iteration

N(0, 1) FMR 1.000 3.000 0.960 0.910 0.969 0.887 0.031 0.556 0.216 0.332 18.125
PLS 0.590 2.520 0.709 0.419 0.703 0.489 0.233 5.454 2.731 363.271 33.025
LS 0.845 3.155 0.956 0.900 0.967 0.875 0.039 0.585 0.247 0.232 11.970
LAD 0.960 3.040 0.959 0.907 0.969 0.883 0.033 0.566 0.225 0.185 7.050
HL 0.955 3.045 0.959 0.907 0.969 0.884 0.033 0.559 0.222 0.558 8.560

t(3) FMR 0.960 3.040 0.946 0.878 0.959 0.850 0.043 0.714 0.283 0.284 20.075
PLS 0.510 2.400 0.678 0.369 0.668 0.459 0.256 5.701 3.182 366.963 32.320
LS 0.865 3.135 0.945 0.874 0.958 0.845 0.048 0.731 0.319 0.251 11.710
LAD 0.965 3.035 0.948 0.882 0.959 0.854 0.042 0.700 0.284 0.193 7.305
HL 0.995 3.005 0.948 0.883 0.960 0.855 0.041 0.697 0.274 0.574 9.445

χ2(3) FMR 0.825 3.190 0.915 0.807 0.938 0.772 0.077 1.064 0.423 0.323 26.780
PLS 0.485 2.440 0.681 0.362 0.668 0.448 0.246 5.895 3.238 363.432 34.555
LS 0.930 3.070 0.921 0.820 0.938 0.786 0.066 1.056 0.435 0.253 12.645
LAD 0.965 3.005 0.918 0.817 0.934 0.785 0.064 1.129 0.451 0.218 8.370
HL 1.000 3.000 0.924 0.829 0.940 0.796 0.060 1.015 0.402 0.613 9.985

Table 4
Results for the heterscedastic cases in Example 2.

Correctp K̂ RI ARI Purity Jaccard MisError MSEµ MSEβ Time (s) Iteration

N(0, 1) FMR 0.715 3.305 0.938 0.858 0.960 0.827 0.066 0.829 0.273 0.283 27.850
PLS 0.530 2.455 0.699 0.404 0.690 0.480 0.234 5.147 2.955 359.755 32.060
LS 0.870 3.130 0.948 0.881 0.961 0.854 0.046 0.836 0.302 0.240 12.200
LAD 0.960 3.030 0.951 0.890 0.962 0.865 0.038 0.810 0.261 0.193 7.485
HL 1.000 3.000 0.953 0.894 0.964 0.868 0.036 0.780 0.249 0.607 9.380

t(3) FMR 0.550 3.480 0.912 0.799 0.938 0.761 0.089 1.221 0.452 0.300 32.385
PLS 0.525 2.455 0.689 0.383 0.681 0.463 0.243 5.594 3.115 356.640 31.170
LS 0.975 2.975 0.924 0.834 0.937 0.807 0.061 1.180 0.390 0.263 12.065
LAD 0.985 2.985 0.933 0.850 0.946 0.822 0.051 1.098 0.355 0.213 8.400
HL 0.935 3.065 0.935 0.852 0.949 0.821 0.054 1.060 0.337 0.387 10.375

χ2(3) FMR 0.105 4.130 0.866 0.686 0.904 0.644 0.159 1.856 0.726 0.251 43.955
PLS 0.480 3.815 0.716 0.333 0.699 0.379 0.361 9.648 2.903 234.344 40.245
LS 0.630 2.260 0.690 0.488 0.703 0.588 0.297 3.278 1.147 0.182 8.775
LAD 0.985 2.985 0.901 0.779 0.920 0.745 0.078 1.633 0.515 0.154 9.160
HL 0.915 3.085 0.901 0.776 0.921 0.740 0.083 1.627 0.534 0.442 11.755

Example 3. In this example, we consider two functional variables. Samples are generated from

Yi = µk +

∫
X1i(t)β1k(t)dt +

∫
X2i(t)β2k(t)dt + σ (X1i, X2i)ϵi, k = 1, 2, 3,

where µks are the same as those in Example 2. For l = 1, 2, Xli(t) = ξli1ϕ1(t) + ξli2ϕ2(t), where ξli1 ∼ N(0, 1),
ξli2 ∼ N(0, 4), and ϕ1(t) and ϕ2(t) are the same as those in Example 1. The functional coefficients are set to be
β11(t) = ϕ1(t)+ ϕ2(t), β21(t) = ϕ1(t)+ 0.5ϕ2(t) for the first n/3 subjects, β12(t) = ϕ1(t)− ϕ2(t), β22(t) = ϕ1(t)− 0.5ϕ2(t)
for the next n/3 subjects, and β13(t) = −ϕ1(t) − ϕ2(t), β23(t) = −0.5ϕ1(t) − ϕ2(t) for the last n/3 subjects. Likewise,
σ (X1i, X2i) = 1 and σ (X1i, X2i) =

∑2
l=1(0.5ξli1 + 0.4ξli2) denote the homoscedastic and heteroscedastic cases, respectively.

Tables 5–6 present results for the homoscedastic and heterscedastic cases. Similar to Examples 1 and 2, the proposed
methods outperform the methods of Yao et al. (2010) and Preda and Saporta (2005). Meanwhile, the proposed methods
based on the least absolute deviation and Huber loss are more robust to heavy-tailed and heteroscedastic errors compared
with the other two methods.

5. Real data analysis

5.1. Analysis of the ADNI data

Alzheimer’s disease (AD) is a chronic neurodegenerative disease that causes brain cells to degenerate and die. As the
most common cause of dementia, AD is associated with a continuous decline in thinking as well as behavioral and social
skills, which eventually disrupts a person’s ability to function independently. Hence, it is of great interest to discover or
validate prognostic biomarkers that may identify subjects at great risk for future cognitive decline and investigate the
effects of various biomarkers on the conversion from cognitive normal (CN) to AD.
9
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Table 5
Results for the homoscedastic cases in Example 3.

Correctp K̂ RI ARI Purity Jaccard MisError MSEµ MSEβ1 MSEβ2 Time (s) Iteration

N(0, 1) FMR 1.000 3.000 0.962 0.914 0.971 0.892 0.029 0.324 0.169 0.098 0.225 20.570
PLS 0.725 3.305 0.843 0.642 0.854 0.627 0.165 2.079 0.718 0.421 104.134 21.210
LS 0.820 3.205 0.956 0.901 0.968 0.876 0.041 0.360 0.187 0.113 0.167 12.890
LAD 0.925 3.080 0.960 0.909 0.969 0.885 0.034 0.343 0.181 0.105 0.125 7.755
HL 0.905 3.105 0.959 0.907 0.969 0.884 0.036 0.342 0.178 0.102 0.339 10.035

t(3) FMR 0.955 3.045 0.943 0.871 0.956 0.842 0.046 0.482 0.253 0.146 0.209 22.450
PLS 0.665 2.810 0.796 0.574 0.797 0.593 0.163 2.458 0.919 0.521 104.713 17.645
LS 0.865 3.135 0.942 0.868 0.955 0.838 0.051 0.502 0.256 0.157 0.181 13.640
LAD 0.855 3.075 0.936 0.857 0.946 0.831 0.052 0.590 0.311 0.181 0.136 8.210
HL 1.000 3.000 0.947 0.881 0.959 0.853 0.041 0.457 0.237 0.136 0.353 10.215

χ2(3) FMR 0.780 3.240 0.909 0.792 0.932 0.756 0.086 0.752 0.397 0.227 0.227 29.920
PLS 0.690 3.345 0.805 0.552 0.812 0.549 0.213 2.815 0.898 0.525 101.794 20.490
LS 0.705 3.320 0.902 0.775 0.921 0.739 0.094 0.872 0.475 0.276 0.191 15.195
LAD 0.915 3.075 0.915 0.807 0.932 0.773 0.072 0.755 0.394 0.238 0.155 9.510
HL 0.870 3.135 0.913 0.803 0.931 0.768 0.075 0.752 0.399 0.235 0.395 11.965

Table 6
Results for the heterscedastic cases in Example 3.

Correctp K̂ RI ARI Purity Jaccard MisError MSEµ MSEβ1 MSEβ2 Time (s) Iteration

N(0, 1) FMR 0.635 3.385 0.944 0.872 0.968 0.841 0.067 0.380 0.189 0.108 0.196 32.595
PLS 0.725 3.310 0.842 0.638 0.853 0.623 0.166 2.187 0.731 0.419 105.565 20.990
LS 0.840 3.150 0.954 0.897 0.966 0.872 0.041 0.411 0.198 0.118 0.163 13.365
LAD 0.875 3.095 0.956 0.901 0.964 0.880 0.037 0.413 0.212 0.120 0.129 8.165
HL 1.000 3.000 0.963 0.916 0.971 0.894 0.029 0.335 0.163 0.093 0.345 9.935

t(3) FMR 0.550 3.465 0.922 0.821 0.947 0.785 0.084 0.648 0.308 0.182 0.221 36.145
PLS 0.620 3.400 0.820 0.587 0.831 0.577 0.194 2.610 0.832 0.490 103.683 21.730
LS 0.765 3.250 0.935 0.851 0.950 0.818 0.060 0.620 0.306 0.177 0.182 13.635
LAD 0.905 3.100 0.946 0.876 0.958 0.848 0.046 0.516 0.239 0.141 0.149 8.615
HL 0.905 3.100 0.944 0.872 0.956 0.843 0.048 0.533 0.246 0.143 0.387 10.635

χ2(3) FMR 0.110 4.055 0.879 0.718 0.914 0.675 0.144 1.100 0.512 0.325 0.283 50.205
PLS 0.655 3.380 0.790 0.519 0.798 0.519 0.228 3.250 0.981 0.578 103.275 20.400
LS 0.775 3.245 0.900 0.772 0.919 0.736 0.092 1.042 0.472 0.288 0.202 15.885
LAD 0.890 3.110 0.912 0.801 0.929 0.766 0.075 0.918 0.406 0.233 0.167 10.470
HL 0.900 3.080 0.910 0.798 0.927 0.764 0.075 0.938 0.407 0.237 0.456 12.955

We applied model (1) to the diffusion-weighted imaging dataset collected by the ADNI study to illustrate the
empirical utility of our proposed method. The diffusion-weighted imaging data were processed by using TBSS-ENIGMA
pipeline (Smith et al., 2006), which included eddy current correction, masking, tensor calculation, creation of FA images
and quality controls. We adopted linear registration to register each of the FA images to the Enigma FA template at
1 × 1 × 1 mm spatial resolution. We performed quality controls again after registration and exclude subjects with bad
registration. Next, we applied nonlinear registration to align the linearly registered FA images to the ENIGMA FA template
and mask the registered FA with a template mask.

The aim of this data analysis is to examine the grouped effects of FA curves along cingulum and body of corpus callosum
skeletons on cognitive performance. We treated the MMSE score as the response because it has been widely used to
assess cognitive mental status, with low scores indicating impairment. The dataset consists of n = 139 subjects (93 CN
controls and 49 AD patients) and the FA curves along the cingulum and body of corpus callosum are recorded at 100
locations. Except for the proposed methods based on least-squares, least absolute deviation, and Huber loss function, we
also implemented the functional mixture regression method (Yao et al., 2010) and the partial least squares method (Preda
and Saporta, 2005) for comparison. The number of functional components was selected, such that the percentage of
variance explained was 90%. We used the disease status as a benchmark for the ‘‘true groups’’ to assess the performance of
the preceding methods. However, the disease status was treated as unknown throughout the data analysis for illustration.

The five methods all selected two groups based on the values of bic. Hence, the bic correctly select true number of
groups. Regarding CN and AD people as the true groups, the rand index, adjusted rand index, Jaccard index, purity and
misclassification error were calculated and reported in Table 7. To better understand the interoperability of the methods,
we also calculated the value of R2. Apparently, the proposed clustering methods based on M-estimation consistently
outperform the methods of Yao et al. (2010) and Preda and Saporta (2005).

Fig. 2 presents the boxplots of MMSE scores for the true groups and groups obtained by using all the methods. The
estimates of the two functional coefficients are depicted in Fig. 3. The five methods produce similar estimation results for
the body of corpus callosum functional coefficient and share similar trends for the estimates of the cingulum functional
coefficient. However, the estimate of the cingulum functional coefficient for the PLS method exhibits higher oscillations.
10
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Table 7
Results for the ADNI data.

RI ARI Purity Jaccard MisError R2

FMR 0.722 0.444 0.834 0.581 0.165 0.694
PLS 0.865 0.729 0.928 0.777 0.071 0.797
LS 0.903 0.806 0.949 0.836 0.050 0.807
LAD 0.903 0.806 0.949 0.836 0.050 0.793
HL 0.903 0.806 0.949 0.836 0.050 0.806

Fig. 2. Boxplots of the MMSE scores for the true, PLS, LAD, FMR, LS and HL (from top to bottom, from left to right).
11
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Fig. 3. Estimates of the functional coefficients with the left for cingulum and the right for body of corpus callosum.

ost interestingly, the FA curves along cingulum and body of corpus callosum affect cognitive ability in different manners
or the two groups. The effects of the FA curves along cingulum and body of corpus callosum on cognitive ability are greater
12
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Fig. 4. Estimates of the functional coefficients for the medfly data, where group 1 corresponds to those medflies with a larger mean of lifetime.

for people with worse cognitive function than for people with better one. For subjects in the bad cognitive function group,
high FA values along cingulum and body of corpus callosum are associated with high MMSE scores at most of the locations.
This conclusion coincides with the findings of Nir et al. (2013) and Zhang et al. (2009) that the higher FA values of cingulum
and body of corpus callosum typically indicate better cognitive performance.

5.2. Analysis of the medfly data

In this subsection, we applied the proposed methods and the competing methods to the data from an experiment on
medfly fecundity (Carey et al., 1998). The experiment consisted of 1000 female medflies for which daily egg production
was recorded. Evolution is closely related to reproductive success, and the connection between the evolution of aging and
reproduction is intriguing. Investigating the relationship between reproductive and aging patterns has attracted more and
more research interests in recent years. We aimed to determine the dependence of longevity of the medflies on their early
fertility process and inspect whether the regression relationship varies due to some unknown mechanism.
13
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Table 8
Values of R2 for the five methods for the medfly data.

FMR PLS LS LAD HL

R2 0.740 0.773 0.914 0.881 0.920

Because egg counts of most of the medflies were 0 before day 6, we selected n = 490 medflies that were fertile more
than 15 days from the sixth day and also survived beyond. The trajectories of the number of daily eggs during the early
life period from day 6 to day 25 were treated as the functional predictors, while the lifetime served as the response.
Similar to Yao et al. (2010), we took a log-transformed of egg counts to achieve homogeneity.

To identify possible relationship changes in early life reproductive trajectories that tend to influence longevity, we
implemented the proposed methods based on least-squares, least absolute deviation, and Huber loss function, and
two competing methods, the functional mixture regression method (Yao et al., 2010) and the partial least squares
method (Preda and Saporta, 2005). The proposed methods and FMR suggested 2 groups with different regression
structures in terms of the value of bic. However, PLS suggested there is no obvious grouping effect and the regression
structure is the same across all the subjects. Different from the analysis of the ADNI data in Section 5.1, the relevant
classes are not known for this dataset. Hence, we only calculated the values of R2 for the above five methods in Table 8,
which indicates an obvious gain in interoperability of the proposed methods compared to FMR and PLS.

Fig. 4 presents the functional estimates of the five methods. Observing Fig. 4 reveals that a higher level of fertility in
the late period seems to shorten lifespan, while a rise of egg production in the early period helps to prolong the lifespan.
Specifically, for flies belonging to group 1 with a larger mean of longevity, the impact of the egg production on the lifespan
is larger than the other group. These findings may help to recognize distinct underlying mechanisms relating to longevity
and early fertility.

6. Discussion

The clusterwise functional linear regression model offers a flexible yet parsimonious approach to deal with the
unobserved grouped patterns of heterogeneity. To cover a wide range of estimators, we considered M-estimation for
clusterwise functional linear regression models with multiple functional predictors. The infinite-dimensional functional
coefficients were represented by the functional principal component basis. A Bayesian information criterion was proposed
to select the number of groups and shown to be consistent in specifying the true number of groups. Meanwhile, we showed
that the set of estimators to be consistent when the true number of groups is given. Through the analysis of the ADNI
data, we showed that the proposed method is a valuable statistical tool for detecting heterogeneous regression patterns
between the FA values along cingulum and BCC and the cognitive function for different groups of people.

There are several directions for future study. A useful area for improvement would be to allow some of the regression
coefficients to be the same for all subjects. Another interesting consideration for future research would be to accommodate
functional response. Furthermore, considering different regimes of functional data in theoretical studies is very interesting.
However, additional technical challenges arise in figuring out the impact of the eigen-system construction under different
cases on the rates of the estimates. The detailed research will be pursued in the future study.
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