
Under review as a conference paper at ICLR 2024

FULLY HYPERBOLIC REPRESENTATION LEARNING ON
KNOWLEDGE HYPERGRAPH

Anonymous authors
Paper under double-blind review

ABSTRACT

Knowledge hypergraphs generalize knowledge graphs in terms of utilizing hy-
peredges to connect multiple entities and represent complicated relations within
them. Existing methods either transform hyperedges into an easier to handle set of
binary relations or view hyperedges as isolated and ignore their adjacencies. Both
approaches have information loss and may lead to sub-optimal models. To fix these
issues, we propose the Hyperbolic Hypergraph GNN (H2GNN), whose essential
part is the hyper-star message passing, a novel scheme motivated by a lossless
expansion of hyperedges into hierarchies, and implement a direct embedding which
explicitly takes adjacent hyperedges and entity positions into account. As the
name suggests, H2GNN works in the fully hyperbolic space, which can further
reduce distortion and boost efficiency. We compare H2GNN with 15 baselines on
both homogeneous and heterogeneous knowledge hypergraphs, and it outperforms
state-of-the-art approaches in both node classification and link prediction tasks.

1 INTRODUCTION

Knowledge hypergraphs are natural and straightforward extensions of knowledge graphs (Chen et al.,
2023; Wang et al., 2023a). They encode high-order relations within diverse entities via hyper-relations
and have been widely used in downstream tasks including question answering (Jia et al., 2023; Guo
et al., 2021), recommendation system (Yu et al., 2021; Tan et al., 2011), computer vision (Li et al.,
2023; Zeng et al., 2023) and healthcare (Wu et al., 2023). Generally, knowledge hypergraphs store
factual knowledge as tuples (relation, entity1, . . . , entitym), where entities correspond to nodes and
hyper-relations correspond to hyperedges.

The core of representation learning for knowledge hypergraphs lies in the embedding of hyperedges.
Existing methods can be roughly classified into two groups. One is the indirect way (Guan et al.,
2020a; Fatemi et al., 2020a; Rosso et al., 2020a), i.e., they transform hyperedges into a set of binary
relations and then apply the methods of knowledge graphs. However, the transformation is lossy and
may hinder the performance. Take ‘(flight, Beijing, Shanghai, Guangzhou)’ as an example, which
means the flight takes off from Beijing and passes through Shanghai before landing in Guangzhou.
Accordingly, it will be split into three distinct triples: ‘(Beijing, flight, Shanghai)’, ‘(Shanghai, flight,
Guangzhou)’, and ‘(Beijing, flight, Guangzhou)’, which lose the crucial information that Shanghai
is an intermediate location and introduces unreal flight from Beijing to Guangzhou. This example
also discloses that the order of entities is highly related to the semantics, i.e., the entity position in
hyperedges is important.

The other is the direct way (Wen et al., 2016; Fatemi et al., 2020a; Guan et al., 2019). However, these
methods commonly view hyperedges as isolated and learn embeddings independently, which may lose
information essential for the downstream tasks. For example, consider the tuples ‘(education, Stephen
Hawking, University College Oxford, BA degree)’. Obviously ‘(locate, University College Oxford,
Oxford, England)’ is the adjacent hyperedge since they have node ‘University College Oxford’ in
common. By putting together, it can be inferred that the entity ‘Stephen Hawking’ is ‘person’ and the
hyper-relation ‘live in’ in the knowledge hypergraph should also include ‘(live in, Stephen Hawking,
1959-1962, England)’. Therefore, appropriately incorporating adjacencies is crucial.

With these observations, we consider equipping Graph Neural Networks (GNN) with a hypergraph-
specialized hyper-star message passing scheme, drawing inspiration from a lossless hyper-star
expansion. Specifically, we introduce position-aware representations for each node, and then, in

1



Under review as a conference paper at ICLR 2024

each GNN layer, a two-stage message passing is performed, one is the aggregation of hyperedges
embedding through the nodes they contain, while the other focuses on updating each node embedding
by considering their positions and adjacent hyperedge embeddings. Furthermore, the hierarchy
demonstrated in the message passing process inspires us to explore a representation in a fully
hyperbolic space that can better capture the characteristics of scale-free and hierarchical graphs (Shi
et al., 2023; Chami et al., 2019; Krioukov et al., 2010; Muscoloni et al., 2017; Chen et al., 2022). We
notice that Fan et al. (2021) also utilizes GNN for learning knowledge hypergraph, however, it models
hyperedge in a class-dependent way, that is for multiple type hyper-relations, they need to create
a separate hypergraph for each type of hyper-relation, which cannot be satisfied in most situations.
Instead, we view hyperedges as instance-dependent, modeling them based on actual instances directly
with a variety of hyperedge types and node types, and propose the corresponding hyper-star message
passing scheme. The contributions of the paper are threefold:

• We propose a novel hypergraph-specific message passing scheme, which can be seamlessly
integrated into any mainstream GNN.

• We make the first attempt to apply GNN for modeling hyper-relations in an instance-
dependent way.

• We implement a versatile plug-and-play encoder, which can be easily concatenated with
task-specific decoders and widely used in a wide range of downstream tasks.1

2 PRELIMINARIES

In this section, we present the notation used and provide an overview of the prior knowledge utilized
in the proposed method.

Representation Learning Problem Definition. In knowledge hypergraphs, each tuple
(r, x1, x2, ..., xm) represents a knowledge fact, where x1, x2, ..., xm denote the entities, and r repre-
sents the hyper-relation, where m is called the arity of hyper-relation r. We convert the knowledge
tuples to hypergraph G = (V,R, E), where V denotes the set of entities, E is the set of hyperedges,
R denotes the set of hyper-relations. The goal of representation learning is to obtain embedded
representations for each node x ∈ V and relation type r ∈ R in the knowledge hypergraphs.

Message Passing. General GNNs leverage both the feature matrix and graph structure to obtain
informative embeddings for a given graph. The node embeddings undergo iterative updates by
incorporating information from their neighboring nodes. The message-passing process in the l-th
layer of GNN is formulated as follows:

xl+1
i = ϕl(xl

i, {xl
j}j∈Ni),

where Ni denotes the collection of neighboring nodes of node xi. ϕl defines the aggregation operation
of the l-th layer. Message passing process in homogeneous hypergraphs is summarized as follows:{

he = ϕ1({xj}j∈e),

xi = ϕ2(xi, {he}e∈Ei),

where Ei represents the set of all hyperedges that contain node xi, the given equation utilizes
two permutation-invariant functions ϕ1 and ϕ2 to aggregate messages from nodes and hyperedges
respectively (Huang & Yang, 2021).

Hyper-star Expansion. Specifically, for the hypergraph G = (V,R, E), We expand it into a new
heterogeneous graph G∗ = (V∗,R∗, E∗) by introducing a new node for each hyperedge e ∈ E
and connecting it to the nodes contained in this hyperedge. Thus, G∗ includes both the original
nodes from G and generated nodes transformed from hyperedges in E . Newly generated nodes are
connected with other nodes in the graph based on different types of hyperedges and positions of
nodes within them, i.e. E∗ = {(r∗, u, e) : r∗ = T (e)_i, u ∈ V, e ∈ E}, where the function T maps
hyperedges to their respective relations and i represents the position of node u within hyperedge e.

1The source code will be released after the paper is accepted.

2



Under review as a conference paper at ICLR 2024

Figure 1: The hyper-star expansion process. We in-
troduce position-aware relation embedding such as
‘TR-1’ ‘SA-3’, etc., where ‘TR’ ‘SA’ are abbrevia-
tions of relation ‘Team Roster’ and ‘Sport Award’,
the numbers ‘1’ ‘2’ ‘3’ denote the position.

As shown in Figure 1, the hyperedges
TeamRoster and SportAward are trans-
formed into a new node and connected with the
nodes previously contained in the hyperedge.
The newly generated relation is determined by
the type of the hyperedge and the position of the
node in the hyperedge.

Hyperbolic Space Explanation. Previous stud-
ies have utilized various hyperbolic geometric
models, including the Poincaré ball model (Un-
gar, 2001), the Poincaré half-plane model
(Stahl, 1993), the Klein model (Visser, 1985),
and the hyperboloid (Lorentz) model (Bobylev
et al., 1997). In Figure 2, when we embed the
tree structure into Euclidean space, the distance
between the yellow and pink nodes on the tree is 8 nodes apart, but in reality, these tree-like
structures are very close in real networks (Kennedy et al., 2013; Adcock et al., 2013). Fur-
thermore, in Euclidean space, volume growth occurs at a polynomial rate, as seen in the left
of the figure where the network space expands quadratically with radius. In contrast, hyper-
bolic space exhibits exponential volume growth, mirroring the tree structure observed in real net-
works. Consequently, distortions occur when Euclidean space lacks the capacity to accommodate
a multitude of nodes, emphasizing the need to consider the incorporation of hyperbolic spaces.

(1) S ∝ r² (2) S ∝ar

Figure 2: Comparison of Euclidean and Hyper-
bolic Spaces.

We denote a hyperboloid model Hn
k with nega-

tive curvature k in n dimensions. The tangent
space at x in Hn

k is an n-dimensional vector
space that approximates Hn

k :

ΓxHn
k := {v ∈ Rn+1 : ⟨v,x⟩H = 0},

Where ⟨v,x⟩H is the hyperboloid inner product
⟨v,x⟩H = vT diag(−1, 1, ...1, 1)x. Γx defines
the mapping from hyperboloid space to tangent
space. The mapping relation between the man-
ifold Hn

k and its tangent space ΓxHn
k can be

established using the exponential and logarithmic map.

3 PROPOSED METHOD

In this section, we describe H2GNN in detail for linear transformation and hyper-star message passing.
The overall architecture is shown in Figure 3.

3.1 LINEAR TRANSFORMATION

We first implement a matrix function to perform linear transformations in hyperbolic space, laying
the foundation for the development of hyperbolic graph neural networks. Follow the (Chen et al.,
2022), we transform the linear layer problem in hyperbolic space into a learning process of matrix
M =

[
v⊤;W

]
, where v ∈ Rn+1, W ∈ Rm×(n+1). This matrix should satisfy the condition that

for all x ∈ Hn, Fx(M)x ∈ Hm, where Fx : R(m+1)×(n+1) → R(m+1)×(n+1) transforms any
matrix into an appropriate value that minimizes the loss function. The implementation of the fully
Hyperboloid linear layer is as follows:

y = HL(x) =
[√

∥ϕ(Wx,v)∥2 − 1/k);ϕ(Wx,v)
]⊤

, (1)

where x ∈ Hn
k , W ∈ Rm×(n+1), and ϕ is an operation function. For dropout, the function can be

expressed as ϕ(Wx,v) = dropout(Wx). For activation and normalization, the function can be
written as:

ϕ(Wx,v) =
λσ(v⊤x+ b′)

∥Wh(x) + b∥
(Wh(x) + b) (2)

3



Under review as a conference paper at ICLR 2024

Homogeneous Hypergraph

Heterogeneous Hypergraph

Liner 
Transformation

Team Roster Sport Award

②Lakers Point
Guard

Kobe 
Bryant

All-Star 
MVP

Season 

10-11

Lakers Point
Guard

Kobe 
Bryant

All-Star 
MVP

Season 

10-11

Φ1

(1)node → hyperedge

comp

Φ2

(2) hyperedge + position information → node

① ③ ① ② ③

① ② ①③ ② ③

Figure 3: Overall of H2GNN. Blue represents the TeamRoster hyper-relation and its contained
nodes, while green represents the Sport Award hyper-relation and nodes. We display the aggregation
and composition operations in message passing. The blue arrows indicate the process of updating
TeamRoster hyperedge embedding through ϕ1 aggregation operation. The green arrows depict the
update of KobeBryant via composition operation. The dashed line represents the message passing
of the node embedding of KobeBryant before updating the node.

where σ represents the sigmoid function; b and b′ are biases; λ > 0 controls scaling range; and h
denotes the activation function. Linear transformation guarantees the outputs remain in the hyperbolic
space, a detailed proof and derivation process can be found in (Chen et al., 2022).

3.2 HYPER-STAR MESSAGE PASSING

The existing message passing framework, as discussed in Section 2, is insufficient for handling the
challenges posed by knowledge hypergraphs, requiring consideration of two additional aspects. 1)
Knowledge hypergraphs frequently encompass diverse relation types, necessitating the integration of
different relation type information into the message-passing process. 2) Hyperedges are typically
represented by tuples (i.e., (r, e1, e2...em)), where the order of entities in an m-tuple indicates
their role in the relation, akin to subject and object roles in simple graphs. Therefore, we contend
that position information regarding entities participating in relations must be considered during the
message-passing process.

We introduce a d-dimensional position-aware fearure hp ∈ Rd, which is relation-type specialized.
That means that hyperedges of the same relation type have the same relation-position representations.
To incorporate position embedding into the message passing, we leverage the composition operations.
The equation can be written as:{

he = ϕ1({xj}j∈e)

xi = ϕ2(xi, comp(he,hp)e∈Ei
),

(3)

where hp varies with different relation types and different positions within the same relation type,
implying both relation type and position information. comp represents a composition operation that
is utilized to integrate hp into the process of information transmission.

In the first stage, we utilize ϕ1 to aggregate features of all nodes within each hyperedge e. In the
second stage, we use ϕ2 to update the embedding of each node based on the associated hyperedge,
where position-aware embeddings are incorporated into the message passing process through com-
position operation comp. We evaluate one non-parametric simple operator in hyperbolic space,
defined as: comp(he,hp) = he − hp. Moreover, ϕ1 and ϕ2 are implemented through additive
aggregation operations, ensuring that these operations remain within the hyperbolic space. Section 4
demonstrates the effective performance of our encoder based on the simple design. In summary, we
present a straightforward yet highly effective instantiation framework, which considers the valuable
neighborhood information: {

he = centroid({xj}j∈e)

xi = centroid(xi, (he − hp)e∈Ei),
(4)

4



Under review as a conference paper at ICLR 2024

where centroid, as demonstrated in (Law et al., 2019), is used to determine the center point of
hyperboloid space:

centroid{xj}j∈e =

∑
j∈e xj√

−K|∥
∑

j∈e xj∥H|
(5)

where K is a negative curvature, ∥a∥2H = ⟨a, a⟩H is the squared Lorentzian norm of a.

3.3 OBJECTIVE FUNCTION AND TRAINING

For the node classification task, we use the negative log-likelihood loss to optimize our model by
minimizing the difference between the predicted log probabilities and the ground truth labels of each
node.

L = −
N∑
i=1

C∑
j=1

1{yi=j} logP (yi = j|xi) (6)

where N represents the number of entities, C represents the number of labels. The indicator function
1{yi=j} takes the value of 1 when the gold label yi equals j, and 0 otherwise.P (yi = j|xi) represents
the model’s predicted probability that node i belongs to label j.

For the link prediction task, we train our model on both positive and negative instances, which are
generated using the same method as HypE (Fatemi et al., 2020b). Specifically, we create N ∗ r
negative samples for every positive sample from the dataset by randomly replacing each correct entity
with N other entities. Here, N is a hyperparameter and r is the number of entities in the tuple. The
dataset is divided into three subsets: the training set Etrain, the test set Etest, and the validation set
Evalid. These sets contain the correct tuples for each category, and E = Etrain∪Etest∪Evalid. For any
tuple x ∈ E , neg(x) is utilized to generate a set of negative samples, following the aforementioned
process. To compute our loss function, we define the cross-entropy loss as follows:

L =
∑

x∈Etrain

− log
exp g(x)

exp g(x) +
∑

x′∈neg(x) exp g(x
′)

(7)

where g(x) predicts the confidence score of the tuple x.

4 EXPERIMENTS

In this section, we evaluate H2GNN in transductive learning tasks, specifically node classification
and link prediction. Similar to (Huang & Yang, 2021), we conduct inductive learning tasks for
homogeneous hypergraphs in the Appendix A.1. Given a hypergraph G, consisting of node data V and
hyperedges E , the node classification and inductive learning tasks involve developing a classification
function that assigns labels to nodes. The link prediction task focuses on predicting new links between
entities within the hypergraph, leveraging the existing connections as a basis.

4.1 SETTINGS

Dataset. We employ widely used academic Co-citation and Co-author datasets (Yadati et al., 2019),
including DBLP, CiteSeer, Pubmed, and Cora for node classification tasks. For the link prediction
task, our approach is evaluated on two hyper-relation datasets: JF17k (Wen et al., 2016) and FB-
AUTO (Bollacker et al., 2008), which consist of both binary and n-ary facts. Further details and
statistics of the datasets can be found in Table 1.

Compared methods. For the node classification task, we conduct a comparative analysis between
H2GNN and representative baseline methods, including Hypergraph neural networks (Feng et al.,
2019), HyperGCN (Yadati et al., 2019), FastHyperGCN (Yadati et al., 2019), HyperSAGE (Arya
et al., 2020), UniGNN (Huang & Yang, 2021). In the knowledge hypergraph link prediction, we
categorize the introduced baselines into two groups: (1) models that operate with binary relations
and can be easily extended to higher-arity: r-SimplE (Fatemi et al., 2020a), m-DistMult (Fatemi et al.,
2020b), m-CP (Fatemi et al., 2020b) and m-TransH (Wen et al., 2016); and (2) existing methods
capable of handling higher-arity relations: NeuInfer (Guan et al., 2020b), HINGE (Rosso et al.,
2020b), NaLP (Guan et al., 2019), RAE (Zhang et al., 2018) and HypE (Fatemi et al., 2020b).

5



Under review as a conference paper at ICLR 2024

Table 1: Statistics on the dataset, ‘classes’ and ‘relations’ are the number of node types and hyperedge
types, respectively.

DBLP
(Co-authorship)

Cora
(Co-authorship)

Cora
(Co-citation)

Pubmed
(Co-citation)

Citeseer
(Co-citation)

JF17K
(Knowledge Base)

FB-AUTO
(Knowledge Base)

hypernodes 43,413 2,708 2,708 19,717 3,312 29,177 3,388
hyperedges 22,535 1,072 1,579 7,963 1,079 102,648 11,213

classes 6 7 7 3 6 - -
relations - - - - - 327 8
#2-ary 9,976 486 623 3,522 541 56,332 3,786
#3-ary 4,339 205 464 1,626 254 34,550 0
#4-ary 2,312 106 312 845 118 9,509 215
#5-ary 1,419 78 180 534 65 2,230 7,212
#6-ary 906 45 0 297 40 37 0

Hyper-parameter setting. We implemented the H2GNN framework using PyTorch and performed
the training process on a Tesla V100 GPU machine. The parameters for the other methods are
configured according to the recommendations provided by their respective authors. For the node
classification task, we adopt a two-layer H2GNN with the following hyper-parameters: learning rate
of 0.01, weight decay of 5e−5, the dropout rate of 0.5, and hidden layer dimension of 8. We fix the
number of training epochs at 200 and report model performance based on the best validation score on
the test dataset for each run. For the link prediction task, we adopt a single-layer H2GNN with the
following hyper-parameters: learning rate of 0.05, embedding dimension of 200, the dropout rate of
0.2, and a negative ratio of 10. We trained using batches of 128 items for 2000 iterations, selecting
the model that achieved the highest validation score for testing purposes and recording its results.

4.2 NODE CLASSIFICATION RESULTS

Table 2: The accuracy(%) of node classification on co-authorship and co-citation datasets for baseline
methods and H2GNN. The best and most competitive results are highlighted for each dataset.

Method Co-authorship Data Co-citation Data
DBLP Cora Cora Pubmed Citeseer

UniSAGE 88.29±0.22 74.04±1.50 67.08±2.32 74.34±1.56 61.27±1.78
UniGIN 88.34±0.21 73.82±1.36 66.94±2.07 74.46±1.81 61.09±1.60

HyperSAGE 77.25±3.11 72.21±1.40 66.84±2.27 72.33±1.18 61.08±1.72
HyperGCN 71.17±8.73 63.29±7.11 62.43±9.17 67.91±9.43 57.98±7.01

FastHyperGCN 67.86±9.46 61.60±7.99 61.42±10.03 65.17±10.03 56.76±8.10
HGNN 68.08+5.10 63.21±3.02 68.01±1.89 66.45±3.17 56.99±3.43

H2GNN (Ours) 89.75±0.20 74.97±1.20 69.43±1.54 74.89±1.23 62.52±1.48

Table 2 presents the node classification accuracy, We observe that H2GNN significantly outperforms
other methods on all datasets, achieving an accuracy range of 89.75% to 74.89%, with a low
standard deviation of 0.20% to 1.54%. This demonstrates that H2GNN can effectively capture the
structure information of the hypergraph, thereby improving the performance and stability of the
node classification task. Furthermore, when compared to UniSAGE, which also employs a two-stage
message passing schema in the Euclidean space, it becomes evident that hyperbolic space is better
suited for modeling hierarchical structural information.

4.3 KNOWLEDGE HYPERGRAOH LINK PREDUCTION

Knowledge hypergraph completion can be achieved by either extracting new facts from external
sources or predicting links between existing facts in the hypergraph. The latter entails inferring new
knowledge from the structure of the hypergraph itself, which is the focus of our experiment (Rossi
et al., 2021). Table 3 presents the results on two datasets across relational knowledge bases. We
employ H2GNN as the encoder and m-DistMult as the decoder, achieving the highest values on
Hits@10 evaluation metrics, with scores of 0.869 on FB-AUTO and 0.660 on the JF17k dataset. Our
method demonstrates a significant improvement over G-MPNN, which was specifically designed for

6



Under review as a conference paper at ICLR 2024

Table 3: Knowledge Hypergraph link prediction results on JF17k and FB-AUTO for baselines and
H2GNN. The G-MPNN method did not produce results on the JF17k dataset for two days, so the
experimental results are not shown.

FB-AUTO JF17KMethod
Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR

m-TransH 0.602 0.754 0.806 0.688 0.370 0.475 0.581 0.444
m-CP 0.484 0.703 0.816 0.603 0.298 0.443 0.563 0.391

m-DistMult 0.513 0.733 0.827 0.634 0.372 0.510 0.634 0.463
r-SimpleE 0.082 0.115 0.147 0.106 0.069 0.112 0.168 0.102
NeuInfer 0.700 0.755 0.805 0.737 0.373 0.484 0.604 0.451
HINGE 0.630 0.706 0.765 0.678 0.397 0.490 0.618 0.473
NALP 0.611 0.712 0.774 0.672 0.239 0.334 0.450 0.310
RAE 0.614 0.764 0.854 0.703 0.312 0.433 0.561 0.396
HypE 0.662 0.800 0.844 0.737 0.403 0.531 0.652 0.489

G-MPNN 0.201 0.407 0.611 0.337 - - - -
H2GNN (Ours) 0.657 0.815 0.869 0.742 0.387 0.537 0.660 0.484

heterogeneous hypergraphs and it also compares favorably with the specialized embedding-based
method HypE (Fatemi et al., 2020b), designed for link prediction tasks.

Table 4: Comparison Experiments: H2GNN encodes the graph structure information and compares
the experimental results of different decoders.

FB-AUTO JF17KMethod
Hits@1 Hit@3 Hits@10 MRR Hits@1 Hit@3 Hits@10 MRR

H2GNN & HSimplE 0.652 0.788 0.839 0.725 0.376 0.517 0.649 0.469
HSimplE 0.608 0.760 0.825 0.692 0.341 0.490 0.633 0.451

H2GNN & mTransH 0.621 0.771 0.840 0.705 0.372 0.481 0.583 0.451
mTransH 0.602 0.754 0.806 0.688 0.370 0.475 0.581 0.444

H2GNN & m-DistMult 0.657 0.815 0.869 0.742 0.387 0.537 0.660 0.484
m-DistMult 0.513 0.733 0.827 0.634 0.372 0.510 0.634 0.463

In addition, we conduct experiments to investigate the impact of different encoders and decoders on
the link prediction task. As shown in Table 4, we fix H2GNN as the encoder and combined it with
three decoders: HSimplE, mTransH, and m-DistMult. The results demonstrate that the combination
of H2GNN & HSimplE and H2GNN & m-DistMult significantly outperformed using HSimplE and
m-DistMult alone on both datasets, indicating that the encoder-decoder synergy can better leverage
the structural and semantic information of the knowledge graph.

10.3

20.7

33.7

17.7

4.8

11.6

17.1

9.29.6

19.7

33

16.9

4.7

12.7

18.5

9.8

65.7

81.5

86.9

74.2

38.7

53.7

66

48.4

0

10

20

30

40

50

60

70

80

90

100

Hit@1(%) Hit@3(%) Hit@10(%) MRR(%) Hit@1(%) Hit@3(%) Hit@10(%) MRR(%)

FB-AUTO JF17K

UniGNN UniSAGE Ours

Figure 4: Comparison Experiments: Encoding the hypergraph structure information with different
methods for the same m-DistMult decoding model.

7



Under review as a conference paper at ICLR 2024

Figure 4 compare the effects of different graph neural network encoders when paired with the
m-DistMult decoder. The experimental results clearly demonstrated that H2GNN & m-DistMult
significantly outperforms UniGNN & m-DistMult and UniSAGE & m-DistMult on both datasets. For
instance, on the FB-AUTO dataset, the combination of H2GNN and m-DistMult achieves Hits@1
of 65.7% and MRR of 74.2%, while UniGNN and m-DistMult only reaches Hits@1 of 10.3% and
MRR of 17.7%.

4.4 ABLATION STUDY

The ablation study examines the influence of the Hyperbolic Operation (HO) and Position Information
(PI) modules in H2GNN on model performance, and the results are depicted in Figure 5. We
conduct experiments using m-DistMult as the decoder in which we individually remove these two
modules and compare them to the full H2GNN model. The experimental results clearly indicate
that removing either module results in a significant deterioration in model performance. This
suggests that both the HO and PI modules are effective and serve as complementary components.

10.3 

20.7 

33.7 

17.7 

4.8 

11.6 

17.1 

9.2 

15.7 

41.5 

71.9 

32.6 

8.0 

21.8 

44.4 

19.2 

64.2 

78.0 
83.2 

71.7 

37.6 

51.5 

64.8 

46.9 

65.7 

81.5 

86.9 

74.2 

38.7 

53.7 

66.0 

48.4 

0

10

20

30

40

50

60

70

80

90

100

Hit@1(%) Hit@3(%) Hit@10(%) MRR(%) Hit@1(%) Hit@3(%) Hit@10(%) MRR(%)

FB-AUTO JF17K

w/o HO&PI w/o PI w/o HO Ours

Figure 5: Module sensitivity on H2GNN for Hyperbolic Operation (HO) and Position Information
(PI).

346.37s

209.29s 214.44s 216.48s 215.22s

170.69s

84.05s 84.05s 87.15s 81.07s

0

50

100

150

200

250

300

350

400

DBLP Cora-Coauthor Pubmed Citeseer Cora-Cocitation

H²GNN(tangent) H²GNN(fully)

50.7%

59.8% 60.8% 59.7% 62.3%

Figure 6: Comparison of the running time of
H2GNN for full hyperbolic space and tangent
space operations.

For further study, we compare the runtime per-
formance of the H2GNN method when operat-
ing in different representation spaces: hyper-
bolic space and tangent space. The accuracy
comparison is presented in the Appendix A.2.
The operation in tangent space is a hybrid ap-
proach, where the features are transformed be-
tween hyperbolic space and tangent space by
a series of hyperbolic and inverse hyperbolic
mapping functions, and neural operations are
performed in tangent space. As shown in Fig-
ure 6, the execution time in fully hyperbolic
space is reduced by 50%-60% compared to the
tangent space.

5 RELATED WORK

In this section, we review the representative (hyper)graph neural network techniques.

Graph Neural Networks. Research in graph neural networks serves as the foundational basis for
GNN development. For instance, Graph Convolutional Networks (GCNs) (Kipf & Welling, 2017)
leverage node degrees to normalize neighbor information. PPNP (Klicpera et al., 2019) tackles
the over-smoothing problems in GNNs through skip-connections, and AdaGCN (Sun et al., 2021)
integrates a traditional boosting method into GNNs.

8



Under review as a conference paper at ICLR 2024

Heterogeneous graph neural networks (Hu et al., 2020; Wang et al., 2019; 2023b; 2020; Zhang et al.,
2019) have made significant strides in effectively addressing complex heterogeneity through the
integration of message passing techniques. Notably, the Heterogeneous graph Propagation Network
(HPN) (Ji et al., 2023) theoretically provides a theoretical analysis of the deep degradation problem
and introduces a convolution layer to mitigate semantic ambiguity.

Hyperbolic Graph Neural Networks. Hyperbolic neural networks have demonstrated their ability
to effectively model complex data and outperform high-dimensional Euclidean neural networks when
using low-dimensional hyperbolic features (Dasgupta & Gupta, 2003; Giladi et al., 2012; Assouad,
1983). While existing hyperbolic networks, such as the hyperbolic graph convolutional neural
network (Chami et al., 2019), hyperbolic graph neural network (Liu et al., 2019) and multi-relation
knowledge graphs like M2GNN (Wang et al., 2021b) and H2E (Wang et al., 2021a), encode features
in hyperbolic space, they are not fully hyperbolic since most of their operations are formulated in the
tangent space, which serves as a Euclidean subspace. In contrast, fully hyperbolic neural networks,
such as FFHR (Shi et al., 2023) define operations that are entirely performed in the hyperbolic space,
avoiding the complexities of space operations.

Knowledge Hypergraph Neural Network. Existing knowledge hypergraph modeling methods are
derived from knowledge graph modeling methods, which can be primarily categorized into three
groups: translational distance models, semantic matching models, and neural network-based models.

Translational distance models treat hyper-relations as distances between entities and formulate score
functions based on these distances. For instance, models like m-transH (Wen et al., 2016) and
RAE (Zhang et al., 2018) generalize the TransH model. They calculate a weighted sum of entity
embeddings and produce a score indicating the relevance of the hyper-relation. Neural Network-Based
Models, like NaLP (Guan et al., 2019) and Neulnfer (Rosso et al., 2020b), represent hyper-relations
using main triples and attribute pairs. They calculate compatibility scores between the main triples
and between the main triples and each attribute pair individually using neural networks. The final
hyper-relation scores are determined based on these computations. Semantic Matching Models, such
as HypE (Fatemi et al., 2020b) and GETD (Liu et al., 2020), assess the semantic correlation between
entities and hyper-relations through matrix products. For instance, HypE builds upon SimplE (Rosso
et al., 2020b) by incorporating convolution for entity embedding and employing multi-linear products
for calculating plausibility scores.

6 CONCLUSION

In this paper, we represent knowledge facts as hypergraphs and introduce graph neural networks for
knowledge hypergraphs and hyper-relations modeling. We propose Hyperbolic Hypergraph GNN, a
method that directly encodes adjacent hyperedges and entity positions within knowledge hypergraphs.
By considering both structural and positional information, we can accurately represent semantics.
We also present the hierarchical structure of hyper-star message passing process in a fully hyperbolic
space, which reduces distortion and boosts efficiency. Our H2GNN encoder yields results comparable
to the baselines for knowledge hypergraph link prediction and outperforms the state of the art for
node classification and inductive learning on evolving hypergraphs tasks.

REFERENCES

Aaron B Adcock, Blair D Sullivan, and Michael W Mahoney. Tree-like structure in large social and
information networks. In Proceedings of the 13th international conference on data mining, 2013.

Devanshu Arya, Deepak K Gupta, Stevan Rudinac, and Marcel Worring. Hypersage: Generalizing
inductive representation learning on hypergraphs. arXiv preprint arXiv:2010.04558, 2020.

Patrice Assouad. Plongements lipschitziens dans Rn. Bulletin de la Société Mathématique de France,
111, 1983.

AV Bobylev, Frank A Maaø, Alex Hansen, and EH Hauge. There is more to be learned from the
lorentz model. Journal of statistical physics, 87, 1997.

9



Under review as a conference paper at ICLR 2024

Kurt D. Bollacker, Colin Evans, Praveen K. Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a
collaboratively created graph database for structuring human knowledge. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, 2008.

Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph convolutional neural
networks. 2019.

Weize Chen, Xu Han, Yankai Lin, Hexu Zhao, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou.
Fully hyperbolic neural networks. In Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics, 2022.

Zirui Chen, Xin Wang, Chenxu Wang, and Zhao Li. Poskhg: A position-aware knowledge hypergraph
model for link prediction. Data Science and Engineering, 8:135–145, 2023.

Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of johnson and lindenstrauss.
Random Structures & Algorithms, 22(1), 2003.

Haoyi Fan, Fengbin Zhang, Yuxuan Wei, Zuoyong Li, Changqing Zou, Yue Gao, and Qionghai Dai.
Heterogeneous hypergraph variational autoencoder for link prediction. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 44(8), 2021.

Bahare Fatemi, Perouz Taslakian, David Vázquez, and David Poole. Knowledge hypergraphs:
Prediction beyond binary relations. In Proceedings of the 29th International Joint Conference on
Artificial Intelligence, 2020a.

Bahare Fatemi, Perouz Taslakian, David Vázquez, and David Poole. Knowledge hypergraphs:
Prediction beyond binary relations. In Proceedings of the 29th International Joint Conference on
Artificial Intelligence, 2020b.

Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks.
In Proceedings of the 33rd AAAI conference on artificial intelligence, 2019.

Ohad Giladi, Assaf Naor, and Gideon Schechtman. Bourgain’s discretization theorem. In Proceedings
of the Annales de la Faculté des sciences de Toulouse: Mathématiques, 2012.

Saiping Guan, Xiaolong Jin, Yuanzhuo Wang, and Xueqi Cheng. Link prediction on n-ary relational
data. In Proceedings of the 2019 World Wide Web Conference, 2019.

Saiping Guan, Xiaolong Jin, Jiafeng Guo, Yuanzhuo Wang, and Xueqi Cheng. Neuinfer: Knowledge
inference on n-ary facts. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, 2020a.

Saiping Guan, Xiaolong Jin, Jiafeng Guo, Yuanzhuo Wang, and Xueqi Cheng. Neuinfer: Knowledge
inference on n-ary facts. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, 2020b.

Zhicheng Guo, Jiaxuan Zhao, Licheng Jiao, Xu Liu, and Fang Liu. A universal quaternion hypergraph
network for multimodal video question answering. IEEE Transactions on Multimedia, 2021.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In
Proceedings of the 2020 Web Conference, 2020.

Jing Huang and Jie Yang. Unignn: a unified framework for graph and hypergraph neural networks.
In Proceedings of the 13th International Joint Conference on Artificial Intelligence, 2021.

Houye Ji, Xiao Wang, Chuan Shi, Bai Wang, and Philip S. Yu. Heterogeneous graph propagation
network. IEEE Transactions on Knowledge and Data Engineering, (1), 2023.

Yongzhe Jia, Jianguo Wei, Zirui Chen, Dawei Xu, Lifan Han, and Yang Liu. Hypermatch: Knowledge
hypergraph question answering based on sequence matching. In Database Systems for Advanced
Applications - 28th International Conference, 2023.

W Sean Kennedy, Onuttom Narayan, and Iraj Saniee. On the hyperbolicity of large-scale networks.
arXiv preprint arXiv:1307.0031, 2013.

10



Under review as a conference paper at ICLR 2024

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In Proceedings of the 5th International Conference on Learning Representations, 2017.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph
neural networks meet personalized pagerank. In Proceedings of the 7th International Conference
on Learning Representations, 2019.

Dmitri V. Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián Boguñá.
Hyperbolic geometry of complex networks. CoRR, abs/1006.5169, 2010.

Marc Law, Renjie Liao, Jake Snell, and Richard Zemel. Lorentzian distance learning for hyperbolic
representations. In Proceedings of the 36th International Conference on Machine Learning, 2019.

Hao Li, Jing Wang, Xu Du, Zhuang Hu, and Shuoqiu Yang. KBHN: A knowledge-aware bi-
hypergraph network based on visual-knowledge features fusion for teaching image annotation.
Information Processing and Management, 60, 2023.

Qi Liu, Maximilian Nickel, and Douwe Kiela. Hyperbolic graph neural networks. In Proceedings of
the 33rd Annual Conference on Neural Information Processing Systems, 2019.

Yu Liu, Quanming Yao, and Yong Li. Generalizing tensor decomposition for n-ary relational
knowledge bases. In Proceedings of the 2020 World Wide Web Conference, 2020.

Alessandro Muscoloni, Josephine Maria Thomas, Sara Ciucci, Ginestra Bianconi, and Carlo Vittorio
Cannistraci. Machine learning meets complex networks via coalescent embedding in the hyperbolic
space. Nature communications, 8(1), 2017.

Andrea Rossi, Denilson Barbosa, Donatella Firmani, Antonio Matinata, and Paolo Merialdo. Knowl-
edge graph embedding for link prediction: A comparative analysis. ACM Transactions on Knowl-
edge Discovery from Data, 15(2), 2021.

Paolo Rosso, Dingqi Yang, and Philippe Cudré-Mauroux. Beyond triplets: Hyper-relational knowl-
edge graph embedding for link prediction. In Proceedings of the 2020 World Wide Web Conference,
2020a.

Paolo Rosso, Dingqi Yang, and Philippe Cudré-Mauroux. Beyond triplets: hyper-relational knowledge
graph embedding for link prediction. In Proceedings of the 2020 Web Conference, 2020b.

Wentao Shi, Junkang Wu, Xuezhi Cao, Jiawei Chen, Wenqiang Lei, Wei Wu, and Xiangnan He.
Ffhr: Fully and flexible hyperbolic representation for knowledge graph completion. arXiv preprint
arXiv:2302.04088, 2023.

Saul Stahl. The Poincaré half-plane: A gateway to modern geometry. 1993.

Ke Sun, Zhanxing Zhu, and Zhouchen Lin. Adagcn: Adaboosting graph convolutional networks into
deep models. In Proceedings of the 9th International Conference on Learning Representations,
2021.

Shulong Tan, Jiajun Bu, Chun Chen, Bin Xu, Can Wang, and Xiaofei He. Using rich social media
information for music recommendation via hypergraph model. ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMM), 7, 2011.

Abraham A Ungar. Hyperbolic trigonometry and its application in the poincaré ball model of
hyperbolic geometry. Computers & Mathematics with Applications, 41, 2001.

Matt Visser. An exotic class of kaluza-klein models. Physics Letters B, 159, 1985.

Chenxu Wang, Zhao Li, Xin Wang, and Zirui Chen. Enhance: Enhanced entity and relation embedding
for knowledge hypergraph link prediction. In Companion Proceedings of the ACM Web Conference,
WWW, 2023a.

Ruijia Wang, Chuan Shi, Tianyu Zhao, Xiao Wang, and Yanfang Ye. Heterogeneous information
network embedding with adversarial disentangler. IEEE Transactions on Knowledge and Data
Engineering, 35(2), 2023b.

11



Under review as a conference paper at ICLR 2024

Shen Wang, Xiaokai Wei, Cicero Nogueira Dos Santos, Zhiguo Wang, Ramesh Nallapati, Andrew
Arnold, and S Yu Philip. Knowledge graph representation via hierarchical hyperbolic neural graph
embedding. In Proceedings of the 2021 IEEE International Conference on Big Data, 2021a.

Shen Wang, Xiaokai Wei, Cicero Nogueira Nogueira dos Santos, Zhiguo Wang, Ramesh Nallapati,
Andrew Arnold, Bing Xiang, Philip S Yu, and Isabel F Cruz. Mixed-curvature multi-relational
graph neural network for knowledge graph completion. In Proceedings of the 2021 ACM Web
Conference, 2021b.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S. Yu. Heterogeneous
graph attention network. In Proceedings of the 2019 World Wide Web Conference, 2019.

Xiao Wang, Ruijia Wang, Chuan Shi, Guojie Song, and Qingyong Li. Multi-component graph
convolutional collaborative filtering. In Proceedings of the 34th AAAI Conference on Artificial
Intelligence, 2020.

Jianfeng Wen, Jianxin Li, Yongyi Mao, Shini Chen, and Richong Zhang. On the representation and
embedding of knowledge bases beyond binary relations. In Proceedings of the 25th International
Joint Conference on Artificial Intelligence, 2016.

Jialun Wu, Kai He, Rui Mao, Chen Li, and Erik Cambria. Megacare: Knowledge-guided multi-view
hypergraph predictive framework for healthcare. Information Fusion, 100, 2023.

Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, and Partha
Talukdar. Hypergcn: A new method for training graph convolutional networks on hypergraphs. In
Proceedings of the 33rd Annual Conference on Neural Information Processing Systems, 2019.

Junliang Yu, Hongzhi Yin, Jundong Li, Qinyong Wang, Nguyen Quoc Viet Hung, and Xiangliang
Zhang. Self-supervised multi-channel hypergraph convolutional network for social recommenda-
tion. In Proceedings of the web conference 2021, 2021.

Yawen Zeng, Qin Jin, Tengfei Bao, and Wenfeng Li. Multi-modal knowledge hypergraph for diverse
image retrieval. In The 37th AAAI Conference on Artificial Intelligence, 2023.

Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V. Chawla. Heterogeneous
graph neural network. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2019.

Richong Zhang, Junpeng Li, Jiajie Mei, and Yongyi Mao. Scalable instance reconstruction in
knowledge bases via relatedness affiliated embedding. In Proceedings of the 2018 World Wide
Web Conference, 2018.

12



Under review as a conference paper at ICLR 2024

A MORE EXPERIMENTAL RESULTS

A.1 INDUCTIVE LEARNING RESULTS

We use a corrupted hypergraph that randomly removes 40% nodes as unseen data during training,
following the approach (Arya et al., 2020). For training, We use 20% of the nodes, reserving 40%
for the testing nodes that are seen during training. H2GNN consistently outperforms other methods
across benchmark datasets, achieving a remarkable accuracy of 89.7% on DBLP, with a low standard
deviation ranging from 0.1% to 1.4%. This highlights the effectiveness and robustness of H2GNN for
inductive learning on evolving hypergraphs. H2GNN can dynamically update the hypergraph structure
and node features, leveraging high-order neighbor information to enhance node representation.

Table 5: The accuracy(%) results for inductive learning on evolving hypergraphs across Co-authorship
and Co-citation datasets. We highlight the best and competitive results achieved by baselines and
H2GNN for each dataset.

Method
DBLP Pubmed Citeseer Cora (Co-citation)

seen unseen seen unseen seen unseen seen unseen

UniGIN 89.4±0.1 83.2±0.2 84.5±0.3 83.1±0.4 69.1±1.1 68.8±1.7 71.6±2.0 68.7±2.1

UniSAGE 89.3±0.2 82.7±0.3 80.3±1.0 79.2±0.8 67.9±1.5 68.2±1.2 70.5±1.1 66.3±1.4

UniGCN 88.1±0.2 82.1±0.1 17.6±0.3 17.8±0.3 22.1±0.8 22.4±0.8 15.6±0.9 15.8±0.9

UniGAT 88.0±0.1 15.8±0.2 30.0±0.4 17.8±0.2 44.2±0.6 22.5±0.6 48.3±1.0 15.8±0.5

H2GNN (Ours) 89.7±0.1 83.4±0.2 86.2±0.2 85.5±0.5 70.2±1.3 69.2±1.0 75.3±1.4 72.1±1.2

A.2 COMPARISON OF NODE CLASSIFICATION ACCURACY IN H2GNN ACROSS TWO SPACES

Table 6 illustrates that the fully hyperbolic space exhibits yields a modest improvement in accuracy
performance. While the difference may not be substantial, it underscores the superiority of H2GNN
and the effectiveness of the hyper-star message passing process.

Table 6: Comparison of H2GNN Model Accuracy (%) in two spaces: fully hyperbolic space vs.
tangent space transformation, which the model encodes features in hyperbolic space but primarily
conducts operations in the tangent space, a Euclidean subspace originating from the hyperbolic
model.

Method Co-authorship Data Co-citation Data
DBLP Cora Cora Pubmed Citeseer

H2GNN (tangent) 88.76±0.14 74.07±1.34 67.29±2.09 74.67±1.16 61.13±1.18
H2GNN (hyperbolic) 89.75±0.20 74.97±1.20 69.43±1.54 74.89±1.23 62.52±1.48

13


	Introduction
	Preliminaries
	Proposed Method
	Linear Transformation
	Hyper-star Message Passing
	Objective Function and Training

	Experiments
	Settings
	Node Classification Results
	Knowledge Hypergraoh Link Preduction
	Ablation Study

	Related work
	Conclusion
	More Experimental Results
	Inductive Learning Results
	Comparison of Node Classification Accuracy in H2GNN Across Two Spaces


