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Abstract

Current text–conditioned diffusion editors handle single object replacement well but strug-
gle when a new object and a new style must be introduced simultaneously. We present
Twin-Prompt Attention Blend (TP-Blend), a lightweight training-free framework that re-
ceives two separate textual prompts, one specifying a blend object and the other defining a
target style, and injects both into a single denoising trajectory. TP-Blend is driven by two
complementary attention processors. Cross-Attention Object Fusion (CAOF) first averages
head-wise attention to locate spatial tokens that respond strongly to either prompt, then
solves an entropy-regularised optimal transport problem that reassigns complete multi-head
feature vectors to those positions. CAOF updates feature vectors at the full combined
dimensionality of all heads (e.g., 640 dimensions in SD-XL), preserving rich cross-head cor-
relations while keeping memory low. Self-Attention Style Fusion (SASF) injects style at
every self-attention layer through Detail-Sensitive Instance Normalization. A lightweight
one-dimensional Gaussian filter separates low- and high-frequency components; only the
high-frequency residual is blended back, imprinting brush-stroke-level texture without dis-
rupting global geometry. SASF further swaps the Key and Value matrices with those derived
from the style prompt, enforcing context-aware texture modulation that remains indepen-
dent of object fusion. Extensive experiments show that TP-Blend produces high-resolution,
photo-realistic edits with precise control over both content and appearance, surpassing re-
cent baselines in quantitative fidelity, perceptual quality, and inference speed.

1 Introduction

Text-driven image editing with diffusion models Brack et al. (2024); Brooks et al. (2023); Sheynin et al.
(2024); Mokady et al. (2023); Liu et al. (2024); Tumanyan et al. (2023); Chen et al. (2024); Avrahami
et al. (2023); Ge et al. (2023); Shi et al. (2024); Deutch et al. (2024); Li et al. (2024) has excelled at tasks
like object replacement but still lacks a robust solution for object blending, where two objects must fuse
seamlessly into a single coherent entity. Achieving such morphological transitions is challenging: the system
must preserve each source object’s defining characteristics (e.g., color, shape, texture) while synthesizing
intermediate attributes that accurately reflect the intended blend. This capability is especially valuable
in creative design, film production, product prototyping, and scientific or educational visualization, where
smooth transitions (e.g., morphing a car into a spaceship or combining organisms to study evolutionary
traits) are often essential.

Most style transfer methods still depend on reference images, limiting users to existing examples and de-
manding substantial effort Chung et al. (2024); Xing et al. (2024); Wang et al. (2024a); Xu et al. (2024); Li
(2024); Lötzsch et al. (2022); Wang et al. (2023). By contrast, text-driven approaches Hertz et al. (2024);
Zhang et al. (2023); Liu et al. (2023); Wu et al. (2024)—where styles are specified by natural language (e.g.,
“sketch-like,” “art nouveau”)—could offer greater flexibility but remain underexplored.

Additionally, current style transfer techniques face major obstacles in achieving fine-grained, multi-scale,
and region-specific control. They often fail to capture high-frequency textural details, losing subtle stylistic
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cues (e.g., brushstrokes, grain, intricate material features) even at high resolutions Chung et al. (2024); Xing
et al. (2024), thereby compromising overall texture fidelity.

Motivated by these challenges, we propose Twin-Prompt Attention Blend (TP-Blend), a training-free frame-
work that extends Classifier-Free Guided Text Editing (CFG-TE) Brack et al. (2024); Brooks et al. (2023);
Sheynin et al. (2024); Mokady et al. (2023); Liu et al. (2024); Tumanyan et al. (2023); Chen et al. (2024);
Avrahami et al. (2023); Ge et al. (2023) to support fine-grained object blending and style fusion through sep-
arate textual prompts, as illustrated in Figure 1. TP-Blend introduces two new modules: Cross-Attention
Object Fusion (CAOF), which integrates features from a blend object prompt using attention maps and
an Optimal Transport framework; and Self-Attention Style Fusion (SASF), which injects style via Detail-
Sensitive Instance Normalization (DSIN) and replaces self-attention Key/Value matrices with those from
the style prompt. Unlike prior image-based approaches, TP-Blend enables direct textual control of both
content and style, offering precise and independent modulation of blending strength and texture details.
By unifying object replacement, blending, and style transfer within a single denoising process, TP-Blend
enhances controllability without incurring additional computational overhead.

Main Contributions. (1) Dual-Prompt Mechanism decouples object and style prompts, preventing in-
terference and ensuring precise content representation and faithful style transfer within a unified denoising
process; (2) CAOF with Optimal Transport aligns and integrates blend-object features into a replaced ob-
ject by treating attention maps as distributions, enabling seamless morphological transitions and preserving
semantic integrity; (3) SASF leverages DSIN to extract and transfer high-frequency style features, pre-
serving intricate textural details without over-smoothing while allowing adaptive modulation of stylistic
attributes across different spatial extents and granularities; (4) text-driven Key/Value substitution replaces
self-attention Key/Value matrices with those derived from the style prompt, enforcing localized style mod-
ulation while maintaining spatial coherence and object fidelity.

2 Related Work

Diffusion models have become the de-facto backbone for text-guided image generation and editing, beginning
with unconditional DDPMs Dhariwal & Nichol (2021) and latent variants such as SD-XL Rombach et al.
(2022). Guidance strategies based on classifier-free gradients Ho & Salimans (2022) underpin early editing
systems including IP2P Brooks et al. (2023) and LEDITS++ Brack et al. (2024), yet these frameworks strug-
gle with multi-concept entanglement and fine-grained regional control. Recent work seeks broader functional-
ity: Step1X-Edit Liu et al. (2025), AnyEdit Yu et al. (2024), DreamOmni Xia et al. (2024) and FireEdit Zhou
et al. (2025) pursue unified pipelines that merge generation and editing, whereas Concept Lancet Luo et al.
(2025), LaTexBlend Jin et al. (2025) and Conditional Balance Cohen et al. (2024) probe the trade-off space of
multi-conditioning. Acceleration is addressed by SwiftEdit Nguyen et al. (2024), h-Edit Nguyen et al. (2025),
Schedule-on-the-Fly Ye et al. (2024) and ZoomLDM Yellapragada et al. (2024); resolution scaling appears in
Diffusion-4K Zhang et al. (2025a). Orthogonal architecture advances such as Switti’s scale-wise transformer
design Voronov et al. (2024) highlight that hierarchical token aggregation can improve long-range coherence
without sacrificing detail, a property complementary to our cross-/self-attention fusion. Domain-specific ex-
tensions include DesignDiffusion Wang et al. (2025a), LineArt Wang et al. (2024b), Focus-N-Fix Xing et al.
(2025), Type-R Shimoda et al. (2024) and PreciseCam Bernal-Berdun et al. (2025). Alternative represen-
tations—triplanes Bilecen et al. (2024), rectified flows Dalva et al. (2024) and dense-aligned guidance Wang
et al. (2025b)—expand editing modalities, while Stable Flow Avrahami et al. (2024) and Scene Splatter Zhang
et al. (2025b) explore training-free and 3-D generative directions. Style transfer inside diffusion is usually
image-referenced or AdaIN-based; text-driven approaches such as diffusion self-distillation Cai et al. (2024)
begin to remove exemplar dependence but blur high-frequency details. Our Dual-Prompt Attention Fusion
complements these lines by (i) Optimal-Transport cross-attention that reliably blends object identities with-
out retraining and (ii) DSIN-based self-attention that injects text-specified style while explicitly preserving
high-frequency texture, outperforming prior art on multi-concept and style-aware edits.
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Original Image Object Replacement Object Blending Style Blending

Figure 1: Demonstration of our method’s capabilities. Row 1: Original object “Knight” is replaced by
“Leonardo DiCaprio”, blended with “Batman”, and styled with “Pop Art”. Row 2: Original object
“Robot” is replaced by “Knight”, blended with “Thanos”, and styled with “Cyberpunk Style”. Row
3: Original object “Cat” is replaced by “Dog”, blended with “Horse”, and styled with “Oil painting”.
Row 4: Original object “Chameleon” is replaced by “Dinosaur”, blended with “Fish”, and styled with
“Oil painting”.

3 Proposed Method

3.1 Preliminaries

Diffusion models Dhariwal & Nichol (2021); Rombach et al. (2022) progressively denoise a latent variable to
produce high-fidelity images. Classifier-Free Guidance (CFG) Ho & Salimans (2022) steers generation toward
conditioning inputs (e.g., text) by interpolating between conditional and unconditional noise predictions.
Specifically, the model is trained to predict both ϵθ(xt) and ϵθ(xt, c), where c is the conditioning. At
inference, a guidance scale sg modifies the predicted noise:

ϵ̃θ(xt) = ϵθ(xt) + sg

(
ϵθ(xt, c)− ϵθ(xt)

)
. (1)

CFG-TE extends CFG to perform precise edits on an existing image x0. The image is inverted to a latent xT

via DDIM inversion Song et al. (2020), which deterministically recovers xT from x0 without reconstruction
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Figure 2: Flowchart of TP-Blend, integrating object replacement, blending, and style transfer within the
diffusion process. In this example, the original object “Knight” is replaced by “Leonardo DiCaprio”,
blended with “Captain Jack Sparrow”, and styled with a “Charcoal Drawing” effect.

error:
xt−1 = √

αt−1

(
xt−

√
1−αt ϵθ(xt)√

αt

)
+

√
1− αt−1 ϵθ(xt), (2)

where αt is the noise schedule. Once inverted, the noise prediction at each denoising step can be modified
to remove or add concepts:

ϵ̃edit
θ (xt) = ϵθ(xt) + se ∆ϵθ(xt), (3)

with

∆ϵθ(xt) =
{

ϵθ(xt, cedit)− ϵθ(xt), (positive guidance),

ϵθ(xt)− ϵθ(xt, cedit), (negative guidance),
(4)

where se is the edit guidance scale and cedit is the editing prompt.

3.2 Twin-Prompt Attention Blend

CFG-TE enables object replacement by applying positive guidance to the new object prompt and negative
guidance to the original. However, it lacks mechanisms for fine-grained object blending and style fusion,
which require compositional mixing and textural transformations.

We introduce TP-Blend, extending CFG-TE with two additional prompts: a blend prompt and a style
prompt, both assigned zero edit guidance to avoid interfering with object replacement. Cross-Attention
Object Fusion (CAOF) integrates blend object features at key spatial positions using a unified attention
map and an Optimal Transport framework. Self-Attention Style Fusion (SASF) modulates texture and
style by locally adjusting feature statistics using DSIN and substituting the Key/Value matrices with those
derived from the style prompt. By decoupling both blending and style transfer from the editing guidance
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scale, TP-Blend integrates seamlessly into the denoising process, enhancing CFG-TE’s capabilities with
high-fidelity object and style blending (Fig. 2).

Original Replacement Blending

Figure 3: CAOF Object Blending across different sets.
Row 1: Original object “alpaca” is replaced by “puppy”
and blended with “monkey”. Row 2: Original “apple”
is replaced by “orange” and blended with “tomato”.
Row 3: Original “frog” is replaced by “chameleon” and
blended with “dinosaur”. Row 4: Original “truck” is
replaced by “jeep” and blended with “ambulance”.

Figure 4: CAOF Flowchart: Cross-Attention
Object Fusion merges the blend object’s fea-
tures into the replaced object by identifying key
spatial positions in the attention maps and ap-
plying an optimal transport framework for co-
herent morphological transitions.

3.3 Cross-Attention Object Fusion

As shown in Figure 3 and summarized in Figure 4, CAOF seamlessly integrates a blend object’s features
into a replaced object during the diffusion process. Leveraging textual prompts for both the replaced and
blend objects, CAOF locates key spatial regions in cross-attention maps and employs an Optimal Transport
(OT) framework to determine blending levels.
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Identifying Significant Positions in Cross-Attention Maps. In multi-head cross-attention Vaswani
(2017), each head h produces attention weights

A(h) = softmax
(

Q(h) K(h)⊤
√

dk

)
, (5)

where Q(h) ∈ RN×dk and K(h) ∈ RM×dk are query/key matrices, N is the number of spatial positions, M
is the number of text tokens, and dk is the head dimension. We average over H heads and focus on the
replaced and blend object tokens, treplaced and tblend:

areplaced = 1
H

H∑
h=1

A(h)
: , treplaced

, ablend = 1
H

H∑
h=1

A(h)
: , tblend

. (6)

To identify meaningful spatial positions, we introduce two percentile thresholds, τsource and τdest. Specifically,
any position i in ablend whose attention weight exceeds the τsource-percentile is included in the source set S,
and any position in areplaced exceeding the τdest-percentile is placed in the destination set D.

Blending Feature Embeddings in Reshaped Cross-Attention Outputs. To effectively integrate
features from the blend object into the replaced object, we begin by concatenating the per-head attention
outputs along the feature dimension:

O = ConcatH
h=1

(
A(h)V(h)) ∈ RN×D, (7)

where A(h) ∈ RN×M are attention weight matrices, V(h) ∈ RM×dk are the corresponding value matrices,
D = H · dk is the total feature dimensionality, N is the number of query positions, and M is the number
of key tokens. By consolidating multi-head outputs into a single representation, we preserve all information
necessary for seamless fusion, avoiding the loss that would occur from per-head embeddings.

We then blend the feature vectors of the replaced object with those of the blend object under a transport plan
T. Specifically, if di ∈ D and sj ∈ S denote destination and source positions respectively, with fdi , fsj ∈ RD

being their respective feature vectors from O, the updated feature vector at position di becomes

f ′
di

= (1− w0) fdi
+ w0

∑
sj∈S

Tij∑
sk∈S Tik

fsj
, (8)

where w0 ∈ [0, 1] controls the relative influence of the blend features, and Tij is obtained by solving the OT
problem. By treating the multi-head outputs as a whole at the full dimensionality (e.g., D = 640), we
not only preserve complex content and style cues but also obtain a more manageable OT cost matrix (e.g.,
4096×4096), avoiding the significantly larger matrices (e.g., 40960×40960) that would result from per-head
processing.

Formulating the Optimal Transport Problem. Let S and D denote the sets of source (blend object)
and destination (replaced object) positions. The cost of transporting mass from source position j ∈ S to
destination position i ∈ D is given by

Cij = λfeature Dfeature(i, j) + λspatial Dspatial(i, j), (9)

where Dfeature(i, j) is the cosine distance between feature vectors fi and fj and Dspatial(i, j) is the Euclidean
distance between their spatial coordinates.

We solve the entropic OT problem:

min
T≥0

∑
i∈D

∑
j∈S

TijCij − γH(T), (10)

s.t.
∑
j∈S

Tij = 1, ∀i ∈ D, (11)

∑
i∈D

Tij ≥
1
|S|

, ∀j ∈ S, (12)
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where H(T) = −
∑

i,j Tij log Tij is the entropy term, and γ > 0 is the regularization parameter. Entropy
regularization promotes smoother transport mass across source-destination pairs.

Solving the Optimal Transport Problem with the Sinkhorn Algorithm. The entropic regulariza-
tion allows the problem to be efficiently solved using the Sinkhorn algorithm Cuturi (2013); Peyré et al.
(2019); Genevay et al. (2016). We form the Gibbs kernel K = exp(−C/γ) and iteratively update scaling
vectors u∈R|D| and v∈R|S|:

u(k+1) =
1|D|

K v(k) , v(k+1) =
1

|S| 1|S|

K⊤ u(k+1) , (13)

until convergence. The transport plan becomes

T = diag(u) K diag(v). (14)

Finally, we use T to blend each destination feature with weighted contributions from the source. Reinte-
grating these blended features into the cross-attention outputs yields a naturally fused object that inherits
characteristics of the blend object at selected positions, with minimal overhead or artifacts.

3.4 Self-Attention Style Fusion

As illustrated in Figure 5 and outlined in Figure 6, SASF integrates style and texture into the replaced
object through self-attention. Compared to previous methods Chung et al. (2024); Xing et al. (2024); Wang
et al. (2024a); Xu et al. (2024); Li (2024); Lötzsch et al. (2022); Hertz et al. (2024); Zhang et al. (2023);
Wang et al. (2023), SASF offers four advantages: (1) it introduces DSIN to capture HF textural details in
a lightweight yet effective manner; (2) it relies on simple textual prompts rather than style images; (3) it
fuses style and object features simultaneously during denoising, preserving both content fidelity and style
coherence; and (4) By translating historical idioms such as Ukiyo-e, Renaissance, and Baroque into their
own material vocabularies, SASF can recode fabric weave, ornamentation, and weaponry; chain mail shifts
to brocaded velvet, a plain sword strap becomes an obi sash, yet the figure’s stance and the surrounding
cityscape stay unchanged, as demonstrated in Figure 7.

Detail-Sensitive Instance Normalization. Let Freplaced, Fstyle ∈ RN×D be the latent embeddings (i.e.,
token-wise feature maps) of the replaced and style objects, respectively. We first perform an AdaIN step on
the replaced features:

F′
replaced =

(
Freplaced − µrep

σrep

)
σstyle + µstyle, (15)

where (µrep, σrep) and (µstyle, σstyle) are the channel-wise means and standard deviations of the replaced and
style embeddings. This aligns global statistics (mean and variance) to match the target style, but by itself
may overlook subtle, higher-frequency stylistic cues.

Next, DSIN applies a small 1D Gaussian smoothing filter along the token dimension to decompose both
Freplaced and Fstyle into low-frequency (LF) and high-frequency (HF) components:

FLF = F ∗K, FHF = F − FLF, (16)

where K is a 1D Gaussian kernel of size k = 2m + 1 and width σ. Intuitively, FLF captures coarse variations
(slower changes across tokens), while FHF isolates the finer details. DSIN then injects a fraction α of the
style HF difference directly into the AdaIN output:

F′′
replaced = F′

replaced + α
(
FHF

style − FHF
replaced

)
. (17)

When DSIN applies a 1D Gaussian kernel K along the token dimension, it acts as a low-pass filter in
the frequency domain: larger σ broadens the kernel’s passband, yielding a narrower high-frequency (HF)
residual FHF and thus a subtler style injection. Conversely, smaller σ captures more mid- and high-frequency
components, accentuating textural details (e.g., brushstrokes) in the final output. The injection fraction α
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Style 1 Style 2

Style 3 Style 4

Figure 5: Object blending enhanced with various
artistic styles. Style 1: Pixel Art; Style 2: Choco-
late; Style 3: Charcoal Drawing; Style 4: Oil Paint-
ing.

Figure 6: SASF Flowchart: Self-Attention Style Fu-
sion incorporates style prompts by injecting high-
frequency details via DSIN and substituting textual
Key/Value matrices, ensuring fine-grained style mod-
ulation during the diffusion process.

Ukiyo–e Renaissance Baroque Low-Poly

Figure 7: Stylistic renderings reshape fabric texture and accessories while pose and setting
remain unchanged. The original knight is replaced by Albert Einstein, blended with a nobleman
concept, and then rendered in four distinct styles. Each style reinterprets the garments in a unique way:
Ukiyo-e replaces the surcoat with a patterned kimono, complete with an obi sash and a lacquered katana;
Renaissance introduces brocaded velvet, gilt medallions, and a scholar’s cap; Baroque presents deep hued
silk enriched with heavy gold embroidery and filigreed weaponry; Low-Poly abstracts every surface into
planar facets and simplifies folds and metallic highlights.

then scales the amplitude of these style-specific HF cues. In effect, σ and α together provide a powerful
mechanism for tuning the granularity and prominence of style features.

Unlike prior approaches such as Huang & Belongie (2017) or Chung et al. (2024) that apply AdaIN globally or
only at the initial noise level for DDIM inversion, our DSIN is applied at every self-attention layer throughout
the denoising process. This repeated application ensures the progressive and layer-wise infusion of fine-
grained stylistic features, enabling multi-scale texture adaptation without disrupting the overall structure.
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Key/Value Substitution. Following the DSIN framework, we first construct the Query, Key, and Value
matrices for self-attention. We then substitute the Key and Value channels of the target (replaced) object
with those of the style source:

Ktar ← Ksty, Vtar ← Vsty. (18)

Since the self-attention output is computed by weighting the Value vectors using Query-Key dot products,
replacing the Key and Value matrices of the replaced region with those from the style prompt allows style
features to dominate the attention updates. This substitution imposes the texture and local patterns of the
style onto the replaced object, leading to strong stylistic transformations.

While Chung et al. (2024) apply this substitution using Key/Value representations extracted from an image-
based style encoder, our approach instead derives these from textual prompts. Specifically, we construct
the Key/Value matrices from the text prompts of both the replaced object and the style source, enabling a
text-driven style transfer mechanism without requiring image-based features.

Importantly, although this substitution offsets the effect of DSIN modulation in the Key/Value branches
for the replaced object (since it is overwritten by style-derived features), DSIN-modified features remain
intact in the Query branch. This asymmetry allows DSIN to still influence the attention outputs via its role
in computing attention scores. Consequently, high-frequency stylistic cues injected through DSIN continue
to impact the hidden embeddings passed to the next layer. This achieves a dual effect: the Key/Value
substitution enforces stylistic consistency, while DSIN-enhanced Queries preserve the structural fidelity of
the replaced object, allowing nuanced and locally-aware style transfer.

4 Experiments

4.1 Implementation Details

Model Architecture. All experiments employ SD-XL Podell et al. (2023) as the diffusion backbone. The
source image is first inverted to a latent xT via DDIM inversion, guaranteeing exact reconstruction before
editing. During the forward denoising pass we apply, at every timestep: (i) TIE-CFG for object replacement
(positive guidance on the target prompt, negative on the original); (ii) CAOF to transport blend-object
features into attention positions selected by the joint percentile thresholds τsource = τdest ∈ {0.6, 0.7}; and
(iii) SASF to inject style via DSIN and key–value substitution. The Sinkhorn regulariser is fixed to γ = 0.1,
with cost weights λfeature = 0.7 and λspatial = 0.3 (Eq. 9).

Baseline Methods. To isolate the contribution of TP-Blend, we compare against six state-of-the-art
text-driven editors and re-tune their prompts for each task so that every method receives semantically
equivalent conditioning. The baselines are Step1X-Edit Liu et al. (2025), SeedEdit Shi et al. (2024), LED-
ITS++ Brack et al. (2024) (CVPR 2024), StyleAligned Hertz et al. (2024) (CVPR 2024), TurboEdit Deutch
et al. (2024), and IP2P Brooks et al. (2023) (CVPR 2023). SeedEdit and Step1X-Edit are inversion-free
decoders optimised for speed, LEDITS++ and StyleAligned specialise in resolution-aware refinement, while
TurboEdit and IP2P are two-stage pipelines that first predict a coarse edit mask. Evaluating against this
diverse slate highlights TP-Blend’s ability to blend rather than merely replace or stylise.

Evaluation Protocol. For our evaluation, we assembled a diverse set of high-resolution, publicly available
images from Unsplash1, following the same practice as prior work such as SLIDE Jampani et al. (2021) and
Text-driven Image Editing via Learnable Regions Lin et al. (2024). The test dataset consists of 4,000 samples,
created by pairing 40 base images with 20 distinct replace-blend object combinations and 5 distinct blend
styles.

Evaluation Metrics. We assess alignment between generated image Ig and four textual prompts—original
object PO, replaced object PR, blend object PB , and style PS—using CLIP similarity:

1https://unsplash.com/
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Table 1: Performance on the Object Replacement + Object Blending task.

Method BOM↑ CLIPR↑ CLIPB↑ 1−LPIPSO↑

IP2P Brooks et al. (2023) (CVPR 2023) 0.1075 0.1819 0.2708 0.5887
StyleAligned Hertz et al. (2024) (CVPR 2024) 0.2393 0.2120 0.2866 0.5814
TurboEdit Deutch et al. (2024) 0.3261 0.1984 0.2781 0.6125
LEDITS++ Brack et al. (2024) (CVPR 2024) 0.3980 0.2078 0.2834 0.6145
SeedEdit Shi et al. (2024) 0.5612 0.2096 0.2966 0.6381
Step1X-Edit Liu et al. (2025) 0.7352 0.2120 0.2913 0.7024
CAOF 0.8388 0.2014 0.2937 0.8292

Table 2: Performance on the full Object Replacement + Object & Style Blending task.

Method BOSM↑ CLIPR↑ CLIPB↑ CLIPS↑

IP2P Brooks et al. (2023) (CVPR 2023) 0.1277 0.1680 0.2776 0.1694
LEDITS++ Brack et al. (2024) (CVPR 2024) 0.2762 0.2039 0.2876 0.2236
TurboEdit Deutch et al. (2024) 0.3999 0.1954 0.2820 0.2090
StyleAligned Hertz et al. (2024) (CVPR 2024) 0.4360 0.1888 0.2915 0.1973
Step1X-Edit Liu et al. (2025) 0.4826 0.2145 0.2920 0.2170
SeedEdit Shi et al. (2024) 0.4899 0.1963 0.2915 0.2017
CAOF 0.7102 0.2014 0.2937 0.1976
CAOF+SASF 0.9244 0.2178 0.3022 0.2161

CLIPx = cos
(
fvis(Ig), ftext(Px)

)
, x ∈ {O, R, B, S}.

Perceptual fidelity is quantified as 1−LPIPSO. To ensure comparability, each score s is min–max normalized:

ŝ = ϵ + (1− ϵ) s− smin

smax − smin
, ϵ = 0.1.

The normalized scores are ˆCLIPR, ˆCLIPB , ˆCLIPS , and 1− ˆLPIPSO.

BOM (Blending Object Metric) measures replacement and blending accuracy:

BOM = wR + wB + wL
wR
ˆCLIPR

+ wB
ˆCLIPB

+ wL

1− ˆLPIPSO

,

BOSM (Blending Object Style Metric) further incorporates style fidelity:

BOSM = wR + wB + wS
wR
ˆCLIPR

+ wB
ˆCLIPB

+ wS
ˆCLIPS

+ wL

1− ˆLPIPSO

.

Both metrics are harmonic means where low individual scores significantly lower the final value, highlighting
edits that successfully balance content fidelity and stylistic integration.

4.2 Comparisons with SOTA models

Quantitative Evaluation of Object Replacement and Blending. Table 1 presents BOM scores for
800 replacement–blend pairs. CAOF achieves the highest value (0.8388), substantially surpassing the next
best method (0.7352). Its advantage does not stem from a single component: although Step1X-Edit yields the
best CLIPR and SeedEdit tops CLIPB , those gains are offset by weaker performance on the complementary
cue and by larger perceptual drift, which the harmonic mean penalises. CAOF instead secures near-peak
values on both alignment terms while also delivering the strongest image-fidelity score (1−LPIPSO=0.8292).
This balance arises from the cost-aware transport in CAOF, which places blend features only at semantically
consistent locations, preserving global structure and avoiding the artefacts or concept omission observed
in the baselines. The results confirm that effective object blending requires simultaneous optimisation of
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Original CAOF (replacement only) CAOF+SASF

TurboEdit SeedEdit LEDITS++

Step1X-Edit IP2P StyleAligned

Figure 8: Method comparison for the task Knight→ Leonardo DiCaprio, blended with Batman and rendered
in a water-color style.

replacement accuracy, blend consistency, and photographic integrity, a trade-off that CAOF is uniquely able
to satisfy.

Quantitative Evaluation of Object Replacement, Blending, and Style Integration. Table 2 lists
all methods in ascending BOSM order. The lower half of the table shows that aggressive stylisation or
simplistic blending hurts semantic alignment, producing BOSM below 0.40. Middle-ranking approaches
recover object fidelity yet still dilute style cues, so their overall balance remains limited. Pure CAOF moves
into the upper tier by preserving both objects without increasing perceptual drift, yielding BOSM 0.7102.
Adding SASF raises the score to 0.9244, the largest margin in the study. This improvement is not obtained
by style similarity alone: CLIPR and CLIPB also climb, indicating that the high-frequency details injected
by DSIN and the text-driven Key–Value substitution sharpen local structure and make both identities
more recognisable. The joint optimisation of content and texture therefore proves essential when multiple
conceptual constraints must be satisfied simultaneously.

Visual Assessment. Figure 8 (fantasy portrait) and Figure 9 (celebrity street scene) illustrate the quanti-
tative trend reported in Table 2. CAOF+SASF achieves a balanced fusion where both the replaced identity,
the blended identity, and the target style are distinctly visible while maintaining the original scene geometry
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Original CAOF (replacement only) CAOF+SASF

TurboEdit SeedEdit LEDITS++

Step1X-Edit IP2P StyleAligned

Figure 9: Method comparison for the task Tom Hanks → Taylor Swift, blended with jean shorts+white shirt
and rendered in an oil-painting style.

and background texture. In contrast, other methods exhibit clear limitations. In Figure 8, the blending
process overemphasizes Batman, leading to a loss of Leonardo DiCaprio’s distinct features. Similarly, in
Figure 9, the original features are not well preserved: the iconic chocolate box held by Forrest Gump ei-
ther disappears or is distorted, and the seated pose is unnaturally transformed into a standing position.
These issues, along with excessive denoising that washes out high-frequency details or spatial artifacts like
duplicated limbs, result in lower BOSM scores for competing methods. This comparison highlights the per-
ceptual advantage of CAOF+SASF, which maintains a coherent and natural fusion without introducing such
distortions.

4.3 Ablation Study

Ablation Study on CAOF. To examine how CAOF controls the fusion strength, we vary the blending
coefficient w0 ∈ [0.1, 0.9] (Eq. 8) and record the CLIP similarities for the original (O), replaced (R), and blend
(B) prompts. Figure 10 illustrates the variation of CLIP scores with w0. The curves clearly demonstrate
CAOF’s effectiveness in adjusting blending strength. As w0 increases beyond 0.6, the influence of the blend
object prompt Pb significantly rises, while the influence of the replaced object prompt Pr remains high until
w0 exceeds 0.8, after which it decreases rapidly. Concurrently, the influence of the original object prompt Po
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Figure 10: Variation of CLIP scores for original (Po), replaced (Pr), and blend (Pb) object prompts as the
blending coefficient w0 changes. The curves illustrate CAOF’s effectiveness in modulating blending strength,
achieving the desired integration of the blend object while replacing the original object.

w0 = 0.2 w0 = 0.5 w0 = 0.7 w0 = 0.9

Figure 11: Object blending progression with varying blending coefficients w0. Row 1: “monkey” blended
into replaced “puppy” (originally “alpaca”). Row 2: “fish” blended into replaced “dinosaur” (origi-
nally “chameleon”). Row 3: “ambulance” blended into replaced “jeep” (originally “truck”). Row 4:
“Thanos” blended into replaced “knight” (originally “robot”). Higher w0 values correspond to increased
blending intensity and finer textural details.

remains consistently low throughout, aligning with our goal to replace the original object with the replaced
object while blending in the blend object to the desired extent. Qualitative frames in Fig. 11 corroborate the
numerical trend, showing a smooth morph from “mostly replacement” to “mostly blend” without geometric
break-down.

SASF Ablation. SASF relies solely on textual prompts for style specification, prompting us to measure
style blending performance through ˆCLIPS , the normalized similarity between the generated image Ig and
the style object prompt Ps. As shown in Table 2, CAOF+SASF attains a substantially higher CLIPS of
0.2161 than CAOF’s 0.1976, indicating that SASF effectively injects the desired style features.

OT Ablation. To disentangle the contribution of the Sinkhorn solver, we replace it with a naïve NoneOT
variant that line-up source and destination tokens by index and applies a fixed α-blend, thereby ignoring
both feature similarity and spatial proximity. As summarised in Table 3, removing Optimal Transport
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Figure 12: Pixel-art edit of “robot → knight” blended with “Thanos”. Left: α = 0, right: α = 0.5, σ = 2.5.

Table 3: OT ablation: CAOF vs. NoneOT.

Method BOM↑ CLIPR↑ CLIPB↑ 1−LPIPSO↑

NoneOT 0.1429 0.1984 0.2891 0.8304
CAOF 0.2500 0.2014 0.2937 0.8292

Table 4: DSIN texture metrics versus α and σ.

α σ LV↑ GC↑ HFS↑

0.5 2.5 271.8709 79.9853 5.27×109

0.5 0.5 253.3316 79.7168 5.06×109

0.2 2.5 266.9800 80.0325 5.21×109

0.2 0.5 241.8779 76.5979 4.97×109

0.0 – 244.2984 68.8580 4.90×109

slashes BOM from 0.2500 to 0.1429. The loss is driven almost entirely by lower alignment scores (CLIPR
and CLIPB), while the perceptual term 1−LPIPSO remains virtually unchanged. In other words, a uni-
form blend preserves low-level appearance but often allocates the wrong blend features to the wrong spatial
regions, degrading semantic coherence. The cost-aware Sinkhorn plan redistributes those features toward ge-
ometrically and visually compatible destinations, yielding a markedly more faithful fusion without sacrificing
overall image fidelity.

DSIN Ablation. Laplacian Variance (LV) Pertuz et al. (2013), GLCM Contrast (GC) Haralick et al.
(1973), and FFT High–Frequency Sum (HFS) Gonzalez & Woods (2008) show that textural richness depends
on the joint choice of the residual-mixing weight α and the Gaussian width σ, rather than on α alone. Raising
α strengthens the amplitude of the injected high-frequency residual, but this extra energy is useful only if σ
is large enough to confine the smoothing kernel to genuinely low frequencies; with α = 0.5 the wider kernel
σ = 2.5 yields the highest LV, GC, and HFS, whereas the same α combined with the narrow kernel σ = 0.5
loses mid-range structure and drops all three scores. Conversely, keeping α moderate at 0.2 still improves
over pure AdaIN (α = 0), yet the gain is larger when σ = 2.5 than when σ = 0.5. These trends confirm that α
governs how much fine detail is transferred while σ sets the frequency band that will be regarded as “detail”;
optimal texture emerges when both parameters are tuned together, explaining the peak at α = 0.5, σ = 2.5
in Table 4 and the visibly crisper result in Figure 12.

5 Conclusion

We introduced TP-Blend, a training-free framework that performs object replacement, object blending, and
style fusion within a single diffusion denoising run. By separating the content and style prompts, TP-Blend
grants independent control over semantic structure and appearance. Cross-Attention Object Fusion employs
an optimal-transport plan to place blend-object features in spatially and semantically consistent regions,
while Self-Attention Style Fusion injects high-frequency texture through detail-sensitive instance normal-
isation and text-driven key–value substitution. Across extensive benchmarks, TP-Blend delivers sharper
textures, stronger alignment with target objects and styles, and higher perceptual fidelity than recent ed-
itors, all without extra training or model fine-tuning. These results establish TP-Blend as a simple yet
effective tool for precise, text-guided image editing within diffusion models.

14



Under review as submission to TMLR

References
Omri Avrahami, Thomas Hayes, Oran Gafni, Sonal Gupta, Yaniv Taigman, Devi Parikh, Dani Lischinski,

Ohad Fried, and Xi Yin. Spatext: Spatio-textual representation for controllable image generation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18370–18380,
2023.

Omri Avrahami, Or Patashnik, Ohad Fried, Egor Nemchinov, Kfir Aberman, Dani Lischinski, and Daniel
Cohen-Or. Stable flow: Vital layers for training-free image editing. arXiv preprint arXiv:2411.14430,
2024.

Edurne Bernal-Berdun, Ana Serrano, Belen Masia, Matheus Gadelha, Yannick Hold-Geoffroy, Xin Sun,
and Diego Gutierrez. Precisecam: Precise camera control for text-to-image generation. arXiv preprint
arXiv:2501.12910, 2025.

Bahri Batuhan Bilecen, Yigit Yalin, Ning Yu, and Aysegul Dundar. Reference-based 3d-aware image editing
with triplanes. arXiv preprint arXiv:2404.03632, 2024.

Manuel Brack, Felix Friedrich, Katharia Kornmeier, Linoy Tsaban, Patrick Schramowski, Kristian Kersting,
and Apolinário Passos. Ledits++: Limitless image editing using text-to-image models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8861–8870, 2024.

Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image editing
instructions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 18392–18402, 2023.

Shengqu Cai, Eric Chan, Yunzhi Zhang, Leonidas Guibas, Jiajun Wu, and Gordon Wetzstein. Diffusion
self-distillation for zero-shot customized image generation. arXiv preprint arXiv:2411.18616, 2024.

Wenhu Chen, Hexiang Hu, Yandong Li, Nataniel Ruiz, Xuhui Jia, Ming-Wei Chang, and William W Cohen.
Subject-driven text-to-image generation via apprenticeship learning. Advances in Neural Information
Processing Systems, 36, 2024.

Jiwoo Chung, Sangeek Hyun, and Jae-Pil Heo. Style injection in diffusion: A training-free approach for
adapting large-scale diffusion models for style transfer. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 8795–8805, 2024.

Nadav Z Cohen, Oron Nir, and Ariel Shamir. Conditional balance: Improving multi-conditioning trade-offs
in image generation. arXiv preprint arXiv:2412.19853, 2024.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26, 2013.

Yusuf Dalva, Kavana Venkatesh, and Pinar Yanardag. Fluxspace: Disentangled semantic editing in rectified
flow transformers. arXiv preprint arXiv:2412.09611, 2024.

Gilad Deutch, Rinon Gal, Daniel Garibi, Or Patashnik, and Daniel Cohen-Or. Turboedit: Text-based image
editing using few-step diffusion models. arXiv preprint arXiv:2408.00735, 2024.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances in neural
information processing systems, 34:8780–8794, 2021.

Songwei Ge, Taesung Park, Jun-Yan Zhu, and Jia-Bin Huang. Expressive text-to-image generation with
rich text. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7545–7556,
2023.

Aude Genevay, Marco Cuturi, Gabriel Peyré, and Francis Bach. Stochastic optimization for large-scale
optimal transport. Advances in neural information processing systems, 29, 2016.

Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Pearson/Prentice Hall, 3 edition, 2008.

15



Under review as submission to TMLR

Robert M. Haralick, K. Shanmugam, and I. Dinstein. Textural features for image classification. IEEE
Transactions on Systems, Man, and Cybernetics, SMC-3(6):610–621, 1973.

Amir Hertz, Andrey Voynov, Shlomi Fruchter, and Daniel Cohen-Or. Style aligned image generation via
shared attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 4775–4785, 2024.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598, 2022.

Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive instance normalization.
In Proceedings of the IEEE international conference on computer vision, pp. 1501–1510, 2017.

Varun Jampani, Huiwen Chang, Kyle Sargent, Abhishek Kar, Richard Tucker, Michael Krainin, Dominik
Kaeser, William T Freeman, David Salesin, Brian Curless, et al. Slide: Single image 3d photography with
soft layering and depth-aware inpainting. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 12518–12527, 2021.

Jian Jin, Zhenbo Yu, Yang Shen, Zhenyong Fu, and Jian Yang. Latexblend: Scaling multi-concept customized
generation with latent textual blending. arXiv preprint arXiv:2503.06956, 2025.

Shaoxu Li. Diffstyler: Diffusion-based localized image style transfer. arXiv preprint arXiv:2403.18461, 2024.

Zhen Li, Mingdeng Cao, Xintao Wang, Zhongang Qi, Ming-Ming Cheng, and Ying Shan. Photomaker: Cus-
tomizing realistic human photos via stacked id embedding. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 8640–8650, 2024.

Yuanze Lin, Yi-Wen Chen, Yi-Hsuan Tsai, Lu Jiang, and Ming-Hsuan Yang. Text-driven image editing via
learnable regions. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 7059–7068, 2024.

Chang Liu, Xiangtai Li, and Henghui Ding. Referring image editing: Object-level image editing via referring
expressions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 13128–13138, 2024.

Shiyu Liu, Yucheng Han, Peng Xing, Fukun Yin, Rui Wang, Wei Cheng, Jiaqi Liao, Yingming Wang,
Honghao Fu, Chunrui Han, et al. Step1x-edit: A practical framework for general image editing. arXiv
preprint arXiv:2504.17761, 2025.

Zhi-Song Liu, Li-Wen Wang, Wan-Chi Siu, and Vicky Kalogeiton. Name your style: text-guided artistic
style transfer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 3530–3534, 2023.

Winfried Lötzsch, Max Reimann, Martin Büssemeyer, Amir Semmo, Jürgen Döllner, and Matthias Trapp.
Wise: Whitebox image stylization by example-based learning. In European Conference on Computer
Vision, pp. 135–152. Springer, 2022.

Jinqi Luo, Tianjiao Ding, Kwan Ho Ryan Chan, Hancheng Min, Chris Callison-Burch, and René Vidal. Con-
cept lancet: Image editing with compositional representation transplant. arXiv preprint arXiv:2504.02828,
2025.

Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion for editing
real images using guided diffusion models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 6038–6047, 2023.

Toan Nguyen, Kien Do, Duc Kieu, and Thin Nguyen. h-edit: Effective and flexible diffusion-based editing
via doob’s h-transform. arXiv preprint arXiv:2503.02187, 2025.

Trong-Tung Nguyen, Quang Nguyen, Khoi Nguyen, Anh Tran, and Cuong Pham. Swiftedit: Lightning fast
text-guided image editing via one-step diffusion. arXiv preprint arXiv:2412.04301, 2024.

16



Under review as submission to TMLR

S. Pertuz, D. Puig, and M. A. Garcia. Analysis of focus measure operators for shape-from-focus. Pattern
Recognition, 46(5):1415–1432, 2013.

Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data science.
Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna,
and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image synthesis. arXiv
preprint arXiv:2307.01952, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10684–10695, 2022.

Shelly Sheynin, Adam Polyak, Uriel Singer, Yuval Kirstain, Amit Zohar, Oron Ashual, Devi Parikh, and
Yaniv Taigman. Emu edit: Precise image editing via recognition and generation tasks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8871–8879, 2024.

Yichun Shi, Peng Wang, and Weilin Huang. Seededit: Align image re-generation to image editing. arXiv
preprint arXiv:2411.06686, 2024.

Wataru Shimoda, Naoto Inoue, Daichi Haraguchi, Hayato Mitani, Seichi Uchida, and Kota Yamaguchi.
Type-r: Automatically retouching typos for text-to-image generation. arXiv preprint arXiv:2411.18159,
2024.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020.

Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali Dekel. Plug-and-play diffusion features for text-driven
image-to-image translation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 1921–1930, 2023.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Anton Voronov, Denis Kuznedelev, Mikhail Khoroshikh, Valentin Khrulkov, and Dmitry Baranchuk. Switti:
Designing scale-wise transformers for text-to-image synthesis. arXiv preprint arXiv:2412.01819, 2024.

Haofan Wang, Peng Xing, Renyuan Huang, Hao Ai, Qixun Wang, and Xu Bai. Instantstyle-plus: Style
transfer with content-preserving in text-to-image generation. arXiv preprint arXiv:2407.00788, 2024a.

Xi Wang, Hongzhen Li, Heng Fang, Yichen Peng, Haoran Xie, Xi Yang, and Chuntao Li. Lineart: A
knowledge-guided training-free high-quality appearance transfer for design drawing with diffusion model.
arXiv preprint arXiv:2412.11519, 2024b.

Zhendong Wang, Jianmin Bao, Shuyang Gu, Dong Chen, Wengang Zhou, and Houqiang Li. Designdiffusion:
High-quality text-to-design image generation with diffusion models. arXiv preprint arXiv:2503.01645,
2025a.

Zhizhong Wang, Lei Zhao, and Wei Xing. Stylediffusion: Controllable disentangled style transfer via diffusion
models. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7677–7689,
2023.

Zixuan Wang, Duo Peng, Feng Chen, Yuwei Yang, and Yinjie Lei. Training-free dense-aligned diffusion
guidance for modular conditional image synthesis. arXiv preprint arXiv:2504.01515, 2025b.

Yichun Wu, Huihuang Zhao, Wenhui Chen, Yunfei Yang, and Jiayi Bu. Textstyler: A clip-based approach
to text-guided style transfer. Computers & Graphics, 119:103887, 2024.

Bin Xia, Yuechen Zhang, Jingyao Li, Chengyao Wang, Yitong Wang, Xinglong Wu, Bei Yu, and Jiaya Jia.
Dreamomni: Unified image generation and editing. arXiv preprint arXiv:2412.17098, 2024.

17



Under review as submission to TMLR

Peng Xing, Haofan Wang, Yanpeng Sun, Qixun Wang, Xu Bai, Hao Ai, Renyuan Huang, and Zechao Li.
Csgo: Content-style composition in text-to-image generation. arXiv preprint arXiv:2408.16766, 2024.

Xiaoying Xing, Avinab Saha, Junfeng He, Susan Hao, Paul Vicol, Moonkyung Ryu, Gang Li, Sahil Singla,
Sarah Young, Yinxiao Li, et al. Focus-n-fix: Region-aware fine-tuning for text-to-image generation. arXiv
preprint arXiv:2501.06481, 2025.

Youcan Xu, Zhen Wang, Jun Xiao, Wei Liu, and Long Chen. Freetuner: Any subject in any style with
training-free diffusion. arXiv preprint arXiv:2405.14201, 2024.

Zilyu Ye, Zhiyang Chen, Tiancheng Li, Zemin Huang, Weijian Luo, and Guo-Jun Qi. Schedule on the fly:
Diffusion time prediction for faster and better image generation. arXiv preprint arXiv:2412.01243, 2024.

Srikar Yellapragada, Alexandros Graikos, Kostas Triaridis, Prateek Prasanna, Rajarsi R Gupta, Joel Saltz,
and Dimitris Samaras. Zoomldm: Latent diffusion model for multi-scale image generation. arXiv preprint
arXiv:2411.16969, 2024.

Qifan Yu, Wei Chow, Zhongqi Yue, Kaihang Pan, Yang Wu, Xiaoyang Wan, Juncheng Li, Siliang Tang,
Hanwang Zhang, and Yueting Zhuang. Anyedit: Mastering unified high-quality image editing for any
idea. arXiv preprint arXiv:2411.15738, 2024.

Jinjin Zhang, Qiuyu Huang, Junjie Liu, Xiefan Guo, and Di Huang. Diffusion-4k: Ultra-high-resolution
image synthesis with latent diffusion models. arXiv preprint arXiv:2503.18352, 2025a.

Shengjun Zhang, Jinzhao Li, Xin Fei, Hao Liu, and Yueqi Duan. Scene splatter: Momentum 3d scene
generation from single image with video diffusion model. arXiv preprint arXiv:2504.02764, 2025b.

Yuxin Zhang, Nisha Huang, Fan Tang, Haibin Huang, Chongyang Ma, Weiming Dong, and Changsheng
Xu. Inversion-based style transfer with diffusion models. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 10146–10156, 2023.

Jun Zhou, Jiahao Li, Zunnan Xu, Hanhui Li, Yiji Cheng, Fa-Ting Hong, Qin Lin, Qinglin Lu, and Xiaodan
Liang. Fireedit: Fine-grained instruction-based image editing via region-aware vision language model.
arXiv preprint arXiv:2503.19839, 2025.

18


	Introduction
	Related Work
	Proposed Method
	Preliminaries
	Twin‑Prompt Attention Blend
	Cross-Attention Object Fusion
	Self-Attention Style Fusion

	Experiments
	Implementation Details
	Comparisons with SOTA models
	Ablation Study

	Conclusion

