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Abstract

Offline reinforcement learning (RL) tasks require the agent to learn from a pre-
collected dataset with no further interactions with the environment. Despite the
potential to surpass the behavioral policies, RL-based methods are generally im-
practical due to the training instability and bootstrapping the extrapolation errors,
which always require careful hyperparameter tuning via online evaluation. In
contrast, offline imitation learning (IL) has no such issues since it learns the policy
directly without estimating the value function by bootstrapping. However, IL
is usually limited in the capability of the behavioral policy and tends to learn a
mediocre behavior from the dataset collected by the mixture of policies. In this
paper, we aim to take advantage of IL but mitigate such a drawback. Observing that
behavior cloning is able to imitate neighboring policies with less data, we propose
Curriculum Offline Imitation Learning (COIL), which utilizes an experience pick-
ing strategy for imitating from adaptive neighboring policies with a higher return,
and improves the current policy along curriculum stages. On continuous control
benchmarks, we compare COIL against both imitation-based and RL-based meth-
ods, showing that it not only avoids just learning a mediocre behavior on mixed
datasets but is also even competitive with state-of-the-art offline RL methods.

1 Introduction

Offline reinforcement learning (RL), or batch RL, aims to learn a well-behaved policy from arbitrary
datasets without interacting with the environment. This setting is generally a more practical paradigm
than online RL since it is expensive or dangerous to interact with the environment in most real-world
applications. Typically, two main kinds of offline datasets are considered in previous offline RL
works [5, 18]: one contains transitions sampled by a single behavioral policy; the other includes a
buffer collected by a mixture of policies.

Two main approaches have been deeply investigated for Offline RL. First, RL-based methods,
in particular, Q-learning and policy gradient-based algorithms [13, 7, 12], have the potential to
outperform the behavioral policy. However, they always suffer from serious bootstrapping errors and
training instability. This shortcoming makes such algorithms impractical to be utilized since too many
hyperparameters need to be tuned to achieve a good performance, and it is hard to evaluate a suitable
model in an offline manner, as revealed in [18]. In contrast, offline imitation learning [1, 17, 2],
specifically, behavior cloning (BC), can always stably learn to perform as the behavioral policy, which
may be helpful under single-behavior datasets. However, BC may fail in learning a good behavior
under a diverse dataset containing a mixture of policies (both goods and bads).

Quantity-quality dilemma on mixed dataset. As a supervised learning technique, BC is not easy to
fulfill a desired result, especially on a mixed dataset. Specifically, it requires both quantity and quality
∗Equal contribution. †Corresponding author. Codes are available at https://github.com/apexrl/COIL.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/apexrl/COIL


of the demonstration data, which can hardly be satisfied in offline RL tasks. Directly mimicking the
policy from a mixed dataset that contains bad-to-good demonstrations can be regarded as imitation
learning from a mediocre behavior policy. To achieve the best performance of the dataset, a naive
idea is to imitate the top trajectories ordered by its return. However, such a simple strategy will
reach the quantity-quality dilemma on the mixed dataset. For example, Fig. 1a illustrates the ordered
trajectories on the Walker-final-dataset, which contains the whole training experience sampled
by an online training agent. Different BC agents are trained by the top 10%, 25%, 50%, and 100%
trajectories, but none of them gets rid of a mediocre performance, as shown in Fig. 1b. Typically, on
such dataset, less data owns higher quality but less quantity, and thus cause serious compounding
error problems [21, 10, 6]; on the other hand, more data provides a larger quantity, yet its mean
quality becomes worse. In this work, we aim to solve such a dilemma and exploit the most potential
of IL to derive a stable and practical algorithm reaching the best performance of a given dataset.

Our intuition comes from the observation that under RL scenarios, the agent can imitate a neighboring
policy with much fewer samples. This observation promotes a curriculum solution for the above
challenge. Specifically, for mixed datasets, the agent can adaptively imitate the better neighboring
policies step by step and finally reach the optimal behavior policy of the dataset.
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Figure 1: Examples of the quality-quantity dilemma for BC. (a) Tra-
jectories of the Walker2d-final dataset ordered by their accumulated
return. (b) Performances of behavior cloning (BC) for learning the
top 10%, 25%, 50%, and 100% trajectories of the dataset.

Our work. We propose Curriculum
Offline Imitation Learning (COIL), a
simple yet effective offline imitation
learning framework for offline RL.
At each training iteration, COIL im-
proves the current policy with the data
sampled by neighboring policies. To
achieve that, COIL utilizes an adap-
tive experience picking strategy and
a return filter to select proper trajec-
tories from the offline dataset for the
current level of the agent and thus pro-
duces stages of the curriculum. No-
tably, COIL stops with a close-to-
data-optimal policy without finding
the best model under online evaluation. This feature allows to deploy the algorithm in practi-
cal problems. In experiments, we show the effectiveness of COIL on various kinds of offline datasets.
Fig. 1 offers a quick review of our results: depending solely on BC, COIL can learn from scratch to
reach the best performance of the given dataset.

Contributions. To summarize, the main technical contributions of this paper are as follows.
• We highlight how the discrepancy between the target policy and the initialized policy affects the

number of samples required by BC (Section 3);
• Depending on BC, we propose a practical and effective offline RL algorithm with a practical

neighboring experience picking strategy that ends with a good policy (Section 4);
• We present promising comparison results with comprehensive analysis for our algorithm, which

is competitive to the state-of-the-art methods (Section 6).

2 Preliminaries

Notations. We consider a standard Markov Decision Process (MDP) as a tuple M =
〈S,A, T , ρ0, r, γ〉, where S is the state space,A represents the action space, T : S ×A×S → [0, 1]
is the state transition probability distribution, ρ0 : S → [0, 1] is the initial state distribution,
γ ∈ [0, 1] is the discounted factor, and r : S × A → R is the reward function. The goal of
RL is to find a policy π(a|s) : S × A → [0, 1] that maximizes the expected cumulative dis-
counted rewards (or called return) along a trajectory τ : R(τ) =

∑T
t=0 γ

trt. The dataset D
consists of trajectories {τN1 } that are the collected by a mixture of bad-to-good policies, where
a trajectory τi = {(si0, ai0, s′i0 , ri0), (si1, a

i
1, s
′i
1 , r

i
1), · · · , (sihi , a

i
hi
, s′ihi , r

i
hi

)}, and hi is the horizon
of τi. For any dataset, we assume a behavior policy πb that collects such data and its empir-

ical estimation π̂b can be induced from D as π̂b(a|s) =
∑

(s′,a′)∈D I[s′=s,a′=a]∑
s′∈D I[s′=s] , where I is the

indicator function. We further introduce a common used term, occupancy measure, which is
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defined as the discounted occurrence probability of states or state-action pairs under policy π:
ρπ(s, a) =

∑∞
t=0 γ

tP (st = s, at = a|π) = π(a|s)
∑∞
t=0 γ

tP (st = s|π) = π(a|s)ρπ(s). With
such a definition we can write down that Eπ[·] =

∑
s,a ρπ(s, a)[·] = E(s,a)∼ρπ [·].

Definition 1. The partial order of different policies is defined as the relative return quantity that a
policy can achieve when deployed in the environment. Formally, given two policies π1 and π2:

π1 � π2 ⇔ R1 � R2 (1)

Therefore, by definition, in a mixed dataset D that is collected by K different policies π1, · · · , πK ,
the optimal behavior policy π∗ can be determined such that for ∀i ∈ [1,K], πi � π∗.

Curriculum learning. Curriculum learning design and construct a curriculum automatically as a
sequence of tasks G1, . . . , GN to train on, such that the efficiency or performance on a target task Gt
is improved. The expected loss on the jth task is denoted Lj .

3 Empirical Observations and Theoretic Analysis

In this section, we begin with empirical observations that motivate the core idea of our method,
followed by the theoretical analysis to support our motivation. Generally, we aim to investigate how
the asymptotic performance of BC is affected by the discrepancy between the demonstrated policy
and the initialized imitating policy. Previous research shows that BC tends to fail with a small number
of high-quality demonstrations but can learn well from large-quantity and high-quality data [10, 8].
On the contrary, we find that the requirement of quantity can be highly relaxed as the similarities
between the demonstrated policy and the initialized imitating policy increase.
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(b) Final performance of BC.
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Figure 2: (a) Online training curves of an SAC agent trained on the Hopper environment, where the crosses and
dashed lines indicate the stage of selected policies. (b) Final performances achieved by imitating the demo policy
using BC, initialized with different stages of policies. The curves depict the fact that close-to-demonstration
policy can easily imitate the demonstrated policy with fewer samples. (c) Empirical estimation on the discrepancy
between the initialized policy and the trained policy outside the support of the demonstrations. Initialized with a
closer-to-demo policy always enjoys more minor discrepancy.

3.1 BC with Different Initialization

To construct the motivating example, we choose Hopper as the testbed, and train an SAC agent until
convergence to sample various counts of trajectories as the demonstration data. We then take the
online-trained policy checkpoints at different training iterations as the initiated policy to train an IL
agent. Particularly, the first agent adopts the Random policy to imitate the demonstration by BC; the
second uses the policy of 1/3 Return and the other two agents start with 1/3 Trained and 2/3
Trained policy separately, in terms of training iterations (see Fig. 2a).

The results are shown in Fig. 2b, where we illustrate the average return of each agent given the
different number of demonstrations (the exact quantitative results can be found in Appendix E.1).
The results show that initialized with a Random policy, the agent can only learn to imitate the
demonstrated policy well with a large number of samples2; in addition, both 1/3 Return and
1/3 Trained policies can achieve a sub-optimal performance with fewer samples, where the 1/3

2We note that the Random agent can only work well on large datasets with normalized state space; however
the other agents learn well upon raw states.
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Trained one is more efficient. In comparison, the 2/3 Trained agent, which is the closest to the
optimal policy, can stably achieve the best performance with all amounts of trajectories.

3.2 Theoretical Analysis

Beyond these observations, we are inquisitive to find a theoretical explanation to support our claim.
Standing on the primary result of existing works, we obtain a performance bound of BC with a
possible solution to handle the quantity-quality dilemma.

Theorem 1 (Performance bound of BC). Let Π be the set of all deterministic policy and |Π| = |A||S|.
Assume that there does not exist a policy π ∈ Π such that π(si) = ai,∀i ∈ {1, · · · , |D|}. Let π̂b be
the empirical behavior policy as well as the corresponding state marginal occupancy is ρπ̂b . Suppose
BC begins from initial policy π0, and define ρπ0 similarly. Then, for any δ > 0, with probability at
least 1− δ, the following inequality holds:

DTV(ρπ(s, a)‖ρπb(s, a)) ≤ c(π0, πb, |D|)

where c(π0, πb, |D|) =
1

2

∑
s/∈D

ρπb(s) +
1

2

∑
s/∈D

|ρπ(s)− ρπ0(s)|+ 1

2

∑
s/∈D

|ρπ0(s)− ρπb(s)|︸ ︷︷ ︸
initialization gap

+
1

2

∑
s∈D

|ρπ(s)− ρπ̂b(s)|+
1

|D|

|D|∑
i=1

I
[
π(si) 6= ai

]
︸ ︷︷ ︸

BC gap

+

[
log |S|+ log(2/δ)

2|D|

] 1
2

+

[
log |Π|+ log(2/δ)

2|D|

] 1
2

︸ ︷︷ ︸
data gap

(2)

The proof can be found in Appendix B.1. Theorem 1 shows the upper bound of the state-action
distribution between the imitating policy π and the behavior policy πb, which consists of three
important terms: the initialization gap, the BC gap and the data gap. Specifically, the BC gap arises
from the empirical error and the difference between the imitating policy and the empirical behavior
policy, which is corresponding to the training procedure. The data gap, however, depends on the
number of samples and complexity of the state space, acting as an intrinsic gap due to the dataset
and the environment. As for the initialization gap, it is in the form of distance between the state
marginal distribution of the initial policy π0 and behavior policy πb out of the dataset. Notice that
the second term in Eq. (2) relates to the distance between the state marginal of the initial policy π0

and the learned policy πb outside the data support, which is hard to measure theoretically due to the
Markov property of the environment dynamics. Therefore, we estimate the empirical discrepancy
outside the dataset 1

2

∑
s/∈D |ρ̂π(s)− ρ̂π0

(s)| for this term3. The results shown in Fig. 2c, as expected,
suggests that the second term in Eq. (2) in fact decreases as the initialized policy gets close to the
demonstrated policy because of the poor generalization on unseen states, and the error can be further
reduced with a larger dataset.

Such analysis brings a possible theoretical explanation to our empirical intuition Section 3.1. Gen-
erally, given the same discrepancy c(π0, πb, |D|) = C, if the initialized policy narrows down the
initialization gap as is close to the demonstrated policy, then the requirement for more samples
to minimize the data gap can be relaxed. This may seem unreasonable in the learning theory in
the traditional supervised learning domain. However, under the RL scenario, the performance of a
policy depends on the accumulated reward along the rollout trajectories, which will lead to serious
compounding error problems [21, 20]. Therefore, as the distance between the initialized policy and
the demonstrated policy gets closer, the generalization errors of the learned policy can be reduced.

Brief conclusion. Both the experimental and the theoretical results indicate an interesting fact that
the asymptotic performance of BC is highly related to the discrepancy between the initialized policy
and the demonstrated policy. Specifically, a close-to-demonstration policy can easily imitate the
demonstrated policy with fewer samples. On the contrary, when the distance between the initialized
policy and the demonstrated policy is far, then successfully mimicking the policy will require much
more samples. Such an observation motivates the intuition for proposing our Curriculum Offline
Imitation Learning (COIL) in the following literature. The key insight enabling COIL is adaptively
imitating the close policies with a small number of samples and finally terminates with the optimal
behavior policy of the dataset.

3For implementation details, see Appendix C.1.
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Figure 3: Comparison between online off-policy training and curriculum offline imitation learning.

4 Curriculum Offline Imitation Learning

4.1 Online RL as Imitating Optimal Policies

Before starting to formulate our methodology, we first introduce the formulation of the online RL
training. Typically, if we treat an optimization step of the policy as a training stage, an RL online
learning algorithm can be realized as on-policy / off-policy depending on whether the agent is trained
using the data collected by policies in the previous training stage. Taking off-policy RL as an example:
beginning with a randomized policy π0, at every training stage i, the agent uses its policy πi to
interact with the environment to collect trajectory τ i and save it to replay buffer B. The agent then
samples several state-action pairs from B and take an optimization step to get policy πi+1, towards
obtaining the most accumulated rewards:

maximize
π

Eτ∼π[R(τ)] . (3)

Under the principle of maximum entropy, we can model the distribution of trajectories sampled by
the optimal policy as a Boltzmann distribution [27, 4] as:

P ∗(τ) ∝ exp (R(τ)) (4)

With such a model, trajectories with higher rewards are exponentially more preferred. And finding
the optimal policy through RL is equivalent to imitating the optimal policy modeled by Eq. (4) [4, 3]:

minimize
π

DKL(Pπ(τ)‖P ∗(τ)) , (5)

where Pπ(τ) = ρ(s0)
∑T
t=0 T (st+1|st, at)π(at|st) is the distribution of generating a trajectory τ

according to policy π. Thus, πi+1 is updated follows the direction of minimizing the KL divergence:

πi+1 = πi −∇πDKL(Pπ(τ)‖P ∗(τ)) (6)

4.2 Offline RL as Adaptive Imitation

Compared with online policy training, the offline agent can only have a pre-collected dataset for
policy training. Such dataset could be generated by a single policy, or collected by kinds of policies.
In analogy to online RL, a similar solution on offline tasks can be imitating the optimal behavior
policy from the dataset in an offline way. However, as we show before, offline IL methods, like
BC, are only capable of matching the performance of the behavior policy, but hard to reach a good
performance on the mixed dataset due to the quantity-quality dilemma.

4.2.1 Leverage Behavior Cloning with Curriculum Learning

In Section 3 we have seen evidence that a possible solution to the quantity-quality dilemma could be
adaptive imitation through the offline dataset. An overview of such an adaptive imitation learning
diagram compared with online RL is shown in Fig. 3. Formally, with dataset D = {τ}N1 , at every
training stage i, the agent updates its policy πi by adaptively selecting τ ∼ π̃i fromD as the imitating
target such that:

πi+1 = πi −∇πDKL(Pπ̃i(τ)‖Pπ(τ))

s.t. Eπ̃
[
DKL(π̃i(·|s)‖πi(·|s))

]
≤ ε

Riπ̃ −Riπ ≥ δ
(7)

where ε and δ are small positive numbers that limit the difference between the demonstrated policy π̃i
and the learner π, and prevent π from learning poorly behaved policies. Correspondingly, each training
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iteration i creates a curriculum automatically such that a taskGi is to imitating the closet demonstrated
policy π̃i with Lπi = DKL(Pπ̃i(τ)‖Pπ(τ)), and the target task Gt is to imitate the optimal policy
π̃∗. Specifically, we aims to construct a finite sequence π0, π̃1, π1, π̃2, π2, · · · , π̃N , πN such that
πi � πi+1, where π̃i is characterized by its trajectory, and is picked from D based on the current
policy πi−1; πi is the imitation result taken π̃i as the target policy.

In the following sections, we explain how our algorithm is designed to achieve Eq. (7) that leads
the target policy π̃ to finally collapse into the optimal behavior policy π̃∗, while solving the quality-
quantity dilemma of BC to avoid getting a mediocre result.

4.2.2 Adaptive Experience Picking by Neighboring Policy Assessment

We first provide a practical solution to evaluate whether Eπ̃ [DKL(π̃(·|s)‖π(·|s))] ≤ ε. In other
words, we want to know whether a trajectory τi ∈ D is sampled by a neighboring policy. This can be
regarded as finding a policy whose importance sampling ratio is near to 1, and thus a lot of density
ratio estimation works can be referred to [16, 26]. However, such estimation requires extra costs on
training neural networks, and the estimation is inaccurate with fewer data points. Therefore, in this
paper, we design a simple yet efficient neighboring policy assessment principle instead that brings
the algorithm into practice.

We assume that each trajectory is sampled by a single policy. Beyond such a slight and practical as-
sumption, let π be the current policy and trajectory τπ̃ = {(s0, a0, s

′
0, r0), · · · , (sh, ah, s′h, rh)}

is collected by an unknown deterministic behavior policy π̃ with exploration noise such that
E(s,a)∈τπ̃ [log π̃(at|st)] ≥ log (1− β), where β denote the portion of exploration. In this way,
we find a practical solution that relaxes the KL-divergence constraint through an observation:
Observation 1. Under the assumption that each trajectory τπ̃ in the dataset D is collected by an
unknown deterministic behavior policy π̃ with an exploration ratio β. The requirement of the KL
divergence constraint Eπ̃ [DKL(π̃(·|s)‖π(·|s))] ≤ ε suffices to finding a trajectory that at least 1− β
state-action pairs are sampled by the current policy π with a probability of more than εc such that
εc ≥ 1/ exp ε, i.e.:

E(s,a)∈τπ̃ [I(π(a|s) ≥ εc)] ≥ 1− β , (8)

The corresponding deviation is shown in Appendix B.2. Therefore, to find whether τπ̃ is sampled
by a neighboring policy, we calculate the probability of sampling at at state st by π in τ for every
timestep τπ̃(π) = {π(a0|s0), · · · , π(ah|sh)}, where h is the horizon of the trajectory. In practice,
instead of fine-tuning ε and β, we heuristically set β = 0.05 as an intuitive ratio of exploration. As
for εc, we let the agent choose the value through finding N nearest policies that matches Eq. (8).

4.2.3 Return Filter

We now present how to ensure the second constraint Rπ̃ −Rπ ≥ δ, which is designed to refrain the
performance from getting worse by imitating to a poorer target than the current level of the imitating
policy. In a practical offline scenario, it is impossible to get the accurate return of the current policy,
but we can evaluate its performance based on the current curriculum. To this end, we adopt a return
filtering mechanism that filtrates the useless, poor-behaved trajectories.

In practice, we initialize the return filter V with 0, and update the value at each curriculum. Specifi-
cally, if we choose {τ}n1 from D at iteration k, then V is updated by moving average:

Vk = (1− α) · Vk−1 + α ·min{R(τ)}n1 (9)

where {R(τ)}n1 is the accumulated reward set of trajectories {τ}n1 , and α is the moving window
determining the filtering rate. Then, the dataset is updated as D = {τ ∈ D | R(τ) ≥ V }.

4.2.4 Overall Algorithm

Combining the adaptive experience picking strategy and the return filter, we finally get the simple
and practical curriculum offline imitation learning (COIL) algorithm. To be specific, COIL holds an
experience pool that contains the candidate trajectories to be selected. Every training time creates a
stage of the curriculum where the agent selects appropriate trajectories as the imitation target from
the pool and learns them via direct BC. After training, the used experience will be cleaned from the
pool, and the return filter also filtrates a set of trajectories. An attractive property of COIL is that it
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has a terminating condition that stops the algorithm automatically with a good policy when there is
no candidate trajectory to be selected. This makes it easier to be applied in real-world applications
without further finding the best-learned policy checkpoints under online evaluation as the previous
algorithms do. The step-by-step algorithm is shown in Algo. 1.

It is worth noting that COIL has only two critical hyperparameters, namely, the number of selected
trajectories N and the moving window of the return filter α, both of which can be determined by the
property of the dataset. Specifically, N is related to the average discrepancy between the sampling
policies in the dataset; α is influenced by the changes of the return of the trajectories contained in the
dataset. In the ablation study Section 6.3 and Appendix E.2, we demonstrate how we select different
hyperparameters for different datasets.

5 Related Work

As a long-studied branch of RL, numerous solutions have been developed for offline RL with both
model-free [7, 12] and model-based [25, 11] algorithms. We briefly discuss the former from two
categories, including RL-based methods and imitation-based methods.

RL-based methods. A naive thought is to apply off-policy RL algorithms such as SAC [9] and
DDPG [14] directly. However, as previous researchers [7, 12] reveal, those online algorithms fail to
work due to the severe extrapolation error or out-of-distribution problem. Thence, kinds of specifically
designed algorithms have been proposed for offline RL. For instance, BCQ [7] adopts a perturbation
model to disturb the action sampled by a BC module to conduct Q-learning on the offline data.
BEAR [12] augments constraints on the policy to avoid out-of-distribution actions, over which it
maximizes the approximate Q function. The current state-of-the-art algorithm CQL [13] performs
strict constraints on the Q-function to learn an expectation lower bound of the true value, avoiding
overestimation on out-of-distribution data. Typical drawbacks for these RL-based algorithms are
serious bootstrapping errors and training instability that requires careful hyperparameter tuning
with online evaluation. In comparison, imitation-based methods offer a candidate to mimic the
demonstration.

Imitation-based methods. Another inspiration grows from the technique of offline imitation learning
on how to learn from the demonstration. Most of these methods take the idea of behavior cloning
(BC) [1] that utilizes supervised learning to learn to act. However, due to the quantity-quality dilemma,
BC limits mediocre performance on many datasets with mixed samples. Therefore, BAIL [2]
constructs the upper-envelope on the value of the data and selects the best actions to imitate at each
state and learn the policy based on BC. The main problem in BAIL is the requirement of regressing
the value function with tricks to compute a value in the infinite horizon and the hyperparameter
threshold on determining the best action. ABM [22], MARWIL [23] and AWR [17] all take the idea
of using an exponentially weighted version of BC, where the weights are determined by different
forms of advantage function. These methods also require estimating the value function based on the
offline data, which can be unstable and need many hyperparameters to control the learning procedure.
Besides, it is also hard to tune an appropriate scale for the advantage for imitating the behavior
policy. Compared with these methods, our COIL only has few important hyperparameters to be tuned
without regressing any value function to achieve a stable performance.

6 Experiments

Alongside the simple algorithm, we surprisingly find that COIL not only alleviates the quantity-
quality dilemma but also achieves efficient and stable performance against competitive offline methods.
Furthermore, we carry out a comprehensive analysis of the algorithm behind the phenomenon.

6.1 Offline Learning from Online Learning Experience

We are curious about the performance of COIL on the final buffer datasets containing a complete
training experience of an online agent [7], because such dataset is mixed with various levels of
policies. Therefore direct BC will easily fail as shown in Section 1. In our case, we first train an SAC
agent from scratch to convergence and save all the training experience from its interactions with the
environment, and therefore including exploration actions. Specifically, we conduct our experiments
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Figure 4: Trajectories in final datasets, sorted in the online training order.

on three continuous control tasks: Hopper, Walker2d, and HalfCheetah. Fig. 4 illustrates trajectories
in each dataset, sorted in the collected order.

To show the effectiveness of COIL, we compare it with several strong baselines, including the state-
of-the-art offline RL algorithm CQL [13], and imitation-based methods AWR [17] and BAIL [2]. For
CQL, AWR and BAIL we use their open-source implementation with their default hyperparameter,
and for BC we test the same implementation as COIL. The quantitative converged results are listed in
Tab. 1, from which we observe that COIL substantially outperforms the other baselines for the final
buffer dataset. Also, BAIL and AWR can not always find the optimal behavior due to the difficulty
of its hyperparameters tuning and value regression. Specifically, compared with BC that learns a
mediocre policy, COIL reaches the performance close to the optimal policy.

To further illustrate how our algorithm works, we also record the oracle online order of the trajectory
sampled by the offline agent, as shown in Fig. 5. Notably, COIL keeps a similar training path as
the online agent, thanks to the experience picking strategy and the return filter. The corresponding
learning curves shown in Fig. 5 are stable and following similar shapes as the ordered datasets.
Notably, COIL finally terminates with a near-data-optimal policy, suggesting a nice property that
the last offline model can be a great model for deployment, unlike previous algorithms that relies on
online evaluation to select the best checkpoint.

Table 1: Average performances on final datasets, the means and standard deviations are calculated over 5 random
seeds. Behavior shows the average performance of the behavior policy that collects the data.

Dataset Expert (SAC) Behavior BC AWR BAIL CQL COIL (Ours)
hopper-final 3163.3 (44.4) 974.5 1480.4 (800.2) 1609.7 (489.7) 2296.9 (915.9) 501.5 (227.5) 2872.5 (133.9)

walker2d-final 4866.03 (68.6) 2684.9 2099.6 (2101.3) 3213.8 (1682.9) 4236.2 (1531.1) 2604.3 (1937.6) 4391.3 (697.8)
halfcheetah-final 9739.1 (113.6) 7122.4 6125.6 (3910.9) 7600.9 (1153.4) 9745.0 (880.3) 10882.0 (1042.7) 9328.5 (1940.6)
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Figure 5: Training curves and orders of selected trajectories.

6.2 D4RL Benchmark

To further show the power of COIL, we conduct comparison experiments on a common-used D4RL
benchmark [5] in Tab. 2. For BC we include the BC results reported in Fu et al. [5] (denoted as BC
(D4RL)) and our implementation of BC (denoted as BC (Ours)). Besides, we compare BAIL [2],
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MOPO [25], and the state-of-the-art results reported in Fu et al. [5] (denoted as SoTA). As our
expected, BC is able to approach or outperform the performance of the behavior policy on the datasets
generated from a single policy, marked as “random”, and “medium”, but still remains a gap between
the optimal behavior policy (Best 1% column). As a comparison, COIL achieves the performance of
the optimal behavior policy on most datasets. As is noticed that doing so will allow COIL to beat
or compete with the state-of-the-art results. To our surprise, on the halfcheetah domain, previous
RL-based offline algorithms have the potential to surpass the optimal behavior policy (although with
careful hyperparameter tuning), showing the advantage of RL-based learning. It is worth noting that
for model-based algorithm like MOPO, it behaves well on the medium-replay datasets due to the
sufficient data to learn a good environment model; but it can hardly outperform SoTA model-free
results on other datasets.
Table 2: Average performance on D4RL datasets. Results in gray columns is our implementation that are tested
among 5 random seeds. The other results are based on numbers reported in D4RL among 3 random seeds
without standard deviations. Best 1% shows the average return of the top 1% best trajectories, representing the
performance of the optimal behavior policy; Behavior shows the average performance of the dataset.

Dataset Expert (D4RL) Behavior Best 1% BC (D4RL) BC (Ours) COIL (Ours) BAIL MOPO SoTA (D4RL)
hopper-random 3234.3 295.1 340.4 299.4 330.1 (3.5) 378.5 (15.2) 318.0 (5.1) 432.6 376.3
hopper-medium 3234.3 1018.1 3076.4 923.5 1690.1 (852.0) 3012.0 (332.2) 1571.5 (900.7) 862.1 2557.3
hopper-medium-replay 3234.3 466.9 1224.8 364.4 853.6 (397.5) 1333.7 (271.1) 808.7 (192.5) 3009.6 1227.3
hopper-medium-expert 3234.3 1846.8 3735.7 3621.2 3527.4 (504.1) 3615.5 (168.9) 2435.9 (1265.2) 1682.0 3588.5

walker2d-random 4592.3 1.1 25.0 73.0 171.0 (59.3) 320.5 (70.7) 130.8 (87.2) 597.1 336.3
walker2d-medium 4592.3 496.4 3616.8 304.8 1521.9 (1381.3) 2184.5 (1279.2) 1242.4 (1545.7) 643.0 3725.8
walker2d-medium-replay 4592.3 356.6 1593.7 518.6 715.0 (406.5) 1439.9 (347.0) 532.9 (359.0) 1961.1 1227.3
walker2d-medium-expert 4592.3 1059.7 5133.4 297.0 3488.6 (1815.1) 4012.3 (1463.0) 3633.9 (1839.7) 2526.0 5097.3
halfcheetah-random 12135.0 -302.6 -85.4 -17.9 -124.3 (60.6) -0.3 (0.7) -96.4 (49.7) 3957.2 4114.8
halfcheetah-medium 12135.0 3944.9 4327.7 4196.4 3276.4 (1500.7) 4319.6 (243.7) 4277.6 (564.9) 4987.5 5473.8
halfcheetah-medium-replay 12135.0 2298.2 4828.4 4492.1 4035.7 (365.4) 4812.0 (148.7) 3854.8 (966.3) 6700.6 5640.6
halfcheetah-medium-expert 12135.0 8054.4 12765.4 4169.4 633.2 (2152.9) 10535.6 (3334.9) 9470.3 (4178.9) 7184.7 7750.8

6.3 Ablation Study
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Figure 6: Returns of trajectories in hopper-medium-
replay and hopper-medium, and final performances
of COIL with different α.

The ablation study aims to illustrate how hyper-
parameters can be determined according to the
property of the offline datasets without online
evaluation. In particular, COIL has two critical
hyperparameters: α and N . Since α determines
the rate of filtering out the bad trajectories as
the agent imitates a better policy where small α
corresponds to a high filtering rate, it is highly
influenced by the changes in returns of the trajec-
tories in the dataset. Taking hopper-medium-
replay and hopper-medium for examples, the
former consists of online training experience,
and the return of trajectories changes rapidly; on
the contrary, most of the trajectories in the latter
are at the same return level. Therefore, intu-
itively, a small value of α should be assigned to
hopper-medium-replay while a large value
to hopper-medium, as confirmed by the exper-
imental results shown in Fig. 6. Ablation ex-
periments on the other hyperparameter N are
illustrated in Appendix E, saying that it can also be tuned according to the characterization of the
dataset.

6.4 Compared with Naive Curriculum Strategies

In this section, we propose comparing the curriculum strategy of COIL with naive curriculum
strategies to determine whether COIL is a better choice. The first strategy is called return-ordered
BC, which conducts curriculum imitation learning based only on returns of the trajectories. Similar to
COIL, it picks NRBC trajectories with the lowest returns for each curriculum to perform behavioral
cloning, and then removes them from the dataset. When the dataset is empty, the algorithm stops. The
other strategy is called buffer-shrinking BC. As its name suggests, it conducts curriculum imitation
learning by shrinking the dataset ordered by the return after training at each curriculum. In detail,
buffer-shrinking BC begin its training with the entire dataset in the buffer; after a fixed number of
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gradient steps, it shrinks the buffer by discarding p% of trajectories with the lowest returns; then the
training is continued on the remaining trajectories. In our experiment, we choose p = 20 so that the
algorithm will stop after 5 times of shrinkage.

The learning results on final datasets are shown in Fig. 7. As expected, return-ordered BC leads
to mediocre behaviors since similar returns do not always account for similar policies due to the
exploration noise. In addition, buffer-shrinking BC is not usually stable to achieve the optimal
behavior. Since the shrink strategy is totally hand-crafted, the quantity-quality dilemma is not
eliminated. The mediocre trajectories in the last curriculum will lead to the failure. On the contrary,
COIL succeeds in the optimal behavior policy with the highest training efficiency (the least gradient
steps), indicating the advantage of the policy-distance-based curriculum.

0 6000 12000 18000 24000
Gradient Steps

0
400
800

1200
1600
2000
2400
2800

A
ve

ra
ge

 R
et

ur
n

COIL
R BC
B BC

(a) Hopper-final.

0 50000 100000150000200000
Gradient Steps

0

800

1600

2400

3200

4000

A
ve

ra
ge

 R
et

ur
n

(b) Walker2d-final.

0 100000200000300000400000
Gradient Steps

0
1200
2400
3600
4800
6000
7200
8400
9600

A
ve

ra
ge

 R
et

ur
n

(c) HalfCheetah-final.

Figure 7: Comparison of training curves between COIL and Return-ordered BC (R BC) and Buffer-shrinking
BC (B BC) on final datasets with the same batch size. Different strategies terminate with different gradient steps.

7 Conclusion

In this paper, we analyze the quantity-quality dilemma of behavior cloning (BC) from both an
experimental and a theoretical point of view, which motivates us to propose the curriculum offline
imitation learning (COIL). COIL takes advantage of imitation learning by improving the current policy
with adaptive neighboring policies. Experiments show good properties of COIL with competitive
evaluation results against state-of-the-art offline RL algorithms. COIL may provide a practical way
for bringing offline RL into practice due to its simplicity and effectiveness, but it also limits into the
performance of the dataset.
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