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ABSTRACT

Denoising diffusion probabilistic models have recently demonstrated state-of-the-
art generative performance and have been used as strong pixel-level representation
learners. This paper decomposes the interrelation between the generative capabil-
ity and representation learning ability inherent in diffusion models. We present the
masked diffusion model (MDM), a scalable self-supervised representation learner
for semantic segmentation, substituting the conventional additive Gaussian noise
of traditional diffusion with a masking mechanism. Our proposed approach con-
vincingly surpasses prior benchmarks, demonstrating remarkable advancements
in both medical and natural image semantic segmentation tasks, particularly in
few-shot scenarios.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) have showcased impressive image
synthesis abilities by iteratively generating cleaner images from noisy ones using a Gaussian distri-
bution. Recently, novel methods such as cold diffusion (Bansal et al., 2022) have aimed to substitute
diffusion’s denoising step with other processes. Unfortunately, such efforts risk deviating from the
theoretical underpinnings of diffusion (see Section 3.1), which heavily rely on the Gaussian distri-
bution and the introduction of Gaussian noise into images. Furthermore, the unsatisfactory results
of cold diffusion seem to underscore the indispensable nature of denoising in the diffusion process.

Fortunately, denoising’s significance diminishes when one focuses on the self-supervised pre-
training facet of diffusion (e.g., Baranchuk et al. (2022)), which employs intermediate activations
from a trained diffusion model for downstream segmentation tasks. As emphasized in Section 3.1,
training a denoising diffusion model can be simplified by reconstructing the original image (or its
added noise equivalent) from a noisy version, with the noise being modulated by various timesteps.
Thus, viewed as a representation learning technique, diffusion can be seen as an autoencoder per-
forming denoising across various complexities. In this context, the denoising operation loses its
centrality, as evidence is inconclusive that denoising pre-training inherently produces better repre-
sentations compared to recovering from alternative corruptions (e.g., masking).

Moreover, we identify a mismatch between the pre-training generative task and the downstream
dense prediction task, leading to performance degradation during fine-tuning. Namely, high-level,
low-frequency structural aspects of images are demanded for a dense prediction task (e.g., seman-
tic segmentation) in few-shot scenarios, where the trainable network is designed to be lightweight
to avoid over-fitting. Contrastingly, generative models often allocate a significant portion of their
capacity to capture low-level, high-frequency details, as highlighted in Ramesh et al. (2021).

Motivated by these insights, our study diverges from conventional denoising in the diffusion frame-
work. Inspired by the Masked Autoencoder (MAE) (He et al., 2022), we replace noise addition with
a masking operation (see Fig. 1), introducing a new self-supervised pre-training paradigm for se-
mantic segmentation named the masked diffusion model (MDM). Furthermore, we propose a simple
yet impactful approach to bridge the gap between reconstructive pre-training tasks and downstream
prediction tasks, i.e., substituting the commonly used Mean Squared Error (MSE) loss, prevalent
in traditional denoising diffusion models and other pre-training models, with the Structural Simi-
larity (SSIM) loss (Wang et al., 2004). Our approach achieved state-of-the-art accuracy, showing
the potential of alternative corruption strategies and emphasizing the efficacy of the SSIM loss in
diffusion-based pre-training.
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Figure 1: Dynamic masking process. Portions of data are probabilistically masked according to
the timestep t and subsequently reconstructed via a time-aware U-Net.

Our contribution can be summarized as follows: (1) We extend denoising diffusion models into a
self-supervised pre-training algorithm, using denoising as a preliminary task for training a robust
representation learning autoencoder. We empirically decompose the interrelation between the gen-
erative capability and representation learning ability inherent in diffusion models; the representation
ability of diffusion models does not originate from their generative power. (2) We propose a novel
paradigm called the masked diffusion model (MDM) for self-supervised representation learning (pri-
marily tested for segmentation task), which fully abandons the theoretical guarantee of traditional
generative diffusion models. In this model, we replace the conventional Gaussian noise in tradi-
tional diffusion models with a masking operation. We also utilize the Structural Similarity Index
(SSIM) loss to minimize the disparity between the pre-training reconstruction task and downstream
dense prediction task. (3) Extensive experiments in downstream semantic segmentation tasks show
that MDM outperforms DDPM and other baselines on multiple datasets emcompassing both med-
ical and natural images. Particularly noteworthy is the robust performance of MDM in few-shot
scenarios.

2 RELATED WORK

2.1 DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) are a class of generative models which
have recently gained significant popularity. Diffusion models define a Markov chain of diffusion
steps to gradually add noise to data and train a deep neural network to invert the diffusion process
from a known Gaussian distribution. The more powerful architectures and advanced objectives
proposed by Nichol & Dhariwal (2021); Dhariwal & Nichol (2021) further improve the generative
quality and diversity of diffusion models.

Many recent works (Rissanen et al., 2023; Bansal et al., 2022; Hoogeboom & Salimans, 2023; Daras
et al., 2022) attempted to propose alternative degradation mechanisms for diffusion models that aim
to supplant the conventional additive Gaussian noise. Nevertheless, these works have either strug-
gled to replicate the exceptional image quality achieved by traditional denoising diffusion (Bansal
et al., 2022), or have resorted to blurring degradations, which essentially amounts to introducing
Gaussian noise in the frequency domain (Rissanen et al., 2023; Hoogeboom & Salimans, 2023;
Daras et al., 2022). Currently, there is no solid theoretical foundation or compelling empirical evi-
dence to show that the Gaussian noise in diffusion models can be replaced. Our work revisits denois-
ing diffusion models from a self-supervised representation learning perspective rather than from an
image synthesis standpoint, and takes the first step toward removing Gaussian noise from diffusion.

2.2 SELF-SUPERVISED LEARNING

Self-supervised learning approaches aim to learn from unlabelled data via pre-text tasks (Doersch
et al., 2015; Wang & Gupta, 2015; Pathak et al., 2017; Gidaris et al., 2018). Recently, the masked
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autoencoder (MAE) (He et al., 2022) has shown remarkable capability as an effective pre-training
strategy by reconstructing masked patches. Baranchuk et al. (2022) finds that denoising diffusion
models (DDPM) learn semantic representations from a self-supervised denoising training process.
(Lei et al., 2023) tries to combine MAE and DDPM to get a more powerful and faster image syn-
thesizer, while our work focuses on the representation learning ability. Wei et al. (2023) proposes
DiffMAE and evaluates it on downstream recognition tasks. DiffMAE still keeps denoising process
in DDPM and conditions diffusion models on masked input. DiffMAE does not achieve better fine-
tuning performance than MAE. In contrast, our work fully removes the additive Gaussian noise in
diffusion and outperforms both MAE and DDPM in downstream semantic segmentation tasks.

3 BACKGROUND

3.1 DENOISING DIFFUSION PROBABILISTIC MODELS (DDPM)

Given a data distribution x0 ∼ q(x0), each step of the Markovian forward process (diffusion process)
can be defined by adding Gaussian noise according to a variance schedule β1, ..., βT :

q(xt|xt−1) := N (xt;
√

1− βtxt, βtI)

A key property of the forward process is that it allows sampling xt directly from a Gaussian distri-
bution:

q(xt|x0) := N (xt;
√
ᾱtx0, (1− ᾱt)I), xt =

√
ᾱx0 + ϵ

√
1− ᾱt, ϵ ∼ N (0, I) (1)

where αt := 1− βt and ᾱt :=
∏s

s=1 αs.

To sample from the data distribution q(x0), a reverse sampling procedure (the reverse process) can be
employed by first sampling from q(xT ) and then iteratively sampling reverse steps q(xt−1|xt) until
reaching x0. By adopting the setting for βT and T in Ho et al. (2020), the outcome is that q(xT ) ≈
N (xT ; 0, I), which makes sampling xT trivial. The only thing left is to train a model pθ(xt−1|xt)

to approximate the unknown q(xt−1|xt). Based on Bayes theorem, q(xt−1|xt) =
q(xt|xt−1)q(xt−1)

q(xt)

is intractable since both q(xt−1) and q(xt) are unknown. Song et al. (2021) shows that the true
q(xs|xt) → q(xs|xt, x̂0) as s → t for s < t. Therefore, the tractable posterior conditioned on x0

can be considered as a compromise:

q(xt−1|xt, x0) =
q(xt|xt−1)q(xt−1|x0)

q(xt|x0)

= N (xt−1; µ̃t(xt, x0), β̃tI),

(2)

where µ̃t(xt, x0) :=
√
ᾱt−1βt

1−ᾱt
x0+

√
αt(1−ᾱt−1)

1−ᾱt
xt, β̃t :=

1−ᾱt−1

1−ᾱt
βt. Assuming a well-trained neural

network fθ that estimates x0 from xt, the targeted q(xt−1|xt) can be obtained by substituting the
actual x0 in Equation 2 with the estimated x̂0:

q(xt−1|xt) ≈ q(xt−1|xt, x̂0 = fθ(xt, t))

Instead of directly predicting x0, Ho et al. (2020) proposes an equivalent training strategy which
trains a neural network ϵθ(xt, t) to predict the noise ϵt from Equation 1 to produce better samples.
Once ϵ̂t = ϵθ(xt, t) is available, x̂0 can be easily derived by:

x̂0 =
1√
ᾱ
(xt −

√
1− ᾱtϵ̂t)

The network is optimized by the commonly used simple objective:
LDDPM := Et∼[1,T ],x0∼q(x0),ϵ∼N (0,I)[∥ϵ− ϵθ(xt, t)∥2] (3)

3.2 MASKED AUTOENCODERS (MAE)

MAE is a powerful self-supervised pre-training algorithm which learns representations by recon-
structing the masked patches based on the visible patches. In detail, the full image is firstly divided
into non-overlapping patches following Vision Transformers (ViT) (Dosovitskiy et al., 2021).
Then a random subset of patches is sampled and used as input for the ViT-based MAE Encoder.
The encoder embeds these visible patches by a linear projection and incorporates corresponding
positional embeddings, then processes the resulting set using a sequence of Transformer blocks. The
MAE decoder takes a full set of tokens consisting of patch-wise representations from the encoder
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Figure 2: Overview of our proposed method. During pre-training, only the masked diffusion
model (Encoder and Decoder) in Step 1 is trained. We partially mask the clean image based on
a randomly sampled timestep t. The masked diffusion model then takes the masked image and
reconstructs it. For the downstream segmentation task, the pre-trained model in Step 1 is frozen as a
representation generator, and the segmentation network in Step 2 is trained with the representations
extracted from Step 1.
and learnable mask tokens with positional embeddings. Since the decoder is only used during
pre-training for the reconstruction task, it can be designed in a manner that is much lighter than
the encoder. In MAE, the loss function is determined by calculating the mean squared error (MSE)
between the previously masked portion of the reconstructed images and the corresponding original
images at the pixel level. In particular, MAE employs the normalized pixels as the reconstruction
target, leading to an improvement in representation quality.

4 METHODOLOGY

Our proposed masked diffusion model (MDM) is a variant of traditional denoising diffusion prob-
abilistic models (DDPM) that reconstructs the whole image given partial observation. While
DDPM serves as both an impressive image synthesizer and a robust self-supervised representation
learner, MDM, in contrast, is solely designed for self-supervised representation learning. Following
Baranchuk et al. (2022), the pixel-level representations extracted from a self-supervised pre-trained
MDM are used for downstream dense prediction tasks, e.g., image segmentation. An overview of
our method is shown in Figure 2. The following subsections will provide a detailed explanation of
the pre-training process and how to apply the learned representations to the downstream tasks.

4.1 SELF-SUPERVISED PRE-TRAINING WITH MASKED DIFFUSION MODEL

According to Equation 3, DDPM is trained by constantly predicting the noises in the input noisy
images. Well-trained DDPM produces high-quality representations for label efficient segmentation
(Baranchuk et al., 2022). From the perspective of self-supervised pre-training, DDPM can be treated
as a special kind of denoising autoencoder (DAE)1. DAE degrades an input signal under different
corruptions and learns to reconstruct the original signal. In particular, DDPM corrupts the original

1In denoising autoencoders (DAE), the term “denoising” refers to restoring original data from data degraded
by a certain corruption. Conversely, the term “denoising” in other places in this paper explicitly refers to the
process of removing introduced Gaussian noise in noisy images and reconstructing the original images.
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signal by adding a Gaussian noise controlled by a timestep t. Inspired by MAE and DDPM, our
masked diffusion model (MDM) takes an image in which a random portion is masked based on the
timestep t, and subsequently restores the image.

Architecture. Following guided diffusion (Dhariwal & Nichol, 2021), MDM uses the UNet archi-
tecture, which has been found to be highly effective for diffusion models. The UNet model consists
of a series of residual layers and downsampling convolutions, followed by another set of residual
layers with upsampling convolutions. The layers with the same spatial size are connected by skip
connections. All the residual blocks follow the design in BigGAN (Brock et al., 2019). The model
uses self-attention blocks at the 32×32, 16×16, and 8×8 resolutions. Diffusion step t is embedded
into each residual block.

SSIM Loss. Both MAE and DDPM calculate the Mean Squared Error (MSE) loss between the re-
constructed and original images to assess the reconstruction quality. Nevertheless, we have observed
that a generative model’s ability to generate images with low MSE loss does not consistently guar-
antee that high-quality semantic representations can be extracted from the model. As a solution, we
turn to Structural Similarity Index (SSIM) loss, which is also commonly employed in image restora-
tion tasks. SSIM loss guides the reconstruction process to create images that are more similar to the
original ones in terms of their structural information (Wang et al., 2004). By doing so, we aim to
narrow the gap between the reconstruction task and the subsequent segmentation task, as structural
information is often pivotal for accurate segmentation. The effectiveness of SSIM loss is further
shown and discussed in ablation studies. MDM is finally optimized by the following objective:

LMDM := Et∼[1,T ],x0∼q(x0)[LSSIM(x0,Uθ(xt, t))], (4)

LSSIM(x, x̂) :=
1− SSIM(x, x̂)

2
,

SSIM(x, x̂) :=
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
,

where c1 = (k1L)
2 and c2 = (k2L)

2 are two variables to stabilize the division with weak denomi-
nator, with L being the dynamic range of the pixel-values.

Masking and Reconstructing. MDM is trained by iterative masking and reconstructing until the
model converges. We describe the detailed training procedure given a single image and one sampled
timestep below. Given an image x0 ∈ RH×W×C sampled from the data distribution q(x0), we
divide and reshape it into N = H×W

P 2 patches denoted by p
(1)
0 , p

(2)
0 , . . . , p

(N)
0 . Each patch denoted

by p
(i)
0 is represented as a vector with a size of P 2C, where P is the patch size and C is the number

of channels in the image. To initiate the diffusion process, we first sample a diffusion timestep t
from the interval [1, T ], while the masking ratio Rm is defined as Rm = t

T+1 . Then we randomly
shuffle the list of patches and replace the last ⌊Rm ×N⌋ patches with zero values. Afterward, we
unshuffle the list to its original order, resulting in the corrupted image xt. In accordance with the
reverse procedure employed in DDPM, the UNet model denoted by Uθ takes both the corrupted
image xt and its corresponding timestep t as input and subsequently generates an estimate for the
intact image, denoted as x̂0 = Uθ(xt, t). The optimization of the Uθ model is achieved using the
LMDM loss function defined in Equation 4.

4.2 DOWNSTREAM FEW-SHOT SEGMENTATION

In this paper, we explore a few-shot semi-supervised setting where we first pre-train MDM on a
large unlabelled image dataset Xunlabelled = {x1

0, ..., x
N
0 } ∈ RH×W×C using the self-supervised

approach as previously described. Then we leverage the features extracted from the MDM decoder
to train a segmentation head Sϕ (MLP) on a smaller dataset Xlabelled = {x1

0, ..., x
M
0 } ∈ RH×W×C

with K-class semantic labels Ylabelled = {y10 , ..., yM0 } ∈ RH×W×K . It is worth noting that Xlabelled
is not necessarily a subset of Xunlabelled. Our experiments demonstrate that despite the distinction
between Xunlabelled and Xlabelled, the features learned from Xunlabelled can still yield valuable benefits
for accurately segmenting Xlabelled, as long as both datasets belong to the same domain.

To extract features for our analysis, we focus on a subset of UNet decoder blocks at a specific
diffusion step t. We feed the labelled Xlabelled and the diffusion timestep t into the pre-trained
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Diffusion Uθ, extracting the features based on the specified blocks setting B. The extracted fea-
tures are upsampled to match the image size and then concatenated, resulting in feature vectors
Flabelled = {f1

t,B, ..., f
M
t,B} ∈ RH×W×Cf , where Cf represents the number of channels, which varies

depending on the blocks setting B. The loss of the segmentation network Sϕ is defined as follows:

LSeg :=
1

M

M∑
i

CrossEntropy(Sϕ(f
i
t,B), y

i
0)

4.3 COMPARISONS WITH MAE AND DDPM

Our MDM differentiates itself from MAE and DDPM in three key aspects: (1) Purpose: While
DDPM serves as a potent generative model and self-supervised pre-training algorithm, MDM and
MAE concentrate on self-supervised pre-training. The generative ability of MDM can be further ex-
plored. (2) Architecture: MAE employs the Vision Transformer (ViT) architecture, whereas DDPM
and our MDM utilize U-Net. (3) Corruption: DDPM introduces increasing additive Gaussian noise,
MAE applies patch masking and only uses visible patches as input, and MDM employs a masking
strategy guided by a sampled timestep t from [1, T ], using the whole corrupted image as input.

5 EXPERIMENTS

We assess the effectiveness of our MDM on various datasets, spanning both medical images—the
Gland segmentation dataset (GlaS) (Sirinukunwattana et al., 2017) and MoNuSeg (Kumar et al.,
2017; 2020)—and natural images (FFHQ-34 and CelebA-19 (Baranchuk et al., 2022)), in the context
of few-shot segmentation following the pre-training phase. FFHQ-34 is a subset of the FFHQ-256
dataset (Karras et al., 2019) with segmentation annotations, and we use FFHQ-256 to pre-train
for FFHQ-34 and CelebA-19 segmentation. We adopt in-domain pre-training for all pre-training
methods on GlaS and MoNuSeg. Comprehensive dataset details are provided in Appendix A.1. We
also provide additional evaluation of MDM on the classification task in Appendix C.

5.1 COMPARISONS WITH STATE-OF-THE-ART METHODS

Medical Image Datasets. We compare our MDM with the two types of current state-of-the-
art methods on GlaS and MoNuSeg, covering six traditional segmentation methods: UNet (Ron-
neberger et al., 2015), UNet++ (Zhou et al., 2018), Swin UNETR (Hatamizadeh et al., 2021), At-
tUNet (Wang et al., 2022b), UCTransNet (Wang et al., 2022a), MedT (Valanarasu et al., 2021) and
two self-supervised pre-training methods, MAE and DDPM, that allow one to extract intermedi-
ate activations, much like in our method. For a fair comparison, all the methods not elaborated in
Section A.2 adhere to their respective official configurations.

In Table 1, we report a comprehensive comparison of methods in terms of Dice, IoU, and AJI metrics
on GlaS and MoNuSeg across two distinct scenarios. The qualitative examples of segmentation with
our method and other comparable models are shown in Fig. 3 and Fig. 4. Notably, in Fig. 4, we have
marked regions of superior performance by our MDM with red boxes. The segmentation network,
trained utilizing our proposed MDM representations, yields significant performance improvements
over previous techniques for both GlaS and MoNuSeg. Furthermore, all the traditional segmentation
methods fail to provide reasonable segmentation predictions when operating with only 10% of the
available labels for training. In contrast, our MDM not only surpasses the accuracy achieved by
state-of-the-art self-supervised methods such as MAE and DDPM, but also attains accuracy levels
close to those achieved with a full label set while using only 10% of the labels.

Natural Image Datasets. We compare MDM with two categories of state-of-the-art methods on
FFHQ-34 and CelebA-19, including two methods that employ extensive annotated synthetic image
sets for segmentation training: DatasetGAN (Zhang et al., 2021), DatasetDDPM (Baranchuk et al.,
2022) and four self-supervised methods similar to our approach: SwAV, SwAVw2 (Caron et al.,
2020), MAE and DDPM.

Table 2 presents the experimental results in terms of mIoU on FFHQ-34 and CelebA-19. Our MDM
outperforms the previous state-of-the-art results. Additionally, we visualize the segmentation results
in Figure 5. In particular, MDM is the only method which correctly classifies the hat in the third row
image, which proves the representations extracted from MDM are semantically rich.
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Table 1: Comparisons with previous methods on GlaS and MoNuSeg. The results are presented
in the format of “mean±std”. Both DDPM and MDM are trained for 10000 iterations on GlaS and
5000 iterations on MoNuSeg. We present the results for two different scenarios: one with 100%
segmentation labels and the other with only 10% segmentation labels.

Method GlaS 100% (85) GlaS 10% (8) MoNuSeg 100% (30) MoNuSeg 10% (3)

Dice (%) IoU (%) Dice (%) IoU (%) Dice (%) AJI (%) Dice (%) AJI (%)

UNet 85.93±2.92 75.44±4.42 53.46±11.09 37.24±10.06 74.56±0.98 60.22±1.31 54.79±2.50 41.06±2.14
UNet++ 86.62±0.99 76.41±1.56 77.05±2.11 62.72±2.7 80.33±0.69 67.30±0.94 74.26±1.62 59.49±1.98
Swin UNETR 86.74±1.32 76.61±2.05 73.95±2.00 58.71±2.54 79.99±0.42 66.81±0.57 72.47±2.72 57.36±3.27
AttUNet 86.12±1.99 75.68±3.04 66.35±4.79 49.83±5.16 79.74±1.03 66.55±1.36 70.87±3.46 55.72±3.84
UCTransNet 85.10±2.44 74.14±3.65 55.87±5.61 38.98±5.44 78.80±1.15 65.57±1.34 64.33±5.19 48.78±5.35
MedT 81.02±2.10 68.14±2.98 59.46±11.31 43.18±10.86 77.55±1.02 63.48±1.35 64.49±2.87 50.60±3.09

MAE 89.71±0.92 81.35±1.51 88.56±0.67 79.47±1.08 73.68±1.48 58.62±1.78 76.19±0.18 61.61±0.23
DDPM 90.45±0.37 82.56±0.61 90.30±0.47 82.32±0.77 80.31±0.58 67.31±0.77 74.37±3.08 60.03±3.48
MDM(ours) 91.95±1.25 85.13±2.09 91.60±0.69 84.51±1.15 81.01±0.35 68.25±0.49 79.71±0.75 66.43±1.02

Image Ground TruthMAE DDPM MDM (ours)UNet++Swin UNETR

83.67 91.43 91.97 92.51 96.00

90.18 88.88 96.43 95.83 97.02

90.93 94.11 92.86 94.49 95.95

93.94 96.04 95.99 96.99 97.88

Figure 3: Qualitative Visualization on GlaS test sets under full training labels setting (first 2 rows)
and 10% training labels setting (last 2 rows) with the dice score (%) of each prediction.

Image Ground TruthMAE DDPM MDM (ours)UNet++Swin UNETR

61.64 69.33 74.43 75.56 81.98

80.76 83.25 75.96 84.40 84.57

79.96 75.53 73.99 82.77 82.85

79.87 84.48 66.23 84.42 85.12

Figure 4: Qualitative Visualization on MoNuSeg test sets under full training labels setting (first 2
rows) and 10% training labels setting (last 2 rows) with the dice score (%) of each prediction.

Key Observations. We summarize the key observations as follows: (1) The proposed MDM out-
performs DDPM across all four datasets under different settings, which indicates that the denoising
in diffusion is not irreplaceable, at least from a self-supervised representation learning perspective.
(2) MDM achieves better performance than MAE, even though both methods employ similar mask-
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Table 2: Semantic segmentation performance on FFHQ-34 and CelebA-19 in terms of mIoU.
Symbol ∗ denotes the evaluation of CelebA-19 utilizing models pre-trained on FFHQ-256. MDM is
pre-trained for 40000 iterations for FFHQ-34 and CelebA-19, while other pre-training methods use
the checkpoints provided by Baranchuk et al. (2022).

Method FFHQ-34 CelebA-19∗

DatasetGAN 55.52±0.24 -
DatasetDDPM 55.01±0.27 -

SwAV 52.53±0.13 51.99±0.20
SwAVw2 54.57±0.16 51.17±0.14

MAE 57.06±0.20 57.27±0.08
DDPM 59.36±0.17 58.86±0.12
MDM(ours) 60.34±0.15 59.57±0.13

Image Ground TruthMDM (Ours)DDPMMAESwAVw2SwAV

Figure 5: Qualitative Visualization on FFHQ-34 (first 2 rows) and CelebA-19 (last 2 rows).

ing and restoration pre-training techniques. We attribute this improvement to MDM’s utilization of
different levels of masking (T levels). This contributes to the acquisition of more robust and seman-
tically meaningful representations, enhancing segmentation results. (3) MDM excels in few-shot
scenarios, while conventional segmentation methods struggle. This positions MDM as a compet-
itive choice for tasks with limited labeled data. Notably, this advantage is particularly relevant in
medical datasets, where acquiring pixel-level labels is costly. This makes MDM’s label-efficient
characteristic beneficial for such data.

5.2 ABLATION STUDIES

Our ablation studies are based on 20000 iterations pre-training of DDPM and MDM for FFHQ-34
and 10000 iterations pre-training for GlaS. If not specified, other settings follow the implementation
details in Appendix A.2. Here, we provide our ablation studies focusing on diffusion, loss functions,
and reconstruction targets. Comprehensive ablation studies can be found in Appendix B.

Diffusion. Table 3 studies the impact of diffusion on our MDM and DDPM pre-training. Diffusion
models consist of T timesteps, each corresponding to an incremental level of corruption. We fix
t to 250 for DDPM pre-training and 50 for MDM pre-training. Then DDPM degrades to a vanilla
denoising autoencoder and MDM degrades to a vanilla masked autoencoder (with a slight difference
from MAE). The degraded DDPM and MDM show similar performance compared with MAE, while
with diffusion, both DDPM and MDM outperform MAE. Surprisingly, MDM demonstrates a more
substantial improvement over DDPM with diffusion and achieves the highest accuracy, even though
MDM is not a standard diffusion model with powerful generation capability. This phenomenon
further supports our conjecture: the efficacy of semantic representations derived from DDPM is not
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Table 3: Ablation results of diffusion. Fixed t means a diffusion model degrades to a vanilla
autoencoder with a fixed level of corruption.

Method Fixed t
GlaS 100% (85) GlaS 10% (8)

Dice (%) IoU (%) Dice (%) IoU (%)

MAE - 89.71±0.92 81.35±1.51 88.56±0.67 79.47±1.08

DDPM ✓ 89.82±0.41 81.52±0.76 87.10±0.67 77.15±1.06
× 90.45±0.37 82.56±0.61 90.30±0.47 82.32±0.77

MDM ✓ 88.68±0.54 79.67±0.86 86.82±1.04 76.72±1.59
× 91.95±1.25 85.13±2.09 91.60±0.69 84.51±1.15

Table 4: Ablation results of loss functions and reconstruction targets in terms of mIoU. †:
DDPM predicts the original image x0 instead of the noise ϵt.

Method Loss Type GlaS 10% (8) FFHQ-34

DDPM MSE 82.32±0.77 58.75±0.16

DDPM† MSE 78.77±1.01 51.63±0.16
SSIM 81.79±1.13 56.97±0.18

MAE MSE 79.47±1.08 57.06±0.20
SSIM 76.72±1.75 56.55±0.13

MDM MSE 82.70±0.79 55.06±0.21
SSIM 84.51±1.15 59.18±0.11

solely contingent on its generative prowess. Instead, we can view DDPM as a denoising autoencoder
with T levels of noises, and it can potentially be substituted with other forms of random corruptions.

SSIM Loss and Reconstruction Targets. The effectiveness of SSIM loss and reconstruction targets
is studied in Table 4. When applied to MDM and DDPM† pre-training, SSIM loss improves the accu-
racy on both GlaS and FFHQ-34 datasets compared to MSE. Meanwhile, SSIM loss does not work
well in MAE. These findings highlight that choosing a suitable loss function is a straightforward
yet effective way for minimizing the discrepancy between pre-training-acquired representations and
those essential for subsequent segmentation tasks. Additionally, we investigate different reconstruc-
tion targets for DDPM pre-training. DDPM pre-trained with the noise prediction strategy achieves
higher accuracy in downstream segmentation tasks compared to using the image prediction strategy.
Our findings are consistent with previous research (Ho et al., 2020), indicating that predicting the
noise ϵt can lead to improved quality in diffusion models, as opposed to predicting the clean image
x0. Thus, all DDPM models in this study are trained by predicting noise.

6 DISSCUSION

Summary. In this study, we revisit the denoising diffusion probability models (DDPM) within the
framework of self-supervised pre-training and break down the relation of semantic representation
quality and generation capability of DDPM. We introduce a novel pre-training paradigm for se-
mantic segmentation by stripping noise from diffusion models and integrating masking operations
akin to MAE. Furthermore, we demonstrate the effectiveness of SSIM loss in narrowing the gap be-
tween the reconstruction pre-training task and the downstream dense prediction task. Our proposed
masked diffusion model (MDM) with SSIM loss achieves state-of-the-art performance in semantic
segmentation on multiple benchmark datasets. The label-efficient attribute of MDM holds promising
prospects for diverse few-shot dense prediction tasks.

Limitations and Future Work. (1) Our MDM implementation is currently applied exclusively to
U-Net, with an evaluation focused on downstream semantic segmentation performance across two
medical datasets and two natural image datasets. Future exploration could involve extending pre-
training to more complex networks (e.g., ConvNeXt) using MDM, and assessing performance on
popular, large-scale segmentation datasets. (2) The choice of SSIM loss over MSE loss in MDM
aims to enhance semantic representations for segmentation; however, alternative optimization ob-
jectives tailored to specific datasets and downstream tasks can be explored in future research. (3) In
this paper, we focus on the image domain. Exploring the adaptation of MDM to other data domains
(e.g., audio) can be an interesting direction of further investigation.
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REPRODUCIBILITY STATEMENT

In the main text, we provide the necessary details for the implementation of our MDM. We describe
the four datasets for evaluation, and the detailed experimental setting in appendix. We will release
our code and pre-trained model checkpoints upon acceptance.
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Benjamin Chidester, That-Vinh Ton, Minh-Triet Tran, Jian Ma, Minh N. Do, Simon Graham,
Quoc Dang Vu, Jin Tae Kwak, Akshaykumar Gunda, Raviteja Chunduri, Corey Hu, Xiaoyang
Zhou, Dariush Lotfi, Reza Safdari, Antanas Kascenas, Alison O’Neil, Dennis Eschweiler, Jo-
hannes Stegmaier, Yanping Cui, Baocai Yin, Kailin Chen, Xinmei Tian, Philipp Grüning, Er-
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A EXPERIMENTAL DETAILS

A.1 DATASETS

We show a comprehensive overview of datasets used in this paper in Table 5.

Table 5: A comprehensive overview of each dataset. “Training” and “Test” columns denote avail-
able image-label pairs for the downstream segmentation task, while “Classes” specifies the count
of semantic classes. The “Pre-training” column indicates the number of images utilized during the
self-supervised pre-training phase. Notably, for the CelebA-19 segmentation, the pre-trained mod-
els for FFHQ-34 are directly used. This specific configuration is intentionally chosen to rigorously
assess the generalization capabilities of models.

Dataset Training Test Classes Pre-training

GlaS 85 80 2 165
MoNuSeg 30 14 2 44
FFHQ-34 20 20 34 70000
CelebA-19 20 500 19 -

A.2 IMPLEMENTATION DETAILS

We leverage the MONAI library2 (Cardoso et al., 2022) implementations for UNet, UNet++, Swin
UNETR, and AttUNet, while the remaining baseline models are evaluated using their official im-
plementations34. The training was performed on one Tesla V100 GPU with 16 GB memory. We
train MAE, DDPM and MDM ourselves on GlaS and Monuseg. For FFHQ-256, if not specified, we
only train MDM ourselves and use the pre-trained MAE, DDPM, SwAV and SwAVw2 in Baranchuk
et al. (2022)5.

In pre-training, we use the 165 training and test images for GlaS and the 44 training and test images
for MoNuSeg. We use 70000 unlabelled 256 × 256 images from FFHQ-256 dataset for FFHQ-34
and CelebA-19. We randomly crop 256 × 256 patches as input for GlaS and MoNuSeg to make
sure all the models are trained with 256 × 256 images. We only take random flip in pre-training.
The patch size in MDM and MAE is set to 8. The batch size is 128 and the maximum diffusion
step T is 1000 for DDPM and MDM. All the other settings for DDPM and MDM follow the official
implementation of guided diffusion6 (Dhariwal & Nichol, 2021), with MAE following the official
MAE implementation7 (He et al., 2022).

Then, we evaluate the pre-trained models across the four datasets for few-shot segmentation. In
particular, for CelebA-19, we directly use the MDM (along with other pre-trained models) trained
with FFHQ-256 to evaluate our method’s generalization ability. For DDPM and MDM evaluations,
we use the pixel-level representations from the middle blocks B = {8, 9, 10, 11, 12} and B =
{5, 6, 7, 8, 9, 10, 11, 12} of the 18 decoder blocks for two medical image datasets and two natural
image datasets respectively. We set the diffusion step to t = 250 for DDPM on medical datasets and
t = 50 for MDM on all four datasets, while the settings outlined in Baranchuk et al. (2022) guided
other methods and datasets. The selection strategy will be elaborated upon in Appendix B.

The segmentation network (MLP) undergoes training until the point of convergence, defined by the
cessation of decreasing training loss over a specific number of steps, utilizing the Adam optimizer
with a learning rate of 0.001. While dealing with medical datasets, a batch size of 65536 is em-
ployed, whereas for FFHQ-34 and CelebA-19, a batch size of 64 is adopted in accordance with
Baranchuk et al. (2022). Each batch is constituted of the representation of one pixel. Notably, no
data augmentation is applied during the training of the segmentation network.

2https://github.com/Project-MONAI/MONAI
3https://github.com/McGregorWwww/UCTransNet
4https://github.com/jeya-maria-jose/Medical-Transformer
5https://github.com/yandex-research/ddpm-segmentation
6https://github.com/openai/guided-diffusion
7https://github.com/facebookresearch/mae
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Table 6: Ablation results of different timesteps in terms of Dice and IoU. 50+150+250 repre-
sents concatenating representations extracted at t = 50, 150, 250.

Method Timestep GlaS 100% (85) GlaS 10% (8) Average

Dice (%) IoU (%) Dice (%) IoU (%) Dice (%) IoU (%)

DDPM

0 88.96±0.54 80.13±0.87 87.98±0.51 78.54±0.81 88.47±0.72 79.34±1.16
50 90.40±0.24 82.47±0.39 88.54±0.77 79.43±1.23 89.47±1.10 80.95±1.79

150 90.54±0.40 82.71±0.67 89.52±0.94 81.35±1.52 90.03±0.88 0.87±1.34
250 90.45±0.37 82.56±0.61 90.30±0.47 82.32±0.77 90.38±0.42 82.44±0.69
650 90.24±0.41 82.24±0.72 89.98±0.54 81.85±1.15 90.11±0.49 82.05±0.96

50+150+250 90.76±0.44 83.10±0.75 89.06±0.53 80.21±1.18 89.91±0.99 81.66±1.77

MDM

0 91.93±1.50 85.11±2.51 91.32±0.84 84.05±1.42 91.63±1.22 84.58±2.06
50 91.95±1.25 85.13±2.09 91.60±0.69 84.51±1.15 91.78±1.00 84.82±1.67

150 91.98±1.21 85.17±2.05 91.49±0.73 84.32±1.23 91.74±1.00 84.75±1.70
250 91.55±1.63 84.46±2.70 90.97±0.60 83.43±1.01 91.26±1.23 83.95±2.05
650 91.87±0.93 84.98±1.57 90.45±1.13 82.58±1.88 91.16±1.24 83.78±2.09

50+150+250 92.02±0.56 85.23±0.96 91.23±0.87 83.88±1.46 91.63±0.82 84.56±1.39

During inference, we use sliding window with size 256× 256 to construct the segmentation predic-
tions, ensuring alignment with the original image dimensions for both medical datasets. To make
the results on the small datasets more convincing, we undertake 10 runs for all experiments, wherein
the random seed is systematically varied from 0 to 9. We report the mean and std of the results.
For GlaS we use dice coefficient (Dice) and Intersection over Union (IoU) as the evaluation metrics
following UCTransNet (Wang et al., 2022a) while for MoNuSeg we report the Dice and Aggregated
Jaccard Index (AJI) following the official challenge8 (Kumar et al., 2017; 2020). For FFHQ-34
and CelebA-19, we quantify performance using the mean Intersection over Union (mIoU) following
Baranchuk et al. (2022).

B ADDITIONAL ABLATION STUDIES

Diffusion Timesteps. We investigate the segmentation performance of representations extracted
from MDM and DDPM across different diffusion timesteps t, as presented in Table 6. On average,
the best results of DDPM are observed at t = 250 for the GlaS dataset, while MDM shows its
highest performance with t set to 50. The concatenation of three timesteps (50, 150, 250) does not
always yield substantial enhancements but necessitates a 3× increase in computational resources.

In light of these findings, we select t = 250 for DDPM on GlaS and MoNuSeg. Furthermore,
we adhere to the official configuration in Baranchuk et al. (2022) wherein a concatenation of three
timesteps (50, 150, 250) is employed for the FFHQ-34 and CelebA-19 datasets. For MDM, we set t
to 50 across all four datasets. We intentionally did not perform tuning for t on every dataset.

Blocks. We display the results of k-means clustering (k = 5) for the frozen features of both DDPM
and MDM in Figure 6. The features from the deeper layers (blocks with smaller values) exhibit
coarse semantic masks, while those from shallower layers (blocks with larger values) reveal finer
details yet lack the same level of semantic coherence for coarse segmentation. Therefore, we choose
the middle blocks B = {8, 9, 10, 11, 12} and B = {5, 6, 7, 8, 9, 10, 11, 12} among the 18 decoder
blocks for two medical image datasets and two natural image datasets respectively. This block
configuration, as adopted in this study, has led to a slight enhancement in segmentation accuracy
when using DDPM on FFHQ-34, in contrast to the official settings mentioned in Baranchuk et al.
(2022). Importantly, we deliberately avoided tuning the blocks for each dataset individually.

A particularly intriguing observation is that due to the distinct reconstruction objectives of DDPM
and MDM (noise for DDPM and image for MDM), the shallowest blocks (e.g., Block 16 and Block
17) of MDM yield meaningful semantic representations, whereas the same blocks for DDPM pro-
duce noise. For a fair comparison with DDPM, we did not use these shallow blocks for MDM.
However, in practical scenarios, the judicious selection of blocks holds potential to further enhance
the overall performance of our model.

8https://monuseg.grand-challenge.org
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Image Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 Block 10 Block 11 Block 12 Block 13 Block 14 Block 15 Block 16 Block 17

Figure 6: K-means clustering of features extracted from the UNet decoders of DDPM (first 5 rows)
and MDM (last 5 rows) on FFHQ-34 at t = 50.

Table 7: Ablation results showcasing the impact of different patch sizes on MDM.

Method Patch Size GlaS 100% (85) GlaS 10% (8)

Dice (%) IoU (%) Dice (%) IoU (%)

MDM
4 90.61±0.42 82.83±0.71 90.41±0.76 82.51±1.28
8 91.95±1.25 85.13±2.09 91.60±0.69 84.51±1.15

16 90.97±0.60 83.44±1.01 90.60±0.41 82.82±0.69

Patch Sizes. We compare different patch sizes for MDM in Table 7. MDM achieves the best
segmentation results when patch size is 8 (our final value). Note that even the performance of MDM
experiences a marginal decrease for patch sizes of 4 or 16, it still surpasses the performance of
existing methods.

Training Schedules. The impact of the training schedule length on downstream segmentation for
MDM is illustrated in Figure 7. The accuracy exhibits a steady increase as the training duration
extends, which suggests the scalability of MDM when applied to substantial unlabeled datasets.

Robustness. We investigate the robustness of our model against corrupted data in Figure 8. We
first train our model on clean data. Then we apply 15 types of corruption from Hendrycks & Diet-
terich (2019) to the test images (Gaussian Noise, Shot Noise, Impulse Noise, Defocus Blur, Frosted
Glass Blur, Frost, Brightness, Contrast, Elastic, Pixelate, JPEG, Speckle, Gaussian Blur, Spatter and
Saturate). We report the average IoU for each method tested under different levels of corruption.
MDM demonstrates strong robustness against various types of corruption, even without employing
any data augmentation related to the applied corruption (e.g., noise) during both pre-training and
downstream segmentation training.

C ADDITIONAL CLASSIFICATION TASK

We evaluate our MDM with other self-supervised methods using linear probing on CIFAR-10
(Krizhevsky, 2009), where 50000 images are used for training and 10000 images are used for test-
ing. MDM is pre-trained by a self-supervised way, and the representations are extracted as the input
of one fully connected layer for classification. We retrieve the results of MoCov1 and MoCov2 (He
et al., 2019; Chen et al., 2020c) from Radford et al. (2021) and the results of SimCLR, SimCLRv2
(Chen et al., 2020a;b) and DDPM from Xiang et al. (2023). Our MDM achieves much better linear
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Figure 7: MDM training schedules. FFHQ-256 is used for MDM pre-training and FFHQ-34 is
used for downstream segmentation.

Figure 8: Robustness Analysis on GlaS test set in terms of IoU.

evaluation accuracy than DDPM which has the same learning type and network and competitive
performance compared to the contrastive learning methods. This suggests that our MDM can also
generalize to other downstream tasks, not limited to the semantic segmentation task alone.

Table 8: Comparisons with self-supervised methods on CIFAR10.
Learning Type Method Network Acc (%)

Contrastive

MoCov1 ResNet-50 85.0
MoCov2 ResNet-50 93.4
SimCLR ResNet-50 94.0

SimCLRv2 ResNet-101 96.4

Generative DDPM U-Net 90.1
MDM U-Net 94.8
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Ground Truth t = 50 t = 250 t = 450 t = 750

Figure 9: Visualizations of MDM reconstruction on FFHQ-34 test set (first 5 rows) and CelebA-
19 test set (last 5 rows), using MDM trained on FFHQ-256 for 40000 iterations. The results at t =
50, 250, 450, and 750 are presented. A greater value of t corresponds to a higher masking ratio. For
each pair, we show the masked image (left) and our MDM reconstruction (right).

D ADDITIONAL QUALITATIVE RESULTS

The results of reconstructed images using the MDM technique on the FFHQ-34 and CelebA-19
datasets are shown in Figure 9. Importantly, MDM achieves successful reconstruction even on
previously unseen images from the CelebA-19 dataset, using a substantial masking ratio of 75%.
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