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Abstract

We introduce Sim→Exp-MMNMR, the first benchmark designed to systematically
evaluate how well machine learning models and similarity metrics generalize from
simulated to experimental nuclear magnetic resonance (NMR) spectra. Unlike
prior work, which primarily relies on cosine similarity and simulated data alone,
our benchmark features a curated dataset of 1,849 molecules with both simulated
and experimental 1H and 13C spectra, standardized under a common solvent and
validated for peak alignment. We propose chemistry-aware similarity metrics,
including Shift-Marginalized Maximum Mean Discrepancy (SM-MMD), which
explicitly account for peak shift uncertainty and calibration noise. Through a
suite of four evaluation tasks-including matching, shift robustness, SMILES-to-
spectra prediction, and candidate ranking—we show that traditional metrics often
misrepresent performance under realistic conditions. Our results demonstrate that
SM-MMD offers stronger robustness and structure-awareness, particularly in 13C
spectra, suggesting it as a more suitable metric for real-world NMR applications
involving domain shift.

1 Introduction

The evaluation of machine learning models for NMR spectroscopy remains surprisingly limited
by legacy metrics and synthetic-only datasets. Despite rapid progress in spectrum prediction and
inverse structure elucidation, most works still assess models using only simulated spectra and global
metrics like cosine similarity [1, 2, 3, 4, 5, 6, 7, 8] , which fail to reflect real-world performance under
experimental noise, calibration shifts, and chemical variability.

In this work, we identify and address two key gaps in the current evaluation paradigm. First,
standard metrics—chiefly cosine similarity—fail to capture chemically meaningful discrepancies
across domains. They are highly sensitive to minor peak misalignments and blind to structural
distortions, especially in 1H NMR where peak overlap and solvent effects are prominent. Second,
there exists no standardized benchmark for evaluating simulation-to-experiment generalization in
NMR under controlled, chemically aligned conditions.

Our contribution. We propose a new set of chemistry-aware metrics, including a handcrafted
Advanced Similarity score and a distributional kernel-based Shift-Marginalized Maximum Mean
Discrepancy (SM-MMD), both designed to overcome the weaknesses of cosine similarity in capturing
structure-informed, domain-robust spectral similarity. These metrics are analytically grounded and
empirically shown to outperform or match cosine across tasks including retrieval, ranking, match
verification, and robustness under synthetic referencing shifts.

To support evaluation, we also release a benchmark dataset with paired simulated and experimental
1H and 13C spectra for 1,849 molecules, validated for spectral alignment and modality consistency.



All spectra are collected in a unified solvent (CHCl3), with rigorous filtering to remove miscalibrated
or ambiguous samples. Our benchmark1 tasks target key sim-to-real challenges and demonstrate
where traditional metrics fail and new ones excel.

2 Dataset

Our benchmark contains 1,849 unique small molecules (see Appendix A for composition) with
paired simulated and experimental spectra for 1H and 13C NMR. The final dataset was constructed
by aligning simulated spectra from [1] with 123,174 experimental spectra extracted from NMRBank
[9] with the highest confidence interval (0.6–1.0), based on common unique SMILES [10]. For each
molecule–modality pair, we provide one simulated spectrum and one experimental spectrum, all
measured in a single dominant solvent (CHCl3). To ensure correct pairing, we verified peak count
consistency within a modality, enforced tight tolerances on the chemical shift ranges (≤ 0.05 ppm for
1H, ≤ 0.5 ppm for 13C), and rejected any pairs with missing or ambiguous peaks. All splits used in
the tasks are molecule-disjoint (no SMILES overlap). Each spectrum is released in peak list format
as JSON arrays of chemical shift values (δ) in ppm.

3 Benchmark Tasks

Match Verification We evaluate discrimination performance as a binary classification task: matching
simulated–experimental spectra versus hard decoys. Hard decoys are constructed by selecting
structurally similar compounds, defined as those with Tanimoto similarity [11] τ ∈ [0.3, 0.8]
computed using Morgan fingerprints (radius = 2, nBits = 2048). The lower bound excludes trivially
unrelated molecules (τ < 0.3), while the upper bound removes near-duplicates that differ only by
tautomeric or stereochemical notation (τ > 0.8). This range yields non-identical yet chemically
related candidates (analogs, isomers, homologous series), ensuring realistic hard negatives. Positive
pairs are (Asim, Aexp); negative pairs are (Asim, Bexp). We report ROC-AUC and PR-AUC with
bootstrap confidence intervals (n = 1000) and paired significance tests across methods.

Shift-stress Analysis We proceed with assessing the robustness under synthetic referencing offsets
∆ ∈ [−0.5, 0.5] ppm (1H) and ∆ ∈ [−8.0, 8.0] ppm (13C) with 21 discrete shift points per spectrum
type of our proposed metrics. The system applies artificial chemical shift offsets to experimental
spectra and measures how well each similarity metric maintains discrimination between compounds
as systematic errors increase. Plot similarity score curves s(∆) and report (i) robustness index
R = 1

∆max−∆min

∫
R(∆)d∆ where R(∆) = s(∆)/s(0) is the retention ratio measuring how much

discrimination is preserved, (ii) tolerance points ∆95 and ∆90, the largest |∆| for which the score
remains ≥ 95% and ≥ 90% of baseline respectively, and (iii) local sensitivity S0 = ∂s

∂∆ |∆=0

with bootstrap confidence intervals (n = 100 iterations). This evaluation is critical because real-
world NMR spectra often contain systematic referencing errors due to solvent effects, temperature
variations, and instrument calibration differences. A robust metric should maintain its ability to
distinguish between compounds even when these systematic shifts occur, ensuring reliable compound
identification in practical applications where perfect calibration cannot be guaranteed.

Spectral Prediction We trained neural network predictors to generate NMR spectra from SMILES
strings using molecular features (Morgan [12] fingerprints with radius=2, nBits=2048, plus 10
molecular descriptors including MolWt, LogP, TPSA, and ring counts). The system processes both
1H and 13C NMR data separately, converting experimental peaks to histogram vectors (b = 100
bins, ranges 1H: [0,12] ppm, 13C: [0,220] ppm) with Gaussian smoothing (σ = 1.0). The neural
architecture uses 4 hidden layers [512, 256, 128, 64] with BatchNorm, ReLU activation, Dropout
(0.3), and Xavier weight initialization. Training uses AdamW (lr = 0.001, weight decay = 1e-4)
with ReduceLROnPlateau scheduling, and optimizes mean squared error (MSE) between the
smoothed histogram vectors. Alternative loss functions based on the proposed similarity metrics
(SM-MMD and a hybrid MSE+SM-MMD) are evaluated in Appendix D. This evaluation is critical
because real-world NMR spectra often contain systematic referencing errors due to solvent effects,
temperature variations, and instrument calibration differences.

1Benchmark dataset, metric implementations, and full experiment code available at https://github.com/
SusannaDiV/SimExp-MMNMR.
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Candidate ranking We further evaluate metric performance in candidate selection scenarios using
fixed candidate sets of n = 30 compounds selected sequentially from the dataset. The system takes
an experimental spectrum and ranks candidate molecules by their spectral similarity, measuring how
consistently different metrics order the same set of candidates. Performance is measured using rank
correlations (Spearman ρ) between different metrics, Top-K analysis showing candidate overlap
across metrics, and overall ranking stability. This evaluation is important because it reveals whether
different metrics produce similar candidate rankings, which is critical for practical applications where
chemists need consistent results regardless of which metric they choose.

4 Metrics

Cosine Similarity As a baseline, we include the standard cosine similarity between two normalized
peak intensity vectors u, v ∈ Rd:

CosSim(u, v) =
⟨u, v⟩

∥u∥2 ∥v∥2
=

∑d
i=1 uivi√∑d

i=1 u
2
i

√∑d
i=1 v

2
i

.

Cosine similarity takes values in [−1, 1] and provides a simple measure of shape agreement between
spectra, independent of absolute intensity scaling.

Advanced NMR Similarity Our proposed Advanced NMR Similarity metric combines peak match-
ing via Hungarian [13] algorithm, density correlation, chemical shift significance, and peak count
similarity with weights [0.4, 0.3, 0.2, 0.1] respectively. The weights [0.4, 0.3, 0.2, 0.1] are not learned
or tuned; they are heuristically chosen to reflect chemical intuition. Exact peak matching (S1,
w1 = 0.4) provides the strongest evidence that two spectra correspond to the same molecular struc-
ture, followed by global peak distribution similarity (S2, w2 = 0.3), and chemical-shift significance
(S3, w3 = 0.2). Peak count consistency (S4, w4 = 0.1) receives the lowest weight because it captures
only coarse structural information. The weights encode this priority ordering and are chosen for
interpretability rather than numerical optimization. The complete definition and proof of correctness
can be found in Appendix B.

Shift-Marginalized Maximum Mean Discrepancy (SM-MMD). We evaluate a kernel-based
metric because NMR spectra are naturally distributions of peaks, not aligned vectors. Metrics
such as cosine similarity operate on absolute peak positions and are therefore highly sensitive to
global referencing shifts or small peak misalignments. In contrast, SM-MMD compares spectra in
a reproducing kernel Hilbert space (RKHS), where distance reflects distributional similarity. Our
formulation analytically marginalizes over all global shifts within [−S, S], making the metric inher-
ently shift-invariant. We use a multi-scale Gaussian kernel with bandwidths σ ∈ {0.05, 0.1, 0.15} for
1H and σ ∈ {1.0, 2.0, 5.0} for 13C (weights [0.5, 0.3, 0.2]), capturing both narrow and broad peak
features. Importantly, the kernel formulation is fully differentiable, enabling SM-MMD to be used
directly as a training loss for generative modeling (Appendix D). The complete definition and proof
of correctness can be found in Appendix B-C.

5 Results

While cosine similarity provides a simple baseline for comparing spectra, it treats each spectrum
as a fixed high-dimensional vector. This approach implicitly assumes perfect peak alignment and
equal importance of all chemical shifts. As a result, even small global referencing shifts or minor
peak-picking errors can lead to disproportionately low similarity scores, despite the underlying spectra
being chemically identical. Moreover, cosine similarity is insensitive to local distributional structure:
two spectra with similar peak densities but slight misalignments may appear very dissimilar.

Our proposed shift-marginalized MMD (SM-MMD) overcomes these limitations by directly compar-
ing the peak distributions rather than fixed vectors. By marginalizing over all referencing shifts within
a window [−S, S] (with S being 0.15 ppm for 1H, 2.0 for 13C) and incorporating peak intensities as
weights, SM-MMD remains stable under global shifts and robust to small local perturbations. The
kernel formulation further enables distributional comparison in a reproducing kernel Hilbert space,
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providing a mathematically rigorous, shift-tolerant, and intensity-aware similarity measure for NMR
spectra. All the detailed results to our experiments can be found in Appendix D.

This phenomenon is evident on synthetic shift-stress analysis, where we deliberately applied global
referencing offsets (∆ ∈ [−0.5, 0.5] ppm for 1H and ∆ ∈ [−8.0, 8.0] ppm for 13C) to experimental
spectra and measured normalized retention ratios s(∆)/s(0). Cosine similarity and the Advanced
NMR metric both peak at ∆ = 0, then decay rapidly with increasing shift, because they rely on
absolute peak positions: cosine operates on histogram bins, and the Advanced metric enforces explicit
peak–peak matching within fixed tolerance windows. Any global shift moves peaks to different bins
or outside tolerance bounds, causing similarity to drop. In contrast, SM-MMD maintains nearly
constant similarity across the entire shift range, because the shift-marginalized kernel analytically
integrates over all referencing offsets in [−S, S] and therefore compares spectra based on their peak
distributions rather than their absolute positions.

The robustness index R (area under the retention curve) shows SM-MMD (R = 0.9993) and SM-JS
(R = 0.9974) maintain near-perfect score retention across the full shift range as observable in
Figure 3, while cosine and the Advanced NMR metric degrade rapidly under even small shifts.
Across both nuclei, SM-MMD achieves robustness indices of 0.999 for 1H and 13C, far exceeding
Cosine (0.633 for 1H, 0.410 for 13C) and the Advanced metric (0.221 for 1H, 0.336 for 13C),
confirming its near shift-invariance even under severe referencing perturbations (Figure 3 (c)).
Local sensitivity analysis confirms this trend: SM-JS achieves S0 = 0.0040 [0.0002, 0.0118] versus
S0 = 0.1930 [0.0131, 0.4975] for the Advanced metric, indicating far lower sensitivity to infinitesimal
referencing errors. All shift-marginalized methods retain > 95% of their baseline scores across
the entire range, producing flat, high robustness curves where similarity remains nearly constant
even under severe misalignment. In contrast, cosine shows narrow, peaked curves with steep drops,
confirming its lack of tolerance to realistic referencing errors.

(a) ROC curves for 1H, 13C, and combined NMR spectra comparing Cosine, SM-MMD, and Ad-
vanced metrics.

(b) Precision–Recall curves for 1H, 13C, and combined NMR spectra comparing Cosine, SM-MMD,
and Advanced metrics.

Figure 1: (A) ROC and (B) Precision–Recall curves across 1H, 13C, and combined NMR spectra for
Cosine, SM-MMD, and Advanced metrics.

The same trend appears in the candidate ranking task of Figure 4. Across 30 candidate molecules,
cosine similarity produced the lowest scores (0.0000−0.5340), the Advanced NMR metric yielded
moderate values (0.1848−0.4657), and SM-MMD returned the highest (0.6045−0.9127) due to
its robustness to peak shifts. Ranking correlations showed strong agreement between cosine and
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Advanced NMR (ρ = 0.92) but only moderate alignment with SM-MMD (ρ ≈ 0.67), reflecting its
focus on distributional rather than peak-wise similarity. Top-k analysis confirmed partial overlap: no
candidate ranked first across all metrics, but six appeared in every top-10 list.

In the match verification task (Figure 1), the Advanced NMR metric achieves the highest classification
accuracy, reaching AUC = 0.900 (ROC) and AUC-PR = 0.846 for 13C NMR, while SM-MMD per-
forms competitively with AUC = 0.797 (ROC) and AUC-PR = 0.721 in the combined setting. Cosine
similarity lags behind on both metrics, indicating that handcrafted features or shift-marginalization
improve discrimination between matching and decoy spectra beyond simple vector comparisons.
However, SM-MMD exhibits nucleus-specific behavior: while it significantly improves 13C discrimi-
nation (AUC-ROC = 0.904 vs. cosine’s 0.818), its 1H performance (AUC-ROC = 0.679) remains
comparable to cosine (0.689). This disparity arises not from noise or instrument resolution, but from
peak congestion and spectral scale. In 1H NMR, different molecules produce dense clusters of peaks
within a narrow 0–12 ppm range, with inter-molecule separations of only 0.1–0.3 ppm—comparable
to SM-MMD’s kernel bandwidth (σ = 0.15 ppm). At this scale, the shift-marginalized kernel
smooths nearby peaks, causing distinct molecules to appear artificially similar. In contrast, 13C
NMR peaks are well separated (10–30 ppm apart across a 220 ppm range), so the kernel bandwidth
(σ = 2 ppm) remains selective enough to distinguish different molecules. Thus, SM-MMD excels
when peak spacing is larger than the kernel resolution (13C), but becomes less discriminative in
highly congested spectral domains (1H).

Finally, in the SMILES-to-spectra prediction task with 400 predicted spectra (200 1H, 200 13C),
SM-MMD again achieved the highest similarity (0.9066 ± 0.0751 overall), followed by cosine
(0.8358 ± 0.1119) and the Advanced NMR metric (0.6124 ± 0.1084), as observable in Figure 5.
Interestingly, cosine performs surprisingly well here because the prediction model outputs spectra
in the same reference frame as the training data, so global shifts and large misalignments — the
main failure modes of cosine — rarely occur. Nevertheless, SM-MMD still achieves higher scores,
especially for 1H NMR (0.9573 vs. 0.8451), because it remains robust to local peak-picking errors
and amplitude noise that cosine does not handle. The Advanced NMR metric yields lower absolute
scores (0.6693 for 1H, 0.5554 for 13C) because its strict peak-matching and density components
penalize every deviation, providing interpretability at the cost of conservative similarity values.

6 Conclusion

We present Sim→Exp-MMNMR, a 1H-13C benchmark to quantify simulation-to-experiment gen-
eralization in NMR spectroscopy. Our key contributions include (1) a new high-quality dataset of
aligned simulated and experimental 1H and 13C spectra, and (2) domain-aware similarity metrics such
as SM-MMD that outperform standard metrics like cosine under realistic shift, spectral prediction,
and candidate ranking scenarios. Across multiple tasks, we find that traditional cosine similarity
underperforms—particularly in scenarios with domain shift or structural ambiguity, whereas SM-
MMD provides more robust and chemically meaningful discrimination. Future extensions include
incorporating HSQC spectra into the benchmark to fully support 2D multimodal evaluation, extending
the framework to solvent-dependent domain shift and cross-instrument variability, and applying our
metrics in structure elucidation pipelines.
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A Dataset Composition

Figure 2: Summary plots for the Sim-EXP-MMNMR dataset: SMILES length and character fre-
quencies, heavy atom counts, functional group tallies, common scaffolds, and molecular weight
distribution.

The dataset’s SMILES lengths are concentrated in the low-to-mid 20s, indicating moderate structural
complexity, and the most common characters are C/c and =, consistent with aliphatic and aromatic
carbons plus frequent double bonds. Heavy atom counts follow a unimodal distribution with a mean
near 15.3 heavy atoms per molecule. In terms of functional groups, aromatic rings are the most
prevalent, with ethers and ketones also frequent, followed by alcohols and halogens, suggesting a bias
toward common drug-like motifs. A few aromatic scaffolds dominate the head of the distribution, with
a long tail of rarer frameworks. Finally, the molecular weight histogram centers in the 200–250 g/mol
band, with a mean around 221.2 g/mol, squarely within typical small-molecule ranges.

B Metrics Definition

Advanced NMR Similarity Metric We propose an Advanced NMR Similarity Metric that
decomposes spectrum similarity into four chemically-interpretable components. For peak sets
A = {(pi, ai)}mi=1 and B = {(qj , bj)}nj=1 with normalized intensities

∑
i ai =

∑
j bj = 1, the

similarity metric is defined as:
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Sim(A,B) =

4∑
k=1

wk · Sk(A,B) (1)

where w = [0.4, 0.3, 0.2, 0.1] are the component weights. The peak matching component S1(A,B)
employs optimal assignment theory:

S1(A,B) = 1−
minσ∈Πm,n

∑m
i=1 Ci,σ(i)

m
(2)

where Πm,n is the set of partial permutations, m = min(|A|, |B|), and the cost matrix Cij =
min(|∆ij |/(3τ), 1) with ∆ij = |pi − qj | and tolerance τ (0.3 ppm for 1H, 2.0 ppm for 13C). The
optimal assignment is computed using the Hungarian algorithm. The density similarity component
S2(A,B) measures distribution correlation:

S2(A,B) = max(0, ρ(histA, histB)) (3)

where histA and histB are normalized histograms with 50 bins over ranges [0, 12] ppm (1H) or
[0, 220] ppm (13C), and ρ is the Pearson correlation coefficient. The chemical significance component
S3(A,B) captures shift importance:

S3(A,B) = 1−

∣∣∣∣∣∣ 1

|A|

|A|∑
i=1

(
pi

RNMR

)2

− 1

|B|

|B|∑
j=1

(
qj

RNMR

)2
∣∣∣∣∣∣ (4)

where RNMR is the appropriate range (12.0 or 220.0 ppm). The peak count component S4(A,B)
measures structural consistency:

S4(A,B) = 1− ||A| − |B||
max(|A|, |B|, 1)

(5)

Note. The peak-count component S4(A,B) does not satisfy the triangle inequality when interpreted
as a distance (i.e., d4 = 1 − S4), because its normalization uses the pair-dependent denominator
max(|A|, |B|, 1). This adaptive scaling changes the distance scale from comparison to comparison
and can yield cases where d4(A,C) > d4(A,B) + d4(B,C). This is not an issue in our setting: S4

is only a bounded similarity term (weight w4 = 0.1) inside a composite score and is never used as a
standalone metric for kernel methods, geometric embedding, or nearest-neighbor search.

This decomposition provides interpretable similarity assessment while maintaining mathematical
rigor through optimal assignment theory and statistical correlation measures. The bounded output
Sim(A,B) ∈ [0, 1] ensures intuitive interpretation where higher values indicate greater spectral
similarity.

B.1 Shift-Marginalized Maximum Mean Discrepancy (SM-MMD)

We propose Shift-Marginalized MMD (SM-MMD) for comparing NMR spectra in peak-list form.
Each spectrum is represented as a set of peaks with normalized intensities:

A = {(pi, ai)}mi=1, B = {(qj , bj)}nj=1,
∑
i

ai =
∑
j

bj = 1.

Here pi, qj denote chemical shifts (in ppm), while ai, bj are normalized peak areas (or heights).

Shift-marginalized kernel Let the base Gaussian kernel [14] be

kσ(t) = exp

(
− t2

2σ2

)
.
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To ensure robustness against global referencing shifts, we average this kernel over all shifts s ∈
[−S, S]:

kσ,S(p, q) =
1

2S

∫ S

−S

kσ(p− q − s) ds

=
σ
√

π/2

2S

[
erf

(p− q + S√
2σ

)
− erf

(p− q − S√
2σ

)]
. (6)

This kernel is shift-marginalized: small global shifts ∆ do not significantly affect the similarity.

Shift-Marginalized MMD We build on the maximum mean discrepancy (MMD) framework [15],
which measures discrepancies between probability distributions via their mean embeddings in an
RKHS. The squared SM-MMD between A and B is defined as

MMD2
σ,S(A,B) =

∑
i,i′

aiai′ kσ,S(pi, pi′) +
∑
j,j′

bjbj′ kσ,S(qj , qj′)− 2
∑
i,j

aibj kσ,S(pi, qj). (7)

The similarity score is then reported as

Sim(A,B) = 1−MMD2
σ,S(A,B),

Multi-scale extension For additional robustness, we use a multi-scale mixture of kernels with
normalized weights

∑
ℓ wℓ = 1:

MMD2(A,B) =
∑
ℓ

wℓ MMD2
σℓ,S

(A,B),

with weights wℓ ≥ 0.

C Proofs

Shift-Marginalized Kernel Properties Let

kσ,S(x, y) =
1

2S

∫ S

−S

exp

(
− (x− y − s)2

2σ2

)
ds.

Then kσ,S(x, y) satisfies the following:

1. Symmetry: kσ,S(x, y) = kσ,S(y, x) for all x, y.
2. Positive definiteness: For any x1, . . . , xn ∈ R and c1, . . . , cn ∈ R,∑

i,j

cicjkσ,S(xi, xj) ≥ 0.

3. Boundedness: 0 ≤ kσ,S(x, y) ≤ 1 for all x, y (with appropriate normalization).

Proof. 1. Symmetry. For any x, y,

kσ,S(x, y) =
1

2S

∫ S

−S

e−(x−y−s)2/(2σ2) ds.

Let u = x − y − s so ds = −du. Reversing the integration limits yields the same value since
e−u2/(2σ2) = e−(−u)2/(2σ2). Replacing x− y by y − x leaves the integral unchanged:

kσ,S(y, x) =
1

2S

∫ S

−S

e−(y−x−s)2/(2σ2) ds =
1

2S

∫ S

−S

e−(x−y+s)2/(2σ2) ds = kσ,S(x, y).

2. Positive definiteness. The Gaussian kernel kσ(t) = e−t2/(2σ2) is positive definite on R. Since

kσ,S(x, y) =
1

2S

∫ S

−S

kσ(x− y − s) ds
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is a nonnegative integral (convex combination) of positive-definite kernels, kσ,S remains positive
definite by standard closure properties.

3. Boundedness. We have 0 < kσ(t) ≤ 1, with equality kσ(0) = 1 and kσ(t) → 0 as |t| → ∞.
Since kσ,S(x, y) is the average of kσ(x− y − s) over s ∈ [−S, S],

0 ≤ kσ,S(x, y) ≤
1

2S

∫ S

−S

1 ds = 1.

Multi-scale case Positive definiteness ensures that this kernel can be used inside any kernel-based
method (e.g., SVMs, MMD) and that MMD remains a squared distance in an RKHS. The following
result shows that the multi-scale kernel inherits all key properties from its single-scale components.

Let

kMS(x, y) =

L∑
ℓ=1

wℓ kσℓ,S(x, y), wℓ ≥ 0,
∑
ℓ

wℓ = 1.

Then kMS is symmetric, positive definite, and satisfies 0 ≤ kMS(x, y) ≤ 1.

Proof. Each kσℓ,S is symmetric and positive definite by the theorem above. A nonnegative linear
combination preserves these properties:

kMS(x, y) =
∑
ℓ

wℓkσℓ,S(x, y) =
∑
ℓ

wℓkσℓ,S(y, x) = kMS(y, x),

and for any c1, . . . , cn,∑
i,j

cicjkMS(xi, xj) =
∑
ℓ

wℓ

∑
i,j

cicjkσℓ,S(xi, xj) ≥ 0.

Finally, since each kσℓ,S(x, y) ∈ [0, 1] and
∑

ℓ wℓ = 1,

0 ≤ kMS(x, y) ≤
∑
ℓ

wℓ · 1 = 1.

Characteristic property. The kernel kσ,S is translation-invariant and can be written as the convolu-
tion of a Gaussian with a uniform window:

kσ,S(x, y) = (kσ ∗ uS)(x− y),

where uS denotes the uniform density on [−S, S]. Its spectral density is given by the product of the
Gaussian spectral density and a sinc factor arising from the uniform window. This spectral density is
nonnegative and strictly positive on open intervals (its zeros occur only at a discrete set). Therefore,
the spectral measure has support with nonempty interior.

By the standard characterization of characteristic kernels (e.g., [16]), any translation-invariant positive-
definite kernel whose spectral measure has nonempty interior support is characteristic on R. Hence
kσ,S is characteristic, and any finite nonnegative mixture of such kernels preserves this property.

Consequently, the multi-scale SM-MMD induced by kMS defines a metric on the space of probability
measures over peak positions (with intensities as weights).

Non-negativity of SM-MMD Non-negativity ensures that MMD is a valid distance measure
(actually a pseudometric, becoming a true metric if the kernel is characteristic). The next result
uses the positive-definiteness established above to show that the MMD constructed from this kernel
inherits non-negativity because it is a squared Hilbert space distance.

[Non-negativity of SM-MMD] For any peak sets A = {(pi, ai)}i and B = {(qj , bj)}j with ai, bj ≥ 0
and

∑
i ai =

∑
j bj = 1, the shift-marginalized maximum mean discrepancy satisfies

MMD2
σ,S(A,B) ≥ 0.
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Proof (RKHS view). Because kσ,S is positive definite (as shown earlier), it induces a Reproducing
Kernel Hilbert Space (RKHS) H with feature map φ(·). Define the mean embeddings of the discrete
measures represented by the peak lists:

µA =
∑
i

ai φ(pi), µB =
∑
j

bj φ(qj).

By standard MMD theory,

MMD2
σ,S(A,B) = ∥µA − µB∥2H = ⟨µA, µA⟩+ ⟨µB , µB⟩ − 2⟨µA, µB⟩.

Expanding the inner products in H using the kernel kσ,S gives exactly the formula∑
i,i′

aiai′kσ,S(pi, pi′) +
∑
j,j′

bjbj′kσ,S(qj , qj′)− 2
∑
i,j

aibjkσ,S(pi, qj).

Because this is the squared norm ∥µA − µB∥2H, it is always non-negative:

MMD2
σ,S(A,B) ≥ 0.

As each spectrum is represented as a finite weighted set of peaks {(pi, ai)}, where pi is the chemical
shift (in ppm) and ai is the normalized peak area,

∑
i ai = 1, this defines a discrete probability

measure on R (or R2 for 2D NMR), and the SM-MMD measures the squared RKHS distance
between the mean embeddings of these two measures. Because squared distances in any Hilbert
space are always non-negative, the SM-MMD inherits this property automatically, confirming it a
valid dissimilarity measure for NMR peak distributions.

Analytical Marginalization Correctness Let kσ(t) = exp
(
− t2/(2σ2)

)
with σ > 0 be the stan-

dard Gaussian kernel on R, and let δ ∼ Uniform[−S, S] with S > 0. Define the shift-marginalized
kernel as the expectation of kσ under an additive random shift δ:

k̃(x, y) := Eδ

[
kσ((x− y) + δ)

]
.

Then, for all x, y ∈ R,

k̃(x, y) =
1

2S

∫ S

−S

e−
(x−y−s)2

2σ2 ds =
σ
√
π/2

2S

[
erf

(
x−y+S√

2σ

)
− erf

(
x−y−S√

2σ

)]
= kσ,S(x, y).

Proof. The expectation over a uniform δ on [−S, S] simply corresponds to averaging over all possible
shift values in that interval:

k̃(x, y) = Eδ[kσ((x− y) + δ)] =
1

2S

∫ S

−S

kσ((x− y) + s) ds.

Because the Gaussian kernel kσ(t) = e−t2/(2σ2) is an even function (kσ(t) = kσ(−t)) and the
averaging interval [−S, S] is symmetric around zero, the integral above is unchanged if we replace
s 7→ −s. Therefore, ∫ S

−S

kσ((x− y) + s) ds =

∫ S

−S

kσ((x− y)− s) ds.

This gives

k̃(x, y) =
1

2S

∫ S

−S

e−
(x−y−s)2

2σ2 ds.

Now we evaluate this Gaussian integral in closed form. Set u = x−y−s√
2σ

so that s = x− y −
√
2σu

and ds = −
√
2σ du. The limits transform as follows:

• when s = −S, u = x−y+S√
2σ

,
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• when s = S, u = x−y−S√
2σ

.

Substituting into the integral:

1

2S

∫ S

−S

e−
(x−y−s)2

2σ2 ds =
σ
√
2

2S

∫ (x−y+S)/(
√
2σ)

(x−y−S)/(
√
2σ)

e−u2

du.

The antiderivative of e−u2

is the error function erf(u), so we obtain

k̃(x, y) =
σ
√
π/2

2S

[
erf

(
x−y+S√

2σ

)
− erf

(
x−y−S√

2σ

)]
.

Finally, by definition this equals kσ,S(x, y), the shift-marginalized kernel used in SM-MMD. Hence
the expectation E[kσ((x − y) + δ)] over δ ∼ Uniform[−S, S] indeed produces the closed-form
expression in Eq. (6).

k̃(x, y) = kσ,S(x, y)

This result formally guarantees that the analytically marginalized kernel used in SM-MMD exactly
equals the expected kernel value over random global shifts, so the kernel similarity is provably robust
to any referencing offset up to magnitude S.

D Differentiable Loss Functions for Spectral Prediction

Advanced NMR Similarity (non-differentiable) The Advanced NMR metric in Appendix A
cannot be used for gradient-based learning because two components are non-differentiable: (i) S1

requires solving a discrete peak assignment via the Hungarian algorithm, and (ii) S4 depends on peak
counting through a hard threshold. Both introduce argmin/threshold operations with zero gradients,
preventing backpropagation.

Differentiable SM-MMD loss For spectral prediction experiments, we adapt SM-MMD to make
it fully differentiable and suitable for end-to-end optimization. SM-MMD as an evaluation metric
(Appendix B–C) operates on sparse peak lists, which is natural for comparing experimental spectra,
whereas neural networks produce fixed-size dense histograms. Converting histograms back into peak
lists would require non-differentiable operations (thresholding, peak picking), so during training we
apply SM-MMD directly to the histogram outputs: (i) each histogram bin is treated as a pseudo-peak
with its height as weight, (ii) all pairwise kernel interactions are computed in a single batched GPU
operation, and (iii) MMD2 is returned as the loss to be minimized. Importantly, the differentiable
loss and the evaluation metric use the same analytically shift-marginalized kernel kσ,S(x, y) and
identical MMD formulation; only the input representation differs (sparse peaks vs. dense histograms).
For training efficiency, we use a single bandwidth σ, whereas evaluation uses a multi-scale mixture
(three bandwidths with normalized weights). Thus, SM-MMD functions both as a rigorous evaluation
metric and as an end-to-end differentiable training objective for learning NMR spectra from SMILES.

Hybrid loss (MSE + SM-MMD) We also evaluate a Hybrid loss that combines pixel-level accuracy
(MSE) with chemically meaningful distributional similarity (SM-MMD), defined as Lhybrid = α ·
MSE + (1 − α) · (10 · MMD2), where α ∈ [0, 1] controls the trade-off. MSE enforces bin-wise
agreement and stabilizes optimization, while SM-MMD matches the global spectral distribution and
remains invariant to referencing shifts. The constant factor 10 balances the magnitude of the two
terms so neither dominates during training.

Results As observable ifn Figure 6, models trained with SM-MMD loss consistently outperform
MSE-trained models on chemically meaningful metrics. For 1H NMR, SM-MMD-trained models
achieve median SM-MMD similarity of 0.95 (IQR: 0.94–0.96) and Advanced NMR similarity of
0.72 (IQR: 0.68–0.77), compared to 0.93 and 0.70 for MSE-trained models. For 13C NMR, the
advantage is even more pronounced: SM-MMD-trained models reach median SM-MMD of 0.94 and
Advanced NMR of 0.74 (IQR: 0.68–0.81), versus 0.89 and 0.59 for MSE. Hybrid loss (α = 0.5)
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gives intermediate performance. While MSE-trained models achieve lower MSE by definition, their
poor SM-MMD and Advanced scores indicate that they fail to learn the underlying peak distribution.
Finally, the finer histogram resolution used for 1H NMR (100 bins, 0.06 ppm/bin) is critical: it allows
SM-MMD to match sharp, closely spaced peaks that would otherwise be smeared out.

E Results

Figure 3: Shift–stress evaluation for 1H and 13C NMR: similarity vs. applied shift (top), retention
ratio vs. shift (middle), and robustness index (retention ratio at 0.1 ppm for 1H / 2 ppm for 13C)
comparison (bottom).
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1H NMR: Candidate Ranking Analysis 13C NMR: Candidate Ranking Analysis

Figure 4: Candidate retrieval results for 1H and 13C NMR. Top row: score distributions (Cosine,
Advanced NMR, SM-MMD). Bottom row: top-candidate score comparison and rank concordance
plots.

Figure 5: SMILES→Spectra prediction performance. Left: score distributions and per-modality
boxplots for Cosine, SM-MMD, and Advanced NMR metrics. Right: bar charts summarizing mean
(with SD) and median scores.
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Figure 6: Training loss comparison for spectral prediction. Box plots showing model performance
when trained with MSE, SM-MMD, or Hybrid loss for 1H (top) and 13C (bottom) NMR spectra.
Columns correspond to different evaluation metrics: MSE (lower is better), SM-MMD, and Advanced
NMR similarity (higher is better). Histograms use 200 bins for 1H and 100 bins for 13C, reflecting
the finer peak structure of 1H
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