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ABSTRACT

We study correlation clustering where the pairwise similarities are not known in
advance. For this purpose, we employ active learning to query pairwise similarities
in a cost-efficient way. We propose a number of effective information-theoretic
acquisition functions based on entropy and information gain. We extensively
investigate the performance of our methods in different settings and demonstrate
their superior performance compared to the alternatives.

1 INTRODUCTION

Clustering is an important unsupervised learning problem for which several methods have been
proposed in different contexts. Correlation clustering (CC) (Bansal et al., 2004; Demaine et al.,
2006) is a well-known clustering problem, especially beneficial when both similarity and dissimilarity
assessments exist for a given set of N objects. Consequently, CC studies the clustering of objects
where pairwise similarities can manifest as positive or negative numbers. It has found a wide range
of applications including image segmentation (Kim et al., 2011), bioinformatics (Bonchi et al., 2013),
spam filtering (Ramachandran et al., 2007; Bonchi et al., 2014), social network analysis (Bonchi et al.,
2012; Tang et al., 2016), duplicate detection (Hassanzadeh et al., 2009), co-reference identification
(McCallum & Wellner, 2004), entity resolution (Getoor & Machanavajjhala, 2012), color naming
across languages (Thiel et al., 2019) and clustering aggregation (Gionis et al., 2007; Chehreghani
& Chehreghani, 2020). CC was initially explored using binary pairwise similarities in {−1,+1}
(Bansal et al., 2004), and was later extended to support arbitrary positive and negative pairwise
similarities in R (Charikar et al., 2005; Demaine et al., 2006). Finding the optimal solution for CC is
known to be NP-hard and APX-hard (Bansal et al., 2004; Demaine et al., 2006), presenting significant
challenges. As a result, various approximate algorithms have been developed to address this problem
(Bansal et al., 2004; Charikar et al., 2005; Demaine et al., 2006; Ailon et al., 2008; Elsner & Schudy,
2009). Among these, methods based on local search are noted for their superior performance in terms
of clustering quality and computational efficiency (Thiel et al., 2019; Chehreghani, 2023).

Existing methods generally assume that all
(
N
2

)
pairwise similarities are available beforehand.

However, as discussed in (Bressan et al., 2019; García-Soriano et al., 2020), generating pairwise
similarities can be computationally intensive and may need to be obtained through resource-intensive
queries, e.g., from a human expert. For instance, determining interactions between biological entities
often requires the expertise of highly trained professionals, consuming both time and valuable
resources (García-Soriano et al., 2020). In tasks like entity resolution, obtaining pairwise similarity
queries through crowd-sourcing could also involve monetary costs. Therefore, a central question
emerges: How can we design a machine learning paradigm that effectively delivers satisfactory CC
results with a limited number of queries for pairwise similarities between objects?

In machine learning, active learning is generally employed to address such a question. Its objective
is to acquire the most informative data within a constrained budget. Active learning has proven
effective in various tasks, including recommender systems (Rubens et al., 2015), sound event
detection (Shuyang et al., 2020), analysis of driving time series (Jarl et al., 2022), drug discovery
(Viet Johansson et al., 2022), and analysis of logged data (Yan et al., 2018). In the context of active
learning, the selection of which data to query is guided by an acquisition function. Active learning
is most commonly studied for classification and regression problems (Settles, 2009). However, it
has also been studied for clustering and is sometimes referred to as supervised clustering (Awasthi
& Zadeh, 2010). The objective is to discover the ground-truth clustering with a minimal number of
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queries to an oracle (e.g., a human expert). In this scenario, queries are typically executed in one
of two ways: (i) By asking whether two clusters should merge or if one cluster should be divided
into multiple clusters (Balcan & Blum, 2008; Awasthi & Zadeh, 2010; Awasthi et al., 2017); (ii) By
querying the pairwise relations between objects (Basu et al., 2004; Mazumdar & Saha, 2017b;a; Saha
& Subramanian, 2019; Bressan et al., 2019; García-Soriano et al., 2020; van Craenendonck et al.,
2018b; Silwal et al., 2023; Gullo et al., 2023; Aronsson & Chehreghani, 2024; Kuroki et al., 2024).

Among the aforementioned works on active learning for clustering, only (Mazumdar & Saha, 2017b;
Bressan et al., 2019; García-Soriano et al., 2020; Aronsson & Chehreghani, 2024; Kuroki et al., 2024)
consider the setting that we are interested in: (i) The clustering algorithm is based on CC; (ii) The
pairwise similarities are not assumed to be known in advance; (iii) We assume access to a single
noisy oracle, to which a fixed budget B ≪

(
N
2

)
of queries for pairwise similarities can be performed;

(iv) Access to feature vectors is not assumed by the algorithm, meaning that information about
the ground-truth clustering is solely obtained through querying the oracle for pairwise similarities.
Throughout the paper, this setting will be referred to as active correlation clustering.

The work in (Mazumdar & Saha, 2017b) develops a number of pivot-based CC algorithms that satisfy
guarantees on the query complexity, assuming a noisy oracle. However, the algorithms are purely
theoretical and are not implemented and investigated in practice, and require setting a number of
non-trivial parameters (e.g., they assume the noise level is known in advance which is unrealistic).
The work in (Bressan et al., 2019; García-Soriano et al., 2020) proposes adaptive and query-efficient
versions of the simple pivot-based CC algorithm KwikCluster (Ailon et al., 2008). However, as
demonstrated in (Aronsson & Chehreghani, 2024), such pivot-based methods perform very poorly
for active CC with noise. The work in (Gullo et al., 2023; Kuroki et al., 2024) address query-efficient
CC by formulating it as a multi-armed bandit problem. However, this leads to a number of limiting
assumptions in practice. We defer a detailed comparison to Appendix E.

The work in (Aronsson & Chehreghani, 2024) proposes a generic active CC framework that over-
comes the limitations of previous work and offers several advantages: (i) The pairwise similarities
can be any positive or negative real number, even allowing for inconsistencies (i.e., violation of
transitivity). This allows the oracle to express uncertainty in their feedback; (ii) The process of
querying pairwise similarities is decoupled from the clustering algorithm, enhancing flexibility in
constructing acquisition functions that can be employed in conjunction with any CC algorithm.
(Aronsson & Chehreghani, 2024) employs an efficient CC algorithm based on local search, whose
effectiveness (and superiority over pivot-based methods) has also been demonstrated in the standard
CC setting (Thiel et al., 2019; Chehreghani, 2023), and dynamically computes the number of clusters;
(iii) The framework is robust w.r.t. a noisy oracle and supports multiple queries for the same pairwise
similarity if needed (to deal with noise).

Furthermore, (Aronsson & Chehreghani, 2024) proposes two novel acquisition functions, namely
maxmin and maxexp, to be used within their framework. They demonstrate that the algorithm QECC
from (García-Soriano et al., 2020) performs poorly in the presence of even a very small amount of
noise and is significantly outperformed by their methods. In this paper, we adopt the generic active
CC framework in (Aronsson & Chehreghani, 2024) with a focus on the development of more effective
acquisition functions. The contributions of this paper are the following:

• We investigate the use of information-theoretic acquisition functions based on entropy and infor-
mation gain for active CC. We propose four different acquisition functions inspired by this (see
Section 3). Although information-theoretic acquisition functions have been extensively studied in
the context of active learning (Roy & McCallum, 2001; Kirsch & Gal, 2022), prior research has
focused mainly on (active) supervised learning scenarios, where the goal is to query data labels
from an oracle rather than pairwise relations. To our knowledge, our work is the first attempt to
propose information-theoretic acquisition functions to active learning with pairwise relations, as
well as to non-parametric models like CC. Computing the necessary quantities in this setting is
significantly more complex. The methods proposed in this paper can be applied beyond active CC,
including to the active learning of other pairwise (non-parametric) clustering models.

• We conduct extensive experimental studies on various datasets that demonstrate the superior
performance of our acquisition functions compared to maxmin and maxexp (and other baselines),
and investigate a number of interesting insights about the active CC framework from (Aronsson &
Chehreghani, 2024) (see Section 4 and Appendix C).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 ACTIVE CORRELATION CLUSTERING

In this section, we begin by introducing the problem of active CC. After this, we describe the active
clustering procedure used to solve this problem.

2.1 PROBLEM FORMULATION

We are given a set of N objects (data points) indexed by V = {1, . . . , N}. The set of pairs of objects
in V is denoted by E = {(u, v) | u, v ∈ V}. We assume the existence of a ground-truth similarity
matrix S∗ ∈ RN×N , which represents the true pairwise similarities between every pair (u, v) ∈ E .
However, S∗ is not known beforehand. Instead, one can only query the oracle for a noisy version of
this matrix for a desired pair of objects, while incurring some cost. We use S ∈ RN×N to represent
an estimate of the pairwise similarities. If Suv = S∗

uv for all (u, v) ∈ E we have a perfect estimate
of the true pairwise similarities, which we assume is unrealistic in practice. Hence, the objective
is to discover the ground-truth clustering solution with a minimal number of (active) queries for
the pairwise similarities to the oracle, since each query incurs some cost. A similarity matrix S is
symmetric, and we assume zeros on the diagonal, i.e., Suv = Svu and Suu = 0. This means there
are
(
N
2

)
= (N × (N − 1))/2 unique pairwise similarities to estimate. Without loss of generality,

we assume all similarities are in the range [−1,+1]. In this case, +1 and −1 respectively indicate
definite similarity and dissimilarity. Thus, a similarity close to 0 indicates a lack of knowledge about
the relation between the two objects. This allows the oracle to express uncertainty in their feedback.

A clustering is a partition of V . In this paper, we encode a clustering with K clusters as a clustering
solution c ∈ KN where K = {1, . . . ,K} and cu ∈ K denotes the cluster label of object u ∈ V .
We denote by C the set of clustering solutions for all possible partitions (clusterings) of V . Given a
clustering solution c ∈ C, the CC cost function RCC : C → R+ aims to penalize cluster disagreements,
as shown in Eq. 1.

RCC(c | S) ≜
∑

(u,v)∈E

{
|Suv| if (cu = cv and Suv < 0) or (cu ̸= cv and Suv ≥ 0)

0 otherwise.
(1)

Proposition 2.1. Eq. 1 can be simplified to RCC(c | S) = −
∑

(u,v)∈E
cu=cv

Suv + constant, where the

constant is independent of different clustering solutions (Chehreghani, 2013).

All the proofs are in Appendix A. Based on Proposition 2.1, we define the max correlation cost
function as

RMC(c | S) ≜ −
∑

(u,v)∈E
cu=cv

Suv, (2)

and we have argminc∈C RCC(c | S) = argminc∈C RMC(c | S). Because of this, we will use RMC

throughout most of the paper, as it leads to a number of simplifications in the presented methods.
The conditioning on S for RCC and RMC will often be dropped, unless it is not clear from context.
Finally, the ground-truth clustering solution corresponds to c∗ = argminc∈C RMC(c | S∗).

2.2 ACTIVE CORRELATION CLUSTERING PROCEDURE

We adopt the recent generic active CC procedure outlined in (Aronsson & Chehreghani, 2024) to
solve the problem described in the previous section. The procedure is shown in Alg. 1. It takes
an initial similarity matrix S0 as input, which can contain partial or no information about S∗,
depending on the initialization method. The procedure then follows a number of iterations, where
each iteration i consists of three steps: (i) Update the current clustering solution ci ∈ C by running
a CC algorithm given the current similarity matrix Si. The current similarity matrix Si will be
referred to as S throughout the paper; (ii) Select a batch B ⊆ E of pairs of size B = |B| based
on an acquisition function a : E → R. The quantity a(u, v) indicates how informative the pair
(u, v) ∈ E is, where a higher value implies greater informativeness. The optimal batch is selected by
B = argmaxB⊆E,|B|=B

∑
(u,v)∈B a(u, v). This corresponds to selecting the top-B pairs based on

their acquisition value; (iii) Query the oracle for the pairwise similarities of the pairs (u, v) ∈ B and
update each Si+1

uv based on the response.
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Algorithm 1 Active CC
1: Input: Initial similarity matrix S0, acquisition function a, batch size B.
2: i← 0
3: while query budget not reached do
4: ci ← CC(Si) ▷ Alg. 5
5: B ← argmaxB⊆E,|B|=B

∑
(u,v)∈B a(u, v)

6: Query (noisy) oracle and update Si+1
uv for all pairs (u, v) ∈ B

7: i← i+ 1
8: end while
9: return ci

3 INFORMATION-THEORETIC ACQUISITION FUNCTIONS

In this section, we introduce four information-theoretic acquisition functions for active CC. All
quantities defined below are conditioned on the current similarity matrix S, but it is left out for
brevity. All acquisition functions proposed in this section depend on the Gibbs distribution defined as

PGibbs(y = c) ≜
exp(−βRMC(c))∑

c′∈C exp(−βRMC(c′))
, (3)

where β ∈ R+ is the concentration parameter, y = {y1, . . . , yN} is a random vector with sample
space C (all possible clustering solutions of V) and yu is a random variable for the cluster label of
u with sample space K. Computing PGibbs is intractable due to the sum over all possible clustering
solutions C in the denominator. Therefore, in the next section, we describe a mean-field approximation
of PGibbs which makes it possible to efficiently calculate the proposed acquisition functions. To
the best of our knowledge, the use of mean-field approximation to approximate complex quantities
when applying information-theoretic acquisition functions for active learning is a novel aspect of our
approach. This approach can be applied beyond active CC, extending to the active learning of other
pairwise, non-parametric clustering models.

3.1 MEAN-FIELD APPROXIMATION FOR CC

We here describe the mean-field approximation of PGibbs. The family of factorial distributions over
the space of clustering solutions is defined as Q = {Q ∈ P | Q(y = c) =

∏
u∈V Q(yu = cu)},

where P is the space of all probability distributions with sample space C. The goal of mean-field
approximation is to find a factorial distribution Q ∈ Q that best approximates the intractable
distribution PGibbs. In general, one can compute the optimal Q by minimizing the KL-divergence
(Hofmann & Buhmann, 1997; Chehreghani et al., 2012), i.e.,

Q∗ = argmin
Q∈Q

DKL(Q∥PGibbs) = argmin
Q∈Q

∑
c∈C

Q(c) log
Q(c)

PGibbs(c)
. (4)

We encode a mean-field approximation using a matrix of assignment probabilities Q ∈ [0, 1]N×K ,
where Quk = Q(yu = k). In addition, let M ∈ RN×K , where Muk should be interpreted as the cost
of assigning object u to cluster k. Given this, Theorem 3.1 implies that an EM-type procedure, which
sequentially alternates between estimating Quk (based on Eq. 5) and computing the respective Muk

(based on Eq. 6), yields a local minimum for the optimization problem in Eq. 4. In Theorem 3.1, we
adapt and specialize the general result from (Hofmann et al., 1998) to our specific cost function in
Eq. 2, enabling efficient mean-field approximations tailored to our model, which are essential for all
proposed acquisition functions.
Theorem 3.1. Let ℓ : N→ V denote an object visitation schedule, which satisfies limT→∞ |{t ≤ T :
ℓ(t) = u}| =∞,∀u ∈ V . For arbitrary initial conditions, the asynchronous update rules defined by

Q
(t+1)
uk = exp(−βM (t)

uk )/
∑
k′∈K

exp(−βM (t)
uk′), (5)

M
(t+1)
uk = −

∑
v∈V
v ̸=u

SuvQ
(t+1)
vk , (6)

where u = ℓ(t), converge to a local minimum of Eq. 4.
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Algorithm 2 Mean-Field Approximation
1: Input: Similarity matrix S, cluster assign-

ment costs M , concentration parameter β.
2: while Q has not converged do
3: Q← softmax(−βM) ▷ E-step
4: M ← −S ·Q ▷ M-step
5: end while
6: return Q,M

For computational efficiency, we employ a syn-
chronous update rule in practice (see Alg. 2).
Despite not having the same theoretical guaran-
tees, synchronous updates have been observed
to perform well empirically in other contexts
(Hofmann et al., 1998; Chehreghani et al., 2012).
Alg. 2 assumes a fixed number of clusters K.
We use the number of clusters K dynamically
determined by the CC algorithm used at each
iteration i of Alg. 1 to find ci (see Appendix
D for details of this algorithm). M could be
initialized randomly. However, since we have the current clustering solution ci, we initialize it based
on ci, i.e., Muk = −

∑
v:civ=k Suv , in order to speed up the convergence and potentially improve the

quality of the solution found. This initialization of M is based on the total similarity between object
u and cluster k in relation to the similarity between u and all other clusters. A smaller similarity
should correspond to a higher cost (hence the negation). Each iteration of the algorithm consists of
two main steps. First, Q is estimated as a function of M . Second, M is calculated based on Q. In
this paper, we treat the concentration parameter β ∈ R+ as a hyperparameter. Finally, we employ the
special form of the max correlation cost function RMC in Eq. 2, and calculate both the E-step and
M-step in vectorized form. In particular, the M-step becomes a dot product between S and Q, which
is extremely efficient in practice (especially if S is assumed sparse, which it is in our experiments).

3.2 ENTROPY

In this section, we propose our first acquisition function based on entropy. Let E ∈ {−1,+1}N×N

be a random matrix where each element Euv ∈ {−1,+1} is a binary random variable, where +1
indicates u and v should be in the same cluster, and−1 implies u and v should be in different clusters.
A reasonable way to define the probability of Euv to be +1 is the fraction of clustering solutions in C
that assign u and v to the same cluster, weighted by the probability of each clustering solution. Due
to the intractability of PGibbs, we approximate it using a mean-field approximation Q (encoded by
matrix Q, as described in the previous section). Formally, we have

P (Euv = 1) = EPGibbs(y)[1{yu=yv}] ≈ EQ(y)[1{yu=yv}] =
∑
k∈K

QukQvk. (7)

The last equality of Eq. 7 uses the fact that the mean-field approximation assumes independence
between objects. One can similarly derive P (Euv = −1) =

∑
k,k′∈K QukQvk′1{k ̸=k′} = 1 −

P (Euv = 1). For more information on the calculations, see Appendix B.1. Thereby, from Eq. 7, we
define an acquisition function based on the entropy of Euv as

aEntropy(u, v) ≜ H(Euv) = EP (Euv)[− logP (Euv)]. (8)

3.3 INFORMATION GAIN

The acquisition function aEntropy calculates the uncertainty of pairs based on the mean-field approxi-
mation (model) Q given the current similarity matrix S. In this section, we investigate acquisition
functions inspired by the notion of information gain corresponding to maximal uncertainty reduction.
In this case, the similarity matrix S is first augmented with pseudo-similarities (predicted using the
current model Q as Suv ∼ P (Euv)), after which a new mean-field approximation is obtained. In
other words, we simulate the effect of querying one or more pairs in expectation w.r.t. the current
model Q, potentially resulting in more accurate uncertainty estimations. Due to the efficiency of
Alg. 2 (mean-field), one can afford to run it several times per iteration of the active CC procedure, to
estimate the information gain accurately. In this paper, we consider two types of information gain.
First, the information gain (or equivalently the mutual information) between a pair Euv and the cluster
labels of objects y. Due to symmetry of the mutual information we have

I(y;Euv) = H(y)−H(y | Euv) (9)
= H(Euv)−H(Euv | y). (10)

The interpretation of I(y;Euv) is the amount of information one expects to gain about the cluster
labels of objects by observing Euv , where the expectation is w.r.t. P (Euv). In other words, it measures
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the expected reduction in uncertainty (in entropic way) over the possible clustering solutions w.r.t.
the value of Euv . Second, the information gain between a pair Euv and all pairs E:

I(E;Euv) = H(E)−H(E | Euv) (11)
= H(Euv)−H(Euv | E). (12)

Intuitively, I(E;Euv) measures the amount of information the pair Euv provides about all pairs in E.
All the expressions above are closely related, but the formulations used will impact how they can be
approximated in practice, leading to differences in performance and efficiency. This is discussed in
detail in the following subsections.

3.3.1 CONDITIONAL MEAN-FIELD APPROXIMATION

We approximate all the conditional entropies defined above following the same general principle:
We update the similarity matrix S based on what is being conditioned on, run Alg. 2 given this simi-
larity matrix, and calculate the corresponding entropy given the updated mean-field approximation.
Motivated by this, the following notation will be used throughout this section. Let e denote a vector
in {−1,+1}|D|, where D ⊆ E is a subset of the pairs. Given this, we denote by Q(SD=e) to be the
mean-field approximation found by Alg. 2 after modifying S according to e for all pairs (u, v) ∈ D
(with remaining pairs unchanged).

3.3.2 EXPECTED INFORMATION GAIN

In this section, we consider the expression in Eq. 9, which corresponds to the expected information
gain over cluster labels of objects (EIG-O). We have H(y | Euv) = Ee∼P (Euv)[H(y | Euv = e)]. In
this paper, we approximate H(y | Euv = e) using conditional mean-field approximation Q(Suv=e)

as shown below. Given some mean-field approximation Q′, let P (Euv | Q′) be the probability of
Euv computed as shown in Eq. 7 using Q′ and

H(yw | Q′) ≜ −
∑
k∈K

Q′
wk logQ

′
wk.

Each yu ∈ y is independent of other cluster labels given a mean-field approximation, reducing
all joint entropies to the summed entropy across all individual variables. In other words, we have
H(y) ≈

∑
w∈V H(yw | Q) and H(y | Euv = e) ≈

∑
w∈V H(yw | Q(Suv=e)). Given this, we

define the following acquisition function.

aEIG-O(u, v) ≜
∑
w∈V

H(yw | Q)−
∑

e∈{−1,+1}

P (Euv = e | Q)H(yw | Q(Suv=e)). (13)

In Appendix B.2, we include a detailed derivation of aEIG-O. In addition, we derive an alternative
acquisition function based on Eq. 11, which instead computes the expected reduction in entropy
over pairs E (called aEIG-P). However, this method expectedly performs similar to aEIG-O in practice1,
while being less efficient. Calculating aEIG-O for all pairs requires executing Alg. 2

(
N
2

)
times, which

can be inefficient for large N . In Alg. 3, we illustrate how we compute aEIG-O in practice, improving
its efficiency in the following ways. (i) We evaluate Eq. 13 only for a subset of the pairs EEIG ⊆ E .
We select this subset as the top-|EEIG| pairs according to aEntropy, where |EEIG| = O(N) in practice.
(ii) We do not expect Q(Suv=e) to be much different from Q. Therefore, by initializing M (in lines
7-8) with the assignment costs from line 3, the convergence speed of Alg. 2 significantly improves.

3.3.3 JOINT EXPECTED INFORMATION GAIN

In this section, we consider the information gains formulated in Eq. 10 and Eq. 12. We approximate
the conditional entropy H(Euv | E) = Ee∼P (E)[H(Euv | E = e)] in Eq. 12 using the conditional
mean-field approximation Q(SE=e). The conditional entropy H(Euv | y) = Ec∼Q(y)[H(Euv |
y = c)] in Eq. 10 is less straightforward here. However, a natural way would be to compute the
conditional mean-field approximation given S updated based on c as follows. We set Suv = +1 if
cu = cv , and−1 otherwise. In both cases, we then approximate the entropy of Euv given a mean-field

1This is expected because the distribution P (E) is determined by Q(y) from Eq. 7.
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Algorithm 3 EIG
1: Input: Similarity matrix S, current clustering ci, concentration parameter β.
2: Muk ← −

∑
v:civ=k Suv,∀u ∈ V,∀k ∈ K

3: Q,M ←MeanField(S,M , β)
4: EEIG ← select top-|EEIG| pairs using aEntropy given Q (Eq. 8).
5: aEIG(u, v)← 0,∀(u, v) ∈ E
6: for each pair (u, v) ∈ EEIG do
7: Q(Suv=+1) ←MeanField(S,M , β | Suv = +1)
8: Q(Suv=−1) ←MeanField(S,M , β | Suv = −1)
9: aEIG(u, v)← Evaluate Eq. 13 (or Eq. 34) given Q, Q(Suv=+1) and Q(Suv=−1)

10: end for
11: return aEIG

approximation conditioned on all (or a subset) of the similarities being updated. Given this, we now
derive a general estimator based on the information gain

I(Euv;ED) = H(Euv)−H(Euv | ED), (14)

where ED = {Euv | (u, v) ∈ D} for some D ⊆ E . From the discussion above, the expressions in Eq.
10 and Eq. 12 can be seen as special cases of Eq. 14. The entropy H(Euv) is approximated based on
Eq. 8. In addition, we have

H(Euv | ED) = Ee∼P (ED)[H(Euv | ED = e)]

=
∑

e∈{−1,+1}|D|

P (ED = e)H(Euv | ED = e). (15)

Thereby, we approximate the conditional entropy H(Euv | ED = e) by

H(Euv | Q(SD=e)) ≜ −
∑

e∈{−1,+1}

P (Euv = e | Q(SD=e)) logP (Euv = e | Q(SD=e)). (16)

In other words, we estimate the joint impact of pairs in D on the entropy of Euv. The expectation
in Eq. 15, which involves a sum over all possible outcomes of ED, quickly becomes intractable for
large |D|. However, one can easily obtain a sample e ∼ P (ED) by sampling euv ∼ P (Euv) for
every Euv ∈ ED, which allows a Monte-Carlo estimation of this sum. For generality, assume we
have m subsets D1, . . . ,Dm,Di ⊆ E and n samples e1i , . . . , e

n
i ∼ P (EDi) for each Di. Given this,

we then define the acquisition function

aJEIG(u, v) ≜ H(Euv)−
1

mn

m∑
i=1

n∑
l=1

H(Euv | Q(SDi
=el

i)). (17)

For aJEIG, we only need to execute Alg. 2 (mean-field) mn times, and in practice, we observe good
performance with small values of m and n. In Appendix B.3, we present Alg. 4 which describes the
details of this method. Using m subsetsD1, . . .Dm with each |Di| ≪ |E| yields a number of benefits:
(i) The Monte-Carlo estimation of the expectation in Eq. 15 becomes more accurate for smaller n
when |Di| is smaller, which reduces the number of times Alg. 2 needs to be executed; (ii) If Di = E ,
the conditional mean-field approximation Q(SDi

=e) is computed based on a similarity matrix where
all pairs (u, v) ∈ E are sampled from Suv ∼ P (Euv), which will lead to extreme selection bias for
the following reason: The probability P (Euv) (which is computed using Q) may already be biased
(in particular in early iterations when S contains incomplete/wrong information). Then, running Alg.
2 from scratch with a new similarity matrix fully augmented with biased information, will exaggerate
the bias further; (iii) Using m different subsets makes the estimator in Eq. 17 generic and flexible,
but also captures more information about Euv, while remaining efficient and avoiding exaggerated
selection bias.

4 EXPERIMENTS

In this section, we describe our experimental studies, where extensive additional results are presented
in Appendix C.
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4.1 EXPERIMENTAL SETUP

Datasets. In this paper, we use the datasets investigated by (Aronsson & Chehreghani, 2024):
20newsgroups, CIFAR10, cardiotocography, ecoli, forest type mapping, user knowledge modeling,
MNIST and synthetic. For all datasets, a random subset of at most N = 1000 objects are considered
for the active CC experiments. See Appendix C.3 for details about all datasets.

Correlation Clustering Algorithm. We use the local search CC algorithm proposed by (Aronsson &
Chehreghani, 2024) on line 4 of Alg. 1. It is highly robust to noise in S and dynamically determines
the number of clusters. The details of this algorithm are described in Appendix D.

Ground-truth similarities. For each experiment, we are given a dataset X with ground-truth labels
c∗, where the ground-truth labels are only used for evaluations. Then, for each (u, v) ∈ E in a dataset,
we set S∗

uv to +1 if u and v belong to the same cluster, and −1 otherwise.

Oracles. We investigate four different oracles in Alg. 1: (i) Oracle 1. Returns S∗
uv with probabiltiy

1 − γ or a uniform random value in [−1,+1] with probability γ; (ii) Oracle 2. Returns a value
sampled from N (S∗

uv, γ) (i.e., Gaussian centered at ground-truth similarity with variance γ); (iii)
Oracle 3. Returns S∗

uv with probabiltiy 1− γ or −S∗
uv with probability γ (i.e., we flip the sign with

probability γ)2; Oracle 4. We split the dataset into two disjoint parts X = Xtrain ∪Xtest. Then, we
train a pairwise prediction model fθ : X×X→ [−1,+1] on Xtrain, where ground-truth similarities
S∗ are used as labels. Given any two data points xu,xv ∈ X, we can predict their similarity as
fθ(xu,xv) ∈ [−1,+1]. We then perform the CC experiments on data points in Xtest, and the oracle
always returns the similarity fθ(xu,xv). The ground-truth similarities of data points in Xtest are
never used when training fθ. We defer a detailed description of oracle 4 to Appendix C.2. The
motivation for these oracles are as follows. Oracles 1-3 correspond to cases where the oracle provides
unbiased information about S∗ (but noisy, with different noise models), allowing recovery of the
ground-truth clustering solution c∗. This is considered by previous work (Mazumdar & Saha, 2017b;
Silwal et al., 2023; Aronsson & Chehreghani, 2024). Oracle 4 may provide biased similarities due
to noise/ambiguity in feature space, and exact recovery of c∗ may not be possible. This method is
suggested by, e.g., (Bansal et al., 2004; Silwal et al., 2023) to compute pairwise similarities for CC.

Initial similarities. Let E0 be a uniform random subset of E (where |E0| ≪ |E|). Then, for
all (u, v) ∈ E0, we initialize the current similarity matrix as S0

uv = S∗
uv for oracles 1-3 and

S0
uv = fθ(xu,xv) for oracle 4. We then set S0

uv = 0 for (u, v) ∈ E \ E0. Having |E0| = 0 or
|E0| > 0 corresponds to a cold-start or warm-start setting, respectively. In this paper, like most
previous work on active learning, we focus on a warm-start setting. See Appendix C.3 for the value
of |E0| for each dataset (|E0| is chosen based on the size N of each dataset).

Repeated queries. In general, Alg 1 supports multiple queries for the same pairwise similarity. This
assumes each query for the same pair provides more information about the underlying distribution,
which would be applicable to oracles 1-3. This is a common approach in active learning to deal with
noisy oracles (Sheng et al., 2008; Settles, 2009). However, we do not consider multiple queries for
the same pair in our experiments, as we found the difference in performance to be very small.

Acquisition functions. We have introduced four novel acquisition functions in this paper: aEntropy

(Eq. 8), aEIG-O (Eq. 13), aEIG-P (Eq. 34) and aJEIG (Eq. 17). We compare these methods with maxexp
and maxmin from (Aronsson & Chehreghani, 2024). In short, both maxmin and maxexp aim to
query pairs with small absolute similarity that belong to triples (u, v, w) that violate the transitive
property of pairwise similarities. In other words, the goal is to reduce the inconsistency of S by
resolving violations of the transitive property in triples. In Appendix C.1, we include a detailed
explanation of these methods. Finally, we include a simple baseline aUniform(u, v) ∼ Uniform(0, 1)
which selects pairs uniformly at random. The work in (Aronsson & Chehreghani, 2024) compares
maxexp/maxmin to a pivot-based active CC algorithm called QECC (García-Soriano et al., 2020) and
two adapted state-of-the-art active constraint clustering methods, called COBRAS (van Craenendonck
et al., 2018a) and nCOBRAS (Soenen et al., 2021). However, these methods perform very poorly
compared to maxexp and maxmin in a noisy setting, so we exclude them here.

2Oracles 1-3 are equivalent if γ = 0. However, zero noise is unrealistic in practice. Also, it leads to fully
consistent information in the similarities S, which makes the CC problem (minimization of Eq. 1) trivial (i.e., it
is no longer NP-hard).
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(a) Synthetic (b) CIFAR10 (c) Ecoli (d) Forest Type Mapping

(e) User Knowledge (f) Cardiotocography (g) 20newsgroups (h) MNIST

Figure 1: Results for oracle 1 with noise level γ = 0.4.

Batch diversity. In this paper, we consider single-sample acquisition functions that do not explicitly
consider the joint informativeness among the elements in a batch B. This has the benefit of avoiding
the combinatorial complexity of selecting an optimal batch, which is a common problem for batch
active learning (Ren et al., 2021). However, the work in (Kirsch et al., 2023) proposes a simple
method for improving the batch diversity for single-sample acquisition functions using noise. In
this paper, we utilize the power acquisition method. Given some acquisition function aX, this
corresponds to aPowerX(u, v) = log(aX(u, v)) + ϵuv where ϵuv ∼ Gumbel(0; 1). This is used for all
information-theoretic acquisition functions proposed in this paper. We observe no benefit of this for
maxmin/maxexp, likely due to their inherent randomness.

Hyperparameters. Unless otherwise specified, the following hyperparameters are used. The batch
size B depends on the dataset (since each dataset is of different size N ). See Appendix C.3 for the
value of B for each dataset. For all information-theoretic acquisition functions (which depend on
PGibbs, see Eq. 3), we set β = 3. For aEIG-O and aEIG-P, we set |EEIG| = 20N (see Appendix B.2
for details). For aJEIG we set m = 5, n = 50, |Di| = ⌈|E|/50⌉ (i.e., 2% of all pairs) and each Di is
selected to contain pairs with large entropy (see Appendix B.3 for details). Finally, see Appendix C.7
for a detailed analysis and discussion of all hyperparameters.

Performance evaluation. In each iteration of the active CC procedure (Alg. 1), we calculate the
Adjusted Rand Index (ARI) between the current clustering ci and the ground truth clustering c∗ (i.e.,
ground truth labels of dataset). Intuitively, ARI measures how similar the two clusterings are, where
a value of 1 indicates they are identical. In Appendix C.4, we report the performance w.r.t. other
evaluation metrics. Each active learning procedure is repeated 10 times with different random seeds,
where the standard deviation is indicated by a shaded color or an error bar.

4.2 RESULTS

Figures 1-2 show the results for different datasets for oracle 1 and oracle 4, respectively. In Appendix
C.4, we include the results for all oracles w.r.t. different performance metrics. We observe that
all the information-theoretic acquisition functions introduced in this paper significantly outperform
the baseline methods. In addition, the acquisition functions based on information gain (aEIG-O,
aEIG-P and aJEIG) consistently outperform aEntropy. This indicates the effectiveness of augmenting the
similarity matrix S with pseudo-similarities predicted by the current model Q as Suv ∼ P (Euv | Q),
before quantifying the model uncertainty. The acquisition functions based on information gain
perform rather similarly. This is due to the fact that all of them are based on closely connected
quantities (as described in Section 3.3). However, aJEIG is consistently among the best performing
acquisition functions, while also being more computationally efficient compared to aEIG-O and aEIG-P

(see Appendix C.6 for an investigation of the runtimes of all methods). Because of this, we exclude
aEIG-O and aEIG-P in some cases due to their computational inefficiency. Both maxmin and maxexp
perform significantly worse. This is likely because they spend too many queries with the goal of
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(a) Synthetic (b) CIFAR10 (c) Ecoli (d) Forest Type Mapping

(e) User Knowledge (f) Cardiotocography (g) 20newsgroups (h) MNIST

Figure 2: Results for all datasets for oracle 4.

resolving the inconsistency of S (see Appendix C.1 for details). However, the CC algorithm used
(described in Appendix D) is robust to inconsistency in S. Finally, in Appendix C.5 we report our
experiments on a small synthetic dataset with N = 70 objects using a small batch size B = 5. The
purpose of this experiment is to further illustrate the benefit of the acquisition functions based on
information gain, when differences due to batch diversity are eliminated.

4.3 SENSITIVITY ANALYSIS

(a) (b)

Figure 3: Results on the synthetic dataset when
varying the noise level γ and the batch size B.

We here investigate the sensitivity of acquisi-
tion functions when varying the noise level and
batch size. All the results in this section are per-
formed on the synthetic dataset using oracle 1.
Figures 3(a)-3(b) show the results when varying
the noise level γ and batch size B, respectively.
The y-axis corresponds to the area under the
curve (AUC) of the active learning plot w.r.t. the
respective performance metric (i.e., ARI) where
higher is better. We see that our acquisition func-
tions are very robust to noise. In addition, the
benefit of our proposed acquisition functions
increases with larger noise levels. This is con-
sistent with previous work on active learning,
where the benefit of many acquisition functions over uniform selection increases as the complexity of
the problem increases. Expectedly, the performance decreases slightly as the batch size increases.
However, the performance of our acquisition functions remains good even with large batch sizes.

5 CONCLUSION

In this paper, we proposed four effective information-theoretic acquisition functions to be used
for active CC: aEntropy, aEIG-O, aEIG-P and aJEIG. All of our methods significantly outperform the
baseline methods by utilizing model uncertainty. We investigated the effectiveness of these methods
via extensive experimental studies. The acquisition functions based on information gain (aEIG-O,
aEIG-P and aJEIG) were consistently the best performing, where aJEIG has the benefit of being more
computationally efficient.
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A PROOFS

Proposition 2.1. Eq. 1 can be simplified to RCC(c | S) = −
∑

(u,v)∈E
cu=cv

Suv + constant, where the

constant is independent of different clustering solutions (Chehreghani, 2013).

Proof. As described in (Chehreghani, 2013; 2023), we can write the cost function in Eq. 1 as

RCC(c | S) =
∑

(u,v)∈E

V (u, v | S, c)

=
∑

(u,v)∈E
cu=cv

1

2
(|Suv| − Suv) +

∑
(u,v)∈E
cu ̸=cv

1

2
(|Suv|+ Suv)

=
1

2

∑
(u,v)∈E

|Suv| −
1

2

∑
(u,v)∈E
cu=cv

Suv +
1

2

∑
(u,v)∈E

Suv −
1

2

∑
(u,v)∈E
cu=cv

Suv

=
1

2

∑
(u,v)∈E

(|Suv|+ Suv)︸ ︷︷ ︸
constant

−
∑

(u,v)∈E
cu=cv

Suv. (18)

The first term in Eq. 18 is constant w.r.t. the choice of a particular clustering c.

Theorem 3.1. Let ℓ : N→ V denote an object visitation schedule, which satisfies limT→∞ |{t ≤ T :
ℓ(t) = u}| =∞,∀u ∈ V . For arbitrary initial conditions, the asynchronous update rules defined by

Q
(t+1)
uk = exp(−βM (t)

uk )/
∑
k′∈K

exp(−βM (t)
uk′), (5)

M
(t+1)
uk = −

∑
v∈V
v ̸=u

SuvQ
(t+1)
vk , (6)

where u = ℓ(t), converge to a local minimum of Eq. 4.

Proof. Given our cost function RMC (Eq. 2), the generalized free energy is defined as (Hofmann
et al., 1998)

Fβ(P ) ≜ EP (y)[R
MC(y)]− 1

β
H(P )

=
∑
c∈C

P (c)RMC(c) +
1

β

∑
c∈C

P (c) logP (c),
(19)

for some P ∈ P where P is the set of distributions with sample space C. The Gibbs distribution
PGibbs minimizes the generalized free energy (Hofmann et al., 1998) and is called the free energy. It
can be written as

Fβ(P
Gibbs) = − 1

β
logZ, (20)

where Z ≜
∑

c′∈C exp(−βRMC(c′)) is the normalizing constant of the Gibbs distribution in Eq. 3.
Given this, we can now simplify the KL-divergence.
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DKL(Q∥PGibbs) =
∑
c∈C

Q(c) log
Q(c)

PGibbs(c)

=
∑
c∈C

Q(c) log
Q(c)

exp (−β (RMC(c)−Fβ(PGibbs)))

=
∑
c∈C

Q(c)
[
logQ(c) + β

(
RMC(c)−Fβ(P

Gibbs)
)]

=
∑
u∈V

∑
k∈K

Quk logQuk + βEQ(y)[R
MC(y)]− βFβ(P

Gibbs)

= βEQ(y)[R
MC(y)]−

∑
u∈V

H(yu)− βFβ(P
Gibbs)

= βFβ(Q)− βFβ(P
Gibbs)

≥ 0,

(21)

where H(yu) ≜ −
∑

k∈K Quk logQuk is the entropy of yu. The last inequality is a property of the
KL-divergence. From this, we have the bound

Fβ(P
Gibbs) ≤ Fβ(Q), (22)

and minimizing the KL-divergence corresponds to minimizing the generalized free energy Fβ w.r.t.
factorial distributions Q ∈ Q, which is consistent with the maximum entropy principle. From this,
minimizing the KL-divergence corresponds to the following optimization problem.

Q∗ = argmin
Q∈Q

Fβ(Q)

s.t.
∑
k∈K

Quk = 1 ∀u ∈ V. (23)

Then, by applying a Lagrangian relaxation to the constraint in Eq. 23 and setting the gradient of the
objective w.r.t. Quk to zero, we obtain

0 =
∂

∂Quk

[
EQ(y)[R

MC(y)]− 1

β

∑
v∈V

H(yv) +
∑
w∈V

µw

(∑
k∈K

Qwk − 1

)]

=
∂

∂Quk

[∑
c∈C

∏
v∈V

QvcvR
MC(c)− 1

β

∑
v∈V

H(yv) +
∑
w∈V

µw

(∑
k∈K

Qwk − 1

)]

=
∑
c∈C

∏
v∈V
v ̸=u

Qvcv1{cu=k}R
MC(c) +

1

β
(logQuk + 1) + µu

= EQ(y|yu=k)[R
MC(y)] +

1

β
(logQuk + 1) + µu,

(24)

where µu’s are the Lagrange multipliers and we define Muk ≜ EQ(y|yu=k)[R
MC(y)] as the mean-

fields, which correspond to the expected cost subject to the constraint that object u is assigned to
cluster k. We can simplify

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Muk = EQ(y|yu=k)[R
MC(y)]

= EQ(y|yu=k)

− ∑
(v,w)∈E

Svw


= EQ(y|yu=k)

−∑
l∈K

∑
(v,w)∈E

1{yv=l}1{yw=l}Svw


= −

∑
l∈K

∑
(v,w)∈E

EQ(y|yu=k)[1{yv=l}1{yw=l}]Svw

= −
∑
l∈K

∑
(v,w)∈E

SvwQvlQwl

= −
∑
l∈K

∑
v∈V
v ̸=u

SuvQulQvl −
∑
l∈K

∑
(v,w)∈E

v ̸=u
w ̸=u

SvwQvlQwl

= −
∑
v∈V
v ̸=u

SuvQvk −
∑
l∈K

∑
(v,w)∈E

v ̸=u
w ̸=u

SvwQvlQwl

︸ ︷︷ ︸
constant

(25)

where the last equality uses that Qul = 1 if l = k and 0 otherwise, according to Q(c | cu = k). The
second term of the last expression is a constant w.r.t. Quk and is thus irrelevant for optimization
(since it does not depend on u).

With the definition of Muk, we can rewrite Eq. 24 as

0 = Muk +
1

β
(logQuk + 1) + µu. (26)

Then, we have
logQuk = −βMuk − βµu

⇒Quk = exp (−βMuk) exp (−βµu).
(27)

On the other hand, we have:
∑

k′ Quk′ = 1. Therefore,

∑
k′

logQuk′ =
∑
k′

exp (−βMuk′) exp (−βµu) = 1

⇒ exp (−βµu) =
1∑

k′ exp (−βMuk′)
.

(28)

Then, inserting Eq. 28 into Eq. 27 yields

Quk =
exp (−βMuk)∑
k′ exp (−βMuk′)

. (29)

This derivation suggest an EM-type procedure for minimizing the KL-divergence DKL(Q∥PGibbs),
which consists of alternating between estimating Quk’s given Muk’s and then updating Muk’s given
the new values of Quk’s (as described in Alg. 2).

Finally, we can compute the Hessian of the objective as
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∂2

∂Q2
uk

Fβ(Q) =
∂

∂Quk
Muk +

1

β
(logQuk + 1) + µu

=
1

βQuk

> 0.

(30)

The positivity of the Hessian in Eq. 30 ensures that the generalized free energy Fβ(Q) is convex
with respect to Quk for each object u, guaranteeing that the update for Quk strictly decreases Fβ(Q)
unless it is already at a local minimum. Since Fβ(Q) is bounded from below by Fβ(P

Gibbs) and each
object u is updated infinitely often according to the object visitation schedule, the algorithm converges
to a local minimum of the generalized free energy Fβ within the space of factorial distributions Q.

B ADDITIONAL DETAILS ABOUT INFORMATION-THEORETIC ACQUISITION
FUNCTIONS

B.1 DETAILED DERIVATION OF ENTROPY

Here we show a detailed derivation of the probability P (Euv), which is used for the acquisition
function based on entropy in Eq. 8. We have

P (Euv = 1) = EPGibbs(y)[1{yu=yv}]

≈ EQ(y)[1{yu=yv}]

=
∑
k′∈K

Quk′

∑
k′′∈K

Quk′′1{cu=cv}

=
∑
k∈K

QukQvk +
∑
k′∈K

∑
k′′∈K
k′′ ̸=k′

Quk′Qvk′′1{cu=cv}

︸ ︷︷ ︸
=0

=
∑
k∈K

QukQvk.

(31)

One can also show that P (Euv = −1) ≈ EQ(c)[1{cu ̸=cv}(c)] which can be simplified to P (Euv =
−1) =

∑
k,k′∈K QukQvk′1{k ̸=k′} = 1− P (Euv = 1).

B.2 DERIVATIONS OF EIG

In this section, we include a detailed derivation of the acquisition function defined in Eq. 13. In
addition, we derive the acquisition function aEIG-P.

H(y) = −
∑
c∈C

PGibbs(y = c) logPGibbs(y = c). (32)

A mean-field approximation Q(y = c) =
∏N

u=1 Q(yu = cu) of PGibbs assumes independence
between each cluster label yu. This means we have
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H(y) = −
∑
c∈C

Q(y = c) logQ(y = c)

= −
∑
c∈C

N∏
u=1

Q(yu = cu) log

N∏
v=1

Q(yv = cv)

= −
∑
c∈C

N∏
u=1

Q(yu = cu)(

N∑
v=1

logQ(yv = cv))

= −
∑
c∈C

N∑
v=1

N∏
u=1

Q(yu = cu) logQ(yv = cv)

= −
N∑

v=1

∑
k∈K

∑
c∈C
cv=k

N∏
u=1

Q(yu = cu) logQ(yv = cv)

= −
N∑

v=1

∑
k∈K

logQ(yv = cv)
∑
c∈C
cv=k

N∏
u=1

Q(yu = cu)

= −
N∑

v=1

∑
k∈K

logQ(yv = cv)Q(yv = cv)

∑
c∈C
cv=k

N∏
u=1
u̸=v

Q(yu = cu)


︸ ︷︷ ︸

=1

= −
N∑

v=1

∑
k∈K

Q(yv = cv) logQ(yv = cv)

=

N∑
v=1

H(yv | Q).

(33)

Furthermore, we assume independence between pairs E given a mean-field approximation Q. Conse-
quently, we have P (E) =

∏
(w,l)∈E P (Ewl | Q). Then, one can derive H(E) =

∑
(w,l)∈E H(Ewl |

Q) following the same derivation as shown in Eq. 33. In addition, we choose to approximate
H(y | Euv = e) and H(E | Euv = e) using conditional mean-field approximation Q(Suv=e). As a
consequence, the joint conditional entropies reduces to the sum of entropies over individual variables.
This is shown following the same derivation shown in Eq. 33.

From this, we obtain the acquisition function aEIG-O defined in Eq. 13 of the main paper. In addition,
we define an acquisition function which computes the expected information gain over the clustering
relation of pairs (EIG-P).

aEIG-P(u, v) ≜
∑

(w,l)∈E

H(Ewl | Q)−
∑

e∈{−1,+1}

P (Euv = e | Q)H(Ewl | Q(Suv=e)). (34)

aEIG-P is also computed using Alg. 3.

B.3 JEIG ALGORITHM

Alg. 4 outlines how the acquisition function aJEIG (Eq. 17) is calculated. The algorithm begins by
initializing Q and M by running Algorithm 2. Then, the algorithm loops m times. In each of the m
iterations, a subset Di ⊆ E is selected. Then, lines 7-10 computes a Monte-Carlo estimation of the
expectation Ee∼P (EDi

)[H(Euv | EDi
= e)]. We found that the selection of Di (on line 6) can be

done in a number of ways, with good performance. In the experiments of this paper, we select the
top-|Di| pairs according to log(aEntropy(u, v)) + ϵuv where ϵuv ∼ Gumbel(0; 1). In other words, the
top-|Di| pairs according to aEntropy with some added acquisition noise (as explained in Section 4.1).
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This leads to diversity among the selected Di, while containing pairs with large entropy. Pairs with
large entropy are likely to have large impact on each Euv, and are therefore important to include in
Di. We set |Di| = 0.02|E| (i.e., 2% of all pairs), m = 5 and n = 50 for all datasets. See Appendix
C.7 for more details about this.

Algorithm 4 JEIG
1: Input: Similarity matrix S, current clustering ci, concentration parameter β.
2: Muk ← −

∑
v:civ=k Suv,∀u ∈ V,∀k ∈ K

3: Q,M ←MeanField(S,M , β)
4: aJEIG(u, v)← 0 ∀(u, v) ∈ E
5: for i← 1 to m do
6: Di ← SelectPairs(E) ▷ Di ⊆ E
7: for j ← 1 to n do
8: e ∼ P (EDi)
9: Q(SDi

=e) ←MeanField(S,M , β | SDi
= e)

10: aJEIG(u, v)← aJEIG(u, v) +H(Euv | Q(SDi
=e))/n ∀(u, v) ∈ E

11: end for
12: end for
13: aJEIG(u, v)← H(Euv | Q)− aJEIG(u, v)/m ∀(u, v) ∈ E
14: return aJEIG

C EXPERIMENTS: MORE DETAILS AND FURTHER RESULTS

In this section, we describe the datasets in more detail and provide further experimental results. The
experimental settings are identical to Section 4, unless otherwise specified.

C.1 MAXMIN AND MAXEXP

In this section, we explain the acquisition functions maxmin and maxexp introduced in (Aronsson
& Chehreghani, 2024). First, the transitive property implies if Suv ≥ 0 and Suw ≥ 0 then Svw ≥ 0
or if Suv ≥ 0 and Suw < 0 then Svw < 0. Then, assuming the ground-truth similarity matrix S∗

is consistent (i.e., it does not violate transitive property) would imply that explicitly resolving (or
preventing) the inconsistency in S may be informative. Both maxmin and maxexp are based on this
idea.

Let T be the set of triples (u, v, w) of distinct objects in V , i.e., |T | =
(
N
3

)
. Let Tuv = {t ∈ T |

u, v ∈ t} be the set of triples that include the pair (u, v). Let Ct be the set of clustering solutions for
the objects in the triple t. Finally, let Et = {(u, v) ∈ E | u, v ∈ t} be the set of pairs in the triple
t, and et = argmin(u,v)∈Et

|Suv| is the pair in Et with the smallest absolute similarity. Given this,
maxmin is defined as3

aMaxmin(u, v) ≜ max
t∈Tuv

min
c∈Ct

R(c | Et)1{et=(u,v)}, (35)

where R(c | Et) ≜
∑

(u,v)∈Et
V (u, v | c). Intuitively, maxmin begins by ranking each triple

according to how much inconsistency they induce (i.e., violation of transitive property). Then, from
each of the top-B triples t, the pair in Et with smallest absolute similarity is selected (i.e., most
uncertain according to its similarity). The goal is thus to reduce inconsistency by resolving violations
of the transitive property in triples. In our experiments, we observe that this can be ineffective, likely
due to robustness to inconsistency in S by the CC algorithm used. See discussion in experiments for
more details. From Eq. 35 we see that maxmin quantifies the inconsistency by the cost of the best
clustering in Ct (in short, this cost is non-zero for triples that violate the transitive property, and zero
otherwise). The maximization over Tuv ensures the most violating triple that includes the pair (u, v)
is considered. maxexp works analogously to maxmin except the term minc∈Ct

R(c | Et) is replaced
by an expectation of the cost of all clustering solutions in Ct.

3This formulation of maxmin is equivalent to Algorithm 3 of (Aronsson & Chehreghani, 2024), except the
algorithm overcomes the computational issues of iterating all

(
N
3

)
triples.
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C.2 DETAILS ABOUT ORACLE 4

In this section, we describe the details of Oracle 4. Given a dataset X and ground-truth labels c∗, the
ground-truth similarities are defined as S∗

uv = +1 if c∗u = c∗v, and −1 otherwise. The dataset X is
then split into two disjoint parts: X = Xtrain ∪Xtest, with 30% of the data allocated to the training
set and 70% to the test set. Given this, the sizes of Xtrain and Xtest are restricted to a maximum of
5000 and 1000 samples, respectively.

Next, we define a pairwise prediction model fθ : X×X → [−1,+1]. In our experiments, fθ is a
fully connected neural network with 6 hidden layers of sizes [1024, 2048, 512, 248, 64], using ReLU
activations. The input to the network is the concatenation of two feature vectors, i.e., xu ⊕ xv. We
treat this as a binary classification problem, where the output of the neural network represents the
probability that the similarity between u and v is +1. Denoting this probability as puv , we transform
it to a similarity score in [−1,+1] using the transformation 2 · puv − 1. The network is trained using
the standard cross-entropy loss function over 30 epochs.

We then construct a training dataset where the inputs are {xu⊕xv}xu,xv∈Xtrain , and the corresponding
labels are S∗

uv . In practice, we limit the number of training pairs to a maximum of 30,000, as the total
number of possible pairs would otherwise be prohibitively large, resulting in extremely slow training.

Finally, the active correlation clustering experiments are conducted on the data points in Xtest. It is
important to note that the ground-truth similarities of pairs in Xtest are not used during the training of
fθ.

C.3 DESCRIPTION OF DATASETS

A detailed description of all eight datasets used is provided below. Datasets 2-6 are taken from the
UCI machine learning repository (Kelly et al., 2023) (all of which are released under the CC BY 4.0
license).

1. CIFAR10 (Krizhevsky, 2009). This dataset consists of 60000 32× 32 color images in 10
different classes (with 6000 images per class). A random subset of N = 1000 images (with
|E| = 499, 500) is used.4 Cluster sizes: [91, 96, 107, 89, 99, 113, 96, 93, 112, 104]. We use
a ResNet18 model (He et al., 2015) trained on the full CIFAR10 dataset in order to embed
the 1000 images into a 512-dimensional space. For oracle 4, fθ is trained on data points
embedded into the latent space. We set |E0| = 2500. The batch size is set to B = 1250.

2. 20newsgroups. This dataset consists of 18846 newsgroups posts (in the form of
text) on 20 topics (clusters). We consider a subset of 5 topics: "rec.sport.baseball",
"soc.religion.christian", "rec.autos", "talk.politics.mideast", "misc.forsale". We use a ran-
dom sample of N = 1000 posts (with |E| = 499, 500). Cluster sizes: [201, 190, 201, 217,
191]. We use the distilbert-base-uncased transformer model loaded from the
Flair Python library (Akbik et al., 2018) in order to embed each of the 1000 documents
(data points) into a 768-dimensional latent space. For oracle 4, fθ is trained on data points
embedded into the latent space. We set |E0| = 2500. The batch size is set to B = 250.

3. Cardiotocography. This dataset includes 2126 fetal cardiotocograms consisting of 22
features and 10 classes. We use a sample of N = 1000 data points (with |E| = 499, 500).
Cluster sizes: [180, 275, 27, 35, 31, 148, 114, 62, 28, 100]. We set |E0| = 2500. The batch
size is set to B = 750.

4. Ecoli. This is a biological dataset on the cellular localization sites of 8 types (clusters) of
proteins which includes N = 336 samples (with |E| = 56, 280). Cluster sizes: [137, 76, 1,
2, 37, 26, 5, 52]. We set |E0| = 280. The batch size is set to B = 85.

5. Forest Type Mapping. This is a remote sensing dataset of N = 523 samples collected
from forests in Japan and grouped in 4 different forest types (clusters) (with |E| = 136, 503).
Cluster sizes: [168, 84, 86, 185]. We set |E0| = 500. The batch size is set to B = 350.

4For oracles 1-3 we simply select N = 1000 random data points. For oracle 4 we obtain the random sample
based on the construction of Xtest, as explained in the previous section. The same applies to the other datasets.
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(a) Synthetic (b) CIFAR10 (c) Ecoli (d) Forest Type Mapping

(e) User Knowledge (f) Cardiotocography (g) 20newsgroups (h) MNIST

Figure 4: Results for oracle 2 with variance γ = 1.3. The evaluation metric is the adjusted rand index
(ARI).

6. User Knowledge Modelling. This dataset contains 403 students’ knowledge status on
Electrical DC Machines grouped in 4 classes (with |E| = 81, 003). Cluster sizes: [111, 129,
116, 28, 19]. We set |E0| = 400. The batch size is set to B = 200.

7. MNIST (LeCun et al., 1998). This dataset consists of 60000 28× 28 grayscale images of
handwritten digits. We use a sample of N = 1000 images (with |E| = 499500). Cluster
sizes: [105, 109, 111, 112, 104, 86, 99, 88, 88, 98]. We use a simple CNN model trained on
the MNIST dataset in order to embed the 1000 images into a 128-dimensional space. For
oracle 4, fθ is trained on data points embedded into the latent space. We set |E0| = 2500.
The batch size is set to B = 1250.

8. Synthetic. This is a synthetically generated dataset (normally distributed 10-dimensional
data points) with N = 500 (and |E| = 124, 750) data points split evenly into 10 clusters.
We set |E0| = 500. The batch size is set to B = 300.

C.4 FURTHER RESULTS

Figures 4 and 5 show results for oracles 2 and 3, respectively, where the evaluation metric is the
adjusted rand index (ARI). Figures 6-9 show results for all oracles, where the evaluation metric is
the adjusted mutual information (AMI). All results are consistent with the insights from Figures 1-2
from the main paper, where all information-theoretic acquisition functions proposed in this paper
outperform the baselines. In addition, we observe that the acquisition functions based on information
gain consistently outperforms aEntropy.

C.5 SMALL BATCH SIZE

In Figure 10, we show results for oracle 1 for a synthetic dataset with N = 70 objects (and |E| = 2415
pairs) using a batch size of B = 5. The noise level is γ = 0.4. In this experiment, we do not use any
acquisition noise in order to improve batch diversity. The purpose of this experiment is to further
illustrate the benefit of the acquisition functions based on information gain compared to entropy,
when differences due to batch diversity are (mostly) removed. We observe that aEIG-O, aEIG-P and
aJEIG outperform aEntropy.

C.6 RUNTIME

Each active learning procedure was executed on 1 core of an Intel(R) Xeon(R) Gold 6338 CPU @
2GHz (with 32 cores total). We have access to a compute cluster with many of these CPU’s allowing
us to execute many procedures in parallell. Each CPU has access to 128GB of RAM (shared among
cores), but much less would suffice for our experiments.
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(a) Synthetic (b) CIFAR10 (c) Ecoli (d) Forest Type Mapping

(e) User Knowledge (f) Cardiotocography (g) 20newsgroups (h) MNIST

Figure 5: Results for oracle 3 with noise level γ = 0.2. The evaluation metric is the adjusted rand
index (ARI).

(a) Synthetic (b) CIFAR10 (c) Ecoli (d) Forest Type Mapping

(e) User Knowledge (f) Cardiotocography (g) 20newsgroups (h) MNIST

Figure 6: Results for oracle 1 with noise level γ = 0.4. The evaluation metric is the adjusted mutual
information (AMI).

In Figure 11 we show the runtime of each iteration in seconds for all acquisition functions and
datasets. We observe that aEntropy is very efficient (comparable to other baseline methods). In addition,
we see that out of the acquisition functions based on information gain, aJEIG is the most efficient and
is quite close to aEntropy. Expectedly, aEIG-O and aEIG-P are the least efficient. This is because we run
Alg. 2 numerous times (as discussed in Section B.2). Out of these two, aEIG-P is the most inefficient
since it involves a sum over all

(
N
2

)
pairs (see Eq. 34) in each iteration of Alg. 3.

C.7 HYPERPARAMETERS

In this section, we present a detailed analysis of all hyperparameters. All experiments use oracle 1.

C.7.1 EIG

In Figure 12, we show results for the acquisition functions aEIG-O (left) and aEIG-P (right) with different
values of |EEIG| (using oracle 1). See Alg. 3 for the usage of EEIG. We observe that the performance
does not improve much beyond |EEIG| = 10N . This indicates both of these acquisition functions will
perform well when evaluation Eq. 13 or Eq. 34 for O(N) of the pairs (instead of all O(N2) pairs).
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(a) Synthetic (b) CIFAR10 (c) Ecoli (d) Forest Type Mapping

(e) User Knowledge (f) Cardiotocography (g) 20newsgroups (h) MNIST

Figure 7: Results for oracle 2 with variance γ = 1.3. The evaluation metric is the adjusted mutual
information (AMI).

(a) Synthetic (b) CIFAR10 (c) Ecoli (d) Forest Type Mapping

(e) User Knowledge (f) Cardiotocography (g) 20newsgroups (h) MNIST

Figure 8: Results for oracle 3 with noise level γ = 0.2. The evaluation metric is the adjusted mutual
information (AMI).

C.7.2 JEIG

In Figure 13, we show results for the acquisition function aJEIG when varying m, n and |Di|. The left
plot show results when varying |Di| with m and n fixed to 5 and 50, respectively. As explained in
Appendix B.3, each Di is selected as the top-|Di| pairs according to log(aEntropy(u, v)) + ϵuv where
ϵuv ∼ Gumbel(0; 1). The right plot show results when varying m and n with |Di| fixed to 0.02|E|
(2% of all pairs). We observe that |Di| = 0.02|E| performs the best. A smaller value means we do
not capture enough information about each Euv and a too large value leads to exaggerated selection
bias, as explained at the end of Section 3.3.3. We find |Di| = 0.02|E| to work well for all datasets
considered in this paper. However, there may be other values that perform equally well (or better).
Finally, we observe that larger values of m and n expectedly lead to better performance. A larger
value of m means we capture more information about each Euv. A larger value of n means the
Monte-Carlo estimation of the expectation Ee∼P (EDi

)[H(Euv | EDi
= e)] becomes more accurate.

C.7.3 CONCENTRATION PARAMETER β

In Figure 14, we show results for the information-theoretic acquisition functions aEntropy, aEIG-O and
aJEIG when varying the hyperparameter β. The parameter β is a concentration parameter used in
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(a) Synthetic (b) CIFAR10 (c) Ecoli (d) Forest Type Mapping

(e) User Knowledge (f) Cardiotocography (g) 20newsgroups (h) MNIST

Figure 9: Results for oracle 4. The evaluation metric is the adjusted mutual information (AMI).

(a)

Figure 10: Results on synthetic dataset with N = 70 and |E| = 2415 using a small batch size B = 5
without any acquisition noise. The noise level is γ = 0.4. This experiment used oracle 1.

the definition of the Gibbs distribution from Eq. 3. As a consequence, it is also used in Alg. 2
(mean-field), which is frequently used in this paper. In this setting, β is the well-known inverse
temperature of a Gibbs distribution (having this parameter with a Gibbs distribution is very common).
A large β will concentrate more probability mass on a cluster k with larger cost M t

uk. A smaller β will
make the probabilities Qt

uk more uniform across different clusters. β may therefore have an impact
on the resulting clustering (i.e., assignment probabilities Q which is used by all information-theoretic
acquisition functions). See (Chehreghani et al., 2012) for more details about the impact of β. We
observe that a value of β = 3 performs the best for all acquisition functions.

C.8 UTILIZING FEATURES FOR ACTIVE CORRELATION CLUSTERING

The primary focus of this paper is on standard correlation clustering (Bansal et al., 2004; Bonchi et al.,
2014) in the active learning setting, where no feature vectors are assumed to be available, i.e., similar
to the recent works (Bressan et al., 2019; García-Soriano et al., 2020; Aronsson & Chehreghani, 2024;
Kuroki et al., 2024). However, our framework is generic enough to also incorporate feature vectors
when available for the objects. In this section, we propose an innovative but simple method. After
line 6 of Alg. 1, we introduce a prediction component that predicts similarities based on the queries
made so far. This component works as follows.

For all queried pairs (u, v) (i.e., pairs where the oracle has provided the similarity Suv), we concate-
nate their feature vectors xu ⊕ xv and add them to a dataset, using Suv as the corresponding label.
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(a) Synthetic (b) CIFAR10 (c) Ecoli

(d) Forest Type Mapping (e) User Knowledge (f) Cardiotocography

Figure 11: Runtime of all acquisition functions on all datasets with noise level γ = 0.4. The
y-axis corresponds to the execution time in seconds of each iteration. This corresponds to the same
experiments presented in Figure 1.

(a) EIG-O (b) EIG-P

Figure 12: Results for acquisition functions aEIG-O (left) and aEIG-P (right) with different values of
|EEIG|.

(a) m = 5, n = 50 (b) |Di| = 0.02|E|

Figure 13: Results for acquisition function aJEIG when varying hyperparameters m, n and |Di|.
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(a) Entropy (b) EIG-O (c) JEIG

Figure 14: Results of information-theoretic acquisition functions aEntropy, aEIG-O and aJEIG when
varying hyperparameter β (used in Eq. 3)

(a) Easy Synthetic Dataset (b) Difficult Synthetic Dataset

Figure 15: Performance of aEntropy and aUniform when leveraging feature vectors across two synthetic
datasets, one with a simpler (easy) feature space and the other with a more complex (hard) feature
space.

(a) Forest Type Mapping (b) Cardiotocography

Figure 16: Performance of aEntropy and aUniform when leveraging feature vectors for two real-world
datasets.

Then, we train a pairwise similarity prediction model fθ : X×X→ [−1,+1] using the collected
dataset. The training process follows a procedure similar to Oracle 4 (see Appendix C.2 for details).
Finally, use fθ to predict similarities for the pairs that have not yet been queried. To minimize noise
or incorrect predictions, it may be advantageous to limit predictions to pairs for which fθ exhibits
high confidence.

We conducted some experiments to evaluate this approach, with the results presented in Figures
15-16. The experiments in Figure 15 were performed on two synthetic datasets. The first dataset has
relatively simple structure, with well-separated clusters, while the second dataset is more challenging,
exhibiting overlap between clusters. The results suggest that the prediction component facilitates
rapid convergence, reducing the number of queries required. However, we observe that leveraging
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features can lead to convergence toward arbitrarily poor solutions if the dataset contains bias. This
issue is particularly pronounced in the more challenging dataset, where noise and bias are more
prevalent. Figure 16 presents the results for two real-world datasets, showcasing a similar trend.
Notably, in the forest type mapping dataset, the ground-truth clustering is identified rapidly when
feature vectors are used. In contrast, for the cardiotocography dataset, the procedure converges to a
suboptimal clustering when using features, likely due to noise or bias in the dataset’s feature space.

It is important to emphasize that the primary focus of this paper is the setting where high-quality
feature vectors are not assumed to be available. Therefore, the proposed prediction component should
be viewed as an intriguing direction for future work in this context. However, since we do not assume
access to feature vectors, it would not be appropriate to center this study on the predictive component
(or any other way of incorporating feature vectors).

D MAX CORRELATION CLUSTERING ALGORITHM

In this section, we describe the CC algorithm used in the active CC procedure outlined in Section 2.2.
The algorithm was derived in (Aronsson & Chehreghani, 2024) based on the max correlation cost
function RMC(c | S) ≜ −

∑
(u,v)∈E
cu=cv

Suv introduced in Proposition 2.1. It is highly robust to noise in

S and dynamically determines the number of clusters.

The method is based on local search and is outlined in Alg. 5. It takes as input a set of objects V ,
a similarity matrix S, an initial number of clusters K, the number of repetitions T , and a stopping
threshold η. In our experiments, we set T = 5, η = 2−52 (double precision machine epsilon) and
K = |V| in the first iteration of the active CC procedure, and then K = Ki for all remaining iterations
where Ki denotes the number of clusters in the current clustering ci. The output is a clustering
c ∈ C. The main part of the algorithm (lines 4-22) is based on the local search of the respective
non-convex objective. Therefore, we run the algorithm T times with different random initializations
and return the best clustering in terms of the objective function. The main algorithm (starting from
line 4) consists of initializing the current clustering c randomly. Then, it loops for as long as the
current max correlation objective changes by at least η compared to the last iteration. If not, we
assume it has converged to some (local) optimum. Each repetition consists of iterating over all the
objects in V in a random order Vrand (this ensures variability between the T runs). For each object
u ∈ Vrand, it calculates the similarity (correlation) between u and all clusters k ∈ {1, . . . ,K}, which
is denoted by Sk(u). Then, the cluster kmax that is most similar to u is obtained. Now, if the most
similar cluster to u has a negative correlation score, this indicates that u is not sufficiently similar
to any of the existing clusters. Thus, we construct a new cluster with u as the only member. If the
most similar cluster to u is positive, we simply assign u to this cluster. Consequently, the number of
clusters will dynamically change based on the pairwise similarities (it is possible that the only object
of a singleton cluster is assigned to another cluster and thus the singleton cluster disappears). Finally,
in each repetition the current max correlation objective is computed efficiently by only updating it
based on the current change of the clustering c (i.e., lines 14 and 20). The computational complexity
of the procedure is O(KN2). See (Aronsson & Chehreghani, 2024) for additional details about how
the algorithm was derived.

E RELATION TO MULTI-ARMED BANDIT METHODS

The studies in (Gullo et al., 2023; Kuroki et al., 2024) address query-efficient correlation clustering
(CC) by framing it as a multi-armed bandit (MAB) problem. Below, we compare these approaches to
our own methods.

First, (Gullo et al., 2023) distinguish their approach from the query-efficient CC framework studied
by (Bressan et al., 2019; García-Soriano et al., 2020), which is the setting we also consider. The key
difference lies in the assumption regarding the query budget B. While we assume a fixed budget
with B ≪ |E|, (Gullo et al., 2023) does not impose this constraint, allowing the number of queries to
exceed the total number of pairs.

In (Kuroki et al., 2024), the authors propose learning edge weights (pairwise similarities) using
combinatorial bandit algorithms. Similar to other query-efficient CC studies (Bressan et al., 2019;
García-Soriano et al., 2020), they utilize KwikCluster as their base clustering algorithm. KwikCluster,
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Algorithm 5 Max Correlation Clustering Algorithm A (dynamic K)
Input: V , S, initial number of clusters K, number of iterations T , stopping threshold η
Output: Clustering solution c ∈ C

1: N ← |V|
2: RMC

best ← −∞
3: for j ∈ {1, . . . , T} do
4: c← random clustering in C with K clusters
5: RMC ← RMC(c | S)
6: RMC

old ← RMC − 1
7: while |RMC −RMC

old| > η do
8: RMC

old ← RMC

9: Vrand ← a random permutation of the objects in V
10: for each u in Vrand do
11: Sk(u)←

∑
v:civ=k Suv, ∀k ∈ {1, . . . ,K}

12: kmax ← argmaxk∈{1,...,K} Sk(u)

13: if Skmax(u) < 0 then
14: RMC ← RMC − Scu(u)
15: cu ← K + 1
16: K ← K + 1
17: else
18: kold ← cu
19: cu ← kmax
20: RMC ← RMC − Scu(u) + Skmax(u)
21: If cluster kold is now empty, decrement cv for all v ∈ V for which cv > kold, and

then decrement K.
22: end if
23: end for
24: end while
25: if RMC > RMC

best then
26: cbest ← c
27: RMC

best ← RMC

28: end if
29: end for
30: return cbest

being a pivot-based algorithm, is particularly sensitive to noise. Their approach maps each edge to a
distinct arm (resulting in O(N2) arms), and they apply combinatorial bandit algorithms to estimate
similarities. However, this approach presents several limitations:

• The algorithms are tailored to satisfy specific theoretical properties, which impose practical
constraints (discussed below).

• They assume non-persistent noise, meaning multiple queries of the same similarity (or
multiple pulls of the same arm) are permitted—this is a standard assumption in the MAB
literature. In contrast, our methods are robust even under persistent noise, where only a
single query per pair is allowed.

• Their strategy for selecting which similarities to query is limited, as it does not account
for correlations between pairs (arms), unlike our approach, which incorporates model
uncertainty to guide query selection.

• They consider two primary settings:
– Fixed Confidence (KF-FC): This setting requires each arm to be pulled at least once,

leading to more queries than the total number of pairwise similarities—this is a common
assumption for many MAB algorithms. Our methods, on the other hand, achieve
effective clustering with significantly fewer queries. Additionally, their framework
does not accommodate a predefined query budget B.

– Fixed Budget (KF-FB): Although this setting allows for a predefined budget B, the
smallest budget considered in (Kuroki et al., 2024) is N2.1, which exceeds the total
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number of pairs. This constraint arises from the requirements of Algorithm 3 in (Kuroki
et al., 2024), which necessitates a budget larger than N2 to function properly, ensuring
the validity of their theoretical analysis. As demonstrated via extensive experiments,
our methods require significantly fewer queries.
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