
Finite-Time Convergence Rates in Stochastic Stackelberg Games
with Smooth Algorithmic Agents

Eric Frankel 1 Kshitij Kulkarni 2 Dmitriy Drusvyatskiy 1 Sewoong Oh 1 Lillian J. Ratliff 1

Abstract
Decision-makers often adaptively influence down-
stream competitive agents’ behavior to minimize
their cost, yet in doing so face critical challenges:
(i) decision-makers might not a priori know
the agents’ objectives; (ii) agents might learn
their responses, introducing stochasticity and non-
stationarity into the decision-making process; and
(iii) there may be additional non-strategic envi-
ronmental stochasticity. Characterizing conver-
gence of this complex system is contingent on
how the decision-maker controls for the tradeoff
between the induced drift and additional noise
from the learning agent behavior and environmen-
tal stochasticity. To understand how the learning
agents’ behavior is influenced by the decision-
maker’s actions, we first consider a decision-
maker that deploys an arbitrary sequence of ac-
tions which induces a sequence of games and cor-
responding equilibria. We characterize how the
drift and noise in the agents’ stochastic algorithms
decouples from their optimization error. Leverag-
ing this decoupling and accompanying finite-time
efficiency estimates, we design decision-maker al-
gorithms that control the induced drift relative to
the agent noise. This enables efficient finite-time
tracking of game theoretic equilibrium concepts
that adhere to the incentives of the players’ col-
lective learning processes.

1. Introduction
Decision-making not only under uncertainty but also in en-
vironments with competitive learning agents arises quite
naturally and frequently in machine learning applications
(Cai et al., 2015; Dean et al., 2024; Kim & Perdomo, 2023;
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Westenbroek et al., 2019). For example, recommendation
systems deploy predictive models of engagement to encour-
age user interactions (Calvano & Polo, 2021; Hardt et al.,
2022), crowd-sourcing markets leverage incentives to elicit
responses (Dasari et al., 2020; Hu et al., 2018; Scheid et al.,
2024; Shah & Zhou, 2016; Xie et al., 2014), and in multi-
agent systems, control policies influence outcomes of agent
competition (Ho et al., 1982; Ratliff & Fiez, 2020; Yang
et al., 2022). Common to these domains is the assumption
that agent preferences are fully known and their behavior
is stationary: the decision-maker knows how agents will
react and expects them to react the same over time. Yet, in
practice this assumption is frequently violated, particularly
when competitive agents adapt their response to a decision-
maker’s action (Fiez et al., 2020; Liu & Ratliff, 2024; Miller
et al., 2021; Narang et al., 2023; Perdomo et al., 2020).

A natural abstraction between the decision-maker and agents
is a Stackelberg game, where the decision-maker takes
the role of leader and the agents take the role of follow-
ers (Stackelberg et al., 1952). Stackelberg games can
be viewed as a bilevel optimization problem wherein the
decision-maker seeks to optimize its objective subject to a
variational inequality that captures the equilibrium behavior
of the agents. As a class of convex structured problems,
monotone variational inequalities have garnered much at-
tention in machine learning due to their application to clas-
sical (Combettes et al., 2023; Ghadimi & Lan, 2015) and
modern problems such as adversarial learning (Fiez et al.,
2020; 2021a; Gidel et al., 2019; Goodfellow et al., 2014), ro-
bust and multi-agent reinforcement learning (Foerster et al.,
2018; Pinto et al., 2017; Zheng et al., 2022), auction the-
ory (Syrgkanis et al., 2015), and recently to fine-tune large
language models (Amini et al., 2024; Yang et al., 2024).

In the setting we consider, the agents are learning and
therefore adapting their behavior for any deployed decision-
maker action. This alone makes the decision-maker’s objec-
tive time-varying: indeed, even for a fixed decision-maker’s
action deployed over a time horizon, the agents’ learning
process may not have stabilized at an equilibrium, much
less for a sequence of decision-maker actions. Moreover,
the environment itself is also stochastic and is unknown to
the decision-maker beyond query access. Ignoring that the
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distribution shift arises from competing agents, the decision-
maker’s objective is reminiscent of stochastic tracking prob-
lems (Borkar, 2009; Cutler et al., 2023; Kusher & Yin, 1997).
Similarly, if the decision-maker faces a single, non-learning
agent, this setting is reminiscent of performative predic-
tion (Perdomo et al., 2020). A natural challenge is to design
and analyze the combined learning processes of multiple
competing agents and the decision-maker ensuring conver-
gence to game-theoretically meaningful equilibria.

Contributions. We analyze scenarios that reflect the
decision-maker’s ability to reason about the agents’ behav-
ior via different estimates of how it impacts their gradient.
The agents update their actions by playing any one of a
class of stochastic ρ-contracting algorithms. Experiments
illustrating our theoretical results in practical scenarios are
in Appendix D.

Characterizing Drift-to-Noise Ratio in Agent Play. To un-
derstand how the learning agents’ behavior is influenced by
the decision-maker’s actions, we first analyze a decision-
maker that obliviously deploys an arbitrary sequence of
actions ut that cause drift in the agents’ stochastic algo-
rithms and induce a sequence of games and corresponding
equilibria. In Section 3, we identify regimes governed by
the drift-to-noise ratio and characterize the agents’ optimal
play via non-asymptotic convergence guarantees. In par-
ticular, we bound the equilibrium tracking error in each
of the regimes and give high probability tracking bounds
(Appendix H.3) that provide guarantees that hold in settings
with irreversible drift such as learning with adaptive agents
that strategically respond. These efficiency estimates ex-
pose how the equilibrium error decouples from noise in the
agents’ learning process and time drift in the game; it is
also integral to controlling the induced drift in the decision-
maker dynamics (Section 4).

Controlling Induced Drift in Agent Play. Given this de-
coupling, we then design decision-maker τ epoch-based
algorithms that control the induced drift relative to the agent
noise and therefore enable efficient tracking of game the-
oretic equilibrium concepts dependent upon the gradient
information available. The key theoretical challenge is de-
signing the epoch length such that the stochastic tracking
error induced in the agent game can be bounded efficiently;
for this we much leverage the novel analysis from Section 3
in combination with analysis of the bias-variance trade-off
in the combined dynamics. We examine two natural set-
tings, wherein for each setting we set the epoch length—
τ ≍ O(log(1/ϵτ ) + σ2

a/ϵτ ), where σ2
a is the agents’ noise

parameter—by cleverly setting the per-epoch agent toler-
ance ϵτ using the drift-to-noise analysis.

In the first setting, a naı̈ve decision-maker that recog-
nizes there is distribution shift and opts for a stochastically
queryable gradient estimator (i.e., stochastic repeated re-

training) that is biased due to ignoring the reaction of agents.
We show (cf. Section 4.1) convergence to an approximate
performatively stable equilibrium in O(log(1/ε) + σ2/ε)
epochs where σ2 and ε are the decision-maker gradient
estimator variance and target accuracy, respectively. In-
creasing the gradient information but at a computational
cost, strategic decision-maker recognizes the agents are dy-
namically responding, yet does not know the agents objec-
tives. We devise a derivative-free method (cf. Section 4.2)
that converges to an approximate Stackelberg equilibrium
in O(d2/ε2) epochs. In both cases, the epoch complexity
matches the optimal rate for their single player counter-
parts.1 A key challenge we address is designing the epoch
length to get an efficient an overall iteration complexity,
where the per epoch rate is optimal for tracking problems.

2. Preliminaries
Throughout, we use Rd to denote a d-dimensional space
with inner product ⟨·, ·⟩ and the corresponding induced norm
is given by ∥x∥ =

√
⟨x, x⟩. For any set X ⊂ Rd, we

denote the projection of a vector y onto X as projX (y) =
argminx∈X ∥x− y∥. We also set [n] := {1, . . . , n}.

2.1. Stackelberg Game Abstraction

The interaction between agents and the decision-maker is
a Stackelberg game: a decision-maker takes actions which
influences the behavior of n competitive agents.

Induced Agent Game. Given a decision-maker’s ac-
tion u ∈ U ⊆ Rd, where U is some closed convex
set, each player i ∈ [n] seeks to solve the problem
minxi∈Xi

fui (xi, x−i) where Xi ⊆ Rmi is the set of agent
i’s actions and fui (xi, x−i) denotes a C2-smooth loss func-
tion of agent i induced by the decision-maker’s action u. We
use the standard notation x := (xi, x−i) ∈ X :=

∏
i Xi ⊂

Rm, where xi is the action of agent i, x−i is the joint action
of all other agents, and m =

∑
i∈[n]mi.

The tuple Gu := (fu1 , . . . , f
u
n ) denotes the game induced by

u ∈ U . We say that Gu is a C1-smooth convex game if, for
each i ∈ [n], the set Xi is closed and convex, the function
fui (·, x−i) is convex in xi for all fixed (u, x−i) ∈ U ×X−i,
and the partial gradient ∇if

u
i (xi, x−i) with respect to xi

exists and is continuous. A C1-smooth convex game is
called µ-strongly monotone for µ > 0 if the inequality
⟨ωu(x)−ωu(x′), x−x′⟩ ≥ µ∥x−x′∥2 holds for all x, x′ ∈
X ⊆ Rm, where the map ωu(x) := (∇1f

u
1 , . . . ,∇nf

u
n )

is the vector of individual gradients. Strongly monotone
games arise in economics (e.g., Kelly auctions) as well as

1Duchi et al. (2013) improve the dependence on d with a two-
point estimator using two queries of the exact same environment;
this is impossible in our setting, as agents irrevocably update their
play in response to queries.

2



Finite-Time Convergence in Stochastic Stackelberg Games with Smooth Algorithmic Agents

in engineering and machine learning systems as highlighted
in Section 1; further examples and commentary on the chal-
lenges to relaxing monotonicity are in Appendix C.

The most natural solution concept for the induced game is
a Nash equilibrium. Given a fixed action u ∈ U , a strat-
egy x∗ ∈ X is a Nash equilibrium for Gu if the condition
holds: fui (x

∗
i , x

∗
−i) ≤ fui (xi, x

∗
−i) for all xi ∈ Xi and

all i ∈ [n]. A Nash equilibrium x∗ ∈ Eq(Gu) satisfies
⟨−ωu(x∗), x− x∗⟩ ≤ 0 for all x ∈ X (Rockafellar, 2018).
Denote the set of Nash equilibria for Gu as Eq(Gu). To en-
sure existence and uniqueness (Rosen, 1965), we adopt the
following assumption (cf. Appendix F for more insight).

Assumption 2.1. We assume the following for each u ∈ U :
(i) the induced game Gu is µ–strongly monotone, (ii) the
mappings xi 7→ ∇if

u
i (xi, x−i) are Li–Lipschitz continu-

ous, and (iii) ∥∇uωu(x)∥op is bounded.

Notably, Assumption 2.1 implies that the agents’ equilib-
rium response x∗(·) is Lipschitz continuous; let the Lips-
chitz constant be Leq, and define La := maxi∈[n] Li.

Decision-Maker’s Problem. The decision-maker seeks
to minimize loss ℓ : U × Z → R that depends on their
action u ∈ U and the decision-dependent environment z =
(x, ξ) ∈ Z := X × Ξ which comprises the joint action
of the agents x ∈ X and a non-strategic random variable
ξ ∈ Ξ. We write z ∼ D(u) := Dx(u) × De(u) where
Dx(·) captures the decision-dependent stochasticity of the
agents’ reactions and De(·) captures non-strategic decision-
dependent stochasticity. The latter arise in economics, e.g.,
based on external market factors such as seasonality (Miron,
1990) or economic growth (Davis et al., 2010). Further, the
expected loss is denoted L(u) = Ez∼D(u)[ℓ(u, z)].

The decision-maker aims to find an equilibrium of the
stochastic hierarchical game wherein the agents are
playing a Nash equilibrium of the induced game. The
most salient solution concept here is a Stackelberg
equilibrium: namely, (u∗, x∗(u∗)) ∈ U ×X such that u∗ ∈
argminu∈U

{
Eξ∼De(u) ℓ(u, (x

∗(u), ξ))
∣∣∣ x∗(u) ∈ Eq(Gu)

}
.

However, for any deployed action u, the agents are not nec-
essarily playing behavior consistent with x∗(u) ∈ Eq(Gu).
The agents are trying to adaptively learn the induced
equilibrium x∗(u) and may be employing a stochastic
algorithm to do so. This necessitates the design of
algorithms for the decision-maker that can control the
induced drift and the stochasticity from the environment.

Remark 2.2. In the main body of the paper, we primarily
concern ourselves with the setting in which De(u) ≡ De
(i.e., a stationary distribution) in an attempt to reduce nota-
tional overhead. Throughout, we remark on the decision-
dependent non-strategic setting (i.e. where De(u) is non-
stationary) and defer proofs to the appendix.

2.2. Smooth Algorithmic Agents

Returning to the agents, we now define the class of stochas-
tic algorithms the agents are employing. The decision-
maker deploys an action ut for a number of iterations
τ ∈ N within epoch t. For a fixed action ut, each agent
i ∈ [n] independently updates their action according to a
stochastic algorithm Ai—i.e., xk+1

i,t+1 = Ai(x
0
t , ut+1) for

k ∈ [τ ] where the epoch-t initial condition is x0t := xt,
and by a slight abuse of notation, xt := xτt−1. That is
xt = A(xt−1, ut) is the agents’ collective response after
running A = (A1, . . . ,An) for τ timesteps. We consider a
broad class of algorithms for the agents that adhere to the
following definition.
Definition 2.3. Fix constants ρ ∈ (0, 1), σa ∈ [0,∞) and
c > 0. A stochastic algorithm is ρ-contracting if, for
fixed u ∈ U , the inequality holds: E ∥xk+1

t − x∗(u)∥2 ≤
ρ2 E ∥xkt − x∗(u)∥2 + c2 · (ρσa)2, where x∗(u) ∈ Eq(Gu).

As we show in Appendix G, there are many examples of
algorithms that satisfy Definition 2.3, including stochastic
gradient play, asynchronous stochastic gradient play, best
response dynamics, and even momentum-based gradient
play in strongly convex-strongly concave zero-sum games.

2.3. Challenges in Equilibrium Tracking

Let us start by providing some intuition for the technical
challenges. A decision-maker’s action sequence {ut} in-
duces a time-varying game Gut

and are trying to learn a
time-vary equilibrium x⋆t ∈ Eq(Gut

). For any ρ-contracting
stochastic algorithm executed by the agents, Proposition 3.1
shows that their equilibrium tracking error decomposes as

E ∥xt−x⋆t ∥2 ≲
(
1− 1−ρ2

2

)t∥x0−x⋆0∥2+ σ2
a

1−ρ2 +
(

∆a

1−ρ2
)2
,

where ∆a := maxk{∥x⋆k − x⋆k−1∥2} is the drift and σa
characterizes the noise.2 The first term is exponentially
decaying so that, as t → ∞, we are left with the drift and
noise terms. This raises the following challenge:

Challenge 1: Given the decision-maker induced drift in
the agents’ stochastic game, what is the contraction ρ that
optimizes the target accuracy?

Section 3 contains results that characterizes the drift-to-
noise regimes and corresponding optimal contraction rate
for stochastic gradient play. These efficiency rates are cru-
cial for analysis of decision-maker algorithms in Section 4.

Turning now to the decision-maker’s perspective, even if
the agents have equilibriated such that for any given u
the agents play a “best response” x∗(u), the expected loss
Ez∼D(u)[ℓ(u, z)] still depends on the a priori unknown pref-
erences of the agents. In practice, this means that the second

2Here, ≍ and ≲ indicate an equality and inequality, respec-
tively, holding up to a constant.
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Figure 1. The spectral radius of the local linearization Jτ (x
∗, u∗)—

parameterized by τ—of the combined update. Stability is attained
only when τ ≥ min{τ ′ | spec(Jτ ′(x∗, u∗)) ⊂ D[0, 1] ⊂ C}.
See Appendix D.4 for further details.

term in the decision maker’s gradient

Ez∼D(u) ∇uℓ(u, z) +
d
dv Ez∼D(v) ℓ(u, z)|v=u, (1)

is not directly computable.

Challenge 2: Can the decision-maker algorithmically ex-
ploit available gradient information to converge to a game-
theoretically meaningful equilibrium?

To address this nontrivial problem, we set up a hierarchy of
reasonable interaction models that account for progressively
more gradient information. There are two natural settings:
the decision-maker (i) naı̈vely employs repeated retraining
that does not account for the second term in (1), and (ii)
strategically employs a query-based method to estimate this
decision-dependent term. In Section 4, we characterize
which equilibrium concepts are achievable under these two
approaches: namely, performatively stable equilibrium in
(i) and Stackelberg equilibrium in (ii).

Further exacerbating the aforementioned challenge, be-
cause the agents’ learned play xt also evolves with the
decision-maker’s actions, the decision-maker also faces a
time-varying objective. To illustrate this point, consider a
decision-maker with α-strongly convex loss ℓ(·, z) and de-
fine u⋆t ∈ argminu{Eξ∼De(u) ℓ(u, (xt, ξ))}. Analogous to
the agent decomposition above, if the decision-maker uses
a stochastic gradient-based algorithm with stepsize η, then

E ∥ut−u⋆t ∥2 ≲
(
1− ηα

4

)t∥u0−u⋆0∥2+ ησ2

α +
(

∆
αη

)2
, (2)

where σ2 is the gradient estimator variance (“noise”) and
∆ := maxk ∥u⋆k − u⋆k−1∥2 parameterizes the drift induced
by the agents time-varying actions {xt}. The aim is to opti-
mize the right-hand side of (2) by controlling ∆/σ. How-
ever, recall that the decision-maker does not have a priori
knowledge of the agents’ objectives nor their update rules.

Challenge 3: Can we design algorithms to control the
induced drift such that (ut, xt) reaches an ε-equilibrium
in finite time?

The question of controlling the drift in finite-time reveals in-
teresting algorithm design questions: how does the decision-

ε′ ups

∥ups − u∗∥

ε

u∗

Figure 2. (left) A scenario where the performatively stable equilib-
rium ups lies in an ε-ball around u∗; (right) Approximate big-O
sample complexity (Theorems 4.4 and 4.9) needed by the repeated-
gradient (RGM) and derivative-free (DFM) methods to bring the
decision-maker within ε of u∗ as agent reactivity Leq grows. Be-
cause RGM ignores the implicit term of the decision-maker gradient,
the gap ∥ups − u∗∥ widens as Leq grows, shrinking its effective
tolerance ε′ = ε− ∥ups − u∗∥ and pushing its sample complexity
past that of DFM. See Appendix D.5 for additional details.

maker ensure that the agents equilibrate fast enough so as
to control ∆ relative to σ? To address this, we introduce
time-scale separation via epoch-based algorithms in the two
aforementioned gradient information settings. To obtain
finite-time rather than asymptotic convergence, it is nec-
essary to allow the agents to update multiple times while
the decision-maker remains relatively stationary. This is
illustrated by analyzing the local stability of the dynamical
system representing the combined update. For fixed step-
sizes (η, γ) and gradient updates for the decision-maker
and agents, respectively, at each fixed action ut, the agents
update τ steps and then the decision-maker updates. As il-
lustrated in Figure 1, it is required that τ ≥ 1 for equilibrium
convergence, meaning that the epoch-based algorithm struc-
ture is necessary for finite-time guarantees. We describe the
epoch length lower bound in more detail in Appendix D.4.
In Section 4, for each of the gradient information settings,
we optimize the epoch length to obtain non-asymptotic con-
vergence by controlling ∆/σ.

A last natural question centers on efficiency versus opti-
mality. Recall that the iterates equilibrate at different equi-
librium concepts dependent upon the decision-maker’s es-
timated gradient information. We show that the sample
efficiency of the gradient method decreases as more of the
gradient (1) is estimated (under the same information as-
sumptions on the agents behavior), but is there an effect
on the optimality of achievable equilibrium? Consider the
scenario shown in Figure 2: a decision-maker could use a
derivative-free method to reach within ε > 0 of the Stack-
elberg equilibrium u∗, or use the more efficient repeated
gradient method to reach within ε′ = ε − ∥ups − u∗∥ of
the performatively stable equilibrium ups; in either case,
the worst-case expected distance from u∗ is the same. This
poses a problem for the decision-maker: how to assess the

4
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tradeoff between performance degradation and sample com-
plexity? With this in mind, in Appendix I, we characterize
the performance gap (Proposition I.4) in terms of proper-
ties of the game—in particular, how dynamic agents are in
reaction to the decision-maker.

3. Characterizing Drift-to-Noise Ratio
To understand the drift versus noise, we consider the setting
in which a decision-maker obliviously deploys a sequence
of actions {ut} and passively observes how the agents’ re-
sponse {xt} as generated by some set of algorithms A. Ex-
amples include pricing or recommendations where periodic
changes are made to interventions. The decision-maker’s
sequence of actions induces drift in the agents’ equilibrium:
x⋆t := x∗(ut). Prior work has focused only on asymptotic
guarantees for stochastic tracking in strongly monotone
games assuming that the time-varying sequence of games
being tracked equilibrates a priori (Duvocelle et al., 2023).
Given the induced drift ∆ as identified in (1), a natural
question is can we obtain a finite-time bound on the time
to reach a target equilibrium, E∥xt − x⋆t ∥2? With the de-
sign questions outlined in Section 2.3, taking a different
tack than prior asymptotic work, we extend recent work
in stochastic optimization, namely Cutler et al. (2023), to
stochastic monotone games; this requires novel analysis as
games generally do not admit a single cost function to which
we can appeal in the analysis.

3.1. Bounding the Equilibrium Tracking Error

Suppose the decision-maker deploys actions ut such that
x⋆t is the induced equilibrium for the µ–strongly monotone
game Gut

, which depends on ut. As long as the agents em-
ploy a ρ-contracting stochastic method as in Definition 2.3,
then it is possible to bound the expected equilibrium track-
ing error with a notable dependence on the noise σa and
induced drift ∆a := maxt{∥x⋆t+1 − x⋆t ∥}.
Proposition 3.1 (Informal). Under Assumption 2.1, suppose
agents employ a ρ-contracting stochastic algorithm in the
regime ρ ∈ [0, 1). Then the estimate holds:

E∥xt−x⋆t ∥2 ≲
(
1− (1−ρ2)

2

)t∥x0−x⋆0∥2+ (cσa)
2

1−ρ2 +
(

∆a

1−ρ2
)2
.

This result is formally stated in Proposition H.2 (Ap-
pendix H). We exploit this decomposition of the tracking
error to obtain efficiency estimates, thereby laying the foun-
dation for efficient decision-maker algorithms.

Indeed, do last-iterate convergent algorithms exist for the
agents in this time-varying setting? To provide insight into
the difficulty of the problem, we focus on a natural learning
rule, stochastic gradient play:

xt+1 = proj
X

(xt− γω̂t) : ω̂t := (∇̂if
ut
i (xt))

n
i=1. (SGP)

Proposition 3.1 reduces to the following corollary, the for-
mal version of which is given in Corollary H.4.

Corollary 3.2 (Informal). Under Assumption 2.1, suppose
agents are running stochastic gradient play (SGP) with step-
size γ ≤ µ/(2L2

a), and an unbiased estimator ω̂t satisfying
E[∥ω̂t − Et[ω̂t]∥2] ≤ σ2

a for σa ∈ [0,∞). Then ρ2 =
1/(1 + γµ) and c =

√
2γ, respectively, so that

Et∥xt − x⋆t ∥2 ≲
(
1− µγ

4

)t∥x0 − x⋆0∥2 +
γσ2

a

µ +
(
∆a

γµ

)2
.

Letting t → ∞, the optimization error tends to zero,
leaving only the noise and drift terms. Optimizing with
respect to γ leads to the optimal learning rate γ⋆ :=

min
{
µ/(2L2

a),
(
2∆2

a/(µσ
2
a)
)1/3}

and asymptotic track-
ing error ε⋆ := minγ∈(0,µ/(2L2

a )]

{
γσ2

a/µ+
(
∆a/(µγ)

)2}
.

Here γ⋆ determines the interesting regimes. Indeed, set-
ting µ/(2L2

a) = (2∆2
a/(µσ

2
a))

1/3 and rearranging, we have
two regimes for the drift-to-noise ratio: the low regime if
∆a/σa < µ2/(4L3

a), and otherwise the high regime.

In the high drift-to-noise regime, if agents run stochastic
gradient play with γ⋆ ≍ µ/(2L2

a), we have that

E ∥xt−x⋆t ∥2 ≲ ε⋆ in t ≲ L2
a

µ2 log
(

∥x0−x⋆
0∥

2

ε⋆

)
time steps.

With high drift-to-noise the problem is essentially deter-
ministic, and the rate in fact matches the deterministic set-
ting (see, e.g., Chasnov et al. (2020a)). The low drift-to-
noise regime is decidedly more interesting as the rate can
be improved by controlling the combined drift and noise
(cf. Section 4). Setting the step-size γ⋆ ≍ (2∆2

a · 1
µσ2

a
)1/3,

informally we have that

E ∥xt−x⋆t ∥2 ≲ ε⋆ in t ≲ σ2
a

µ2ε⋆
log
(

∥x0−x⋆
0∥

2

ε⋆

)
time steps.

The following proposition shows that if the agents employ
stochastic gradient play in stages, then much like the single
player time-invariant optimization problem (Kulunchakov
& Mairal, 2019), the agents tracking error can be improved.

Proposition 3.3 (Informal). Suppose that induced time-
varying agent problem is in the low drift-to-noise regime.
There is an algorithm that proceeds by running stochastic
gradient play (SGP) in K stages with Tk steps in each of
the k ∈ [K] stages such that the total time satisfies T =∑K−1
k=0 Tk ≲ L2

a

µ2 log
(

2∥x0−x⋆
0∥

2

ε

)+
+

σ2
a

µ2ε , and the expected

tracking error satisfies E ∥xK − x⋆K∥2 ≲ ε. Further, if the
agents employ γ⋆ then ε = ε⋆.

In Appendix H, we detail the construction of this algorithm,
and give the formal statement in Proposition H.5. Essen-
tially, the agents employ an algorithm that repeatedly runs
stochastic gradient play in stages by reinitializing the al-
gorithm at the previous stage and adjusting the stepsize by
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Algorithm 1 Epoch-Based Drift-to-Noise Control

Input: Alg, T , ηt, x−1, u0, τt
for t = 1, . . . , T do

for k = 0, . . . , τt − 1: query agents with ut
observe zt = (A(xt−1, ut), ξt)
update ut+1 = Alg(xt, ηt, ĝt)

end for

a factor of 2−k. This progressively reduces the constant
variance term. The iteration complexity clearly is com-
posed of two terms: the classical deterministic complexity
O((L2

a/µ
2) log(1/ε⋆)) of gradient play, and the optimal

complexity for stochastic gradient play in O(σ2
a/(µ

2ε⋆)).
Crucially, the regime is controlled by the decision-maker’s
algorithm—since E∥x⋆t+1 − x⋆t ∥ ≤ Leq E ∥ut+1 − ut∥ so
that ∆a ≤ Leq∆—as well as the agents’ step-size which
determines proximity to optimal. Bounds such as those
in Proposition 3.3 are exploited (cf. Section 4) to design
the epoch length in algorithms to control the agents’—and
therefore the decision-maker’s–error.
Remark 3.4 (Beyond Worst Case Tracking Bounds). The
preceding results focus on the worst-case equilibrium ex-
pected tracking error. In Appendix H.2, by assuming con-
traction rate on the sequence {ut}, we give a time-varying
equilibrium tracking error. However, expected equilibrium
tracking guarantees are only meaningful if the dynamics
run many times. Hence, in Appendix H.3, we give high
probability bounds on the tracking error. Due to the strate-
gic nature of agents, if the ut’s are deployed in real-time
there will be irreversible drift, and thus high-probability
efficiency results are more meaningful as they characterize
the performance if dynamics were executed only once.

4. Controlling for the Drift-to-Noise Ratio
Recall from Section 2 that the decision-maker seeks to
solve a stochastic optimization problem with both uncer-
tainty due to the response of the agents and stochasticity of
the environment—namely, they seek to minimize the loss
L(u) = Ez∼D(u)[ℓ(u, z)] with respect to uwhere z ∼ D(u)
is the stochastic observation that the decision-maker receives
from the environment and abstracts the agents’ (stochastic)
decision process. Ultimately for ut to stabilize around some
(appropriate) equilibrium u⋆, the decision-maker needs to
control ∥xt − x⋆t ∥2 and ∥x⋆t − x⋆t−1∥2 as these terms drive
the induced drift and noise (and therefore bias and variance).
Key questions center on 1) what types of algorithms enable
controlling these two sources of error, and 2) given a par-
ticular algorithm, how long before the agents reach the low
drift-to-noise regime, wherein the optimal target accuracy
can be achieved? In Figure 3, for stochastic gradient play,
we show the iteration complexity and optimal target accu-
racy for the agents as a function of the drift-to-noise. There

Figure 3. Iteration complexity and target accuracy of stochastic
gradient play as a function of drift-to-noise ratio. Switching to
the optimal learning rate γ⋆ (Section 3) and using a stage based
algorithm improves iteration complexity and lowers the achievable
target error in the low drift-to-noise regime by decreasing the
variance, while SGP is limited by the noise floor.

is a clear transition at ∆a/σa = µ2/(4
√
3L2

a) after which,
if the agents adopt a stage-based algorithm, then the target
accuracy can be set arbitrarily small with modest impact
on the iteration complexity. On the other hand, if a stage
based algorithm is not employed, the agents risk hitting
the noise floor σa which will lead to a constant error in the
decision-maker’s update.

We address these design and analysis questions in the sub-
sequent sections, focusing on a hierarchy of different gradi-
ent information and epoch-based algorithms (Algorithm 1).
We use bounds from Section 3 to set epoch lengths and
the decision-maker’s step-size to control the two aforemen-
tioned two errors, respectively.

4.1. Naı̈ve Decision-Maker

A common naı̈ve approach in machine learning is a stochas-
tic repeated gradient method wherein the decision-maker
periodically retrains given new data from the environment.
Since the decision-maker does not have a priori access to the
agents’ response mapping, it updates its loss using a stochas-
tic gradient estimate of Ez∼D(u)∇uℓ(u, z)—i.e., only the
part of the total gradient of L(u) with explicit dependence
on u. We make the following regularity assumption.

Assumption 4.1. a. The loss ℓ(·, z) is C1-smooth and α–
strongly convex for any z; b. The maps u 7→ ∇uℓ(u, z)
and z 7→ ∇uℓ(u, z) are Lu and Lz Lipschitz continuous,
respectively.

Equilibrium Baseline. The appropriate notion of an
equilibrium in this case is that of a performatively sta-
ble equilibrium of the “lifted” (n + 1)–player game
(ℓ, f1, . . . , fn) (Narang et al., 2023).

Definition 4.2. The joint action (ups, x∗(ups)) is a per-
formatively stable equilibrium if x∗(ups) ∈ Eq(Gups) and
ups = argminu∈U Eξ∼De(ups) ℓ(u, (x

∗(ups), ξ)).

In Appendix I.1, we show the equilibrium exists and

6



Finite-Time Convergence in Stochastic Stackelberg Games with Smooth Algorithmic Agents

is unique when α < Lz(Len + Leq) where Len is
the Lipschitz parameter for the environment—namely,
W1(De(u),De(w)) ≤ Len∥u − w∥ (cf. Assumption I.2).
In the setting where De(u) ≡ De existence is guaranteed
with α < LzLeq, and the performatively stable equilib-
rium is a Nash equilibrium of the game (ℓ, f1, . . . , fn):
the decision-maker is playing a best response to the equi-
librium response of the agents in expectation.3 In Ap-
pendix I.2, we analyze the performative gap which is de-
fined as ∥u∗−ups∥+∥x∗(u∗)−x∗(ups)∥—the distance be-
tween the Stackelberg and performatively stable equilibrium.
Depending on the problem parameters, the performatively
stable equilibrium is sub-optimal, yet the gap may be small
(cf. Proposition I.4). It is interesting to examine regimes in
which the gap is small so that obtaining the Stackelberg is
not worth extra sample complexity (cf. Figure 2).

Stochastic Repeated Gradient Method. The repeated
stochastic gradient method is given by

ut+1 = proj
U

(ut − ηgt) : gt = ∇uℓ(ut, (xt, ξt)). (RGM)

Assumption 4.3 (Finite Variance). Suppose there exists a
filtered probability space (Ω,F ,F,P) with filtration F =
(Ft)t≥0 such that F0 = {∅,Ω}, gt is Ft+1-measurable, and
there exists a constant σ > 0 satisfying Et∥gt −Et[gt]∥2 ≤
σ2 where Et = E[·| Ft] denotes the conditional expectation.

Suppose that the decision-maker fixes its action ut in round
t for τ time-steps, and the agents run a stage-based ρ-
contracting algorithm (cf. Corollary G.2) A. Agents are
incentivized to run stage-based algorithms: they aim to
stabilize within the smallest neighborhood of x⋆t as pos-
sible, thereby requiring control of their own variance σ2

a .
In the remainder of this subsection, fix constants ᾱ :=
α−LzLen > 0 (for existence and uniqueness, Theorem I.3),
and L2 := L2

u + L2
zL

2
eq (abusing notation).

Theorem 4.4 (Informal). Suppose Assumptions 2.1, 4.1,
and 4.3 hold, and that constants R > ∥x−1 − x∗(u0)∥ and
B > ∥u0 − ups∥2 are available. Further, suppose we are
in the regime where α > LzLen and the decision-maker
runs Algorithm 1 with Alg := RGM using step-size η ≤
ᾱ

4L2 , and the agents employ a stage-based ρ–contracting
algorithm A with ρ ∈ [0, 1) and σa ∈ (0,∞). Set R̄ := R+
2c2σ2

a

1−ρ2 +6L2
eq(4B+ σ2

L2 ))/(1−ρ2)2, the tolerance ϵτ ≍ η2σ2

and epoch length τ ≍ O
(

1
(1−ρ2) log

(
2R̄2

ϵτ

)
+

c2σ2
a ρ

2

(1−ρ2)2ϵτ

)
.

Then, the following estimate holds:

Et∥ut − ups∥2 ≤
(
1− ᾱη

2

)t ∥u0 − ups∥2 + 4ησ2

ᾱ .

3Performatively stable points in the single player setting (Per-
domo et al., 2020) are equally interpretable as Nash when the
environment comprises a stochastic best responding agent whose
reaction is determined by a utility function.

Proposition I.5 contains the formal statement and proof. A
key technical difficulty is bounding the induced drift (i.e.,
agents’ equilibrium tracking error). We leverage results
from Section 3 to set the epoch length via bounding the se-
quential (epoch to epoch) initialization error E ∥xt−1−x⋆t ∥2,
and combine this with within epoch efficiency estimates
for ρ-contracting algorithms (Appendix G). We also pro-
vide a specialization to the case where the ρ-contracting
algorithm is stochastic gradient play (Proposition I.6). To
provide more intuition on the effect of drift vs noise, we
also specialize to the case where the ρ-contracting algorithm
is deterministic (Proposition I.11); indeed, here agents do
not need to run a stage-based algorithm as there is no extra
bias from their stochasticity. Finally, we also leverage the
high probability tracking error results (Appendix H.3) to
give stronger guarantees for irreversible induced drift (cf.
Theorem I.9, Appendix I.3.1).

Given this t-step bound, the decision-maker may employ
a staged method to obtain convergence to an approximate
performatively stable equilibrium.
Corollary 4.5 (Informal). Fix a target accuracy ε > 0.
Under the assumptions of Theorem 4.4, suppose the decision
maker runs the stochastic repeated gradient method in k =
0, . . . ,K super-epochs, for Tk epochs each with constant
step-size ηk = 2−kη0, and such that the last iterate of each
super-epoch is the first iterate of the next. Fix constants
η0 = ᾱ

(4L2) , T0 =
⌈

2
ᾱη0

log
(
2B2

ε

)⌉
, Tk =

⌈ 2 log(4)
ᾱηk

⌉
, and

K =
⌈
1 + log2

(
σ2

L2ε

)⌉
. Then E ∥uT − ups∥2 ≤ ε and

E ∥xT − x∗(ups)∥2 ≤ 2(ϵτ + Leqε) in

T =
∑K
k=1 Tk ≲ O

(
L2

ᾱ2 log
(
2B2

ε

)
+ σ2

ᾱ2ε

)
epochs.

The formal statement and proof is in Corollary I.7. Note
that since we run τ iterations within each epoch, the total
number of iterations is T · τ. Analogous to Proposition 3.3,
we progressively decrease the step-size to control the bias—
namely, the drift in the agent game E ∥x⋆t−1 − x⋆t ∥2 and
noise from their update E ∥xt − x⋆t ∥2—until the desired
accuracy is achieved. Reflecting back to Figure 3, the target
accuracy can be better optimized if the agents switch their
step-size to the optimal γ⋆ once in the low drift-to-noise
regime. Hence, it is interesting to characterize the time T
after which maxk≤T E ∥uk−1−uk∥2 ensures the agents are
in the low drift-to-noise regime in expectation.
Proposition 4.6 (Informal). Under the assumptions of
Corollary 4.5, the estimate maxk≤T E ∥uk − uk−1∥2 ≲(

µ2σa
4·LeqL2

a

)2
holds after T =

∑K
k=1 Tk ≲ O

(
L2

ᾱ2 log
(
2B2

ε

)
+

σ2

ᾱ2ε

)
epochs where ε = 1

6

(
µ2σa/(4 · LeqL

2
a)
)2

.

We give the formal statement in Proposition I.10. Once in
this region the agents are naturally incentivized to optimize
their learning rates (i.e., selecting γ⋆) as it will enable them
to more effectively stabilize the learning process.
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Remark 4.7 (Non-Strategic Environment Decision-Depen-
dence). As we show in Appendix I.3.4, even if De(u) de-
pends on u the results immediately extend. Indeed, sup-
pose there exists Len <∞ such that W1(De(u),De(w)) ≤
Len∥u−w∥ and that α > Lz(Len+Leq) so an equilibrium
exists (cf. Proposition I.3). Then, the results immediately
apply replacing ᾱ with α− Lz(Len + Leq).

4.2. Strategic Decision-Maker

A more strategic approach in low-information settings—i.e.,
where the decision-maker knows that the agents are respond-
ing to ut, yet still does not know the agents’ objectives nor
the algorithms they employ—is to estimate the effect of
the agents’ time-varying behavior via carefully designed
stochastic queries to the environment.

Equilibrium Baseline. The natural equilibrium baseline
in this case is the Stackelberg equilibrium (cf. Section 2.1)
since the decision-maker aims to optimize through the re-
action of the environment including the agents’ collective
response. To do so via gradient methods, the decision-maker
needs to estimate the full gradient of its loss as given in (1).
Derivative free methods are one type of approach that enable
estimation of the second term in (1) via stochastic samples
of the loss at the queried environment state. The resulting
gradient estimator tends to be inherently biased, prone to
high variance, and is nominally sample inefficient; nonethe-
less, Stackelberg equilibrium convergence is possible, as
opposed to suboptimal performatively stable equilibrium.

Derivative Free Method. Given that the environment is
time-varying and responsive to the decision-maker’s queries,
we adapt a single point derivative free method (see, e.g.,
(Agarwal et al., 2010; Drusvyatskiy et al., 2022)) to the
epoch-based framework outlined in Algorithm 1. Multi-
point methods tend to have better complexity in terms of
d, yet agents are responding and therefore it may not be
possible to query the same static population repeatedly.

For a fixed query radius δ > 0 and epoch length τ ≥ 1, the
decision-maker updates its action via

ut+1 = proj
(1−δ)U

(ut − ηtgt), (DFM)

where, for a uniformly sampled vector vt ∼ Sd, the gradient
estimate is gt = d

δ ℓ(ut + δvt, (A(xt−1, ut + δvt), ξt))vt
with ξ ∼ De. The challenge compared to classical analysis
is accounting for the additional bias from the agents’ drift
and noise. We require some regularity assumptions.

Assumption 4.8. The following hold: a. the loss ℓ(u, z)
is bounded with ℓ∗ := sup(u,z)∈U×Z |ℓ(u, z)|; b. the map
u 7→ ∇2L(u) is LH-Lipschitz continuous; c. the expected
loss L(u) is ᾱ–strongly convex; d. ∃ b, B > 0 such that
bB ⊆ U ⊆ BB where B = {u ∈ Rd| ∥u∥ ≤ 1}.

Assumption 4.8.d is common (cf. Agarwal et al. (2010)),
and implies the convex set U is compact with a non-empty
interior; otherwise, we can map U to a lower dimensional
space. Assumption 4.8.c requires the composition of the al-
gorithm the agents’ play and the loss ℓ to be convex. We give
examples of how this criteria may be met in Appendix J, and
discussion of relevant literature (Dong et al., 2018; Miller
et al., 2021; Perdomo et al., 2020; Ray et al., 2022). This
assumption allows convergence to global optima; when it is
not met, convergence is possible to local solutions; yet, as
with non-monotone games, what constitutes an interesting
solution is widely debated (Fiez et al., 2020; Jin et al., 2020;
Mangoubi & Vishnoi, 2021). We explore local convergence
numerically (Appendix D), and leave theory to future work.

Let (u∗, x∗(u∗)) be the Stackelberg equilibrium. In the
remainder of this subsection, let L := Lu + LzLeq.

Theorem 4.9 (Informal). Suppose that Assumptions 2.1, 4.1,
and 4.8 hold, and that a constant R > ∥x−1 − x∗(u0)∥2
is available. Further, suppose the decision-maker runs Al-
gorithm 1 with Alg := DFM using step-size ηt = 4

ᾱ(t+1)

and query radius δ < min{b, ᾱLH
}, and that the agents

employ a ρ–contracting algorithm A with ρ ∈ [0, 1) and
σa ∈ (0,∞). There exists a constant R̄ < ∞ such that
if the tolerance is set to ϵτ = (δ(t + 1))−1 with epoch

length τ ≍ O
(

1
(1−ρ2) log

(
2R̄
ϵτ

)
+

c2σ2
a ρ

2

(1−ρ2)2ϵτ

)
, then the es-

timate holds: E ∥ut − u∗∥2 ≤ max{2ᾱ2δ2B,16(ℓ2∗d
2+1)}

δ2ᾱ2(t+1) +

2δ2
((
1 + L

ᾱ

)
∥u∗∥+ L

ᾱ

)
.

For simplicity, the formal definition of R̄, which determines
the required epoch length, is given in Appendix J.2; it is
analogous to the constant in Theorem 4.4 in that it is derived
from bounding the tracking error E ∥xt − x⋆t ∥2 using the
drift-to-noise decomposition analysis in Section 3. We now
characterize the iteration complexity to reach an approxi-
mate Stackelberg equilibrium.

Corollary 4.10. Suppose the assumptions of Theorem 4.9
hold. Fix target accuracy ε < 4b2

((
1 + L

ᾱ

)
B + L

ᾱ

)2
and

set δ = ᾱ
√
ε/4/((ᾱ + L)B + L) and ηt = 4/(ᾱ(t + 1)).

The iterates (ut, xt) converge to an approximate Stackelberg
equilibrium: E[∥ut − u∗∥2] ≤ ε and E[∥xt − x∗(u∗)∥2] ≤
2(ϵτ + Leqε) hold for all t ≥ 16max{ᾱ4εB2, 8(ℓ2∗d

2 +
1)((ᾱ+ L)B + L)2}/(ᾱ4ε2).

The formal statement is given in Theorem J.6 (Appendix J).
An analogous statement to Proposition 4.6 which identifies
the transition from high to low regimes as the decision-
maker stabilizes is also provided. Observe that ε may be
selected arbitrarily small to control the agents’ locality rela-
tive to the equilibrium. Corollary 4.10 provides a bound in
terms of the number of epochs; the total iteration complex-
ity is

∑t
s=1 τs ≍ O

(
d2

ε2

(
log
(

1
ϵτ

)
+

σ2
a

ϵτ

))
. If the agents are

deterministic (σa = 0), this rate matches the rate of single
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(a) RGM with SGP agents. (b) DFM with SGP agents.

Figure 4. Effects of decision-maker’s choice of τ on equilibrium
convergence in a convex quadratic game. As expected, larger τ
produces smaller equilibrium error.

point derivative-free convex optimization (Agarwal et al.,
2010) up to log factors, where the log factor is precisely due
to the agents running their algorithms for τ time-steps. The
rate for the derivative free method is decidedly worse than
for the stochastic repeated gradient method, owing to the
extra estimator bias, yet the latter converges to a suboptimal
equilibrium.
Remark 4.11 (Non-Strategic Decision-Dependence). As we
show in Appendix J.3, if De(u) depends on u, the results in
this section apply with minor changes to constants as long
as ℓ satisfies mixture dominance (cf. Assumption J.10) and
W1(De(u),De(w)) ≤ Len∥u− w∥ (cf. Assumption I.2).

5. Empirical Vignettes
In this section, we present some empirical results targeting
some of the technical assumptions. These results elucidate
the effect of the decision-maker’s algorithm design space
on the “shape” of the agent game and convergence behavior.
A broader set of experiments is contained in Appendix D.

Selecting τ . In many real-world settings the optimal τ is
unknown as some of the constants on which it depends are
properties of the agents’ algorithms. We study a represen-
tative quadratic game to examine the effects of a decision-
maker’s choice of τ . Indeed, many real-world problems (e.g.
Bertrand/Cournot markets, multi-agent linear–quadratic
games, and revenue-maximization models (Narang et al.,
2023)) can be cast as quadratic games (cf. Appendix C).
Here, the i-th agent’s cost formulated as

fi(xi, x−i) =
1
2x

⊤
i Aixi + x⊤i x−i + c⊤i xi + ϕi(x, u),

where ϕi belongs to a quadratic family of incentives by
which the decision-maker tries to nudge agents toward a de-
sired outcome (xd, ud) (cf. Ratliff & Fiez (2020)). Figure 6
illustrates that several modest choices of τ suffice: larger τ
results in faster convergence, yet the benefit of increasing τ
is marginal. See Appendix D.1 for further details.

Shaping the Landscape. Another assumption made
throughout is that the induced game Gu is strongly mono-

(a) Non-monotone (b) Strongly Monotone

Figure 5. Phase portraits for the dynamics of a decision-maker
influenced Kelly auction. Markers indicate where ωu(x) = 0 on
int(X ), and arrows represent the gradient flow. From (a) to (b), the
agents’ game transitions from non-monotone (admitting a local
Nash and saddle point) to strongly monotone (single stable Nash).

tone. It is natural to question whether or not the decision-
maker can induce strong monotonicity. We explore this
via a Kelly auction with m resources, where n agents
submit bids xi ∈ Rm+ for the resources, with the joint
set of bids given by x = (x1, . . . , xn) ∈ Rm·n. The
i-th agent receives ρuij(x) =

qjxij

uj+
∑n

l=1 xlj
units of re-

source j proportionate to their bid, and minimizes their
loss fui (xi, x−i) = −

∑m
j=1(aiρ

u
ij(x) − xij) over Xi =

{xi ∈ Rm+ :
∑m
j=1 xij ≤ bi}. A common auction con-

trol mechanism is price floor u = (u1, . . . , um) ∈ Rm
regulation. Shown in Appendix C.5, if µ = maxi ai ·

mins{qsus}
(
∑m

s=1 us+
∑n

j=1 bj)
3 > 0, then the agents’ game is µ-

strongly monotone. Figure 7 shows the decision-maker’s
action changes the equilibrium landscape from multiple sta-
tionary points to a single stable Nash. It is interesting to
consider incorporating a design constraint on the shape of
the agent game. See Appendix D.2 for details.

6. Discussion
We consider a novel class of stochastic time-varying Stack-
elberg games. We present finite-time efficiency estimates
that are governed by the drift-to-noise ratio for the decision-
maker influenced agent updates. We also identify two epoch-
based algorithms that find two different notions of equilibria,
the performatively stable Stackelberg equilibrium and the
true Stackelberg equilibrium, and establish finite-time con-
vergence rates. This work enables ample opportunities for
future work. First, parameters intrinsic to the theoretical
bounds are oft unavailable in practice, hence adaptive algo-
rithms tuned to game theoretic settings may be especially
useful. Second, future work might better capture the trade-
offs in the performative gap and sample complexity. Finally,
a particularly interesting direction is to estimate agent dy-
namics using techniques from adaptive control. Further
discussion of these proposed directions are in Appendix B.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Organization of Appendix
The appendix contains many sections, so here we provide a contents list to help the reader navigate the material.

• Appendix §A: Related Work. This section contains a discussion of related work

• Appendix §B: Extended Discussion. An extended discussion section containing implications for future work and
proposed directions.

• Appendix §C: Examples of Monotone Games. This section contains examples of monotone games.

• Appendix §D: Numerical Experiments. Illustrative numerical experiments exploring both the limits of the theoretical
results as well as semi-synthetic real-world simulations.

• Appendix §E: Technical Lemmas. Technical lemmas used to prove the theoretical results.

• Appendix §F: Regularity of the Equilibrium Response. Exposition on the regularity assumption on the equilibrium
response of agents.

• Appendix §G: Contracting Agent Updates. Examples (and proofs) of ρ–contracting learning rules.

• Appendix §H: Proofs for Oblivious Decision-Maker Setting. Proofs for all the theoretical results for the setting in
which the decision-maker is obliviously deploying a sequence of actions.

• Appendix §I: Proofs for the Naı̈ve Decision-Maker Setting. Proofs for all the theoretical results for the setting
in which the decision-maker is naı̈vely deploying a sequence of actions generated by running a repeated stochastic
gradient method.

• Appendix §J: Proofs for the Strategic Decision-Maker Setting. Proofs for all the theoretical results for the setting
in which the decision-maker is strategically deploying a sequence of actions that are selected via a derivative free
stochastic method that allows the decision-maker to optimize through the smooth algorithmic response of the agents.

A. Extended Related Work
Asymptotic equilibrium tracking is a long studied problem in single player stochastic optimization and stochastic approxi-
mation; see (Borkar, 2009; Kusher & Yin, 1997) and references therein. Our work focuses on obtaining convergence rates
when the decision-maker faces a time-varying stochastic optimization problem subject to equilibrium constraints that are
themselves varying in time. Below we highlight the most relevant work in this broad field, focusing on recent developments.

Static Performative Prediction. The decision-maker’s problem is analogous to the setting of performative prediction,
first introduced in Perdomo et al. (2020), in the sense that the decision-maker faces a stochastic optimization problem where
the distribution describing the environment depends on the actions of the decision-maker. Performative prediction, in turn,
shares many features with the earlier work on stochastic optimization with decision-dependent probabilities (Hellemo et al.,
2018) and strategic classification (Hardt et al., 2016; Mendler-Dünner et al., 2020). Numerous recent papers have developed
algorithms and convergence guarantees in different performative prediction settings (Brown et al., 2022; Cutler et al., 2024;
Drusvyatskiy & Xiao, 2023; Maheshwari et al., 2022; Mendler-Dünner et al., 2020; Miller et al., 2021; Narang et al., 2022).

In particular, Mendler-Dünner et al. (2020) develops the first stochastic optimization algorithms within the performative
prediction setting. The subsequent work by Drusvyatskiy & Xiao (2023) reveals that all the typical stochastic optimization
algorithms used in the classical static setting extend directly to the performative setting with no loss in efficiency. The work
Cutler et al. (2024) moreover shows that the basic stochastic gradient method asymptotically achieves the best possible
sample complexity among any estimation procedures.

Recent work by Conger et al. (2023) extends the specific sub-problem known as strategic classification to functional spaces
by way of optimal transport in order to analyze the effects of the entire distribution (as compared to the mean) as a function
of the decision-maker’s action. Another interesting direction is explored in Narang et al. (2022) wherein the authors extend
the performative prediction problem to multiple players and characterize the Nash equilibrium. Finally, work from Wood &
Dall’Anese (2022), which finds equilibrium points that are analogs to performatively stable points.

15



Finite-Time Convergence in Stochastic Stackelberg Games with Smooth Algorithmic Agents

Time-Varying Stochastic Optimization & Performative Prediction. Of the recent work on performative prediction, the
most closely related work focuses on performative prediction problems that change dynamically over time in response to
exogenous changes in the environment. This is in contrast to classical online tracking work (Fujita & Fukao, 1972; Kushner
& Yin, 1997; Tsypkin & Nikolic, 1971; Tsypkin & Polyak, 1992), which, despite using several modern techniques and
objectives such as accelerated gradients (Madden et al., 2020) and dynamic regret (Besbes et al., 2015) respectively, does
not capture decision-dependence in the environment’s drift.

Brown et al. (2022) introduced the notion of dynamics in the performative prediction problem through repeated risk
minimization. Ray et al. (2022) introduce novel epoch-based algorithms for performative prediction when the environment
is subject to geometrically decaying dynamics.

There has also been a recent surge on the empirical front in related fields such as recommendation design when the
decision-maker recognizes that the user pool may be reactive (Cen et al., 2024). Cutler et al. (2023) provides convergence
rates for gradient-based stochastic optimization methods over time-varying decision-dependent distributions. Wood &
Dall’Anese (2023) develop a similar analysis for zero sum games, and provide bounds on tracking stochastic saddle point
equilibrium. Finally, (Cen et al., 2024) studies performative and strategic effects in recommendation systems, and provides a
theoretical model to study user strategization along with an empirical study.

Of these, the analysis in (Cutler et al., 2023) is most closely related to our work, especially in the oblivious decision-maker
setting. We extend the analysis in that paper to strongly monotone games. Further, none of these works considers the
Stackelberg setting in which the decision-maker (leader) faces multiple competing agents (followers) who are themselves
learning and adapting.

Bilevel Optimization & Stackelberg Games. There is vast work on bilevel optimization and Stackelberg games (Başar
& Olsder, 1998; Bracken & McGill, 1973; Colson et al., 2007; Dempe & Zemkoho, 2020; Stackelberg et al., 1952); the
specific work most related to this paper focuses on settings where the agent problem is an equilibrium problem or variational
inequality. In this setting, the literature is specialized to mathematical programming with equilibrium constraints. Prominent
examples include settings where a leader optimizes over the outcome of a Cournot game (Sherali et al., 1983), or Stackelberg
congestion games (Wardrop, 1952).

Typically it is assumed that the decision-maker has full knowledge of the agent game or can control the agent game through
multiple specialized queries such as in recent work (Li et al., 2023; Maheshwari et al., 2023). There has also been work on
incentive design when facing multiple adaptive agents such as (Ratliff & Fiez, 2020; Yang et al., 2020; 2022); however, the
majority of this work makes the assumption that the decision-maker can estimate the preferences of the agents, can compute
the a priori optimal solution to use as a benchmark, gives asymptotic convergence guarantees, or provides empirical results.
In contrast, our work does not assume that the decision-maker has any knowledge of the agent preferences or update methods
beyond belonging to a broad contractive update class.

B. Extended Discussion, Implications for Future Work, and Proposed Directions
We consider a novel class of stochastic Stackelberg games, where updates from the decision-maker and the agents induces a
time-varying game for both parties. We present finite-time efficiency estimates that are governed by the drift-to-noise ratio
for the agents’ updates for settings where the decision-maker sequentially deploys actions. The results motivate future work
on better characterization of the tradeoffs in the performative gap and in sample complexity as this helps determine the most
efficient class of algorithms to run in information limited settings.

We also identify two epoch-based algorithms that find two different notions of equilibria, the performatively stable
Stackelberg equilibrium and the true Stackelberg equilibrium. We characterize the existence of the former equilibrium,
and establish convergence rates. Illustrative numerical examples explore the theoretical assumptions and suggest many
interesting directions for future work.

Performative Gap vs Sample Complexity. Indeed, the results motivate future work that captures the interplay between
game theory, optimization, and learning. Better characterizing the tradeoffs in the performative gap, both in U as well as in
cost, and in sample complexity is essential across a number of performative prediction settings. Additionally, having a better
characterization the extent of performativity exists in a stochastic optimization system would enable decision-makers to
determine which algorithmic approach (i.e., computationally expensive derivative free methods versus sub-optimal repeated
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stochastic methods) is beneficial given the reactivity of its user base.

Designing Adaptive Parameter Estimation Methods. Our theoretical results also depend on a number of intrinsic
parameters such as Lipschtiz constants which may not be readily available in practice. This suggests developing adaptive
algorithms for learning in game-theoretic settings such as the ones explored in this paper. In the game theory literature,
there are few adaptive methods in part because extending traditional methods from single-player optimization would require
coordination, however, there is recent work on adaptive methods in distributed setting for monotone variational inequalities
which can be leveraged.

Methods for Estimating Opponent/Agent Models using Adaptive Control. Finally, we examine the two extremes in
terms of estimating the performative effects on the loss of the decision-maker. Indeed, recall the gradient decomposition
from Equation 1:

E
z∼D(u)

∇uℓ(u, z) +
d

dv
E

z∼D(v)
ℓ(u, z)

∣∣
v=u

,

where the second term is the derivative of the loss through the reaction of the agents (and the non-strategic decision-dependent
component of the environment). We examine what happens when the decision-maker updates by ignoring the reaction
of the agents in its gradient and, at the other end of the spectrum, when the decision-maker estimates—via a derivative
free method—the second term in (1). There is a natural intermediate formulation in which the decision-maker models the
D(u) with a sufficiently rich function class. For instance, in prior work by Ratliff & Fiez (2020), in the context of adaptive
incentive design the authors model best responding agents via reproducing kernel Hilbert spaces (RKHS)—which are known
to have desirable properties such as persistence of excitation. In particular, the cost functions of the agents’ are estimated via
RKHS. Then, using the estimated costs, they constrain the incentive design problem to ensure that the (estimated) game
amongst the agents has a positive definite Jacobian (Dxω(x, u) > 0) which is a sufficient condition for strong monotonicity.
This requires an assumption on the model class being expressive enough to capture the true cost functions; the challenge
here is that the model could of course be miss-specified, and this assumption is not a priori verifiable. Hence, what is needed
is some uncertainty quantification or distributional robustness on top in order to give guarantees. This is an interesting
direction of future research.

C. Examples of Monotone Games
In this section, we provide several examples of strongly monotone games. Before diving into some examples, let us give
some intuition for strong monotonicity via sufficient conditions, and discuss challenges related to relaxing this assumption.

C.1. Strong Monotonicity of Agent Game

Recall that Assumption 2.1.i. Here we explore the strength of this assumption. In particular, this assumption requires that
the decision maker is only deploying u’s such that the agents game is strongly monotone. A sufficient condition for this
game to be strongly monotone for a given u is that the game Jacobian is positive definite:

Ju(x) :=


∇2

1f
u
1 ∇12f

u
1 · · · ∇1nf

u
n

∇21f
u
2

. . . . . .
...

...
. . . . . . ∇(n−1)nf

u
n−1

∇n1f
u
n · · · ∇n(n−1)f

u
n ∇2

nf
u
n

 ≻ 0.

It is instructive to see what this implies via an example. Consider a revenue maximization game amongst the players

fui (xi, x−i) = (Aiixi +Ai,−ix−i + ξi + ui)
⊤xi +

λi
2
∥xi∥2

here ui is some demand signal to correct for the implicit bias agent i has about the demand.

For simplicity let’s consider the two player case:

ωu(x) = (∇1f
u
1 ,∇2f

u
2 ) = ((2A11 + λ1I)x1 + ξ1 + u1 +A12x2, (2A22 + λ2I)x2 + ξ2 + u2 +A21x1)
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Ju(x) =

[
2A11 + λ1I A12

A21 2A22 + λ2I

]
Then,

1

2
(Ju(x) + J⊤

u (x)) =

[
2A11 + λ1I A12 +A⊤

21

A⊤
12 +A21 2A22 + λ2I

]
Then as long as the game when u = 0 is strongly monotone, so is any induced game.

Prior work by Ratliff & Fiez (2020) on adaptive incentive design with simultaneous utility estimation incorporates this
condition as a constraint on the optimization problem (for choosing the next ut). One direction for future work is specifying
the space of U via a similar radial basis function method as in Ratliff & Fiez (2020), and then characterizing the additional
constraint to be added to the epoch-based algorithms we propose herein. If this expansion results in a closed, convex set U ,
then our results will apply and the decision-maker will only be choosing actions u that retain strong monotonicity of the
agents’ game.

C.2. Challenges to Relaxing Strong Monotonicity

Relaxing the monotonicity assumption leads to issues of not just non-uniqueness but especially non-existence of solutions
(Facchinei & Pang, 2003; Rockafellar, 2018). To our knowledge there are not solution concepts for Stackelberg problems
over non-monotone games. The rich literature on non-convex, non-concave zero sum games, especially in machine learning,
is illustrative of the challenge which is only exacerbated by the lack of structure in general sum settings. In particular, there
are many different local solution concepts and no one in particular that is widely accepted in zero sum settings (Daskalakis
et al., 2023; Fiez et al., 2021a;b; Jin et al., 2020; Mangoubi & Vishnoi, 2021), and very few in general sum settings (Fiez
et al., 2020).

There are two natural methods of defining solutions:

1. assume a locally monotone structure, or

2. define a solution concept with respect to the algorithm class (or regularizer) adopted by the agents.

The first option demands the novel analysis in this paper for monotone settings as that is what is exploited locally around
the equilibrium to obtain convergence. The main technical concerns beyond the analysis in this paper are then ensuring
saddle point avoidance and characterizing the lock in probability guaranteeing that the combined learning behavior remains
in the appropriate local neighborhood—see the appendix of (Fiez et al., 2020) for asymptotic analysis that is illustrative.
Essentially, it is necessary to bound the probability that iterates will get locked into a neighborhood around the equilibrium
which can be more difficult in general sum settings without a lack of the equilibrium landscape outside the region of
attraction, itself a difficult concept to characterize without local structure (e.g., bounds on the game Jacobian Dωu(x)).

The second option arises from the fact that most methods for solving non-monotone inequalities derive algorithms that
leverage regularization (e.g., Tikhonov regularization is popular (Tatarenko & Kamgarpour, 2019)), and then define a
solution concept relative to a performance gap notion that depends on this choice of regularizer. This is dissatisfying in
a game theoretic sense as it requires the agents to coordinate on the choice of regularizer and then it gives no guarantees
with respect to the incentive structure of the agents objectives. That being said, there may be interesting future research on
understanding the relationship between algorithms adopted by strategic or learning agents and their underlying objectives
and incentives.

C.3. Quadratic Games

Consider the game defined by costs

fi(xi, x−i) =
1

2

[
xi
x−i

]⊤ [
Ai B⊤

i

Bi Di

] [
xi
x−i

]
+

[
ai
bi

]⊤ [
xi
x−i

]
, (3)

where Ai ∈ Rdi×di , Di ∈ Rd−i×d−i , Bi ∈ Rd−i×di , ai ∈ Rdi and bi ∈ Rd−i with Ai = A⊤
i and Di = D⊤

i . Further, we
assume that Ai ≻ 0 for each i = 1, 2. The Di matrices penalize player i based solely on x−i and may often be negative or
zero. Quadratic games are a useful approximation of the behavior of more complex games around an equilibrium. This
game is strongly monotone if there exists µ ∈ (0,∞) such that

⟨ω(x)− ω(x′), x− x′⟩ ≥ µ∥x− x′∥2,
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where
ω(x) = (∇1f1(x), . . . ,∇nfn(x)) with ∇ifi(xi, x−i) = Aixi +B⊤

i x−i + ai.

A sufficient condition for strong monotonicity is

J(x) = ∇ω(x) =


A1 B12 · · · B1n

B21 A2
. . .

...
...

. . . . . . B(n−1)n

Bn1 · · · Bn(n−1) An

 ≻ 0, where Bi =



Bi1
...

Bi(i−1)

Bi(i+1)

...
Bin


.

There are many important examples of quadratic games in economics and control theory. Below we highlight a few.

C.3.1. OPEN LOOP LINEAR QUADRATIC DYNAMIC GAMES

One important class in control theory is that of linear quadratic dynamic games in open loop strategies. For simplicity, we
write out the details for a n = 2 player game; however, these derivations easily extend to arbitrary but finite n. To that end,
consider a two player linear quadratic dynamic game with open loop policies vi = (vi,0, . . . , vi,T−1) with costs

fi(v1,v2) =

T−1∑
t=0

1

2
z⊤t Qizt +

1

2
v⊤i,tRivi,t + v⊤i,tRi,−iv−i,t +

1

2
z⊤T Qi,fzT

zt+1 = Fzt +G1v1,t +G2v2,t, zt ∈ Rm.

Unfolding the dynamics and letting Z = [z⊤0 , . . . , z
⊤
T ]

⊤, we have that Z =W1v1 +W2v2 + Fz0 where

Wi =



0 · · · 0
Gi 0 · · · 0
FGi Gi 0 · · · 0

...
...

. . . . . .
...

FT−2Gi FT−3Gi · · · Gi 0
FT−1Gi FT−2Gi · · · FGi Gi


, i = 1, 2,

and F =
[
I F⊤ · · · (FT−1)⊤ (FT )⊤

]⊤
. Define the following cost matrices:

Qi := diag(Qi, . . . , Qi, Qi,f ) ∈ Rm(T+1)×m(T+1),

Ri := diag(Ri, . . . , Ri) ∈ RdiT×diT ,

Ri,−i := diag(Ri,−i, . . . , Ri,−i) ∈ RdiT×d−iT .

Player i’s cost is

fi(vi,v−i) =
1
2v

⊤
i Rivi + v⊤

i Ri,−iv−i +
1
2 (W1v1 +W2v2 + Fz0)

⊤Qi(W1v1 +W2v2 + Fz0).

Mapping back to the original quadratic cost form in (3), we have that

Ai = Ri +W⊤
i QiWi, Bi =

(
Ri,−i +W⊤

i QiW−i
)⊤
, Di =W⊤

−iQiW−i

a⊤i = z⊤0 F⊤QiWi, b⊤i = z⊤0 F⊤QiW−i.

The game Jacobian is given by

J(x) =

[
A1 B⊤

1

B⊤
2 A2

]
=

[
R1 +W⊤

1 Q1W1

(
R1,2 +W⊤

1 Q1W2

)(
R2,1 +W⊤

2 Q2W1

)
R2 +W⊤

2 Q2W2

]
In a typical linear quadratic regulator problem it is assumed that Ri ≻ 0 and Qi ⪰ 0 in order for solutions to exist (there are
conditions that weaken these assumptions), and hence Ai ≻ 0. In this case Ai is non-degenerate for i = 1, 2, and hence
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a sufficient condition for the game Jacobian to be positive definite is checking that either Schur complement is positive
definite.

The goal of a decision-maker here might be to design ’pricing mechanisms’ to influence the equilibrium; e.g., they may
optimize over the matrices (Ri, Ri,−i) (Coogan et al., 2013; Ratliff et al., 2012).

C.3.2. COURNOT AND BERTRAND COMPETITION

Both Cournot and Bertrand oligopoly models are monotone games under certain conditions on the cost parameters. In the
Cournot model, firms choose quantities in non-cooperative competition, and the market determines the price of each good.
On the other hand, in a Bertrand competition, firms set prices, and the market determines its demand for each type of good.

To see that these games are both strongly monotone, consider a setting with n firms.

Cournot Competition. Each firm supplies the market with a quantity xi ∈ [0, Bi] of some good or service where Bi > 0 is
firm i’s capacity for production. The market determines the price P (x) for the good, where the pricing mechanism here P (·)
is typically a decreasing function of the total supply to the market 1⊤x =

∑n
i=1 xi. For example, a commonly adopted

model is a linear pricing function of the form

P (x) = r − q
n∑
i=1

xi, where r, q > 0. (4)

The i–th firm aims to maximize their utility which is given by Ui(x) = xiP (x)− cixi. Here, the first term xiP (x) is the
revenue generated from selling xi goods in the market and the second term cixi is the cost of production.

Consider the game with costs fi(x) = −Ui(x) over strategy spaces Xi = [0, Bi]. The game is strongly monotone if there
exists µ > 0 such that

⟨ω(x)− ω(x′), x− x′⟩ =

〈−x1∇1P (x)− P (x) + c1
...

−xn∇nP (x)− P (x) + cn

−

−x
′
1∇1P (x

′)− P (x′) + c1
...

−x′n∇nP (x
′)− P (x′) + cn

 , x− x′

〉

=

〈−x1∇1P (x) + x′1∇1P (x
′)− P (x) + P (x′)

...
−xn∇nP (x) + x′n∇nP (x

′)− P (x) + P (x′)

 , x− x′

〉

≥ µ∥x− x′∥2.

Using the linear form of P (x) from (4), it is easy to compute

⟨ω(x)− ω(x′), x− x′⟩ = q

〈x1 − x′1
...

xn − x′n

 ,
x1 − x′1

...
xn − x′n

〉+ q

〈
∑
i xi −

∑
i x

′
i

...∑
i xi −

∑
i x

′
i

 ,
x1 − x′1

...
xn − x′n

〉

= q
∑
i

(xi − x′i)
2 + q

∑
i

∑
j

(xj − x′j)(xi − x′i)


= q∥x− x′∥2 + q

(∑
i

(xi − x′i)

)2

≥ q∥x− x′∥2

so that the game is strongly monotone with µ = q > 0. In a Cournot competition, the market reaches an equilibrium where
all firms choose a quantity that is their best response to their competitors’ quantities. This turns out to be an inefficient
equilibrium, in that the equilibrium price is above the price in perfect competition and therefore firms earn a profit. A third
party (such as a government entity) may intervene in the market by modulating the price P (x) or by taxing individual firms
(thereby increasing the cost of production cixi) in order to move the market to an efficient equilibrium.
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Bertrand Competition. In a Bertrand competition, where prices are the strategic variable, firms are incentivized to set
their price slightly lower than the competition. Since all firms are so incentivized, they repeatedly drop the price until the
price reaches the price in perfect competition wherein firms do not earn a profit. A third party may intervene in this market
to improve uncertainties related to forecasting demand. For example, often times demand depends on exogenous time
varying quantity or signal, such as gross domestic product, for which an individual firm may not have a good (low variance)
forecaster.

To illustrate this, consider again n firms, but now the strategies xi ∈ [0, Bi] are the prices instead of quantities of production.
The firms seek to maximize their revenue in this setting which is given by Ri(xi, x−i, u) = xiFi(xi, x−i, u) where Fi is
the marginal revenue function or demand curve given prices x = (xi, x−i). Here u is some exogenous signal as described
above. Then, for a fixed u, we have that

⟨ω(x, u)− ω(x′, u), x− x′⟩ = ⟨−xi∇iFi(x, u)− Fi(x, u)− (−x′i∇iFi(x
′, u)− Fi(x

′, u)), x− x′⟩

so that, just like with the Cournot competition, if the marginal revenue is an affine function with parameters (r, q) then the
game is strongly monotone with µ = q. The marginal revenue function, however, does not have to be linear for the game to
be strongly monotone. Indeed a common form for the marginal revenue includes logarithmic terms (Bertsimas et al., 2015;
Ratliff & Fiez, 2020). For instance consider marginal revenue function given by

Fi(x, u) = log(xi) + θ⊤i x+ ξi + ui,

where (θi, ξi) are parameters. Therefore we have that

⟨ω(x, u)− ω(x′, u), x− x′⟩ =

〈 −(log(x1) + 2θ1,1x1 + θ1,−1x−1) + (log(x′1) + 2θ1,1x
′
1 + θ1,−1x

′
−1)

...
−(log(xn) + 2θ1,1x1 + θ1,−1x−1) + (log(x′n) + 2θn,nx

′
n + θn,−nx

′
−n)

 , x− x′

〉
.

A sufficient condition for strong monotonicity is that the game Jacobian is positive definite. The game Jacobian is given by

∇ω(x, u) =


−2θ1,1 − 1

x1
−θ1,2 · · · −θ1,n

−θ2,1 −2θ2,2 − 1
x2

. . .
...

...
. . . . . .

...
−θn,1 · · · −θn,(n−1) −2θn,n − 1

xn


For the game Jacobian to be positive definite the prices have to be strictly positive, and there are constraints on the parameters
θ. One interesting question is if there is a natural mechanism that a third party could use to shape the game in order to ensure
it is positive definite; in the example above, since ui enters linearly in the marginal revenue, it does not directly shape the
game. However, e.g., if ui was a tariff affine in xi, such as aixi + bi, then the diagonal terms of the Jacobian would be
−2θi,i − 2ai − 1

xi
and the third party could design ai to ensure monotonicity.

C.4. Strongly Convex Potential Game

A game G = (f1, . . . , fn) is called a potential game (Monderer & Shapley, 1996) if there exists a potential function
Φ : X → R such that

fi(xi, x−i)− fi(x
′
i, x−i) = Φ(xi, x−i)− Φ(x′i, x−i), ∀ i ∈ [n], ∀ x ∈ X , x′i ∈ Xi.

If the potential function Φ is µ–strongly convex, it follows from convex analysis that the game is µ–strongly monotone
(Rockafellar, 1970). The following is an example of such a game where there is a natural decision-maker influencing the
outcomes.

Example: Power Control in Shared Wireless Channel. Another interesting class which has a similar structure to the
Kelly auction is power control for shared wireless channels (d’Oro et al., 2015; Duvocelle et al., 2023; Facchinei & Kanzow,
2007; Tse & Viswanath, 2005). Consider n wireless users that aim to transmit a set of packets to a common receiver over a
set S of shared wireless channels (subcarriers). The aggregate received signal ys over the s ∈ S subcarrier is

ys =

n∑
i=1

hi,sξi,s + zs
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where ξi,s is the transmitted signal of user i over the s-th subcarrier, hi,s is the corresponding channel coefficient, and zs
is the aggregate interference-plus-noise received from all sources not in [n] and for which we have that zs ∼ N (0, σ2

s) is
a Gaussian random variable. The average transmit power of user i on subcarrier s is xi,s = E|ξi,s|2 and each users total
power xi satisfies xi =

∑
s xi,s ≤ Pi for some Pi > 0. Then the strategy space of user i is

Xi =

{
xi ∈ R|S|

∣∣∣ xi,s ≥ 0 and
∑
s∈S

xi,s ≤ Pi

}
.

Each users transmission rate is given by Shannon’s formula:

Ri(xi, x−i) =
∑
s∈S

log (1 + φi,s(x)) =
∑
s∈S

log
(
σ2
s + ws(x)

)
− log

σ2
s +

∑
j ̸=i

vj,sxj,s

 ,

where ws(x) =
∑
i∈[n] |hi,s|2 · xi,s for each s ∈ S and such that |hi,s|2 is the channel gain of user i over subcarrier s.

Additionally, the term

φi,s(x) =
|hi,s|2 · xi,s

σ2
s +

∑
j ̸=i |hj,s|2 · xj,s

is the signal-to-inference-and-noise ratio. The network operator (decision-maker) aims to design a pricing scheme for
the channel so as to induce an efficient equilibrium. For example, in a cognitive radio scenario the users described above
are secondary users that are free riding on the network and cause interference on the primary users and therefore the the
network operator needs to ensure that the system’s users meet the quality of service guarantees that they have already paid
for—typically in the form of minimum rate requirements or maximum interference tolerance per subcarrier. How this is
achieved is by designing a pricing mechanism that consists of a flat spectrum access price π0 : R|S| → R and a user specific
price πi : Xi → R. Thus user i’s utility is given by

Ui(x) = Ri(x)− (π0(w) + πi(xi)) where w = (w1, . . . , ws).

This game admits an exact potential function (d’Oro et al., 2015):

Φ(x) =
∑
s∈S

log(σ2
s + ws)− π0(w)−

∑
i∈[n]

πi(xi).

To align with economic considerations on diminishing returns, it is common to assume that the pricing functions π0 and
each πi is non-decreasing and convex in each of its arguments, and they are Lipschitz continuous. This ensures that Φ(x) is
concave (though not necessarily strongly). Some regularization of the potential function would ensure its strongly concave
but would induce a different set of Nash equilibrium than optimizing Φ. It is interesting to see how much regularization is
introduced impacts the difference between the induced sets of equilibrium.

C.5. Kelly Auction: Resource Allocation Mechanisms

Resource allocation problems are another interesting class of games that can be strongly monotone games. Consider a service
provider with a number of divisible resources s ∈ S = {1, 2, . . . ,m}. These resources could be things like server time,
bandwidth, ad space, amongst many other divisible resources. Now, suppose there are n agents to which these resources can
be leased. Each agent i submits a (monetary) bid xi = (xi1, . . . , xim) ∈ Rm+ for the resources; call the joint set of bids
x = (x1, . . . , xn) ∈ Rm·n. The bids are non-negative and satisfy a budget constraint for each agent:

∑
s∈S xi,s ≤ bi for

some bi ∈ [0,∞).

A common mechanism for allocating resources in this setting is the Kelly mechanism (Kelly et al., 1998). Under this
mechanism, each agent receives an amount of resource s in proportion to their bid, as a pro-rata percentage of the other
agents’ bids. That is, each agent receives

ρuis(x) =
qsxis

us +
∑n
j=1 xjs

units of the resource s. Here, the parameter qs is the total available units of resource s and us is the barrier to entry for
u = (u1, . . . , um) ∈ Rm.
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(a) RGM with SGP Agents for Different τ . (b) DFM with SGP Agents for Different τ .

Figure 6. Effects of τ on equilibrium convergence: we explore the effect of the decision-maker’s choice of τ on the ultimate equilibrium
in a convex quadratic game. As expected the larger τ is, the smaller the equilibrium error.

Altogether, we can define the loss for each agent as

fui (xi, x−i) = −
m∑
s=1

(aiρ
u
is(x)− xis).

The strategy space of the i–th agent is Xi = {xi ∈ Rm+ :
∑m
s=1 xis ≤ bi}. Using analogous analysis to (Lin et al., 2021), it

is easy to see that this game is µ-strongly monotone with

µ = max
i
ai ·

mins{qsus}(∑m
s=1 us +

∑n
j=1 bj

)3 .
If the choice of the decision-maker is the floor prices u = (us)s, then they can control whether or not the game is strongly
monotone.

D. Numerical Experiments
Code is available at https://github.com/SewoongLab/stoch-stackelberg.

In this section, we present numerical examples that are aimed at exploring the limits of the theory, and numerical examples
that explore applying the theory to semi-synthetic simulations based on real-world data. In particular, we use real-world
data to create semi-synthetic experiments for price setting in ride-share markets. We explore two decision-maker actions:
providing a demand signal to shape the equilibrium outcome, and modulating the price (via taxes or incentives) to estimate
the price elasticities.

In the subsections that follow, we first explore the choice of τ which is a parameter that the decision-maker gets to set, but
depends on instance dependent quantities related to the agents’ game which in practice may not be a priori known. We show
that even if τ is set modestly, convergence is still possible. A future direction of research is developing adaptive methods to
estimate key quantities. Next, we explore relaxing the regularity assumptions made on the agents’ game (monotonicity) and
on the decision-maker’s loss (convexity). We show that the decision-maker can control whether or not the agents’ game is
strongly monotone through their action, and that local convergence is possible in the absence of convexity. Future directions
consider designing constraints on the decision-maker problem to ensure monotonicity, and local convergence results in the
absence of convexity. We also comment on the key challenges that arise theoretically when these assumptions on regularity
are relaxed. Finally, we explore semi-synthetic real world examples that leverage data from ride-share markets.

D.1. Effect of Choosing τ without a priori Knowledge of Agent Game Parameters

In practice, the decision-maker may not have access to the precise constants that determine the theoretically correct choice
of the epoch length τ since some of these constants are determined by the private cost functions of the agents. In this section,

23

https://github.com/SewoongLab/stoch-stackelberg


Finite-Time Convergence in Stochastic Stackelberg Games with Smooth Algorithmic Agents

we explore the choice of τ on the tracking error of the agents’ equilibrium relative to the appropriate equilibrium—namely,
the performatively stable equilibrium if the decision-maker employs the repeated gradient method (RGM) and the Stackelberg
equilibrium if the decision-maker employs the derivative free method (DFM). To conduct this exploration, we generate a
random quadratic game instance where the decision-maker is deploying actions to with the objective of tracking a desired
equilibrium. The decision-maker may not know the agent game-related hyperparameters a priori and thus may not be able
to set τ optimally as noted. Each player has cost

fi(xi, x−i) =
1

2
x⊤i Aixi + x⊤i Bix−i + c⊤i xi + ϕi(x, u) for i ∈ [n],

and where ϕi(x, u) belongs to a quadratic family of incentives, e.g., of the form ϕi(x, u) = x⊤Qix + x⊤Riu + q⊤i x.
The goal of the decision maker is to design the input u = (u1, . . . , un) ∈ Rd such that the agents converge to a desired
equilibrium (xd, ud). For instance, if the decision-maker’s loss is Eξ∼De(u)ℓ(u, (x, ξ)), then (xd, ud) may be defined as
the globally optimal tuple for the decision-maker’s loss as if they were able to control both u and x. In the examples we
consider in this section, we let (xd, ud) be so defined for a randomly generated convex loss ℓ and we let the decision-maker
optimize the auxiliary loss Eξ∼De

[∥x− xd∥2 + ∥u− ud∥2] where x is generate by the agents’ algorithmic response to u. In
the accompanying code-base, the parameters of the game can be changed.

Figure 6 demonstrates that even if the decision-maker does not know the constants that define the optimal τ (since these are
related to the agent game instance), there are choices of τ for which the decision-maker’s algorithm still converges. Perhaps
surprisingly, it shows more specifically for the quadratic game instance we consider, that it suffices to pick τ = 1, meaning
the agents only perform one update of their action in each round. That being said, the choice of τ impacts the convergence
rate as can be seen in the plots: larger τ results in faster convergence as expected, but the benefit of increasing τ is marginal
after a certain point. The reader can explore different game instances by modifying the provided code base.

D.2. Relaxing Regularity Assumptions

We also consider numerical examples from Kelly auctions from economics. Here, we explore a synthetic Kelly auction
between two players participating in the auction, where the amount bid is influenced by the marginal utilities of the
competitors as well as the actions from the decision-maker.

D.2.1. KELLY AUCTION GAME FORMULATION

Consider a service provider with a number of divisible resources s ∈ S = {1, 2, . . . ,m}. These resources could be things
like server time, bandwidth, ad space, amongst many other divisible resources. Now, suppose there are n agents to which
these resources can be leased. Each agent i submits a (monetary) bid xi = (xi1, . . . , xim) ∈ Rm+ for the resources; call
the joint set of bids x = (x1, . . . , xn) ∈ Rm·n. The bids are non-negative and satisfy a budget constraint for each agent:∑
s∈S xi,s ≤ bi for some bi ∈ [0,∞).

A common mechanism for allocating resources in this setting is the Kelly mechanism (Kelly et al., 1998). Under this
mechanism, each agent receives an amount of resource s in proportion to their bid, as a pro-rata percentage of the other
agents’ bids. That is, each agent receives

ρuis(x) =
qsxis

us +
∑n
j=1 xjs

units of the resource s. Here, the parameter qs is the total available units of resource s and us is the barrier to entry or floor
price for u = (u1, . . . , um) ∈ Rm.

Altogether, we can define the loss for each agent as

fui (xi, x−i) = −
m∑
s=1

(aiρ
u
is(x)− xis).

The strategy space of the i–th agent is Xi = {xi ∈ Rm+ :
∑m
s=1 xis ≤ bi}. Using straightforward analysis of the

eigenstructure of the game Jacobian Dωu(x), it is easy to see that this game is µ-strongly monotone with

µ = max
i
ai ·

mins{qsus}(∑m
s=1 us +

∑n
j=1 bj

)3 .
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(a) (b) (c) (d)

Figure 7. Decision-maker equilibrium landscape design in a two-player Kelly auction: projected phase plot for the dynamics of the
induced game. The markers indicated different candidate equilibrium—namely, where ωu(x) = 0 for x ∈ int(X ). Arrows indicate
the direction of the gradient flow relative to the equilibrium—namely, if the arrows are pointing towards an equilibrium, then those are
gradient directions which are attracted to the equilibrium. The magnitude is indicated by the color spectrum. In this example, we explore
saddle node bifurcation in terms of varying u1. In (a-b), u1 is negative, making the agents’ game not strongly monotone; here, we find
two local optima, a single stable Nash and a saddle point. In (c-d), as u1 becomes non-negative, the problem becomes strongly monotone,
with only a single stable Nash. This demonstrates how the choice of decision-maker action can control the equilibrium landscape.

This has been shown in prior works including that of Lin et al. (2021). If the choice of the decision-maker is the floor prices
u = (us)s, then they can control whether or not the game is strongly monotone.

On the decision-maker side, there are many potential cost functions that are reasonable. For example, the auctioneer may
care about maximizing their revenue and therefore their cost is

Lrev(u) = −
n∑
i=1

m∑
j=1

xisρ
u
is(x).

Alternatively, the decision-maker may care about the total agent welfare in which case their cost is given by

Lwelf(u) =

n∑
i=1

fui (x) = −
n∑
i=1

m∑
s=1

(aiρ
u
is(x)− xis).

We note that in general, the decision-maker’s objective is not strongly convex in u; accordingly, this makes simple Kelly
auctions a useful framework for characterizing the strength of our various assumptions.

D.2.2. EFFECT OF DECISION-MAKER ON MONOTONICITY AND AGENTS’ EQUILIBRIUM LANDSCAPE

A decision-maker may alter the structure of the auction—for example, changing the barrier to entry or levying a subsidy
or tax on the agents—to encourage behavior that aligns with a desired outcome, such as revenue maximization for the
auctioneer or welfare maximization for the participants. Indeed, let us demonstrate how a decision-maker’s action can
induce monotonicity. Within the notation of our example, consider a setting where the decision-maker selects u; in other
words, the decision-maker intervenes by changing the barrier to entry (floor price) in the auction. In this synthetic example,
we consider a Kelly auction of m = 2 resource types and define the auction’s parameters as

a =
[
1 1

]
, q =

[
1 1

]
, and b =

[
10 10

]
.

Accordingly, the constraints on the agents’ action space can be characterized as
∑
s xi,s ≤ bi and xi,s ≥ 0 ∀i, s. Recall that

the Kelly auction is strongly monotone when

µ = max
i
ai ·

mins{qsus}
(u1 + u2 + b1 + b2)2

> 0.

Define the decision-maker’s action u as u =
[
u1 1

]
, and note that mins{qsus} = min{u1, 1}. Accordingly, the decision-

maker’s action u1 controls strong monotoncity. Figure 7 demonstrates the degree to which the game monotonicity (and thus,
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(a) Optimizing Lrev: Losses. (b) Optimizing Lrev: price floors.

(c) Optimizing Lwelf: Losses. (d) Optimizing Lwelf: price floors.

Figure 8. Local convergence in non-convex Kelly Auction optimizing for agent welfare or auctioneer revenue. We simulate convergence
over five distinct random seeds. In (a), we find that DFO tends to find local Stackelberg equilibria with lower cost than local performatively
stable Stackelberg equilibria found by RGM when optimizing Lrev, and in (2) confirm that these equilibria are distinct. For similar
experiments optimizing the social welfare Lwelf, (c-d) demonstrate that while again finding distinct solutions, RGM finds local performatively
stable Stackelberg equilibria with lower cost than local Stackelberg equilibria found by DFO.

the equilibrium landscape), even in a simple setting, depends on the decision-maker’s action. We see that as u1 varies from
−0.1 to 0.2 we start from having a single stable Nash and a saddle point and eventually only a single stable Nash so that
through the choice of u the decision-maker can control the equilibrium landscape.

An interesting direction for future work would be including a constraint in the decision-maker’s optimization problem that
ensures the induced game amongst agents is strongly monotone. However, in this paper, we consider settings where the
decision-maker a priori has no information on the cost functions of the agents. Prior work in the asymptotic regime has
exampled the use of methods from adaptive control to estimate the cost functions and then use the estimated cost functions to
incorporate a constraint that the game is strongly monotone (Ratliff & Fiez, 2020). A natural question, therefore, is whether
or not we can develop utility estimation techniques in the non-asymptotic regime and whether its worth the additional sample
complexity. In fact, such techniques might interpolate between the nav̈e and strategic settings considered in this paper.

D.2.3. LOCAL CONVERGENCE IN NON-CONVEX DECISION-MAKER LOSS

In general, the decision-maker’s cost could be non-convex in u. As a result, while the auction played by the agents might be
strongly monotone with a single stable Nash equilibrium, our established convergence and sample complexity guarantees for
the Stackelberg game need not hold. Accordingly, we use this setting to empirically investigate the convergence properties
of our algorithms when the decision-maker has a non-convex cost. In our synthetic example, we consider a Kelly auction
over m = 3 resource types and auction parameters

q =
[
4 2 3

]
, a =

[
1 1 1
1 1 1

]
, b =

[
1.5 2

]
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Here, we restrict the decision-maker’s action space to U = {u ∈ R3 : 1 ≤ us ≤ 2.5 ∀s ∈ [3]} and compare the
repeated gradient method (RGM) and the derivative free method (DFO) in two settings: minimizing Lrev and Lwelf. We
display our results in Figure 8. Here, in simulations run over five distinct seeds, we find that our algorithms nonetheless
converge at the predicted rate, but to distinct local Stackelberg equilibria. In Figure 8(a), when optimizing Lrev, DFO
generally outperforms RGM though takes longer to converge, a finding consistent with our results in the strongly convex case;
Figure 8(b) likewise demonstrates that RGM and DFO converge to distinct local solutions in the decision-maker’s objective.
In contrast, Figure 8(c-d) indicates that optimizing Lwelf with RGM can result in lower cost than DFO. In other words, the
cost at local performatively stable equilibria can be lower than that of local Stackelberg equilibria obtained from the same
initialization. Formal theoretical characterizations of the equilibrium dynamics and convergence rates in non-convex settings
remains an interesting line of future work.

D.3. Quadratic Ride-Sharing Game: Semi-Synthetic Simulations

We consider an example from ride-sharing markets. Demand signals may be used to create more efficient ride share markets
without reducing individual revenue streams by enabling information-limited firms to recover latent demand. Using an
analogous set up as in Narang et al. (2022), we explore semi-synthetic competition between two ride-share platforms
seeking to maximize their revenue given that the demand they experience is influenced by their own prices as well as their
competitors. The data we use is from a prior Kaggle competition.4

Game Formulation. Each firm divides rides into $5 price bins ranging from $10 to $30, and then chooses a additive surge
on top of that price as described in Narang et al. (2022). The social cost is given by

L(u) = E
ξ∼D0

[fu1 (x1, x2) + fu2 (x1, x2)]

where each firm i’s cost is given by

fui (x) = E
zi∼Di(xi,x−i,u)

[
−1

2
z⊤i xi +

λi
2
∥xi∥2

]
.

Notice that each firm’s cost is decision-dependent in that the distribution on zi depends on not only xi but also the actions of
the other firms and the decision-maker (x−i, u). The action xi is a vector of additive surge prices to each $5 dollar bin and
across the eleven different physical locations, and the term z⊤i xi represents the added revenue across bins achieved via surge
pricing. The term λi

2 ∥xi∥2 is a regularizer: namely, firm i does not want to charge too high of surge prices and prefers to
spread the surge prices it charges across the locations. The random variable capturing the demand vector for firm i’s service
is modeled as

zi := ξi +Ai,ixi +Ai,−ix−i + ui

where the vector Ai :=
[
Ai,i Ai,−i

]
contains the price elasticity parameters for firm i; in particular, Ai,i is the price

elasticity of demand for firm i’s service given changes in firm i’s price xi and Ai,−i is the price elasticity of demand for firm
i’s service given changes in all other firms’ prices x−i. In the simulations, we set these in the same manner as described in
Narang et al. (2023). Here, the decision-maker’s action is given by u = (u1, u2) where ui acts as a demand signal informing
the firm i about latent demand. The regularization parameter λi serves to reduce the surge multiplier; that is, the firm does
not want to inadvertently set the price too high.

D.3.1. ESTIMATION OF PRICE ELASTICITIES

In many applications, a decision-maker may want to estimate the reactivity of agents. For example, a local government may
seek to estimate the price elasticity of agents—in this case ride-share companies—in a ride-share market so that they can
then subsequently set taxes or subsidies on these agents or even the other side of the market (passengers).

In the context of the ride-share market example above, if a decision-maker aims to estimate each of the Ai’s—i.e., the price
elasticities of players—then they can run online least squares where in each round t they first query the environment and
observe

zt,i = ξt,i +Aixt where Ai =
[
Ai,i Ai,−i

]
.

4Data is publicly available: https://www.kaggle.com/datasets/brllrb/uber-and-lyft-dataset-boston-ma
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Then, they perturb the prices with actions ui for each player, and observe

qt,i = Ai(xt + ut,i) + ξ′t,i.

With these two queries, the decision maker updates their estimate of the price elasticities as follows:

Ât+1,i = Ât,i + νt(qt,i − zt,i − Ât,iut,i)u
⊤
t,i,

where νt is the step size.

In Narang et al. (2022), the authors show that if multiple firms are running a stochastic gradient method while simultaneously
estimating their own price elasticities, then the joint strategy of the firms converges to the Nash equilibrium and the estimates
of the price elasticities converge to the true values as long as the firms inject noise satisfying the following assumption.

Assumption D.1. The sequence ut = (ut,1, . . . , un,t) ∈ Rd is a zero-mean random vector that is independent of xt, and
independent of the previous random vectors {us| s < t}. Moreover, there exists constants cl, R > 0 and cu,i > 0 for each
i ∈ [n] such that for all t ≥ 0 and i ∈ [n] the random vector vi := ui,t satisfies

0 ≺ cl · I ⪯ E[viv⊤i ], E∥vi∥2 ≤ cu,i, and E[∥vi∥2viv⊤i ] ⪯ R2E[viv⊤i ].

In our setting, it is an external third party that is injecting “noise” (which can be interpreted here as a random demand
signal) and they are decaying that noise over time with the goal of obtaining an approximate estimate of the price elasticities
and then leaving the base system close to the nominal Nash equilibrium. The firms in this case are assumed to know their
price elasticities Ai.5 There is a tradeoff between how quickly the noise is decaying and the accuracy of the price elasticity
estimates as well as where the agents actions end up relative to the nominal Nash equilibrium x⋆—i.e., the Nash equilibrium
of the game Gu where u = 0.

Indeed, fixing a λ ∈ (0, 1) and some horizon T , suppose that the decision-maker samples ut from N (0, σt · Id) where
σt+1 = λσt. Then, in Assumption D.1 we have

cl = λTσ0, cu,i = di, and R2 = 3max
i∈[n]

di.

From Lemma 21 of Narang et al. (2022), we have that

E∥ÂT −A∥2F ≤
max

{(
1 + 2R2

λTσ0

)
∥Â0 −A∥2F , 8

λ2Tσ2
0

∑n
i=1 Tr(Σ0,i)cu,i

}
T + 2R2

λTσ0

where Σ0,i = diag(σ0,1, . . . , σ0,n).

To bound the effect on the firms we analyze how injecting ut impacts the convergence to the nominal Nash equilibrium. In
this case, the firms are running stochastic gradient play with noise

ζt,i = ξi,t +Aiut,i

where ξi,t ∼ D0 and ut,i ∼ N (0, σt,i · Id). Hence, in the proof of the one step contraction for stochastic gradient play
(cf. Lemma G.4), we have that

P1 ≤ (σa + σt)
2

2ν1
+
ν1Et∥xt+1 − xt∥2

2
=

(σa + λtσ0)
2

2ν1
+
ν1Et∥xt+1 − xt∥2

2

so that, after some algebra, we have that

Et∥xt+1 − x∗∥2 ≤ 1

1 + γµ
∥xt − x∗∥2 + 2γ2(σa + λtσ0)

2

1 + γµ
.

5Another interesting example would be having firms that are simultaneously estimating Ai and looking at the combined effects of
injecting noise by the decision-maker and the firms. If multiple entities are injecting noise it could be the case that the combined effect
reduces the time for convergence or makes it worse depending on the injected noise distributions.
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(a) Estimation error. (b) Equilibrium tracking error. (c) Theoretical bound vs. tracking error.

Figure 9. (a) Estimation error for the price elasticities Â1,1, Â1,2, Â2,1, and Â2,2. (b) Agent tracking error. (c) The black dashed line is
the theoretical bound on tracking error versus number of iterations, and the purple trajectories are the actual tracking error. For each of the
plots, we run ten different random seeds and show the mean, the mean ±1 standard deviation, and the actual trajectories using lower
opacity. Note that although the magnitude of noise injected into the game by the decision-maker decays over time, the decision-maker still
has sufficient information to estimate the price elasticities.

We know that if the firms run stage-wise stochastic gradient play with some target accuracy ε > 0, then the agents obtain a
Nash equilibrium in a total of T iterations where T is given in Corollary G.5. Here T is fixed a priori, so in order to obtain
an estimate for ε, consider that the total number of iterations satisfies

T =

K∑
k=0

Tk

=

⌈(
1 +

2L2
a

µ2

)
log

(
2R

ε

)⌉
+

K∑
k=1

⌈(
1 +

2k+1L2
a

µ2

)
log(4)

⌉

=

⌈(
1 +

2L2
a

µ2

)
log

(
2R

ε

)⌉
+

(
−4εL2

a + εµ2 + 8(σa + λTσ0)
2
)
log(2) + εµ2 log

(
(σa+λ

Tσ0)
2

εL2
a

)
εµ2 log(2)

log(4)

=

⌈(
1 +

2L2
a

µ2

)
log

(
2R

ε

)⌉
+

(
1− 4L2

a

µ2
+

8(σa + λTσ0)
2

εµ2
+

log((σa + λTσ0)
2/(εL2

a))

log(2)

)
= O

(
L2
a

µ2
log

(
2R

ε

)
+

(σa + λTσ0)
2

µ2ε

)
Hence, in terms of fixed T , the firms achieve an εT Nash equilibrium where

εT ≍ (σa + λTσ0)
2

µ2T
.

D.3.2. SOCIALLY OPTIMAL DEMAND SIGNAL PROVISIONING

Recall that the social cost is L(u) = Eξ∼D0
[fu1 (x) + fu2 (x)]. Define the socially optimal intervention to be

uso := argmin
u∈U

L(u).

In this numerical example, we explore the effect of the decision-maker intervening with the socially optimal demand signal
versus no intervention. To this end, we compute uso using a symbolic solver (e.g., Mathematica) and then simulate stochastic
gradient play on the player objectives fu

so

i (x).

Figure 10 illustrates the players’ behavior when there is no intervention by the decision-maker (i.e., u = 0) and when the
decision-maker intervenes with the socially optimal intervention (i.e., u = uso). In particular, Figure 10(a) shows that
stochastic gradient play converges to the Nash equilibrium under u = 0 and to the social optimum under u = uso. We
plot this for a single location and price bin, both of which can be changed in the code base. The simulations show that
when provided with the optimal demand signal, the firms are induced to increase their prices which indicates that user are
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(a) Surge prices in $10 price bin.
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(b) Utilities at social optimum vs. Nash.

Figure 10. (a) Surge prices in the $10 price bin given no intervention—i.e., u = 0—and the socially optimal intervention—i.e. the optimal
demand signal uso = argminu L(u). With no intervention the agents converge to the Nash equilibrium (NE) of their nominal game; with
the socially optimal intervention, the agents converge to the socially optimal (SO) equilibrium. (b) Welfare for each firm in each of the
price bins under the Nash equilibrium and socially optimal equilibrium.

willing to pay more for the service and competition between services actually drives prices down. One interesting question
pertains exploring a social cost that includes the cost to users, incorporating elements such as cost of alternative means of
transportation such as public transit; unfortunately this data set does not include such information and would need to be
augmented so we leave that to future work.

Figure 10(b) shows that the welfare for each firm is higher in all the price bins under the social optimum, though more
marginally as the price increases. This demonstrates that a decision-maker who is able to provide optimal and informative
demand signals may be able to improve the welfare of the ridesharing marketplace, even under competition by the firms,
since both the prices are lower (thereby increasing the demand and cost to passengers) and the revenue is higher for all
players. It is also interesting to observe that the smaller player in the market—namely Lyft which has less demand in the
data set—has a larger marginal gain than the larger player (Uber) in the market.

D.4. Lower Bound on Epoch Length

To construct the example seen in Figure 11 (and Figure 1), we build the following quadratic, two-player game. Let
x1, x2 ∈ Rd be the leader’s and follower’s actions respectively. For simplicity, consider a two player quadratic Stackelberg
game with costs

f1(u, x) =
1

2
u⊤Au+ u⊤Bx, and f2(u, x) =

1

2
x⊤Dx+ x⊤Cu.

We demonstrate that in order to obtain finite time convergence guarantees, in many games it is necessary to have an epoch
length τ ≥ 1. Indeed, it is possible to randomly generate quadratic games of the form described above such that the
following hold:

1. There exists unique performatively stable equilibrium—i.e., D2
1f1(u

∗, x∗(u∗)) = A ≻ 0 and D2f2(u
∗, x∗(u)) =

D ≻ 0.

2. The gradient update is not a strongly monotone operator: i.e., for some ((x, u), (x′, u′)), we have that

⟨g(x, u)− g(x′, u′), (x, u)− (x′, u′)⟩ ≤ 0 where g(x, u) = (D1f1(u, x), D2f2(u, x)).

3. The equilibrium is not stable when the agents and decision-maker simultaneously update–i.e., spec(I − ηJ) ̸⊂
D[0, 1] ⊂ C for any (η, γ) pair and Re(spec(−J)) ⊂ R>0 where

J =

[
A B
γ
ηC

γ
ηD

]
.
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(a) Maximum Eigenvalue: seed=648 (b) Maximum Eigenvalue: seed=301

(c) Spectrum: seed=648

(d) Spectrum: seed=301

Figure 11. Lower bound examples: (a-b) Maximum eigenvalue for the combined dynamics as the epoch length τ increases; (c-d) the
spectrum of the combined dynamics for selected values of τ . From (a-b), we see that the shape of the curve tracing out the maximum
eigenvalue of the combined dynamics as a function of τ is highly non-linear and depends upon the game structure. Panels (c-d) illustrate
the eigenvalues relative to the unit disc in the complex plane, where eigenvalues inside the unit disc indicate the system is stable. Future
work would construct a guard map for the unit disc in the complex plane, and determine an instance dependent lower bound on τ ensuring
stability of the combined dynamics.

4. The epoch based dynamics, which take the form[
xt+1

ut+1

]
=

(
I − η

[
A B
0 0

])(
I − γ

[
0 0
C D

])τ [
xt
ut

]
,

are stable for some τ ≥ 1.

This means that there are many instances of games such that it is necessary to have time-scale separation introduced via an
epoch-based algorithms in order to obtain convergence rates without making asymptotic assumptions on the learning rate
schedules. The precise construction of the instance-dependent lower bound on τ remains an open question; we conjecture
that tools analogous to the ”guard map” for stability used by Fiez & Ratliff (2021) can be leveraged to derive this construction
and moreover extend the lower bound analysis to even non-convex settings.

D.5. Interplay Between Sample Complexity & the Performative Gap

This section summarizes the setup for Figure 2, wherein we characterize the relationship between the expected tracking
error, sample complexity, and the performative gap as parameterized by the agents’ reactivity parameter Leq. To generate
this plot, we fix constants related to the decision-maker’s problem as follows:

Lu = 10, Lz = 1, α = 5, R = 1.0, σ = 1, d = 2, B = 1 and ε = 0.09.
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Algorithm 2 Geometric Decay Schedule

1: Input: y0 ∈ Rd, C,D > 0, δ0 ∈ (0, 1), estimate ∆ ≥ h(y0), accuracy ϵ > 0, algorithm A(y, δ, T ) satisfying (7)
2: Initialize: Set y0 = A(y0, δ0, T0) with T0 = 1

ψ(δ0)
· log

(
2C∆
ϵ

)
;

3: Set K =
⌈
1 + log2

(
Dδ0
ϵ

)⌉
.

4: for k = 1, . . . ,K do
5: Set yk = A(yk−1, δk, Tk) with δk = 2−kδ0, Tk =

⌈
1

ψ(δk)
· log(4C)

⌉
.

6: end for
7: Return: yK .

We then vary Leq, and check that for each value the following are satisfied (otherwise we throw out that value of Leq as
there would not exist games meeting these criteria and our assumptions):

1. Existence of performatively stable equilibrium: LeqLz < α

2. Existence of convex, smooth decision-maker cost: α < Lu + LzLeq

Then for each valid value of Leq, we compute the “big-O” sample complexity and plot this on the y-axis for each method
RGM and DFO. Here, we fix ε := 0.09 while defining ε′ := ∥ups − u∗∥. In doing so, we characterize the worst-case sample
complexity needed for an ε or ε′ approximation, defined as in Figure 2.

What we can see from this numerical example is that there is a tradeoff between sample complexity and performance for the
decision-maker as a function of how reactive the agent is (as measured by Leq). If the decision-maker had access to Leq they
could determine whether or not it is worth it to run a more sample efficient algorithm like RGM versus alternatives.

E. Technical Lemmas
Throughout, we use Rd to denote a d-dimensional space with inner product ⟨·, ·⟩ and the corresponding induced norm is given
by ∥x∥ =

√
⟨x, x⟩. For any set X ⊂ Rd, we denote the projection of a vector y onto X as projX (y) = argminx∈X ∥x−y∥.

Finally, for a convex set X , we denote its normal cone at x ∈ X as NX (x) = {v ∈ Rd : ⟨v, y − x⟩ ≤ 0 ∀ y ∈ X}. To
simplify notation, we set [n] := {1, . . . , n}.

E.1. Technical Lemmas for Convergence Analysis

We need the following standard technical lemma for convergence of sequences and high-probability guarantees.

Lemma E.1. Consider a sequence wt ≥ 0 for t ≥ 1 and constants t0 ≥ 0, a > 0 satisfying

at+1 ≤
(
1− 2

t+ t0

)
at +

c

(t+ t0)2
(5)

Then the following estimate holds:

at ≤
max{(1 + t0)a1, c}

t+ t0
∀ t ≥ 1. (6)

We also restate the following Lemma, adapted from (Drusvyatskiy & Xiao, 2023).

Lemma E.2 (Lemma B.2, (Drusvyatskiy & Xiao, 2023)). Suppose we have a stochastic algorithm A(y0, δ, T ) such that as
long as δ < δ0, the method generates a point satisfying

E[h(YT )] ≤ C(1− ψ(δ))Th(y0) +Dδ, (7)

where h is a non-negative function, C,D > 0, and δ0 ∈ (0, 1) are constants specific to the algorithm, and ψ is a function
mapping [0, δ0) into (0, 1). The point y returned by Algorithm 2 satisfies E[h(yK)] ≤ ϵ with the efficiency estimate

K∑
k=0

Tk =

⌈
1

ψ(δ0)
· log

(
2C∆

ϵ

)⌉
+

K∑
k=1

⌈
log(4C)

ψ(2−kδ0)

⌉
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Note that this does not immediately apply to our general case: h is generally a fixed non-negative function, such as
h(y) = ∥y − x̄∥2 the distance to some fixed equilibrium x̄. However, in our case, our target equilibrium is changing
depending on the action ut from the decision-maker. A short corollary, however, gives us the desired result.
Lemma E.3. Suppose we have a stochastic algorithm A(y0, δ, T ) such that as long as δ < δ0, the method generates a point
satisfying

E ∥yT − y∗T ∥2 ≤ C(1− ψ(δ))T ∥y0 − y∗0∥2 +Dδ

for C,D, δ0, and ψ as defined above. Then the point y returned by Algorithm 2 satisfies E ∥yK−y∗K∥ ≤ ϵ with the efficiency
estimate

K∑
k=0

Tk =

⌈
1

ψ(δ0)
· log

(
2C∆

ϵ

)⌉
+

K∑
k=1

⌈
log(4C)

ψ(2−kδ0)

⌉

Proof. For posterity, we include a short proof. Suppose that our target accuracy is 2Dδ. Then note that it would be sufficient
to run our algorithm for T0 iterations such that

C(1− ψ(δ))T0∥y0 − y∗0∥2 ≤ Dδ.

Note that since ψ(δ) ∈ (0, 1), we have that − log(1− ψ(δ)) > ψ(δ), so

1

ψ(δ)
log

(
C∥y0 − y∗0∥2

Dδ

)
≤ T0.

By the concavity of log, it is in fact sufficient to chose

1

ψ(δ)
log

(
C∥y0 − y∗0∥2

ϵ

)
≤ T0.

Then we proceed just as that of Drusvyatskiy & Xiao (2023, Lemma B.2).

E.2. Technical Lemma for Decomposing the Decision-Maker’s Tracking Error

Recall in Section 2.3, we made the claim that the decision-maker’s tracking error could be decomposed into a optimization
error, drift and noise term. In this section, we formally prove this claim.
Lemma E.4. Consider a setting in which the decision-maker’s loss is α–strongly convex in u, define u⋆t ∈
argminu{E(xt,ξ)∼D(u) ℓ(u, (xt, ξ))}, where xt is the agents’ response from a stochastic algorithm A, and define
g(u) = ∇u

(
E(xt,ξ)∼D(u) ℓ(u, (xt, ξ))

)
. Suppose g is L–Lipshcitz continuous. If the decision-maker employs a stochastic

gradient-based algorithm with stepsize η and unbiased gradient estimator for , then

E ∥ut − u⋆t ∥2 ≤
(
1− ηα

4

)t
∥u0 − u⋆0∥2 + 8

ησ2

α
+ 20

(
∆

αη

)2

,

where σ2 is the gradient estimator variance and ∆ := maxk ∥u⋆k − u⋆k−1∥2 is the worst-case drift.

Note that the decision-maker could also be employing a repeated gradient method where we alternatively define
u⋆t ∈ argminu{E(xt,ξ)∼D(u⋆

t )
ℓ(u, (xt, ξ))} and replace in the statement above ∇u

(
E(xt,ξ)∼D(u) ℓ(u, (xt, ξ))

)
with

∇u

(
E(xt,ξ)∼D(ut) ℓ(u, (xt, ξ))

)
. An analogous decomposition argument holds.

Proof of Lemma E.4. For a stochastic gradient method, we have that

Et∥ut+1 − u⋆t ∥2 ≤ 1

1 + αη
∥ut − u⋆t ∥2 +

2η2σ2

1 + αη
.

Indeed, let ĝt be the unbiased gradient estimator, and g(u) be the expected gradient evaluated at u ∈ U . Then, we have that
the map u 7→ 1

2∥ut − ηĝt − u∥2 is a 1-strongly convex function over U . Hence, we have that

1

2
∥ut+1 − u⋆t ∥2 ≤ 1

2
∥ut − ηĝt − u⋆t ∥2 −

1

2
∥ut − ηĝt − ut+1∥2

≤ 1

2
∥ut − u⋆t ∥2 − η⟨ĝt, ut+1 − u⋆t ⟩ −

1

2
∥ut+1 − ut∥2

=
1

2
∥ut − u⋆t ∥2 − η⟨ĝt, ut − u⋆t ⟩ −

1

2
∥ut+1 − ut∥2 − η⟨ĝt, ut+1 − ut⟩.
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Taking expectations, we have that

1

2
Et∥ut+1 − u⋆t ∥2 ≤ 1

2
∥ut − u⋆t ∥2 − η⟨Etĝt, ut − u⋆t ⟩ −

1

2
Et∥ut+1 − ut∥2 − ηEt⟨ĝt, ut+1 − ut⟩

≤ 1

2
∥ut − u⋆t ∥2 − η⟨g(ut), ut − u⋆t ⟩ −

1

2
Et∥ut+1 − u⋆t ∥2 − ηEt⟨ĝt, ut+1 − ut⟩

=
1

2
∥ut − u⋆t ∥2 − ηEt⟨g(ut+1), ut+1 − u⋆t ⟩ −

1

2
Et∥ut+1 − ut∥2

+ η Et⟨ĝt − g(ut), ut − ut+1⟩︸ ︷︷ ︸
=:P1

+η Et⟨g(ut)− g(ut+1), u
⋆
t − ut+1⟩︸ ︷︷ ︸

=:P2

.

Since the game is α–strongly convex, we have that

⟨g(ut+1), ut+1 − u⋆t ⟩ ≥ ⟨g(ut+1)− g(u⋆t ), ut+1 − u⋆t ⟩ ≥ α∥ut+1 − u⋆t ∥2.

This in turn implies that

1 + 2ηα

2
∥ut+1 − u⋆t ∥2 ≤ 1

2
∥ut − u⋆t ∥2 −

1

2
Et∥ut+1 − ut∥2 + η(P1 + P2).

Employing Young’s inequality, we upper bound P1 as follows:

P1 ≤ σ2
a

2ν1
+
ν1Et∥ut+1 − ut∥2

2
.

Applying Young’s inequality, we bound P2 as follows:

P2 ≤ Et∥g(ut)− g(ut+1)∥2

2ν2
+
ν2Et∥ut+1 − u⋆t ∥2

2
,

≤ L2Et∥ut − ut+1∥2

2ν2
+
ν2Et∥ut+1 − u⋆t ∥2

2
,

so that

1 + 2ηα− ην2
2

Et∥ut+1 − u⋆t ∥2 ≤ 1

2
∥ut − u⋆t ∥2 +

σ2
a

2ν1
− (1− ηL2ν−1

2 − ην1)

2
Et∥ut+1 − ut∥2.

Setting ν2 = α and ν1 = η−1 − L2/α, we have that the last term on the right hand side is zero, and since η ≤ α
2L2 we have

that ν1 ≥ 1
2η ; indeed, − 1

2η ≤ − 2L2

α so that ν1 = 1
η − 2L2

α ≥ 1
η − 1

2η = 1
2η . Therefore

Et∥ut+1 − u⋆t ∥2 ≤ 1

1 + ηα
∥ut − u⋆t ∥2 +

2η2σ2

1 + αη
,

as claimed.

Now observe that

∥ut+1 − u⋆t+1∥2 = ∥ut+1 − u⋆t ∥2 + ∥u⋆t − u⋆t+1∥2 + 2⟨ut+1 − u⋆t , u
⋆
t − u⋆t+1⟩

≤ ∥ut+1 − u⋆t ∥2 + ∥u⋆t − u⋆t+1∥2 + 2∥ut+1 − u⋆t ∥∥u⋆t − u⋆t+1∥

≤
(
1 +

αη

4

)
∥ut+1 − u⋆t ∥2 +

(
1 +

4

αη

)
∥u⋆t − u⋆t+1∥2

where the last inequality follows from Young’s inequality. Since 1− ηα
1+ηα ≤ 1− αη

2 , we have that

Et∥ut+1 − u⋆t+1∥2 ≤
(
1 +

ηα

4

)((
1− ηα

2

)
∥ut − u⋆t ∥2 + 2η2σ2

(
1− ηα

2

))
+

(
1 +

4

ηα

)
∥u⋆t − u⋆t+1∥2

≤
(
1− ηα

4

)
∥ut − u⋆t ∥2 + 2η2σ2

(
1− ηα

4

)
+

(
1 +

4

ηα

)
∆2.
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Iterating, we have that

Et∥ut+1 − u⋆t+1∥2 ≤
(
1− ηα

4

)t+1

∥u0 − u⋆0∥2 + 8
ησ2

α
+ 20

(
∆

αη

)2

,

which concludes the proof.

F. Regularity of the Equilibrium Response
Recall that ωu(x) := (∇1f

u
1 , . . . ,∇nf

u
n ). Strong metric regularity allows for Lipschitz continuity of solutions to ωu(x) ∈

NX (x) to be Lipschitz continuous. The following proposition is a formal statement of the discussion in Section 2.
Proposition F.1 (Inner Problem Regularity: Polyhedral Constraints). Under Assumption 2.1.i–iii, suppose that, for
any fixed u ∈ U , the Jacobian of ωu(x) with respect to x is non-degenerate and the Jacobian with respect to u has
finite operator norm—i.e., det(Dxωu(x)) ̸= 0 and ∥Duωu(x)∥op < ∞. Then ωu is κ-metrically regular with with
κ := 1

µ sup(u,x)∈X×Y ∥Duωu(x)∥op.

This proposition follows precisely from Dontchev et al. (2009, Chapter 2.F, Chapter 3); indeed, the strong metric regularity
parameter in this case is equivalent to the Lipschitz continuity parameter of the implicit function.

To give some intuition, we can consider the case where X is the whole Euclidean space Rm. In this section alone, we define
ω(u, x) := ωu(x) for the purpose of clarity on the derivatives herein. In this case, by the fact that the joint strategy space X
is unconstrained, for any fixed u ∈ U , assuming det(Dxω(u, x)) ̸= 0, the Nash equilibrium x∗(u) is defined as an implicit
function (cf. Abraham et al. (2012)) that solves ω(u, x∗(u)) = 0. By the implicit function theorem, the derivative Dx∗(u)
is given by

Dx∗(u) = −Dxω(u, x
∗(u))−1Duω(u, x

∗(u)).

We have the following lemma which provides sufficient conditions for x∗(u) to be Lipschitz by assuming suitable bounds
on ∥Duω(u, x)∥op and ∥Dxω(u, x)∥op.
Lemma F.2. Suppose that ∥Dxω(u, x)∥op ≥ µ1 and ∥Duω(u, x)∥op ≤ µ2 for all x ∈ X and set Leq :=

µ2

µ1
. Then x∗(u) is

Leq-Lipschitz.

Proof. We realize that by the mean value theorem,

∥x∗(u)− x∗(u′)∥ ≤
∥∥∥∥(∫ 1

0

Dx∗((1− λ)u+ λu′)λ

)
(u− u′)

∥∥∥∥
≤ sup
λ∈[0,1]

∥Dx∗((1− λ)u+ λu′)∥op∥u− u′∥

By the assumption, we have ∥Dxω(u, x
∗(u))∥ ≥ µ1 and ∥Duω(u, x

∗(u))∥ ≤ µ2 for all u ∈ U , then we have that

sup
λ∈[0,1]

∥Dx∗((1− λ)x+ λx′)∥ ≤ µ2

µ1
:= Leq,

which concludes the proof.

Again, in the polyhedral constraint case, the analysis above is almost identical; see, e.g., Dontchev et al. (2009).

G. Contracting Agent Learning Algorithms
In this section, we show that several natural learning dynamics are ρ-contracting for some ρ ∈ [0, 1). The following is a
modified version of Assumption 2.1 where we remove the decision-maker for simplicity.
Assumption G.1. The following hold:

1. The game G := (f1, . . . , fn) is a C1-smooth convex game and µ–strongly monotone;

2. The mappings xi 7→ ∇ifi(xi, x−i) are Li–Lipschitz continuous;

3. The game G is κ–strongly metrically regular.

In this section, set ω(x) := (∇1f1(x), . . . ,∇nfn(x)), and recall that we have set La := maxi∈[n] Li.
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G.1. General ρ-contracting Updates

Before getting into specific examples, let us analyze stage-based algorithms such as Algorithm 2 applied to a general
ρ-contracting algorithms (cf. Definition 2.3).

First, we iterate on the contraction for t steps to get

Et∥xt − x∗∥2 ≤ ρ2∥xt−1 − x∗∥2 + ρ2c2σ2
a

≤ ρ2
(
ρ2∥xt−2 − x∗∥2 + ρ2c2σ2

a

)
+ ρ2c2σ2

a

≤ ρ2·t∥x0 − x∗∥2 + c2σ2
a

t∑
k=1

ρ2·k

≤ ρ2·t∥x0 − x∗∥2 + c2σ2
a

ρ2

1− ρ2
.

The following corollary shows how Lemma E.2 (and Algorithm 2) applies to ρ-contracting algorithms.

Corollary G.2 (Stage-wise Stochastic ρ-Contracting A). Consider some target accuracy ε > 0 and suppose we have a
constant R ≥ ∥x0 − x∗∥2. Define ψ(γ) := 1− γ, C := 1, and D :=

c2σ2
a

1−ρ2 . Set γ0 := ρ2. Then running Algorithm 2 with a
stochastic ρ contracting algorithm as A, guarantees that E ∥xt − x∗∥2 ≤ ε after

T =

K∑
k=0

Tk =

⌈
1

1− ρ2
· log

(
2R

ε

)⌉
+

K∑
k=1

⌈(
1

1− 2−kρ2

)
log(4)

⌉

total iterations where K :=
⌈
1 + log2

(
ρ2c2σ2

a

(1−ρ2)ε

)⌉
.

G.2. Stochastic Gradient Play and Asynchronous Gradient Play

Consider first players updating according to the stochastic gradient method given by

xt+1 = proj
X

(xt − γω̂(xt)), (8)

where E[ω̂(xt)] = ω(xt). This is stochastic gradient play.

Assumption G.3. Suppose that there exists a constant σa > 0 satisfying

E[∥ω̂(xt)− ω(xt)∥2] ≤ σ2
a .

Given the above assumption on the variance of the estimator ω̂ of the vector of individual gradients, we have the following
lemma showing that stochastic gradient play is ρ–contracting.

Lemma G.4. Under Assumptions G.1 and G.3, suppose that players update according to stochastic gradient play with
γ ≤ µ

2L2
a

. Then, the dynamics satisfy

E ∥xt+1 − x∗∥2 ≤ 1

1 + µγ
E∥xt − x∗∥2 + 2γ2σ2

a

1 + γµ
,

so that (8) is ρ-contracting with ρ2 = 1
1+µγ and c =

√
2γ.

Proof. Observe that x 7→ 1
2∥xt − γω̂(xt)− x∥2 is a 1-strongly convex function over X . Hence we deduce that

1

2
∥xt+1 − x∗∥2 ≤ 1

2
∥xt − γω̂(xt)− x∗∥2 − 1

2
∥xt − γω̂(xt)− xt+1∥2

≤ 1

2
∥xt − x∗∥2 − γ⟨ω̂(xt), xt+1 − x∗⟩ − 1

2
∥xt+1 − xt∥2

=
1

2
∥xt − x∗∥2 − γ⟨ω̂(xt), xt − x∗⟩ − 1

2
∥xt+1 − xt∥2 − γ⟨ω̂(xt), xt+1 − xt⟩.

36



Finite-Time Convergence in Stochastic Stackelberg Games with Smooth Algorithmic Agents

Taking expectations, we have that

1

2
Et∥xt+1 − x∗∥2 ≤ 1

2
∥xt − x∗∥2 − γ⟨Etω̂(xt), xt − x∗⟩ − 1

2
Et∥xt+1 − xt∥2 − γEt⟨ω̂(xt), xt+1 − xt⟩

≤ 1

2
∥xt − x∗∥2 − γ⟨ω(xt), xt − x∗⟩ − 1

2
Et∥xt+1 − x∗∥2 − γEt⟨ω̂(xt), xt+1 − xt⟩

=
1

2
∥xt − x∗∥2 − γEt⟨ω(xt+1), xt+1 − x∗⟩ − 1

2
Et∥xt+1 − xt∥2

+ γ Et⟨ω̂(xt)− ω(xt), xt − xt+1⟩︸ ︷︷ ︸
=:P1

+γ Et⟨ω(xt)− ω(xt+1), x
∗ − xt+1⟩︸ ︷︷ ︸

=:P2

.

Since the game is µ–strongly monotone, we have that

⟨ω(xt+1), xt+1 − x∗⟩ ≥ ⟨ω(xt+1)− ω(x∗), xt+1 − x∗⟩ ≥ µ∥xt+1 − x∗∥2.

This in turn implies that

1 + 2γµ

2
∥xt+1 − x∗∥2 ≤ 1

2
∥xt − x∗∥2 − 1

2
Et∥xt+1 − xt∥2 + γ(P1 + P2).

Employing Young’s inequality, we upper bound P1 as follows:

P1 ≤ σ2
a

2ν1
+
ν1Et∥xt+1 − xt∥2

2
.

Applying Young’s inequality, we bound P2 as follows:

P2 ≤ Et∥ω(xt)− ω(xt+1)∥2

2ν2
+
ν2Et∥xt+1 − x∗∥2

2
,

≤ L2
aEt∥xt − xt+1∥2

2ν2
+
ν2Et∥xt+1 − x∗∥2

2
,

so that

1 + 2γµ− γν2
2

Et∥xt+1 − x∗∥2 ≤ 1

2
∥xt − x∗∥2 + γσ2

a

2ν1
− (1− γL2

aν
−1
2 − γν1)

2
Et∥xt+1 − xt∥2.

Setting ν2 = µ and ν1 = γ−1 − L2
a/µ, we have that the last term on the right hand side is zero, and since γ ≤ µ

2L2
a

we have

that ν1 ≥ 1
2γ ; indeed, − 1

2γ ≤ − 2L2
a

µ so that ν1 = 1
γ − 2L2

a

µ ≥ 1
γ − 1

2γ = 1
2γ . Therefore

Et∥xt+1 − x∗∥2 ≤ 1

1 + γµ
∥xt − x∗∥2 + 2γ2σ2

a

1 + µγ
,

which concludes the proof.

The following corollary demonstrates how agents could use a stage-based algorithm to decrease the bias in their tracking
error estimate and achieve a target accuracy.

Corollary G.5 (Stage-wise Stochastic Gradient Play). Consider some target accuracy ε > 0 and suppose we have a
constant R ≥ ∥x0 − x∗∥2. Define ψ(γ) := 1− 1

1+µγ , C := 1, and D :=
2σ2

a

µ . Set γ0 := µ
2L2

a
. Then running Algorithm 2

with stochastic gradient play as A, guarantees that E ∥xt − x∗∥2 ≤ ε after

T =

K∑
k=0

Tk =

⌈(
1 +

2L2
a

µ2

)
log

(
2R

ε

)⌉
+

K∑
k=1

⌈(
1 +

2k+1L2
a

µ2

)
log(4)

⌉

total iterations where K :=
⌈
1 + log2

(
σ2
a

L2
a ε

)⌉
.
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Proof. Note that from Lemma G.4, we can iterate further to get that

Et∥xt − x∗∥2 ≤ 1

1 + µγ
∥xt−1 − x∗∥2 + 2

1 + µγ
γ2σ2

a

≤ 1

1 + µγ

(
1

1 + µγ
∥xt−2 − x∗∥2 + 2

1 + µγ
γ2σ2

a

)
+

2

1 + µγ
γ2σ2

a

≤
(

1

1 + µγ

)t
∥x0 − x∗∥2 + 2σ2

aγ
2

t∑
s=1

1

(1 + µγ)s

≤
(

1

1 + µγ

)t
∥x0 − x∗∥2 + γ

2σ2
a

µ

≤
(
1−

(
1− 1

1 + µγ

))t
E ∥x0 − x∗∥2 + γ

2σ2
a

µ
.

Letting ψ(γ) = 1 − 1
1+µγ , C = 1, and D =

2σ2
a

µ , invoking Corollary E.3 and running Algorithm 2 with the specified
parameters gives us the desired result.

Asynchronous Updates. In practice, it may not be the case that the agents observe data or actions synchronously, and as
a result they may not have the requisite information to update their action in every time step. A natural model to capture
asynchronous updates is one in which agent i receives sufficient information to update its decision yi with probability pi.
For instance, this means that

xi,t+1 =

{
proj
Xi

(
xi,t − γ∇ifi(xi,t, x−i.t)

)
, w.p. pi

xi,t, w.p. (1− pi)
(9)

Let pmax := maxi∈[n] pi and pmin := mini∈[n] pi. Then as described in (Narang et al., 2022), this can be dealt with using
techniques from preconditioning in optimization—see, e.g., (Chasnov et al., 2020b; Huo & Huang, 2017; Lian et al., 2015;
Recht et al., 2011; Zhou et al., 2018) and references therein.

The analysis in Lemma G.4 does not change much; the primary difference is that the Lipschitz constant La is rescaled by
pmax and the strong monotonicity constant µ is rescaled by pmin. The reason this works out is that we can simply perform the
exact same analysis using a modified inner product as has been performed in prior literature—i.e., we simply perform the
analysis in the inner product [x, y] = ⟨P−1x, y⟩ where P = diag(p1, . . . , pn).

G.3. Momentum Updates: Strongly Convex-Strongly Concave Zero-Sum Games

Consider a strongly convex, strongly concave zero sum game (f,−f) where player one seeks to minimize f(x1, x2) with
respect to x1 and player two seeks to maximize f with respect to x2. It is known that such games are strongly monotone.
Momentum based updates such as optimistic gradient descent-ascent (OGDA) and negative momentum are ρ contracting for
such games. This family of updates is given by

xt+1 = (1 + β)xt − βxt−1 − γ((1 + α)ω(xt)− αω(xt−1)), (10)

where α is the extrapolation parameter, β is the momentum parameter, and

ω(x) =

[
∇1f(x1, x2)
−∇2f(x1, x2)

]
.

For example, standard gradient descent-ascent is equivalent to setting (α, β) = (0, 0). OGDA is given by (α, β) = (1, 0)
and negative momentum is given by (α, β) = (0, β) for some β < 1.

Let κ := La/µ. Gradient decent ascent is a commonly studied update and has been shown to be ρ-contracting with
ρ = O(1 − κ−2) (Ryu & Boyd, 2016). Mokhtari et al. (2020) study both OGDA and proximal point methods for this
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class of games. They show that OGDA is ρ-contracting with ρ = O(1− κ−1), and that proximal point methods are also
ρ-contracting with ρ = 1/(1+ γµ) and c = 0 in both cases. Zhang & Wang (2021) show that the negative momentum based
update is ρ-contracting for strongly convex, strongly concave zero sum games, which are known to be strongly monotone.
Specifically they say that negative momentum is suboptimal, but nonetheless, still ρ-contracting with ρ = 1−Θ(κ−1.5).

G.4. Best Response Dynamics

Now, we show that the best response dynamics converge linearly to the Nash equilibrium of the game. This result is
commonly known and the proof is analogous to Theorem 1 in Narang et al. (2023), with one exception where we obtain a
tighter bound on the regime where linear convergence is guaranteed. Nevertheless, we include it for convenience. Define

BR(x) := {x′ ∈ X : x′i is a best response to x′−i ∀i ∈ [n]}.

That is, unrolling notation, given a current decision vector xt, the updated decision vector xt+1 is such that

xi,t+1 = argmin
xi∈Xi

fi(xi, x−i,t) ∀ i ∈ [n]. (11)

Lemma G.6. Under Assumption G.1, set ρ := La

√
n−1
µ and suppose that we are in the regime where ρ < 1, and that

players update according to (11). Then, the game admits a unique Nash equilibrium x⋆ ∈ X and the best response process
converges linearly:

∥xt+1 − x⋆∥ ≤ ρ∥xt − x⋆∥ ∀ t ≥ 0.

Proof. Since the game is µ strongly monotone, we have that
n∑
i=1

⟨∇ifi(u)−∇ifi(u
′), ui − u′i⟩ ≥ µ∥u− u′∥2. (12)

We will show the map BR(·) is Lipschitz continuous with parameter ρ. To this end, consider a point w ∈ X and set
x := BR(w). For each i ∈ [n], first order optimality conditions for xi guarantee that

⟨∇ifi(xi, w−i), xi − x′i⟩ ≤ 0 ∀ x′i ∈ Xi.

Strong monotonicity implies that, for any xi, x′i ∈ Xi, we have that

⟨∇ifi(xi, w−i)−∇ifi(x
′
i, w−i), xi − x′i⟩ ≥ µ∥xi − x′i∥2 for each i ∈ [n].

Indeed this follows from (12) bx letting u = (xi, w−i) and u′ = (x′i, w−i) for each i ∈ [n]. Hence

µ∥xi − x′i∥2 ≤ ⟨∇ifi(xi, w−i)−∇ifi(x
′
i, w−i), xi − x′i⟩ ≤ ⟨−∇ifi(x

′
i, w−i), xi − x′i⟩.

Since this holds for any x′i we can replace x′i with x⋆i to get that

µ

n∑
i=1

∥xi − x⋆i ∥2 ≤
n∑
i=1

⟨∇ifi(x
⋆
i , w−i), x

⋆
i − xi⟩

Since x⋆ is a Nash equilibrium, we have that

⟨ω(x⋆), x− x⋆⟩ ≤ 0 ∀ x ∈ X .

Hence, we deduce that

µ∥x− x⋆∥2 ≤
n∑
i=1

⟨∇ifi(x
⋆
i , w−i), x

⋆
i − xi⟩,

≤ ⟨ω(x⋆i , w−i)− ω(x⋆), x⋆ − x⟩,
≤ ∥ω(x⋆i , w−i)− ω(x⋆)∥∥x⋆ − x∥,

≤ La∥x⋆ − x∥
n∑
i=1

∥w−i − x⋆−i∥,

= La⟨u1, u2⟩,
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where u1 = (∥x⋆1 − x1∥, . . . , ∥x⋆n − xn∥) and u2 = (∥w−1 − x⋆−1∥, . . . , ∥w−n − x⋆−n∥). Letting ζ = ∥w − x⋆∥, we have
that ζ2 = ∥w−i − x⋆−i∥2 + ∥wi − x⋆i ∥2 for each i ∈ [n]. Observe that

∥u2∥ =

(
n∑
i=1

∥w−i − x⋆−i∥2
)1/2

=

(
n∑
i=1

ζ2 − ∥wi − x⋆i ∥2
)1/2

= |ζ|
(
n− 1

ζ2
∥wi − x⋆i ∥2

)1/2

= |ζ|
√
n− 1.

Therefore, we deduce that

µ∥x− x⋆∥2 ≤ La⟨u1, u2⟩ ≤ La∥u1∥∥u2∥ = La

√
n− 1∥w − x⋆∥∥x⋆ − x∥

so that by dividing through we have

∥x− x⋆∥ ≤ La

√
n− 1

µ
∥w − x⋆∥.

Since this holds for any w and corresponding y := BR(w) we have that

∥xt+1 − x⋆∥ ≤ ρ · ∥xt − x⋆∥ where ρ :=
La

√
n− 1

µ
,

as claimed. The rest of the result follows immediately from the Banach fixed point theorem.

H. Oblivious Decision-Maker
In this section we prove the bounds on the equilibrium tracking error and the dynamic regret of the agents given an oblivious
decision-maker who is deploying a sequence of actions {xs}ts=1 that are of bounded variation and sufficiently contracting.

H.1. Worst-Case Expected Equilibrium Tracking Error.

The first natural question in this setting relates to bounding the time to track the time-varying equilibrium in expectation
given the drift ∆t = ∥x⋆t − x⋆t+1∥ where x⋆t ∈ Eq(Gut) where Gut := (fut

1 , . . . , fut
n ) That is, given that the decision-maker

is obliviously deploying sequence {us}ts=0,

how long does it take for ∥xt − x⋆t ∥2 to be less than some error tolerance ε and how to we optimize that error?

We make the following assumption on the stochasticity.

Assumption H.1. There exists a probability space (Ω,F ,P) with filtration (Ft)t≥0 such that F0 = {∅,Ω}. Iterates and
corresponding Nash equilibrium, xt, x⋆t : Ω → Rm, are Ft-measurable.

Proposition H.2 (Formal Statement of Proposition 3.1). Suppose that Assumption H.1 holds, that agents employ a ρ-
contracting update (Definition 2.3), and we are in the regime ρ ∈ [0, 1). Then, the expected equilibrium tracking error
satisfies

Et∥xt+1 − x⋆t+1∥2 ≤
(
1− (1− ρ2)

2

)t+1

∥x0 − x⋆0∥2 +
2(cσa)

2

1− ρ2
+ 6

(
∆a

1− ρ2

)2

,

where ∆a := max{∥x⋆t+1 − x⋆t ∥}.

Proof. Since the agents’ updates are ρ-contracting with constants (c, σa), following the analysis in Appendix G.1, we have
that

Et∥xt+1 − x⋆t ∥2 ≤ ρ2∥xt − x⋆t ∥+ ρ2(c̃σa)
2, where c̃ := 1/(1− ρ2).
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Now observe that

Et∥xt+1 − x⋆t+1∥2 = ∥xt+1 − x⋆t ∥2 + ∥x⋆t − x⋆t+1∥2 + 2Et⟨xt+1 − x⋆t , x
⋆
t − x⋆t+1⟩

≤ Et∥xt+1 − x⋆t ∥2 + ∥x⋆t − x⋆t+1∥2 + 2Et∥xt+1 − x⋆t ∥∥x⋆t − x⋆t+1∥
≤ (1 + λ)Et∥xt+1 − x⋆t ∥2 +

(
1 + λ−1

)
Et∥x⋆t − x⋆t+1∥2

≤ (1 + λ)
(
ρ2∥xt − x⋆t ∥2 + ρ2(c̃σa)

2
)
+
(
1 + λ−1

)
Et∥x⋆t − x⋆t+1∥2,

where the second to last inequality holds since ∥a∥∥b∥ ≤ λ∥a∥2 + λ−1∥b∥2 for any λ > 0. For algebraic convenience, let
ρ2 = (1− τ) for some variable τ > 0. Setting λ = τ

2 , we have that

Et∥xt+1 − x⋆t+1∥2 ≤
(
1 +

τ

2

) (
(1− τ) ∥xt − x⋆t ∥2 + (1− τ) (c̃σa)

2
)
+

(
1 +

2

τ

)
Et∥x⋆t − x⋆t+1∥2,

≤
(
1− τ

2

)
∥xt − x⋆t ∥2 +

(
1− τ

2

)
(c̃σa)

2 +

(
1 +

2

τ

)
∆2

a

where ∆2
a := max{∥x⋆t − x⋆t+1∥2}. Iterating this expression, we have that

Et∥xt+1 − x⋆t+1∥2 ≤
(
1− τ

2

)((
1− τ

2

)
∥xt−1 − x⋆t−1∥2 +

(
1− τ

2

)
(c̃σa)

2 +

(
1 +

2

τ

)
∆2

a

)
+
(
1− τ

2

)
(c̃σa)

2 +

(
1 +

2

τ

)
∆2

a

≤
(
1− τ

2

)t+1

∥x0 − x⋆0∥2 +
t+1∑
k=1

(c̃σa)
2
(
1− τ

2

)k
+∆2

a

(
1 +

2

τ

) t∑
k=0

(
1− τ

2

)k
≤
(
1− τ

2

)t+1

∥x0 − x⋆0∥2 +
2(c̃σa)

2

τ
+∆2

a

(
1 +

2

τ

)
2− 2(1− τ

2 )
t + (1− τ

2 )
tτ

τ

≤
(
1− τ

2

)t+1

∥x0 − x⋆0∥2 +
2(c̃σa)

2

τ
+∆2

a

(
1 +

2

τ

)
2

τ
.

Observe that (1 + 2
w )

2
w ≤ 2(2+w)

w2 ≤ 6
w2 for w ∈ (0, 1]. In the regime where ρ ≤ 1 we have that τ = 1− ρ2 ≤ 1. Hence,

we have that

Et∥xt+1 − x⋆t+1∥2 ≤
(
1− τ

2

)t+1

∥x0 − x⋆0∥2 +
2(c̃σa)

2

τ
+∆2

a

(
1 +

2

τ

)
2

τ

≤
(
1− τ

2

)t+1

∥x0 − x⋆0∥2 +
2(c̃σa)

2

τ
+ 6

(
∆a

τ

)2

.

Since τ := (1− ρ2), we have that

Et∥xt+1 − x⋆t+1∥2 ≤
(
1− (1− ρ2)

2

)t+1

∥x0 − x⋆0∥2 +
2(c̃σa)

2

1− ρ2
+ 6

(
∆a

1− ρ2

)2

.

This concludes the proof.

Let us specialize to the stochastic gradient play setting. Set ωi,t := ∇if
ut
i (xt), ζi,t := ωi,t − ω̂i,t and ζt := (ζ1,t, . . . , ζn,t).

Define also ωt := (ω1,t, . . . , ωn,t). Here ζt is the noise of the vector of individual gradients.

Assumption H.3. Suppose there exists ∆a, σa > 0 such that the following hold:

a. The drift ∆a,t := ∥x⋆t+1 − x⋆t ∥ is such that E∆2
a,t ≤ ∆2

a for all t;

b. The gradient noise ζt satisfies E ∥ζt∥2 ≤ σ2
a ;

c. The gradient noise ζt : Ω → Rd is Ft+1-measurable with E[ζt|Ft] = 0.

Recall that ∆ := max{∥ut+1 − ut∥} and ∆a ≤ Leq ·∆.
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Algorithm 3 Projected Stochastic Gradient Play

1: Input: Step-size γ ≤ µ
2L2

a
; initial condition x0; decision-maker input sequence {us}tk=0

2: for k = 1, . . . , t− 1 do
3: for i ∈ [n] do
4: Set xi,k+1 = proj

Xi

(xi,k − γω̂i,k) ∀ i ∈ [n] where ω̂i,k := ∇̂if
uk
i (xk)

5: end for
6: end for

Corollary H.4 (Formal Statement of Corollary 3.2). Under the assumptions of Proposition 3.1 and Assumption H.3, suppose
that the agents are running stochastic gradient play (Algorithm 3) with γ ≤ µ/(2L2

a). Then ρ2 = 1
1+γµ and c =

√
2γ so

that

Et∥xt+1 − x⋆t+1∥2 ≤
(
1− µγ

4

)t+1

∥x0 − x⋆0∥2 +
8γσ2

a

µ
+ 24

(
Leq∆

γµ

)2

.

Given Lemma G.4, the proof of the above corollary follows an identical argument to Proposition 3.1.

Proof. From Lemma G.4, we have that

Et∥xt+1 − x∗∥2 ≤ 1

1 + γµ
∥xt − x∗∥2 + 2γ2σ2

a

1 + µγ
.

Now observe that

Et∥xt+1 − x⋆t+1∥2 = ∥xt+1 − x⋆t ∥2 + ∥x⋆t − x⋆t+1∥2 + 2Et⟨xt+1 − x⋆t , x
⋆
t − x⋆t+1⟩

≤ Et∥xt+1 − x⋆t ∥2 + ∥x⋆t − x⋆t+1∥2 + 2Et∥xt+1 − x⋆t ∥∥x⋆t − x⋆t+1∥
≤ (1 + λ)Et∥xt+1 − x⋆t ∥2 +

(
1 + λ−1

)
Et∥x⋆t − x⋆t+1∥2

≤ (1 + λ)

(
1

1 + µγ
∥xt − x⋆t ∥2 +

2

1 + µγ
(γσa)

2

)
+
(
1 + λ−1

)
Et∥x⋆t − x⋆t+1∥2,

where the second to last inequality holds since ∥a∥∥b∥ ≤ λ∥a∥2 + λ−1∥b∥2 for any λ > 0. Observe that

1

1 + µγ
= 1− µγ

1 + µγ
≤ 1− µγ

2
.

Using this fact and setting λ = µγ
4 , we have that

Et∥xt+1 − x⋆t+1∥2 ≤
(
1 +

µγ

4

)((
1− µγ

2

)
∥xt − x⋆t ∥2 +

(
1− µγ

2

)
(
√
2γσa)

2
)
+

(
1 +

4

µγ

)
Et∥x⋆t − x⋆t+1∥2,

≤
(
1− µγ

4

)
∥xt − x⋆t ∥2 + 2

(
1− µγ

4

)
(γσa)

2 +

(
1 +

4

µγ

)
∆2

a

where ∆2
a := max{∥x⋆t − x⋆t+1∥2}. Iterating this expression, we have that

Et∥xt+1 − x⋆t+1∥2 ≤
(
1− µγ

4

)
∥xt − x⋆t ∥2 + 2

(
1− µγ

4

)
(γσa)

2 +

(
1 +

4

µγ

)
∆2

a

≤
(
1− µγ

4

)((
1− µγ

4

)
∥xt−1 − x⋆t−1∥2 + 2

(
1− µγ

4

)
(γσa)

2 +

(
1 +

4

µγ

)
∆2

a

)
+ 2

(
1− µγ

4

)
(γσa)

2 +

(
1 +

4

µγ

)
∆2

a

≤
(
1− µγ

4

)t+1

∥x0 − x⋆0∥2 +
t+1∑
k=1

(
√
2γσa)

2
(
1− µγ

4

)k
+∆2

a

(
1 +

4

µγ

) t∑
k=0

(
1− µγ

4

)k
≤
(
1− µγ

4

)t+1

∥x0 − x⋆0∥2 + 8
γσ2

a

µ
+ 24

(
∆a

µγ

)2

,
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which concludes the proof.

The preceding corollary shows that in order to obtain last iterate convergence guarantees there is a clear tradeoff between the
step-size and the drift-to-noise ratio. Using Corollary 3.2, we define the asymptotic tracking error of Algorithm 3 and the
optimal step-size as follows:

ε⋆ := min
γ∈(0,µ/(2L2

a )]

{
8γσ2

a

µ
+ 24

(
∆a

µγ

)2
}

and γ⋆ := min

{
µ

2L2
a

,

(
6∆2

a

µσ2
a

)1/3
}
.

so that the high and low regimes are determined by

µ

2L2
a

=

(
6∆2

a

µσ2
a

)1/3

⇐⇒ µ4

6 · 23L6
a

=
∆2

a

σ2
a

⇐⇒
(

µ4

3 · 24L6
a

)1/2

=
µ2

4
√
3 · L3

a

=
∆a

σa
.

Therefore the high drift-to-noise regime is ∆a

σa
> µ2

4
√
3·L3

a

and otherwise we are in the low drift-to-noise regime6. Plugging
γ⋆ into ε⋆, we have that

ε⋆ =


96 · L

4
a∆

2
a

µ4
+ 4 · σ

2
a

L2
a

if
∆a

σa
≥ µ2

4
√
3 · L3

a

,

12 · 61/3 ·
(
∆aσ

2
a

µ2

)2/3

otherwise.

High drift-to-noise regime. When ∆a

σa
≥ µ2

4
√
3·L3

a

, the decision-maker is in the high drift-to-noise regime. In this case,

running Algorithm 3 with γ⋆ ≍ µ/(2L2
a) results in a point xt such that

E ∥xt − x⋆t ∥2 ≲ ε⋆ in t ≲
L2
a

µ2
log

(
∥x0 − x⋆0∥2

ε⋆

)
time steps.

This case is less interesting as the decision-maker is deploying a sequence {uk}tk=0 such that the drift (i.e., change in the
equilibrium corresponding to the induced sequence of games) is higher than the stochastic noise in the game. Here, the
agents must use a learning rate γ that is as large as the deterministic setting and therefore, achieve a expected tracking error
within a constant factor of

L4
a∆

2
a

µ4
+
σ2
a

L2
a

.

Low drift-to-noise regime. The more interesting regime results when the deployed sequence causes low drift relative to
the noise level—i.e. when ∆a/σa < µ2/

(
4
√
3 · L2

a

)
. In this case, it is possible that the agents can choose a step-size such

that the tracking error is within a constant factor of ε⋆. Indeed, with γ⋆ ≍
(
6∆2

a/
(
µσ2

a

))1/3
, its straightforward to show

that stochastic gradient play (Algorithm 3) finds a point xt ∈ X such that

E ∥xt − x⋆t ∥2 ≲ ε⋆ in t ≲
σ2
a

µ2ε⋆
log

(
∥x0 − x⋆0∥2

ε⋆

)
time steps.

The following proposition (formal statement of Proposition 3.3 from the main body) shows that there is an algorithm (a
super algorithm that consumes stochastic gradient play) that proceeds in stages to obtain a stronger convergence guarantee.

Proposition H.5 (Formal Statement of Proposition 3.3: Expected Tracking Error for Induced Time-Varying Game.).
Suppose that Assumptions 2.1, H.1, and H.3 hold and that the decision-maker deploys a sequence {us}ts=0 satisfying
∆a/σa < µ2/

(
4
√
3 · L2

a

)
. Set constants

γ⋆ :=
(
6∆2

a/(µσ
2
a)
)1/3

and ε⋆ := (∆aσ
2
a/µ

2)2/3.

6Observe that this bound is in terms of the induced equilibrium drift; it is equivalent to restate it in terms of the decision-maker action
sequence drift as follows: the high drift-to-noise regime is ∆

σa
> µ2

4
√
3·L3

aLeq
and otherwise we are in the low drift-to-noise regime, where

we have used the bound ∆a ≤ Leq∆.

43



Finite-Time Convergence in Stochastic Stackelberg Games with Smooth Algorithmic Agents

Suppose that there is a constant R available such that R ≥ ∥x0 − x⋆0∥2. Further, set constants γ0 = µ
2L2

a
and

K = 1 +

⌈
log2

(
µ

L2
a

·
(
σ2
aµ

∆2
a

)1/3
)⌉

, T0 =

⌈
8L2

a

µ2
log

(
L2
aR

σ2
a

)+
⌉
, γk =

γk−1 − γ⋆
2

, Tk =

⌈
4 log(4)

µγk

⌉
,

for all k ≥ 1. Consider running stochastic gradient play (Algorithm 3) in k = 0, . . . ,K−1 stages. Then T = T0+· · ·+TK−1

satisfies

T ≲
L2
a

µ2
log

(
L2
aR

σ2
a

)+

+
σ2
a

µ2ε⋆
≤ L2

a

µ2
log

(
R

ε⋆

)+

+
σ2
a

µ2ε⋆
,

and the expected tracking error satisfies E ∥xK − x⋆K∥2 ≲ ε⋆.

In the above corollary (·)+ := max{(·), 0}. We use this operator since some of the logarithmic terms can be negative
depending on the size of constants.

Proof. Set t0 := 0 and for each stage index k, let tk :=
∑k−1
s=0 Ts be the total cumulative time up to stage k. Let x⋆k be the

Nash equilibrium of the induced game Gutk
, and set

ϵk :=
8

µ

(
γkσ

2
a + 3

∆2
a

µγ2⋆

)
.

Recall that γk ≥ γ⋆. Corollary 3.2 implies that

E ∥xk+1 − x⋆k+1∥2 ≤
(
1− µγk

4

)Tk

E ∥xk − x⋆k∥2 +
8

µ

(
γkσ

2
a + 3

∆2
a

µγ2k

)
≤ e−

µγk
4 Tk E ∥xk − x⋆k∥2 + ϵk.

We claim that E ∥xk − x⋆k∥2 ≤ 2ϵk−1 for all k ≥ 1. The argument proceeds by induction. The base case holds since

T0 =

⌈
8L2

a

µ2
log

(
L2
aR

σ2
a

)+
⌉

implies that

E ∥x1 − x⋆1∥2 ≤ e−
µγ0
4 T0∥x0 − x⋆0∥2 + ϵ0 ≤ exp

(
− µ2

4 · 2L2
a

8L2
a

µ2
log

(
L2
aR

2

σ2
a

))
∥x0 − x⋆0∥2 + ϵ0 ≤ σ2

a

L2
a

+ ϵ0 ≤ 2ϵ0.

Suppose that the claim holds for some k ≥ 1—i.e., the estimate E ∥xk − x⋆k∥2 ≤ 2ϵk−1 holds for some fixed k. Then, we

have that e−µγkTk = e
−µγk

⌈
4 log(4)

µγk

⌉
≤ 1

4 . Further, its easy to deduce that 1
4 ≤ ϵk

2ϵk−1
. Hence, putting these facts together,

we have that

E ∥xk+1 − x⋆k+1∥2 ≤ e−µγkTk E ∥xk − x⋆k∥2 + ϵk ≤ 1

4
E ∥xk − x⋆k∥2 + ϵk

≤ ϵk
2ϵk−1

E ∥xk − x⋆k∥2 + ϵk ≤ 2ϵk,

by the induction hypothesis E ∥xk − x⋆k∥2 ≤ 2ϵk−1. In particular, this implies that E ∥xK − x̄K∥2 ≤ 2ϵK−1.

Now, we need to show that the claimed efficiency estimate holds. That is, we need to show that ϵK−1 ≍ ε⋆. Observe that for
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some constants c that we will set later, the following is true:

ϵk−1 − c

(
∆aσ

2
a

µ2

)2/3

=
8

µ

(
γk−1σ

2
a + 3

∆2
a

µγ2⋆

)
− c

(
∆aσ

2
a

µ2

)2/3

=
8

µ

(
γk−1σ

2
a + 3

(
∆2

a

µσ2
a

)1/3
σ2
a

62/3

)
− c

(
∆aσ

2
a

µ2

)2/3

=
8σ2

a

µ

(
γk−1 + 3

(
∆2

a

62σ2
aµ

)1/3
)

− c

(
∆aσ

2
a

µ2

)2/3

=
8σ2

a

µ

(
γk−1 + 3

(
∆2

a

62σ2
aµ

)1/3

− c

8

(
∆2

a

µσ2
a

)1/3
)
.

Thus by setting c := 12 · 61/3 we have that

ϵk−1 − 12 · 61/3
(
∆aσ

2
a

µ2

)2/3

=
8σ2

a

µ
(γK−1 − γ⋆) =

8σ2
a

µ
· γ0 − γ⋆

2K−1
≤ 4

(
∆aσ

2
a

µ2

)2/3

= ε⋆.

Indeed, this inequality holds since

8σ2
a

µ
· γ0 − γ⋆

2K−1
=

8σ2
a

µ
·

µ
2L2

a
−
(
6L2

eq∆
2/(µσ2

a)
)1/3(

µ
L2

a
·
(
σ2
a µ
∆2

a

)1/3)
=

8σ2
aL

2
a∆

2/3
a

µ2σ
2/3
a µ1/3

(
µ

2L2
a

− 61/3∆
2/3
a

µ1/3σ
2/3
a

)

=

(
∆aσ

2
a

µ2

)2/3
8L2

a

µ

(
µ

2L2
a

− 61/3∆
2/3
a

µ1/3σ
2/3
a

)

=

(
∆aσ

2
a

µ2

)2/3
(
4− 61/3 · 8 · L2

a∆
2/3
a

µ4/3σ
2/3
a

)

≤ 4

(
∆aσ

2
a

µ2

)2/3

≤ ε⋆,

where we used the fact that

K = 1 +

⌈
log2

(
µ

L2
a

·
(
σ2
aµ

∆2
a

)1/3
)⌉

.

Therefore, we have that

E ∥xK − x⋆K∥2 ≤ 2(1 + 12 · 61/3)
(
∆aσ

2
a

µ2

)2/3

≍ ε⋆.

What remains is to show that the total time T satisfies the claimed bound. Recall that we set

K = 1 +

⌈
log2

(
µ

L2
a

·
(
σ2
aµ

∆2
a

)1/3
)⌉

.

Observe that

T ≲
L2
a

µ2
log

(
L2
aR

σ2
a

)+

+
1

µ

K−1∑
k=1

1

γk
.
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We need to show that the sum on the left is asymptotically proportional to σ2
a

µε⋆
. To this end, observe that

K−1∑
k=1

1

γk
≤ 2L2

a

µ

K−1∑
k=1

2k ≤ 2L2
a

µ
· 2K =

2 · 2L2
a

µ
2K−1.

Using the definition of K, we have that

2K−1 = 2
log2

(
µ

L2
a
·
(

σ2
a µ

∆2
a

)1/3
)
=

µ

L2
a

·
(
σ2
aµ

∆2
a

)1/3

,

Hence, we deduce that

1

µ

K−1∑
k=1

1

γk
≤ 2 · 2L2

a

µ
2K−1 ≤ 2 · 2L2

a

µ
· µ
L2
a

·
(
σ2
aµ

∆2
a

)1/3

= 4

(
σ2
aµ

∆2
a

)1/3

=
4σ2

a

µ
·
(
∆aσ

2
a

µ2

)−2/3

≍ σ2
a

µε⋆
,

as claimed. This completes the proof.

H.2. Beyond Worst Case Expected Tracking Error

The preceding results provide a ”worst-case” bound in the sense that ∆ = max{∥ut+1 − ut∥2} is the largest difference in
the decision maker’s actions. Here, we want to understand what happens when we make ”reasonable” assumptions on the
behavior of ∆t := ∥ut+1 − ut∥2. For instance, one reasonable assumption is that the decision-maker is employing some
stochastic gradient method with a convergence guarantee of the form E ∥ut − u∗∥2 ≤ O((t+ 1)−2a). Here u∗ might be a
locally optimal point for L or argminu∈U L(u) given that players are playing a Nash x∗(u) ∈ Eq(Gu) or even some other
solution concept—e.g., in Section 4.1 we introduce the notion of a performatively stable Stackelberg equilibrium. Note that
E ∥ut+1 − ut∥2 ≤ O((t+ 1)−2a) means there exists a constant cd > 0 such that E ∥ut+1 − ut∥2 ≤ cd

(t+1)2a .

Proposition H.6. Suppose that Assumptions 2.1, H.1, and H.3 hold and that the decision-maker deploys a sequence of
actions such that E ∥ut+1 − ut∥2 ≤ cd

(t+1)−2a for some a ∈ (0, 1/2] and absolute constant cd > 0. Set γt = 8
µ(t+t0)b

for
some b ∈ (0, 1] and integer t0 ≥ 1 and consider agents running stochastic gradient play with time varying stepsize γt. Then,
the iterates satisfy

E∥xt − x⋆t ∥2 ≤ max{(1 + t0)∥x0 − x⋆0∥2, ca} ·
{

(t+ t0)
−b, if b > 2

3a,
(t+ t0)

b/2−a, otherwise,

where ca :=
8σ2

a

µ2 +
5L2

eqc
2
d

8 .

Proof. Let ∆a,t := ∥x⋆t+1 − x⋆t ∥. We know from the proof of Lemma G.4, that stochastic gradient play is ρ-contracting.
Moreover, for a fixed ut which induces x⋆t ∈ Eq(Gut

), we have that

Et∥xt+1 − x⋆t ∥2 ≤ 1

1 + γµ
∥xt − x⋆t ∥2 +

2γ2σ2
a

1 + γµ
.

Now observe that

∥xt+1 − x⋆t+1∥2 = ∥xt+1 − x⋆t ∥2 + ∥x⋆t − x⋆t+1∥2 + 2⟨xt+1 − x⋆t , x
⋆
t − x⋆t+1⟩

≤ ∥xt+1 − x⋆t ∥2 + ∥x⋆t − x⋆t+1∥2 + 2∥xt+1 − x⋆t ∥∥x⋆t − x⋆t+1∥

≤
(
1 +

µγ

4

)
∥xt+1 − x⋆t ∥2 +

(
1 +

4

µγ

)
∥x⋆t − x⋆t+1∥2
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where the last inequality follows from Young’s inequality. Since 1− γµ
1+γµ ≤ 1− µγ

2 , we have that

Et∥xt+1 − x⋆t+1∥2 ≤
(
1 +

γµ

4

)((
1− γµ

2

)
∥xt − x⋆t ∥2 + 2γ2σ2

a

(
1− γµ

2

))
+

(
1 +

4

γµ

)
∥x⋆t − x⋆t+1∥2

≤
(
1− γµ

4

)
∥xt − x⋆t ∥2 + 2γ2σ2

a

(
1− γµ

4

)
+

(
1 +

4

γµ

)
∆2

a,t

≤
(
1− γµ

4

)
∥xt − x⋆t ∥+ 2γ2σ2

a +
5

µγ
L2
eq∥ut+1 − ut∥2.

The agents are engaging in stochastic gradient play given the induced sequence of games Gut
with γt = 8

µ(t+t0)b
. Hence,

plugging γt in to the above bound, we have that

Et∥xt+1 − x⋆t+1∥2 ≤
(
1− 2

(t+ t0)b

)
∥xt − x⋆t ∥2 +

8σ2
a

µ2(t+ t0)2b
+

5(t+ t0)
b

8
L2
eq∥ut+1 − ut∥2

≤
(
1− 2

(t+ t0)b

)
∥xt − x⋆t ∥2 +

8σ2
a

µ2(t+ t0)2b
+

5(t+ t0)
b

8
L2
eq

c2d
(t+ t0)2a

≤
(
1− 2

(t+ t0)b

)
∥xt − x⋆t ∥2 +

8σ2
a

µ2(t+ t0)2b
+

5

8
L2
eq

c2d
(t+ t0)2a−b

.

Define Dt := E ∥xt − x⋆t ∥. Then there are two cases to analyze.

Case 1: If b > 2
3a, then the above bound reduces to

Et∥xt+1 − x⋆t+1∥2 ≤
(
1− 2

(t+ t0)b

)
∥xt − x⋆t ∥2 +

ca
(t+ t0)2b

Then we claim that

Dt ≤
max{(1 + t0)D0, ca}

(t+ t0)b
.

Indeed, it clearly holds for t = 0. Hence we may use induction to conclude the argument. Suppose it holds for some fixed
t ≥ 1. Then, we have that

Dt+1 ≤
(
1− 2

(t+ t0)b

)
ca

(t+ t0)b
+

ca
(t+ t0)2b

≤ ca

(
1

(t+ t0)b
− 2

(t+ t0)2b

)
+

ca
(t+ t0)2b

≤ ca

(
1

(t+ t0)b
− 1

(t+ t0)2b

)
≤ ca

(t+ 1 + t0)b
,

where the last inequality holds since 1
(t+t0)b

− 1
(t+t0)2b

≤
(

1
(t+t0)

− 1
(t+t0)2

)b
≤ 1

(t+1+t0)b
for any t ≥ 1 and b ∈ (0, 1].

This verifies the claim.

Case 2: Suppose now that b ≤ 2
3a. Then the bound on Dt+1 reduces to

Dt+1 ≤
(
1− 2

(t+ t0)b

)
Dt +

ca
(t+ t0)2a−b

≤
(
1− 2

(t+ t0)a−b/2

)
Dt +

ca
(t+ t0)2a−b

,

where the last inequality holds since b ≤ 2
3a. Using a completely analogous argument to case 1, we have that

Dt ≤
max{(1 + t0)D1, ca}

(t+ t0)a−b/2
.

Therefore, putting the two cases together, concludes the proof.
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As noted in the main, this proposition shows that if the decision-maker is employing a reasonably well-behaved sequence of
actions (i.e., that is stabilizing at a sufficient rate), then the agents can utilize time varying step-sizes to control the drift and
obtain an expected tracking error bound that is decaying in time. The rate of decay however highly depends on the behavior
of the decision maker’s sequence. For instance, if a = 1/2, then choosing b = 1 leads to a rate of O(1/t). Here, a = 1/2 is
not just a reasonable rate for a stochastic gradient method for the decision-maker as we will see in Section 4, but likely the
best we could hope for. However, if the agents choose a much slower rate such as b < 1/3, then even with a = 1/2 the
tracking error decays at a rate of O(tb/2−1/2) so that, somewhat counter intuitively, the rate is much slower as b→ 1

3 . This
is because the rate of the decision-maker dominates.

H.3. High-Probability Guarantees

The above results are characterized in terms of the expected tracking error; accordingly, characterizing the guarantees of
the algorithm are only meaningful if it is run multiple times. Instead, if our algorithm were deployed in real-time with
irreversible drift, we would like high-probability efficiency results to characterize the performance of our algorithm if it
were executed only once. Here, we present high-probability guarantees for the tracking error. We require the following tail
assumptions on the equilibrium drift and gradient noise.

Assumption H.7 (Sub-Gaussian drift and noise). There exist constants ∆a, σa > 0 such that the following two conditions
hold for all t ≥ 0:

(a) The drift ∆2
a,t is sub-exponential conditioned on Ft with parameter ∆2

a:

E[exp(λ∆2
a,t)| Ft] ≤ exp(λ∆2

a) for all 0 ≤ λ ≤ ∆2
a

(b) The gradient noise ξt is norm sub-Gaussian conditioned on Ft with parameter σ2
a :

P(∥ξt∥ ≥ ζ| Ft) ≤ 2 exp(−2ζ2/σ2
a) for all ζ > 0.

Note that Assumption H.7 implies Assumption H.3 under the with the same constants ∆a, σa. We need the following (albeit
simplified) proposition from (Cutler et al., 2023), which is an extension of Claim D.1 from (Harvey et al., 2019).

Proposition H.8 (Simplified version of Proposition 29, (Cutler et al., 2023)). Consider a scalar stochastic process {Vt, Xt}
on a probability space with filtration Ht such that Vt is nonnegative and Ht-measurable, and satisfies

Vt+1 ≤ αtVt +Xt + κt

for deterministic constant αt ∈ (−∞, 1]. Suppose that the moment generating functions of Xt conditioned on Ht satisfy

E[exp(λXt)| Ht] ≤ exp(λνt) ∀ 0 ≤ λ ≤ 1

νt
.

for constant νt > 0. Then the inequality

E[exp(λVt+1)] ≤ exp(λ · νt)E [exp (λαtVt)] ,

holds for all 0 ≤ λ ≤ 1−αt

2σ2
t

.

Proof. For any index t and scalar λ ≥ 0, the tower rule of expectations implies that

E[exp(λVt+1)] ≤ E[exp(λ(αtVt +Xt)] = E [exp(λαtVt)E[exp(λXt)| Ht]] .

By assumption, we have that E[exp(λXt)| Ht] ≤ exp(λνt) for 0 ≤ λ ≤ 1
2νt

. Thus, we have that

E[exp(λVt+1)] ≤ E [exp(λαtVt)E[exp(λXt)| Ht]] ≤ exp(λvt)E[exp(λαtVt)],

which completes the proof.

Given this proposition, we have the following high probability bounds.
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Theorem H.9 (High probability tracking error.). Suppose that Assumptions 2.1, H.1, and H.7 hold and that the decision-
maker deploys a sequence {us}ts=0 satisfying ∆a

σa
< µ2

4
√
3L3

a

so that the agents are in the low drift-to-noise regime. Let {xt}
be the iterates produced by stochastic gradient play (SGP) with γ ≤ µ

2L2
a

. There exists an absolute constant c > 0 such that
for any specified t ∈ N and δ ∈ (0, 1), the following estimate holds with probability at least 1− δ:

∥xt − x⋆t ∥2 ≤
(
1− µγ

4

)t
∥x0 − x⋆0∥2 + c

(
σ2
aγ

µ
+

(
∆a

µγ

)2
)
log
(e
δ

)
.

Proof. By Young’s inequality, we have that

∥xt+1 − x⋆t+1∥2 = ∥xt+1 − x⋆t ∥2 + ∥x⋆t − x⋆t+1∥2 + 2⟨xt+1 − x⋆t , x
⋆
t − x⋆t+1⟩,

≤ ∥xt+1 − x⋆t ∥2 + ∥x⋆t − x⋆t+1∥2 + 2∥xt+1 − x⋆t ∥∥x⋆t − x⋆t+1∥,
≤ (1 + λ) ∥xt+1 − x⋆t ∥2 +

(
1 + λ−1

)
∥x⋆t − x⋆t+1∥2,

for some λ. Observe that x 7→ 1
2∥xt − γω̂(xt)− x∥2 is a 1-strongly convex function over X . Therefore, we deduce that

1

2
∥xt+1 − x⋆t ∥2 ≤ 1

2
∥xt − γω̂(xt)− x⋆t ∥2 −

1

2
∥xt − γω̂(xt)− xt+1∥2,

≤ 1

2
∥xt − x⋆t ∥2 − γ⟨ω̂(xt), xt+1 − x⋆t ⟩ −

1

2
∥xt+1 − xt∥2,

=
1

2
∥xt − x⋆t ∥2 − γ⟨ω̂(xt), xt − x⋆t ⟩ −

1

2
∥xt+1 − xt∥2 − γ⟨ω̂(xt), xt+1 − xt⟩.

Next, we have that

1

2
∥xt+1 − x⋆t ∥2 ≤ 1

2
∥xt − x∗∥2 − γ⟨ω̂(xt), xt − x⋆t ⟩ −

1

2
∥xt+1 − xt∥2 − γ⟨ω̂(xt), xt+1 − xt⟩,

≤ 1

2
∥xt − x⋆t ∥2 − γ⟨ω(xt), xt − x⋆t ⟩ −

1

2
∥xt+1 − x∗∥2 − γ⟨ω̂(xt), xt+1 − xt⟩,

=
1

2
∥xt − x⋆t ∥2 − γ⟨ω(xt+1), xt+1 − x⋆t ⟩ −

1

2
∥xt+1 − xt∥2,

+ γ ⟨ω̂(xt)− ω(xt), xt − xt+1⟩︸ ︷︷ ︸
=:P1

+γ ⟨ω(xt)− ω(xt+1), x
⋆
t − xt+1⟩︸ ︷︷ ︸

=:P2

.

Since each induced game Gu is is µ–strongly monotone, we have that

⟨ω(xt+1), xt+1 − x⋆t ⟩ ≥ ⟨ω(xt+1)− ω(x⋆t ), xt+1 − x⋆t ⟩ ≥ µ∥xt+1 − x⋆t ∥2.

This in turn implies that

1 + 2γµ

2
∥xt+1 − x⋆t ∥2 ≤ 1

2
∥xt − x∗∥2 − 1

2
∥xt+1 − xt∥2 + γ(P1 + P2).

Applying Young’s inequality, we have that

P1 ≤ ∥ξt∥2

2ν1
+
ν1∥xt+1 − xt∥2

2
,

and analogously, we have that

P2 ≤ ∥ω(xt)− ω(xt+1)∥2

2ν2
+
ν2∥xt+1 − x⋆t ∥2

2
,

≤ L2
a∥xt − xt+1∥2

2ν2
+
ν2∥xt+1 − x⋆t ∥2

2
.
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Combining these two bounds, we have that

1 + 2γµ− γν2
2

∥xt+1 − x⋆t ∥2 ≤ 1

2
∥xt − x⋆t ∥2 +

∥ξt∥2

2ν1
− (1− γL2

aν
−1
2 − γν1)

2
∥xt+1 − xt∥2.

Setting ν2 = µ and ν1 = γ−1 − L2
a/µ, we have that the last term on the right hand side is zero, and since γ ≤ µ

2L2
a

we have

that ν1 ≥ 1
2γ ; indeed, − 1

2γ ≤ − 2L2
a

µ so that ν1 = 1
γ − 2L2

a

µ ≥ 1
γ − 1

2γ = 1
2γ . Applying these bounds on the constants ν1 and

ν2, we have that

∥xt+1 − x⋆t ∥2 ≤ 1

1 + γµ
∥xt − x∗∥2 + 2γ2∥ξt∥2

1 + µγ
.

Thus, we have that

∥xt+1 − x⋆t+1∥2 = ∥xt+1 − x⋆t ∥2 + ∥x⋆t − x⋆t+1∥2 + 2⟨xt+1 − x⋆t , x
⋆
t − x⋆t+1⟩

≤ ∥xt+1 − x⋆t ∥2 + ∥x⋆t − x⋆t+1∥2 + 2∥xt+1 − x⋆t ∥∥x⋆t − x⋆t+1∥

≤ (1 + λ)

(
1

1 + γµ
∥xt − x⋆t ∥2 +

2γ2∥ξt∥2

1 + µγ

)
+
(
1 + λ−1

)
∥x⋆t − x⋆t+1∥2

≤ (1 + λ)
((

1− µγ

2

)
∥xt − x⋆t ∥2 + 2

(
1− µγ

2

)
γ2∥ξt∥2

)
+
(
1 + λ−1

)
∥x⋆t − x⋆t+1∥2

≤
(
1− µγ

4

)
∥xt − x⋆t ∥2 + 2

(
1− µγ

4

)
γ2∥ξt∥2 +

(
1 +

4

µγ

)
∆2

a,t,

where we have set λ = µγ
4 , and ∆a,t := ∥x⋆t − x⋆t+1∥. Bounding the last two terms, we have that

∥xt+1 − x⋆t+1∥2 ≤
(
1− µγ

4

)
∥xt − x⋆t ∥2 + 2γ2∥ξt∥2 +

5

µγ
∆2

a,t. (13)

Under Assumption H.7, there exists an absolute constant c ≥ 1 such that ∥ξt∥2 is sub-exponential conditioned on Ft with
parameter cσ2

a and ξt is mean-zero sub-Gaussian conditioned on Ft with parameter cσa for all t (cf. Lemma 3 from Jin et al.
(2019)). Assumption H.7 also implies that ∆2

a,t is sub-exponential conditioned on Ft with parameter ∆2
a . Given (13), we

apply Proposition H.8 with parameters

Vt = ∥xt − x⋆t ∥2, Dt = 0, Xt = 2γ2∥ξt∥2 +
5

µγ
∆2

a,t, αt = 1− µγ

4
, κt = 0, and νt = 2γ2cσ2

a +
5

µγ
∆2

a.

This yields the estimate

E[exp(λ∥xt+1 − x⋆t+1∥2)] ≤ exp

(
λ

(
2γ2cσ2

a +
5∆2

a

µγ

))
E
[
exp

(
λ
(
1− µγ

4

)
∥xt − x⋆t ∥2

)]
, (14)

for all

0 ≤ λ ≤ 1

2(2γ2cσ2
a + 5∆2

a/(µγ))
. (15)

Since
(
1− µγ

4

)
∈ (0, 1] and Vt is a non-negative random variable (almost surely), Jensen’s inequality implies that

E[exp(λVt+1)] ≤ exp (λνt)E
[
exp (λVt)

(1−µγ
4 )
]

≤ exp (λνt)E [exp (λVt)]
(1−µγ

4 ) .
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Iterating this expression, we have that

E
[
exp(λ∥xt − x⋆t ∥2)

]
≤ exp

((
2cγ2σ2

a +
5∆2

a

µγ

) t−1∑
s=0

(
1− µγ

4

)s)(
E[exp(λ∥x0 − x⋆0∥2)]

)(1−µγ/4)t
= exp(λν) exp

(
λ

((
1− µγ

4

)t
∥x0 − x⋆0∥2 +

(
2cγ2σ2

a +
5∆2

a

µγ

) t−1∑
s=1

(
1− µγ

4

)s)

≤ exp

(
λ

((
1− µγ

4

)t
∥x0 − x⋆0∥2 +

(
2cγ2σ2

a +
5∆2

a

µγ

) t−1∑
s=0

(
1− µγ

4

)s)

≤ exp

(
λ

((
1− µγ

4

)t
∥x0 − x⋆0∥2 +

(
8cγσ2

a

µ
+

20∆2
a

(µγ)2

))

for all λ satisfying (33), where the equality holds since ∥x0 − x⋆0∥2 is a constant. Let ν := 32(cσa)
2γ

µ + 20
(

∆a

µγ

)2
. Recall

that c ≥ 1 and µγ ≤ 1 so that (
8cγσ2

a

µ
+

20∆2
a

(µγ)2

)
≤ ν

and
1

ν
=

µ

32γ(cσa)2 + 20∆2
a/(µγ

2)
≤ min

{
µ

32 · c2γσ2
a

,
1

2(2γ2cσ2
a + 5∆2

a/(µγ))

}
.

Hence, we have that

E
[
exp

(
λ

(
∥xt − x⋆t ∥2 −

(
1− µγ

4

)t
∥x0 − x⋆0∥2

))]
≤ exp(λν) ∀ 0 ≤ λ ≤ 1

ν
.

Rewriting this expression, we have that

E
[
exp

(
λ
(
∥xt − x⋆t ∥2 −

(
1− µγ

4

)t ∥x0 − x⋆0∥2
))]

exp(λν)
≤ 1.

Applying Markov’s inequality, we have that

Pr

(
exp

(
λ

(
∥xt − x⋆t ∥2 −

(
1− µγ

4

)t
∥x0 − x⋆0∥2

))
≥ exp(λν)

δ

)

≤
E
[
exp

(
λ
(
∥xt − x⋆t ∥2 −

(
1− µγ

4

)t ∥x0 − x⋆0∥2
))]

exp(λν)/δ
≤ δ

Therefore, setting λ = 1
ν , with probability 1− δ, we have that

∥xt − x⋆t ∥2 ≤
(
1− µγ

4

)t
∥x0 − x⋆0∥2 +

(
32(cσa)

2γ

µ
+ 20

(
∆a

µγ

)2
)
log
(e
δ

)
, (16)

as claimed.

The above theorem can be translated to a time-to-track high probability result.

Corollary H.10 (Time to track with high probability.). Suppose that the assumptions of Theorem H.9 hold so that we are in
the low drift-to-noise regime, and there is a constant R available such that R ≥ ∥x0 − x⋆0∥2. Suppose that the agents are
running SGP in k = 0, . . . ,K − 1 stages (cf. Lemma E.2) with constants constants

K = 1 +

⌈
log2

(
µ

L2
a

·
(
σ2
aµ

∆2
a

)1/3
)⌉

, γ0 =
µ

2L2
a

,
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and

T0 =

⌈
8L2

a

µ2
log

(
L2
aR

σ2
a

)+
⌉
, γk =

γk−1 + γ⋆
2

, Tk =

⌈
4 log(12)

µγk

⌉
for all k ≥ 1.

Then T = T0 + · · ·+ TK−1 satisfies

T ≲
L2
a

µ2
log

(
L2
aR

σ2
a

)+

+
σ2
a

µ2ε⋆
≤ L2

a

µ2
log

(
R

ε⋆

)+

+
σ2
a

µ2ε⋆
,

and for any given δ ∈ (0, 1), the tracking error satisfies ∥xK − x⋆K∥2 ≲ ε⋆ log
(
e
δ

)
with probability at least 1− δ.

Proof. Set t0 := 0. For each k, let tk := T0 + · · ·+ Tk−1, let x⋆t be the Nash equilibrium of the game Gut , and set

Ek := c

(
γkσ

2
a

µ
+

(
∆a

µγ⋆

)2
)

where c ≥ 1 is an absolute constant satisfying the bound (16). Since γk ≥ γ⋆, Theorem H.9 implies that for any specified
index k and δ ∈ (0, 1), the following estimate holds with probability at least 1− δ:

∥xk+1 − x⋆k+1∥2 ≤
(
1− µγk

4

)Tk

∥x0 − x⋆0∥2 + c

(
σ2
aγk
µ

+

(
∆a

µγk

)2
)
log
(e
δ

)
,

≤ e−µγkTk/4∥xk − x⋆k∥2 + Ek log
(e
δ

)
.

We claim that an induction-based argument yields the following: for each k ≥ 1, the estimate ∥xk−x∗k∥2 ≤ AEk−1 log(e/δ)
holds with probability at least 1− δ for all δ ∈ (0, 1). To see the base case, observe that

e−µγ0T0/4∥x0 − x⋆0∥2 ≤ exp

(
− µ2

4 · 2L2
a

8L2
a

µ2
log

(
L2
aR

σ2
a

))
∥x0 − x⋆0∥2 =

σ2
a

L2
aR

∥x0 − x⋆0∥2 ≤ σ2
a

L2
a

and

E0 = c

(
γ0σ

2
a

µ
+

(
∆a

µγ⋆

)2
)

≥ c

(
σ2
a

2L2
a

+

(
∆a

µγ0

)2
)

≥ c

(
3σ2

a

4L2
a

)
≥
(
3σ2

a

4L2
a

)
since γk ≥ γ⋆ and c ≥ 1, and we are in the regime where ∆a

σa
< µ2

4L3
a

. Therefore we have that

e−µγ0T0/4∥x0 − x⋆0∥2 ≤ σ2
a

L2
a

≤ 4

3
E0.

Hence
∥x1 − x⋆1∥2 ≤ e−µγ0T0/4∥x0 − x⋆0∥2 + E0 log

(e
δ

)
≤ 7

3
E0 log

(e
δ

)
≤ 3E0 log

(e
δ

)
since log(e/δ) ≥ 1, and where we take the bound in the last inequality to simplify constants.

Now, suppose the claim holds for some index k ≥ 1 and let δ ∈ (0, 1); then ∥xk−x⋆k∥2 ≤ 3Ek−1 log(2e/δ) with probability
at least 1− δ/2. Since

e−µγkTk/4 ≤ exp

(
−µγk

⌈
4 log(12)

µγk

⌉
· 1
4

)
≤ 1

12
,

we also have that

∥xk+1 − xk+1∥2 ≤ e−µγkTk/4∥xk − x⋆k∥2 + Ek log

(
2e

δ

)
,

≤ 1

12
∥xk − x⋆k∥2 + Ek log

(
2e

δ

)
≤ Ek

6Ek−1
+ Ek log

(
2e

δ

)
,

≤ 3

6
Ek log

(
2e

δ

)
+ Ek log

(
2e

δ

)

52



Finite-Time Convergence in Stochastic Stackelberg Games with Smooth Algorithmic Agents

with probability at least 1− δ/2. Taking a union bound, we have that

∥xk+1 − xk+1∥2 ≤ 3

2
Ek log

(
2e

δ

)
≤ 3Ek log

(e
δ

)
,

with probability at least 1− δ. This completes the inductive proof. Hence, fixing δ ∈ (0, 1), we have that ∥xK − x⋆K∥2 ≤
3EK−1 log(e/δ) with probability at least 1− δ.

Recall that we are in the regime where ∆a

σa
< µ2

4
√
3L3

a

and we have set constants γ⋆ :=
(
6∆2

a/(µσ
2
a)
)1/3

and ε⋆ :=

(∆aσ
2
a/µ

2)2/3. Observe that for some constant C, the following is true:

2

c
Ek−1 − C

(
∆aσ

2
a

µ2

)2/3

=
2

µ

(
γk−1σ

2
a +

∆2
a

µγ2⋆

)
− C

(
∆aσ

2
a

µ2

)2/3

=
2

µ

(
γk−1σ

2
a +

(
∆2

a

µσ2
a

)1/3
σ2
a

62/3

)
− C

(
∆aσ

2
a

µ2

)2/3

=
2σ2

a

µ

(
γk−1 +

(
∆2

a

62σ2
aµ

)1/3
)

− C

(
∆aσ

2
a

µ2

)2/3

=
2σ2

a

µ

(
γk−1 +

(
∆2

a

62σ2
aµ

)1/3

− C

2

(
∆2

a

µσ2
a

)1/3
)
.

With this expression in hand, setting C := 7 ·
(
2
9

)1/3
, we have that

2

c
EK−1 − 7 ·

(
2

9

)1/3(
∆aσ

2
a

µ2

)2/3

=
2σ2

a

µ
(γK−1 − γ⋆) =

2σ2
a

µ
· γ0 − γ⋆

2K−1
≤
(
∆aσ

2
a

µ2

)2/3

= ε⋆.

Therefore, we deduce that

EK−1 ≤ c

2

(
1 + 7 ·

(
2

9

)1/3
)(

∆aσ
2
a

µ2

)2/3

log
(e
δ

)
so that

E ∥xK − x⋆K∥2 ≤ 3EK−1 log
(e
δ

)
≤ 3 · c

2

(
1 + 7 ·

(
2

9

)1/3
)(

∆aσ
2
a

µ2

)2/3

log
(e
δ

)
≍ ε⋆ log

(e
δ

)
.

What remains is to show that the total time T satisfies the claimed bound. To this end, recall that

K = 1 +

⌈
log2

(
µ

L2
a

·
(
σ2
aµ

∆2
a

)1/3
)⌉

.

and observe that

T ≲
L2
a

µ2
log

(
L2
aR

σ2
a

)+

+
1

µ

K−1∑
k=1

1

γk
.

Here, we need to show that the sum on the right is asymptotically proportional to σ2
a/(µε⋆). Indeed, we have that

K−1∑
k=1

1

γk
≤ 2L2

a

µ

K−1∑
k=1

2k ≤ 2L2
a

µ
· 2K =

2 · 2L2
a

µ
2K−1,

so that by using the definition of K, we have

2K−1 = 2
log2

(
µ

L2
a
·
(

σ2
a µ

∆2
a

)1/3
)
=

µ

L2
a

·
(
σ2
aµ

∆2
a

)1/3

.
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Hence, we deduce that

K−1∑
k=1

1

γk
≤ 2 · 2L2

a

µ
2K−1 ≤ 2 · 2L2

a

µ
· µ
L2
a

·
(
σ2
aµ

∆2
a

)1/3

= 4

(
σ2
aµ

∆2
a

)1/3

=
4σ2

a

µ
·
(
∆aσ

2
a

µ2

)−2/3

≍ σ2
a

µε⋆
,

as claimed. This completes the proof.

Algorithm 4 Epoch-Based Algorithm Framework for Stochastic Stackelberg Games

1: Input: decision maker algorithm Algdm, horizon T , stepsize schedule {ηt}, initial parameter u1 ∈ U , and query radius
δ > 0 (if Algdm = DFM)

2: for t = 1, . . . , T do
3: if Algdm = DFM then
4: Sample vt ∼ Sd uniformly at random /* i.e., derivative free method */

5: Set ũt = ut + δvt and Ũ = (1− δ)U
6: else if Algdm = RGM then
7: Set ũt = ut and Ũ = U /* i.e., repeated gradient method

8: end if
9: for k = 1, . . . , τt do

10: Query agents with ũt /* i.e., agents update with any ρ contracting method

11: end for
12: Decision-maker observes xτtt (ũt)
13: if Algdm = DFM then
14: Set ĝt = d

δ ℓ(ũt, (x
τt
t (ũt), ξ))vt

15: else if Algdm = RGM then
16: Set ĝt = ∇uℓ(ũt, (x

τt
t (ũt), ξ))

17: end if
18: Update ut+1 = proj

Ũ
(ut − ηtĝt)

19: end for

I. Naı̈ve Decision-Maker
In Algorithm 4 we state the main algorithm structure for the epoch based methods including the naı̈ve decision-maker. In
this appendix section, we provide the formal statements for the results in Section 4.1 and the proofs. To reduce notation in
places, we let Lℓ denote the overall Lipschitz parameter for (u, z) 7→ (∇uℓ(u, z),∇zℓ(u, z)).

I.1. Existence of Performatively Stable Stackelberg Equilibrium

Recall that performatively stable Stackelberg equilibrium are precisely the fixed points of the map

pseq(u′) :=

{
u ∈ U : u is optimal for E

ξ∼De(u′)
ℓ(u, (x∗(u′), ξ)) and x∗(u′) ∈ Eq(Gu′)

}
.

Lemma I.1. Fix a function ℓ : Rd×Z → R such that ℓ(·, z) isC1 for all z ∈ Z and the map z 7→ ∇uℓ(u, z) is Lz-Lipschitz
continuous for any u ∈ Rd. Fix now any measures ν1, ν2 ∈ P(Z) such that ℓ(u, ·) is both ν1 and ν2 integrable for all u.
Then we may exchange differentiation and integration ∇uEz∼νℓ(u, z) = Ez∼ν∇uℓ(u, z) and the estimate holds:

sup
u

∥∇uEz∼ν1ℓ(u, z)−∇uEz∼ν2ℓ(u, z)∥ ≤ Lz ·W1(ν1, ν2).

Assumption I.2 (Lipschitz Distributions). There exists Len > 0 satisfying

W1(De(u),De(w)) ≤ Len · ∥u− w∥ for all u,w ∈ U .
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Theorem I.3 (Existence & Uniqueness of Performatively Stable Equilibrium). Under Assumptions 2.1, 4.1 and I.2 and
when 1 < α/(Lz(Leq + Len)), there exists a unique performatively stable equilibrium. When the non-strategic decision-
dependent component is stationary—i.e., De(u) ≡ De for stationary distribution De—existence and uniquness is guaranteed
if 1 < α/(LzLeq) and Assumption I.2 is no longer required.

Proof. We show that pseq(·) is Lipschitz continuous with parameter λ. Since the induced game Gu is µ strongly monotone
for any u ∈ U by assumption, there is a unique induced Nash equilibrium x∗(u) ∈ Eq(Gu) for each u. Consider two points
u and u′ and set w := pseq(u) and w′ := pseq(u′). First order optimality conditions for w and w′ guarantee

⟨gu(w), w − w′⟩ ≤ 0 and ⟨gu′(w′), w′ − w⟩ ≤ 0,

where gv(v′) = Eξ∼De(v) ∇uℓ(v
′, (x∗(v), ξ)). Since the loss ℓ(·, z) is α-strongly convex for any z ∈ Z , we have that

α · ∥w − w′∥2 ≤ ⟨gu(w)− gu(w
′), w − w′⟩

≤ ⟨gu′(w′)− gu(w
′), w − w′⟩

≤ ∥gu′(w′)− gu(w
′)∥ · ∥w − w′∥

=

∥∥∥∥ E
ξ∼De(u′)

∇uℓ(w
′, (x∗(u′), ξ))− E

ξ∼De(u)
∇uℓ(w

′, (x∗(u), ξ))

∥∥∥∥ · ∥w − w′∥

≤ Lz(Leq + Len)∥u′ − u∥ · ∥w − w′∥.

Dividing through by ∥w − w′∥ guarantees

∥w − w′∥ = ∥pseq(u)− pseq(u′)∥ ≤ Lz(Leq + Len)

α
∥u− u′∥.

Observe that Leq + Len characterizes the total reactivity of the environment due to decision-dependence from both the
induced agent behavior and environmental stochasticity. In the regime where (Leq + Len) <

α
Lz

, then λ ∈ [0, 1) so that that
pseq(·) is indeed a contraction as claimed. The result follows immediately from the Banach fixed point theorem.

I.2. Characterization of Performative Gap

In this section, we characterize the notion of the performative gap—i.e., the gap between the performatively stable
equilibrium and the Stackelberg equilibrium. We also introduce a toy example to see the implications of this gap on the
losses for the decision-maker.

Proposition I.4 (Performative Equilibrium Gap.). Under the assumptions of Theorem I.3, if ℓ(u, z) isLz Lipschitz continuous
in z, then

∥u∗ − ups∥+ ∥x∗(u∗)− x∗(ups)∥ ≤ (1 + Leq)
Lz(Leq + Len)

α− Lz(Leq + Len)
.

When the non-strategic decision-dependent component is stationary—i.e., De(u) ≡ De for stationary distribution De—the
bound reduces to

∥u∗ − ups∥+ ∥x∗(u∗)− x∗(ups)∥ ≤ (1 + Leq)
LzLeq

α− LzLeq
,

and Assumption I.2 is no longer required.

Proof of Proposition I.4. First observe that

∥u∗ − ups∥+ ∥x∗(u∗)− x∗(ups)∥ ≤ (1 + Leq)∥u∗ − ups∥. (17)

Recall that
Gu′(u) = E

ξ∼De(u′)
∇uℓ(u, (x

∗(u′), ξ)).
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Next, since ℓ is α–strongly convex in u, we have that

α∥u∗ − ups∥2 ≤ ⟨Gups(u∗)−Gups(ups), u∗ − ups⟩
≤ ⟨Gups(u∗), u∗ − ups⟩
≤ ⟨Gups(u∗)−Gu∗(u∗) +Gu∗(u∗), u∗ − ups⟩
≤ ⟨Gu∗(u∗), u∗ − ups⟩+ ∥ E

ξ∼De(ups)
∇uℓ(u

∗, (x∗(ups), ξ))− E
ξ∼De(u∗)

∇uℓ(u
∗, (x∗(u∗), ξ))∥∥u∗ − ups∥

≤ ⟨Gu∗(u∗), u∗ − ups⟩+ Lz(Leq + Len)∥u∗ − ups∥2.

Now, since u∗ is optimal for minu L(u), we have that

0 ∈ Gu∗(u∗) +
d

dw

(
E

ξ∼De(w)
ℓ(u∗, (x∗(w), ξ))

) ∣∣∣
w=u∗︸ ︷︷ ︸

:=Q

+NU (u
∗).

By Lipschitz conitnuity of ℓ in z and of x∗(·), we have that ∥Q∥ ≤ Lz(Leq + Len). Therefore, combining the above results,
we have that

∥u∗ − ups∥ ≤ Lz(Leq + Len)

α− Lz(Leq + Len)

so that

∥u∗ − ups∥+ ∥x∗(u∗)− x∗(ups)∥ ≤ (1 + Leq)
Lz(Leq + Len)

α− Lz(Leq + Len)
,

as claimed.

Informative Toy Example: Implications of the Performative Gap in Quadratic Games. Figure 2 in the main paper
explores the sample complexity and performative gap tradeoff in terms of the equilibrium strategies. Indeed, if the reactivity
of the agents is small and the dependence of the cost for the decision-maker on the agents is also ”small”, then the
performatively stable equilibrium will be near the Stackelberg equlibrium. It is also natural to ask what the implications are
for the utility of the decision-maker. Here we provide a concrete example of Stackelberg games where the gap in utility
between the Stackelberg equilibrium and performative stable equilibrium is large or small.

Consider a quadratic game with a linear “tariff” ϕi(x, u):

f1(xi, x−i) =
1

2
x2i + bixix−i + cixi + ϕi(x, u) and ϕi(x, u) = ui fori = 1, 2

And let the decision-maker cost is something simple like

ℓ(x, u) = ∥u− ud∥2 + ∥x∗(u)− xd∥2

for some “desired” (ud, xd). Supposing the game constants are such that the game Jacobian is invertible, the Nash is given
by

ω(x, u) = (x1 + b1x2 + c1, x2 + b2x1 + c2) = (0, 0) =⇒ x∗ = −
[
1 b1
b2 1

]−1 [
c1
c2

]
Then no matter what u is the Nash equilibrium stays the same. And, we have that ups = u∗ = ud since x∗(u) is constant.
So not only are the performatively stable equilibrium and Stackelberg equilibrium “close” but the change in decision-maker
cost is also small (zero in this case).

Now, consider a quadratic game with a slightly different linear “tariff”: ϕi(x, u) = uixi + ci. Thus the Nash equilibrium is
given by

ω(x, u) = (x1 + b1x2 + u1, x2 + b2x1 + u2) = (0, 0) =⇒ x∗(u) = −
[
1 b1
b2 1

]−1

︸ ︷︷ ︸
:=A

[
u1
u2

]

Hence, if

∥A∥ ≤ 1

b1b2 − 1
max{1−

√
b1b2, 1 +

√
b1b2}
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is small x∗(u) does not change much if u does not change much. We again have that ups = ud for the performatively stable
equilibrium and for the Stackelberg equilibrium we have that

2(u− ud) + 2A⊤(Au− xd) = 0 =⇒ u∗ = (I +A⊤A)−1(ud +A⊤xd)

so that u∗ ̸= ups. Then ℓ(xps, ups) = ∥Aud − xd∥2 and

ℓ(x∗(u∗), u∗) = ∥(I +A⊤A)−1(ud +A⊤xd)− ud∥2 + ∥A(I +A⊤A)−1(ud +A⊤xd)− xd∥2.

We know that ℓ(xps, ups) ≥ ℓ(x∗(u∗), u∗) just from the basics of optimization. Depending on the size of A (i.e., the size
of the agent reactivity Leq = ∥A∥) the losses can be very close or very far apart. So in this case A determines both the
closeness of the equilibrium and the differences in losses.

If the decision-maker places more or less emphasis on the u term via a weighting term λ, then that can cause the decision-
makers utility to change more significantly. For example, consider (ud, xd) = ((1, 1), (1, 1)) for simplicity. And let
b1 = b2 = 0.5 and ℓλ(x, u) = λ∥u− ud∥2 + ∥x− xd∥2. Then ups = (1, 1). Then (relatively speaking) we have a small
change in both ℓ and x∗ when λ = 1:

ℓ1(x
ps, ups)− ℓ1(x

∗, u∗) = 1.71 and ∥x∗(ups)− x∗(u∗)∥2 = 0.72.

On the other hand, we have a large change in ℓ with a small change in x∗ when λ = 5:

ℓ5(x
ps, ups)− ℓ5(x

∗, u∗) = 22.67 and ∥x∗(ups)− x∗(u∗)∥2 = 0.19.

Thus, even in simple quadratic settings it is possible to get a variety of outcomes in terms of the decision-maker’s loss
depending on the reactivity of the agents’ (Leq) and how reactive the decision-maker’s loss is to changes in the agents’
behavior (Lz).

I.3. Naı̈ve Decision-Maker: Stationary Non-strategic Environment

Given the preceding technical lemma, we know prove Theorem 4.4. Let’s us restate it more formally.

Theorem I.5 (Formal Statement of Theorem 4.4). Suppose that Assumptions 2.1, 4.1, and 4.3 hold, that we have available
constants R > ∥x−1 − x∗(u0)∥2 and B > ∥u0 − ups∥2, and that we are in the regime where α > LzLeq so that there is a
unique performatively stable equilibrium. Further, suppose the decision-maker runs Algorithm 4 with Alg := RGM using
step-size η ≤ ᾱ

4L2
ℓ(1+L

2
eq)

where ᾱ := α− LzLeq, and the agents employ a ρ–contracting algorithm A with ρ ∈ [0, 1) and

σa ∈ (0,∞). Suppose the agents run their ρ-contracting algorithm stage-wise via Algorithm 2. In this case, set the epoch
length to

τ =

K∑
k=0

Tk =

⌈
1

1− ρ2
· log

(
2R̄

ϵτ

)⌉
+

K∑
k=1

⌈(
1

1− 2−kρ2

)
log(4)

⌉
, (18)

and tolerance ϵτ = η2σ2 where K =
⌈
1 + log2

(
ρ2c2σ2

a

(1−ρ2)ϵτ

)⌉
and

R̄ := R+
2c2σ2

a

1− ρ2
+ 6

(
L2
eq

(1− ρ2)2

(
4B +

4σ2

L2
ℓ(1 + L2

eq)

))
, (19)

where β = (1− ρ2). Then, the following estimate holds:

Et∥ut+1 − ups∥2 ≤
(
1− ᾱη

2

)t+1

∥u0 − ups∥2 + 4ησ2

ᾱ
.

Recall from Corollary G.5, that if the agents run stochastic gradient play in stages then we are able to characterize precisely
the number of iterations required to hit a particular specified error tolerance. This is where the epoch length in (41) is
derived.
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Proof of Theorem I.5. Define the following objects:

gt := ∇uℓ(ut, (A(xt−1, ut), ξ)), where ξ ∼ De;
Gt(ut) := E

ξ∼De

∇uℓ(ut, (A(xt−1, ut), ξ));

G⋆(ut) := E
ξ∼De

∇uℓ(ut, (x
∗(ut), ξ));

Gps(ut) := E
ξ∼De

∇uℓ(ut, (x
∗(ups), ξ)).

(20)

Also note that Et[gt] = Gt(ut)—i.e., the gradient estimate gt is an unbiased estimate of the time varying expected gradient
Gt—and

ups = argmin
u∈U

E
z∼D(ups)

ℓ(u, z) so that ⟨Gps(u
ps), u− ups⟩ ≥ 0 ∀ u ∈ U .

Fix two constants ν1, ν2 > 0 to be specified later. Noting that ut+1 is the minimizer of the 1-strongly convex function
u 7→ 1

2∥ut − ηgt − u∥2 over U , we deduce that

1

2
∥ut+1 − ups∥2 ≤ 1

2
∥ut − ηgt − ups∥2 − 1

2
∥ut − ηtgt − ut+1∥2.

Expanding the squares on the right hand side and combining terms yields

1

2
∥ut+1 − ups∥2 ≤ 1

2
∥ut − ups∥2 − ηt⟨gt, ut+1 − ups⟩ − 1

2
∥ut+1 − ut∥2

=
1

2
∥ut − ups∥2 − η⟨gt, ut − ups⟩ − 1

2
∥ut+1 − ut∥2 − η⟨gt, ut+1 − ut⟩.

Using the fact that Et[gt] = Gt(ut), we successively compute

1

2
Et∥ut+1 − ups∥2 ≤ 1

2
∥ut − ups∥2 − η⟨Etgt, ut − ups⟩ − 1

2
Et∥ut+1 − ut∥2 − ηEt⟨gt, ut+1 − ut⟩,

≤ 1

2
∥ut − ups∥2 − η⟨Gt(ut), ut − ups⟩ − 1

2
Et∥ut+1 − ut∥2 − ηEt⟨gt, ut+1 − ut⟩,

=
1

2
∥ut − ups∥2 − ηEt⟨G⋆(ut+1), ut+1 − ups⟩ − 1

2
Et∥ut+1 − ut∥2

+ η Et⟨gt −Gt(ut), ut − ut+1⟩︸ ︷︷ ︸
P1

+ηt Et⟨Gt(ut)−G⋆(ut+1), u
ps − ut+1⟩︸ ︷︷ ︸

P2

.

Recall that for any z, the loss ℓ(u, z) is α–strongly convex in u so that

⟨Gps(ut+1), ut+1 − ups⟩ ≥ ⟨Gps(ut+1)−Gps(u
ps), ut+1 − ups⟩ ≥ α∥ut+1 − ups∥2.

Therefore, adding and subtracting Gps(ut+1), we have that

Et⟨G⋆(ut+1), ut+1 − ups⟩ = Et⟨Gps(ut+1), ut+1 − ups⟩+ Et⟨G⋆(ut+1)−Gps(ut+1), ut+1 − ups⟩

Now, the second term is upper bounded as follows:

Et⟨G⋆(ut+1)−Gps(ut+1), ut+1 − ups⟩ ≤ LzLeq∥ut+1 − ups∥2.

Then, rearranging the above expression, we have that

1 + 2ηᾱ

2
Et∥ut+1 − ups∥2 ≤ 1

2
∥ut − ups∥2 − 1

2
Et∥ut+1 − ut∥2 + η(P1 + P2). (21)

Applying Young’s inequality to P1, we have that

P1 ≤ Et ∥gt −Gt(ut)∥2

2ν1
+
ν1Et∥ut+1 − ut∥2

2
≤ σ2

2ν1
+
ν1Et∥ut+1 − ut∥2

2
. (22)
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We have the following upper bound for P2:

P2 ≤ Et∥Gt(ut)−G⋆(ut+1)∥2

2ν2
+
ν2Et∥ups − ut+1∥2

2

≤ 2Et∥Gt(ut)−G⋆(ut)∥2 + 2Et∥G⋆(ut)−G⋆(ut+1)∥2

2ν2
+
ν2Et∥ups − ut+1∥2

2

≤
2Et∥Gt(ut)−G⋆(ut)∥2 + 2L2

ℓ(1 + L2
eq)∥ut − ut+1∥2

2ν2
+
ν2Et∥ups − ut+1∥2

2
.

The first term in the first fraction can be bounded as follows:

Et∥Gt(ut)−G⋆(ut)∥2 = Et∥ E
ξ∼De

∇uℓ(ut, (A(xt−1, ut), ξ))− E
ξ∼De

∇uℓ(ut, (x
∗(ut), ξ))∥2

≤ L2
ℓEt∥A(xt−1, ut)− x∗(ut)∥2.

(23)

This shows we have a time varying bias component in our gradient estimator. Here, we aim to show that Et ∥A(xt−1, ut)−
x∗(ut)∥2 ≤ ϵτ = η2σ2 where in each epoch agents are running a ρ contracting algorithms for τ steps. In order to
obtain the ϵτ target accuracy bound in epoch t, we need that the agents’ initial condition to be bounded at the start of this
epoch. To obtain a bound on the initial condition in expectation we need to perform an inductive argument to show that
E[∥xt−1 − x∗(ut)∥2] ≤ R̄ where R̄ is defined in (19). Let us suppose for the time that this bound holds for each t.

Recall that

τ =

K∑
k=0

Tk =

⌈
1

1− ρ2
· log

(
2R̄

ϵτ

)⌉
+

K∑
k=1

⌈(
1

1− 2−kρ2

)
log(4)

⌉

total iterations where K :=
⌈
1 + log2

(
ρ2c2σ2

a

(1−ρ2)ϵτ

)⌉
. In this case, we deduce that

P2 ≤ L2
ℓϵτ
ν2

+
2L2

ℓ(1 + L2
eq)∥ut − ut+1∥2

2ν2
+
ν2Et∥ups − ut+1∥2

2
.

Coming back to the bound in (37), we have that

1 + 2ηᾱ

2
Et∥ut+1 − ups∥2 ≤ 1

2
∥ut − ups∥2 − 1

2
Et∥ut+1 − ut∥2 + η

(
σ2

2ν1
+
ν1Et∥ut+1 − ut∥2

2

)
+ η

(
L2
ℓϵτ
ν2

+
2L2

ℓ(1 + L2
eq)∥ut − ut+1∥2

2ν2
+
ν2Et∥ups − ut+1∥2

2

)
so that

1 + 2ηᾱ− ην2
2

Et∥ut+1 − ups∥2 ≤ 1

2
∥ut − ups∥2 + ησ2

2ν1
+ η

L2
ℓϵτ
ν2

−
1− 2L2

ℓ(1 + L2
eq)ην

−1
2 − ην1

2
Et∥ut+1 − ut∥2.

Letting ν1 = η−1 − 2L2
ℓ(1+L

2
eq)

ᾱ and ν2 = ᾱ ensures that the last term on the right is zero. By our assumption that

η ≤ ᾱ
4L2

ℓ(1+L
2
eq)

we have that 1
η ≥ 4L2

ℓ(1+L
2
eq)

ᾱ so that ν1 ≥ 1
2η ; indeed, we claim that

1

η
−

2L2
ℓ(1 + L2

eq)

ᾱ
≥ 1

2η
.

Rearranging, this is equivalent to showing that

1− η
2L2

ℓ(1 + L2
eq)

ᾱ
≥ 1

2
.

Now we can lower bound the left-hand side as follows:

1− η
2L2

ℓ(1 + L2
eq)

ᾱ
≥ 1− ᾱ

4L2
ℓ(1 + L2

eq)

2L2
ℓ(1 + L2

eq)

ᾱ
= 1− 1

2
=

1

2
.
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That shows that claim. Hence we have that

1 + ηᾱ

2
Et∥ut+1 − ups∥2 ≤ 1

2
∥ut − ups∥2 + η2σ2 +

ϵτ
4(1 + L2

eq)

≤ 1

2
∥ut − ups∥2 +

(
1 +

1

4(1 + L2
eq)

)
η2σ2,

≤ 1

2
∥ut − ups∥2 + 2η2σ2,

where the second to last inequality holds since ϵτ = η2σ2. Thus, we have that

Et∥ut+1 − ups∥2 ≤ 1

1 + ηᾱ
∥ut − ups∥2 + 4

1 + ηᾱ
η2σ2

Recursively iterating the above expression, we have that

Et∥ut+1 − ups∥2 ≤ 1

1 + ηᾱ

(
1

1 + ηᾱ
(∥ut−1 − ups∥2 + 4

1 + ηᾱ
η2σ2

)
+

4

1 + ηᾱ
η2σ2

≤
(

1

1 + ηᾱ

)t+1

∥u0 − ups∥2 + 4η2σ2
t+1∑
s=1

(
1

1 + ηᾱ

)s
≤
(

1

1 + ηᾱ

)t+1

∥u0 − ups∥2 + 4η2σ2 1

ηᾱ

Given the choice of η ≤ ᾱ
4L2

ℓ
, we have that

Et∥ut+1 − ups∥2 ≤
(
1− ᾱη

2

)t+1

∥u0 − ups∥2 + 4ησ2

ᾱ
.

Bounding the initial condition via constructing the constant R̄. Recall from (29), that for each epoch t, the error
decomposition for the decision maker contains a term E ∥A(xt−1, ut)− x∗(ut)∥2. This means that we need a bound on the
per epoch tracking error which as noted above depends on the initial condition being bounded. Let us argue by induction
that the value of R̄ as defined in (19) is such that E[∥xt−1 − x∗(ut)∥2] ≤ R̄ as long as ∥x−1 − x∗(u0)∥2 ≤ R.

Consider ∥u0 − ups∥2 ≤ B and ∥x−1 − x∗(u0)∥2 ≤ R. Set ϵτ = η2σ2 throughout. We will construct a sequence R̄t that
determines the epoch length

τt =

⌈
1

1− ρ2
· log

(
2R̄t
ϵτ

)⌉
+

K∑
k=1

⌈(
1

1− 2−kρ2

)
log(4)

⌉

needed in order to hit ϵτ target accuracy given the per-epoch initial condition bound E ∥xt−1 − x∗(ut)∥2 ≤ R̄t. Our goal is
to determine R̄t inductively and then show that there is in fact R̄t ≡ R̄, i.e. an absolute bound based on problem constants.

Base Case. Starting with t = 0, the aim is to choose (R̄0, τ0) such that E ∥A(x−1, u0)−x∗(u0)∥2 = E ∥x0−x∗(u0)∥2 ≤ ϵτ .
Indeed, given that the agents run a ρ-contracting algorithm in stages for τ0 total iterations where

τ0 =

⌈
1

1− ρ2
· log

(
2R

ϵτ

)⌉
+

K∑
k=1

⌈(
1

1− 2−kρ2

)
log(4)

⌉

with R̄0 = R we have that

E ∥A(x−1, u0)− x∗(u0)∥2 = E ∥x0 − x∗(u0)∥2 ≤ ϵτ .
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Warm-up to Inductive Step. Let us examine the expected tracking error for the decision maker. For t = 1, we have that

1 + ηᾱ

2
E∥u1 − ups∥2 ≤ 1

2
∥u0 − ups∥2 + η2σ2 +

E ∥x0 − x∗(u0)∥2

4(1 + L2
eq)

≤ 1

2
∥u0 − ups∥2 + η2σ2 +

ϵτ
4(1 + L2

eq)

≤ 1

2
∥u0 − ups∥2 +

(
1 +

1

4(1 + L2
eq)

)
η2σ2,

≤ 1

2
∥u0 − ups∥2 + 2η2σ2,

which implies that

E[∥u1 − ups∥2] ≤ 1

1 + ηᾱ
∥u0 − ups∥2 + η2σ2

1 + ηᾱ
. (24)

More generally, from the above analysis, we have that

1 + ηᾱ

2
E∥ut+1 − ups∥2 ≤ 1

2
E ∥ut − ups∥2 + η2σ2 +

E ∥xt − x∗(ut)∥2

4(1 + L2
eq)

.

For t = 2, if E[∥x1 − x∗(u1)∥2|E1] ≤ ϵτ with E1 = {∥x0 − x∗(u1)∥2 ≤ R̄1}, we have that

1 + ηᾱ

2
E∥u2 − ups∥2 ≤ 1

2
E ∥u1 − ups∥2 + η2σ2 +

E ∥x1 − x∗(u1)∥2

4(1 + L2
eq)

≤ 1

2
E ∥u1 − ups∥2 +

(
1 +

1

4(1 + L2
eq)

)
η2σ2,

≤ 1

2
E ∥u1 − ups∥2 + 2η2σ2,

Hence, we need to select (R̄1, τ1) such that this holds. Here we appeal to the drift-to-noise analysis in Section 3. Shifting
indices in that analysis as appropriate for this setting, we have that

E ∥x0 − x∗(u1)∥2 ≤
(
1− 1− ρ2

2

)
∥x−1 − x∗(u0)∥2 +

2c2σ2
a

1− ρ2
+ 6

(
L2
eq∆

2
1

(1− ρ2)2

)

≤
(
1− 1− ρ2

2

)
R+

2c2σ2
a

1− ρ2
+ 6

(
L2
eq∆

2
1

(1− ρ2)2

)

≤ R+
2c2σ2

a

1− ρ2
+ 6

(
L2
eq∆

2
1

(1− ρ2)2

)
where ∆2

1 := E1 ∥u1 − u0∥2 and x−1 is the given initial joint action profile of the agents. Using (24), we have that

E ∥u1 − u0∥2 ≤ 2∥u0 − ups∥2 + 2E ∥u1 − ups∥2 ≤ 2B + 2

(
B +

4η2σ2

1 + ηᾱ

)
so that it suffices to set

R̄1 = R+
2c2σ2

a

1− ρ2
+ 6

(
L2
eq

(1− ρ2)2

(
4B + 16

ησ2

ᾱ

))
≥ R+

2c2σ2
a

1− ρ2
+ 6

(
L2
eq

(1− ρ2)2

(
4B + 8

ησ2

ᾱ

))
,

where we upper bounded 2η2σ2/(1 + ηᾱ) ≤ 2η2σ2
∑∞
s=1 1/(1 + ηᾱ)s ≤ 2ησ

2

ᾱ and also multiplied the variance term by
two (the reason for which will be come clear shortly). Moreover, note that η ≤ ᾱ/(4(Lℓ(1 + L2

eq)) and R̄1 ≥ R̄0 = R.

For t = 3, we have that

1 + ηᾱ

2
E∥u3 − ups∥2 ≤ 1

2
E ∥u2 − ups∥2 + η2σ2 +

E ∥x2 − x∗(u2)∥2

4(1 + L2
eq)
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and

E ∥x1 − x∗(u2)∥2 ≤
(
1− 1− ρ2

2

)
∥x−1 − x∗(u0)∥2 +

2c2σ2
a

1− ρ2
+ 6

(
L2
eq maxk≤2 ∆

2
k

(1− ρ2)2

)

≤ R+
2c2σ2

a

1− ρ2
+ 6

(
L2
eq maxk≤2 ∆

2
k

(1− ρ2)2

)
, where ∆2

k = E ∥uk − uk−1∥2.

This means we need a bound on ∆2
k for each k ≤ t− 1. Let’s examine the t = 3 case in which we have

E ∥u2 − u1∥2 ≤ 2E ∥u2 − ups∥2 + 2E ∥u1 − ups∥2

≤ 2

(
1

1 + ηᾱ
E ∥u1 − ups∥2 + 4

1 + ηᾱ
η2σ2

)
+

2

1 + ηᾱ
∥u0 − ups∥2 + 2 · 4η2σ2

1 + ηᾱ

≤ 2

(
1

1 + ηᾱ

(
1

1 + ηᾱ
∥u0 − ups∥2 + 4η2σ2

1 + ηᾱ

)
+

4

1 + ηᾱ
η2σ2

)
+ 2

(
1

1 + ηᾱ
∥u0 − ups∥2 + 4η2σ2

1 + ηᾱ

)
= 2B

2∑
s=1

1

(1 + ᾱη)s
+ 8η2σ2

2∑
s=1

1

(1 + ᾱη)s
+ 2

4η2σ2

(1 + ᾱη)

≤ 4B +
8ησ2

ᾱ
+

8η2σ2

(1 + ᾱη)

≤ 4B +
16ησ2

ᾱ

where the second inequality holds by (24) (since we showed that E ∥x0 − x∗(u0)∥2 ≤ ϵτ = η2σ2) and ᾱη ≤ ᾱ2/(4L2
ℓ).

For good measure, let us consider t = 3. Here, we need to bound maxk≤3 E ∥uk − uk−1∥2 which in turn means we need to
bound the following term:

E ∥u3 − u2∥2 ≤ 2E ∥u3 − ups∥2 + 2E ∥u2 − ups∥2

≤ 2

(
1

1 + ηᾱ
E ∥u2 − ups∥2 + 4η2σ2

1 + ηᾱ

)
+ 2E ∥u2 − ups∥2

≤ 2

1 + ηᾱ

(
1

1 + ηᾱ
E ∥u1 − ups∥2 + 4η2σ2

1 + ηᾱ

)
+

2η2σ2

1 + ηᾱ
+

2

1 + ηᾱ
E ∥u1 − ups∥2 + 2 · 4η2σ2

1 + ηᾱ

≤ 2

(
1

1 + ηᾱ

)3

∥u0 − ups∥2 + 2 · 4
3∑
s=1

η2σ2

(1 + ηᾱ)s
+ 2

(
1

1 + ηᾱ

)2

∥u0 − ups∥2 + 2 · 4
2∑
s=1

η2σ2

(1 + ηᾱ)s

≤ 4B + 16
ησ2

ᾱ

so that we set R̄2 = R+
2c2σ2

a

1−ρ2 + 6
(

L2
eq

(1−ρ2)2

(
4B + 16ησ

2

ᾱ

))
= R̄1. We claim at this point that R̄t ≡ R̄ for all t, and we

argue this claim holds via induction.

Induction Step. For any t, to obtain a bound on the E ∥xt−1 − x∗(ut)∥2, we simply observe that

E ∥ut − ut−1∥2 ≤ 2

(
1

1 + ηᾱ

)t
∥u0 − ups∥2 + 2

t∑
s=1

4η2σ2

(1 + ηᾱ)s
+ 2

(
1

1 + ηᾱ

)t−1

∥u0 − ups∥2 + 2

t−1∑
s=1

4η2σ2

(1 + ηᾱ)s

≤ 4B + 16
ησ2

ᾱ
for any t.

Moreover, we have that maxk≤t E ∥uk − uk−1∥2 ≤ 4B + 16ησ
2

ᾱ for all t. Now since η ≤ ᾱ/(4L2
ℓ(1 + L2

eq), setting

R̄ := R+
2c2σ2

a

1− ρ2
+ 6

(
L2
eq

(1− ρ2)2

(
4B +

4σ2

L2
ℓ(1 + L2

eq)

))
results in the expected tracking error being bounded by ϵτ = η2σ2 as claimed. This completes the proof.
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This proof utilizes an arbitrary ρ-contracting stochastic method for the agents. It useful to see what the statement is for some
particular methods. Let us start with stochastic gradient play.

Proposition I.6. Suppose that Assumptions 2.1, 4.1, and 4.3 hold, that we have available a constant R > ∥x0 − x∗(u0)∥,
and that we are in the regime where α > LzLeq so that there is a unique performatively stable equilibrium. Further, suppose
the decision-maker runs Algorithm 4 with Alg := RGM using step-size η ≤ ᾱ/(4L2

ℓ(1 +L2
eq)) where ᾱ := α−LzLeq, and

the agents employ a stochastic gradient player as A with ρ ∈ [0, 1) and σa ∈ (0,∞). Suppose the agents run stochastic
gradient play stage-wise via Algorithm 2. Set the epoch length to

τ =

K∑
k=0

Tk =

⌈(
1 +

2L2
a

µ2

)
log

(
2R̄

ϵτ

)⌉
+

K∑
k=1

⌈(
1 +

2k+1L2
a

µ2

)
log(4)

⌉
, (25)

and tolerance ϵτ = η2σ2 where K =
⌈
1 + log2(

σ2
a

ϵτL2
a
)
⌉

and

R̄ := R+
4γσ2

a

µ
+ 6

(
4L2

eq

(µγ)2

(
4B +

4σ2

L2
ℓ(1 + L2

eq)

))
.

Then the following estimate holds:

Et∥ut − ups∥2 ≤
(
1− ᾱη

2

)t
∥u0 − ups∥2 + 4ησ2

ᾱ
.

Notice the only change is the constants for the stage-based algorithm.

As noted in the main it possible to employ any number of stage-based methods from stochastic optimization in order to
obtain convergence to an ε-performatively stable equilibrium. The following is a more formal statement of Corollary 4.5
from the main body.

Corollary I.7 (Formal Statement of Corollary 4.5). Under the assumptions of Theorem 4.4, consider running the stochastic
repeated gradient method in k = 0, . . . ,K super-epochs, for Tk epochs each with constant step-size ηk = 2−kη0, and such
that the last iterate of each epoch k is used as the first iterate in stage k + 1. Fix a target accuracy ε > 0 and suppose the
decision-maker has B ≥ ∥u0 − ups∥. Set η0 := ᾱ/(4L2

ℓ(1 + L2
eq)),

T0 =

⌈
2

ᾱη0
log

(
2B2

ε

)⌉
, Tk =

⌈
2 log(4)

ᾱηk

⌉
for k ≥ 1, and K =

⌈
1 + log2

(
σ2

L2
ℓ(1 + L2

eq)ε

)⌉
.

Then E ∥uT − ups∥2 ≤ ε and E ∥xT − x∗(ups)∥2 ≤ 2(ϵτ + Leqε) in a total number of epochs

T =

K∑
k=1

Tk ≲ O

(
L2
ℓ(1 + L2

eq)

ᾱ2
log

(
2B2

ε

)
+

σ2

ᾱ2ε

)
.

Proof. The proof follows immediately from applying Lemma E.3 with A ≡ RGM in Algorithm 2. Indeed, we set constants

ψ(η) =
ᾱη

2
, C = 1, D =

4σ2

ᾱ
, η0 =

ᾱ

4L2
ℓ(1 + L2

eq)

so that

T =

K∑
k=0

Tk =

⌈
8L2

ℓ(1 + L2
eq)

ᾱ2
· log

(
2R2

ε

)⌉
+

K∑
k=1

⌈
8L2

ℓ(1 + L2
eq) log(4)

2−k · ᾱ2

⌉
and K is given as in the corollary statement. Applying Lemma E.3 gives us that E ∥uT − ups∥2 ≤ ε in T total stages. Then

E ∥xT − x∗(ups)∥2 ≤ 2E ∥xT − x∗(uT )∥2 + 2E ∥x∗(uT )− x∗(ups)∥2 ≤ 2(ϵτ + Leqε),

where ϵτ is given in the Theorem I.5.
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I.3.1. HIGH PROBABILITY RESULTS FOR NAÏVE DECISION-MAKER

In the preceding analysis we utilized the expected tracking error bounds for the agents problem from the oblivious setting
(Section 3, Appendix H). These results hold only in expectation meaning that the decision-maker would need to be able
to deploy ut several times to be confidence in each epoch the results hold in the practice. On the other hand, it is more
reasonable to leverage the high probability results from Appendix H.3 since these convergence results state that with
probability (1 − δ) that a single deployment of ut in epoch t ensures that ∥xt − x∗t ∥2 ≤ ϵ log(e/δ). Let us state such
a theorem. Indeed, if the decision-maker deploys their algorithms in real-time with irreversible drift, high-probability
efficiency results are desired in order to characterize the performance of the algorithm if it were executed only once.

In addition to Assumption H.7 for the agents, we require the following tail assumptions on the equilibrium drift and gradient
noise for the decision-maker.

Assumption I.8 (Sub-Gaussian drift and noise). There exist constants ∆, σ > 0 such that the following two conditions hold
for all t ≥ 0:

(a) The drift ∆2
t is sub-exponential conditioned on Ft with parameter ∆2:

E[exp(λ∆2
t )| Ft] ≤ exp(λ∆2) for all 0 ≤ λ ≤ ∆2

(b) The gradient noise ϕt is norm sub-Gaussian conditioned on Ft with parameter σ2:

P(∥ϕt∥ ≥ ζ| Ft) ≤ 2 exp(−2ζ2/σ2) for all ζ > 0.

Note that Assumption H.7 implies Assumption H.3 with the same constants ∆ and σ.

Theorem I.9. Suppose that Assumptions 2.1, 4.1, 4.3, H.7, and I.8 all hold, there exists b, B > 0 such that bB ⊆ U ⊆ BB
where B = {u ∈ Rd| ∥u∥ ≤ 1}, we have available constants Rx > ∥x−1 − x∗(u0)∥2 and Ru > ∥u0 − ups∥2, and we
are in the regime where α > LzLeq so that there is a unique performatively stable equilibrium. Further, suppose the
decision-maker runs Algorithm 4 with Alg := RGM using step-size η ≤ ᾱ/(4L2

ℓ(1 +L2
eq)) where ᾱ := α−LzLeq, and the

agents employ stochastic gradient play (via Algorithm 2) A with σa ∈ (0,∞). There exists an absolute constant c̃ > 0 such
that for any specified t ∈ N and δ ∈ (0, 1), the equilibrium tracking error across epochs satisfies ∥xt − x⋆t ∥2 ≲ ϵτ log(e/δ)
with probability at least 1− δ where ϵτ = η2σ2, the epoch length is

τ =

K∑
k=0

Tk =

⌈(
1 +

2L2
a

µ2

)
log

(
2R̄

ϵτ

)⌉
+

K∑
k=1

⌈(
1 +

2k+1L2
a

µ2

)
log(4)

⌉
, (26)

with K =
⌈
1 + log2(

σ2
a

ϵτL2
a
)
⌉

and

R̄ := Rx +

(
32(c̃σa)

2γ

µ
+ 20

(
2LeqB

µγ

)2
)
log

(
e

δx

)
so that the following estimate holds with probability at least (1− δ)3:

∥ut − ups∥2 ≤
(
1− ηᾱ

2

)t
∥u0 − ups∥2 +

(
(16c̃+ 1)ησ2

ᾱ

(
1 +

1

2(1 + L2
eq)

))
log2

(e
δ

)
,

The proof of this theorem follows Theorem I.5, replacing the expected bounds on the equilibrium tracking error for the
agent initializations—i.e., E ∥xt−1 − x⋆t ∥2—with high probability statements. Analogous statements to Proposition I.6 and
Corollary I.7 hold as well in this high probability setting, simply by replacing the appropriate constants.

Below, let us highlight the key steps.

Proof of Theorem I.9. Recall the gradient definitions in (20) from the proof of Theorem I.5. Fix two constants ν1, ν2 > 0 to
be specified later. Noting that ut+1 is the minimizer of the 1-strongly convex function u 7→ 1

2∥ut − ηgt − u∥2 over U , we
deduce that

1

2
∥ut+1 − ups∥2 ≤ 1

2
∥ut − ηgt − ups∥2 − 1

2
∥ut − ηtgt − ut+1∥2.
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Expanding the squares on the right hand side and combining terms yields

1

2
∥ut+1 − ups∥2 ≤ 1

2
∥ut − ups∥2 − ηt⟨gt, ut+1 − ups⟩ − 1

2
∥ut+1 − ut∥2

=
1

2
∥ut − ups∥2 − η⟨gt, ut − ups⟩ − 1

2
∥ut+1 − ut∥2 − η⟨gt, ut+1 − ut⟩.

Using the fact that Et[gt] = Gt(ut), we successively compute

1

2
∥ut+1 − ups∥2 ≤ 1

2
∥ut − ups∥2 − η⟨gt, ut − ups⟩ − 1

2
∥ut+1 − ut∥2 − ηEt⟨gt, ut+1 − ut⟩,

≤ 1

2
∥ut − ups∥2 − η⟨Gt(ut), ut − ups⟩ − 1

2
∥ut+1 − ut∥2 − η⟨gt, ut+1 − ut⟩,

=
1

2
∥ut − ups∥2 − η⟨G⋆(ut+1), ut+1 − ups⟩ − 1

2
∥ut+1 − ut∥2

+ η ⟨gt −Gt(ut), ut − ut+1⟩︸ ︷︷ ︸
P1

+ηt ⟨Gt(ut)−G⋆(ut+1), u
ps − ut+1⟩︸ ︷︷ ︸

P2

.

Recall that for any z, the loss ℓ(u, z) is α–strongly convex in u so that

⟨Gps(ut+1), ut+1 − ups⟩ ≥ ⟨Gps(ut+1)−Gps(u
ps), ut+1 − ups⟩ ≥ α∥ut+1 − ups∥2.

Therefore, adding and subtracting Gps(ut+1), we have that

⟨G⋆(ut+1), ut+1 − ups⟩ = ⟨Gps(ut+1), ut+1 − ups⟩+ ⟨G⋆(ut+1)−Gps(ut+1), ut+1 − ups⟩

Now, the second term is upper bounded as follows:

⟨G⋆(ut+1)−Gps(ut+1), ut+1 − ups⟩ ≤ LzLeq∥ut+1 − ups∥2.

Then, rearranging the above expression, we have that

1 + 2ηᾱ

2
∥ut+1 − ups∥2 ≤ 1

2
∥ut − ups∥2 − 1

2
∥ut+1 − ut∥2 + η(P1 + P2). (27)

Applying Young’s inequality to P1 and invoking Assumption I.8, we have that

P1 ≤ ∥gt −Gt(ut)∥2

2ν1
+
ν1∥ut+1 − ut∥2

2
≤ ∥ϕt∥2

2ν1
+
ν1∥ut+1 − ut∥2

2
. (28)

We have the following upper bound for P2:

P2 ≤ ∥Gt(ut)−G⋆(ut+1)∥2

2ν2
+
ν2∥ups − ut+1∥2

2

≤ 2∥Gt(ut)−G⋆(ut)∥2 + 2∥G⋆(ut)−G⋆(ut+1)∥2

2ν2
+
ν2∥ups − ut+1∥2

2

≤
2∥Gt(ut)−G⋆(ut)∥2 + 2L2

ℓ(1 + L2
eq)∥ut − ut+1∥2

2ν2
+
ν2∥ups − ut+1∥2

2
.

The first term in the first fraction can be bounded as follows:

∥Gt(ut)−G⋆(ut)∥2 ≤ L2
ℓ∥A(xt−1, ut)− x∗(ut)∥2. (29)

This shows there is a time varying bias component in the gradient estimator. Here, we need to show that ∥A(xt−1, ut)−
x∗(ut)∥2 ≤ ϵτ log(e/δx) with probability 1− δx for any δx ∈ [0, 1].

This is a good point to lay out the proof structure from here forward. Define the events

Et = {∥A(xt−1, ut)− x∗(ut)∥2 ≤ ϵτ log(e/δx)} and E0 = {∥xt−1 − x∗(ut)∥2 ≤ R̄},
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where we will specify what R̄ is shortly. The aim here is then to lower bound

Pr(Et) = Pr(Et|E0) Pr(E0).

We know from the analysis of ρ contracting algorithms, that within a τ -length epoch conditioned on E0, we will have
Pr(Et|E0) ≥ 1− δx where τ is defined with respect to R̄. Hence, we need to bound the probability of the initial condition
event E0. This is where we use the high probability tracking error bound analysis from Appendix H.3. Indeed, for some
absolute constant cx, with probability 1− δx, we have that

∥xt−1 − x∗(ut)∥2 ≤
(
1− µγ

4

)t
∥x−1 − x∗(u0)∥2 +

(
32(cxσa)

2γ

µ
+ 20

(
2LeqB

µγ

)2
)
log

(
e

δx

)
, (30)

where we have bounded the drift ∥x∗(ut)− x∗(ut−1)∥ ≤ Leq∥ut − ut−1∥ ≤ 2LeqB due to the fact that ut ∈ U ⊆ BB for
all t Immediately7, we can see that we can set

R̄ := Rx +

(
32(cxσa)

2γ

µ
+ 20

(
2LeqB

µγ

)2
)
log

(
e

δx

)
.

Now, coming back to the analysis of ∥ut − ups∥, we now have that Pr(Et) = Pr(Et|E0) Pr(E0) ≥ (1− δx)
2. In this case,

we deduce that

P2 ≤ L2
ℓϵτ log(e/δ)

ν2
+

2L2
ℓ(1 + L2

eq)∥ut − ut+1∥2

2ν2
+
ν2∥ups − ut+1∥2

2
.

Coming back to the bound in (37), we have that

1 + 2ηᾱ

2
∥ut+1 − ups∥2 ≤ 1

2
∥ut − ups∥2 − 1

2
∥ut+1 − ut∥2 + η

(
∥ϕt∥2

2ν1
+
ν1∥ut+1 − ut∥2

2

)
+ η

(
L2
ℓϵτ log(e/δ)

ν2
+

2L2
ℓ(1 + L2

eq)∥ut − ut+1∥2

2ν2
+
ν2∥ups − ut+1∥2

2

)

so that

1 + 2ηᾱ− ην2
2

∥ut+1 − ups∥2 ≤ 1

2
∥ut − ups∥2 + ησ2

2ν1
+
ηL2

ℓϵτ log(
e
δ )

ν2
−

1− 2L2
ℓ(1 + L2

eq)ην
−1
2 − ην1

2
∥ut+1 − ut∥2.

Letting ν1 = η−1 − 2L2
ℓ(1 + L2

eq)/ᾱ and ν2 = ᾱ ensures that the last term on the right is zero. By the assumption
η ≤ ᾱ/(4L2

ℓ(1 + L2
eq)), we have that 1

η ≥ 4L2
ℓ(1 + L2

eq)/ᾱ so that ν1 ≥ 1
2η . Hence we have that

1 + ηᾱ

2
∥ut+1 − ups∥2 ≤ 1

2
∥ut − ups∥2 + η2∥ϕt∥2 +

ϵτ log(e/δx)

4(1 + L2
eq)

so that

∥ut+1 − ups∥2 =
1

1 + ηᾱ
∥ut − ups∥2 + 2η2

1 + ηᾱ
∥ϕt∥2 +

1

1 + ηᾱ

ϵτ log(e/δx)

4(1 + L2
eq)

≤
(
1− ηᾱ

2

)
∥ut − ups∥2 + 2η2∥ϕt∥2 +

1

1 + ηᾱ

ϵτ log(e/δx)

4(1 + L2
eq)

.

(31)

Under Assumption I.8, there exists an absolute constant c̃ ≥ 1 such that ∥ϕt∥2 is sub-exponential conditioned on Ft with
parameter c̃σ2 and ϕt is mean-zero sub-Gaussian conditioned on Ft with parameter c̃σ for all t (cf. Lemma 3 from Jin et al.
(2019)). Assumption I.8 also implies that ∆2

t is sub-exponential conditioned on Ft with parameter ∆2.

7Note that we could reduce this term by more specifically bounding
(
1− µγ

4

)t ∥x−1 − x∗(u0)∥2 thereby allowing R̄ to be a function
of the current iteration t instead of using the fixed bound ∥x−1 − x∗(u0)∥2 < Rx.
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Given (31), we apply Proposition H.8 with

Vt = ∥ut − ups∥2, Xt = 2η2∥ϕt∥2 +
1

1 + ηᾱ

ϵτ log(
e
δx
)

4(1 + L2
eq)
, αt = 1− ηᾱ

2
, νt = 2c̃η2σ2 +

1

1 + ηᾱ

ϵτ log(
e
δx
)

4(1 + L2
eq)
,

Dt = 0, and κt = 0. This yields the estimate

E[exp(λ∥ut+1 − ups∥2)] ≤ exp

(
λ

(
2c̃η2σ2 +

1

1 + ηᾱ

ϵτ log(
e
δx
)

4(1 + L2
eq)

))
E
[
exp

(
λ
(
1− ηᾱ

2

)
∥ut − ups∥2

)]
, (32)

for all

0 ≤ λ ≤ 1

2(2η2c̃σ2 + 1
1+ηᾱ

ϵτ log(e/δx)
4(1+L2

eq)
)
. (33)

Since
(
1− ηᾱ

2

)
∈ (0, 1] and Vt is a non-negative random variable (almost surely), Jensen’s inequality implies that

E[exp(λVt+1)] ≤ exp (λνt)E
[
exp (λVt)

(1− ηᾱ
2 )
]

≤ exp (λνt)E [exp (λVt)]
(1− ηᾱ

2 ) .

Iterating this expression, we have that

E [exp(λVt)] ≤ exp

((
2c̃η2σ2 +

1

1 + ηᾱ

ϵτ log(
e
δx
)

4(1 + L2
eq)

)
t−1∑
s=0

(
1− ηᾱ

2

)s)
(E[exp(λV0)])(1−

ηᾱ
2 )t

= exp(λν) exp

(
λ

((
1− ηᾱ

2

)t
V0 +

(
2c̃η2σ2 +

1

1 + ηᾱ

ϵτ log(
e
δx
)

4(1 + L2
eq)

)
t−1∑
s=1

(
1− ηᾱ

2

)s)

≤ exp

(
λ

((
1− ηᾱ

2

)t
V0 +

(
2η2c̃σ2 +

1

1 + ηᾱ

ϵτ log(
e
δx
)

4(1 + L2
eq)

)
t−1∑
s=0

(
1− ηᾱ

2

)s)

≤ exp

(
λ

((
1− ηᾱ

2

)t
V0 +

(
4c̃ησ2

ᾱ
+

2

(ηᾱ)2
ϵτ log(

e
δx
)

4(1 + L2
eq)

))

for all λ satisfying (33), where the equality holds since ∥u0 − ups∥2 is a constant. Recall that c̃ ≥ 1 and ηᾱ ≤ 1 so that

4ησ2

ᾱ
+

2

(ηᾱ)2
ϵτ log(

e
δx
)

4(1 + L2
eq)

≤ ν :=
16c̃ησ2

ᾱ
+

2

(ηᾱ)2
ϵτ log(

e
δx
)

4(1 + L2
eq)

and

1

ᾱ
=

ᾱ

16c̃ησ2 + 2
η2ᾱ

ϵτ log( e
δx

)

4(1+L2
eq)

≤ min

 ᾱ

16 · c̃2ησ2
a

,
1

2c̃η2σ2 + 2
ηᾱ

ϵτ log( e
δx

)

4(1+L2
eq)


Hence, we have that

E
[
exp

(
λ

(
∥ut − ups∥2 −

(
1− ηᾱ

2

)t
∥u0 − ups∥2

))]
≤ exp(λν) ∀ 0 ≤ λ ≤ 1

ν
.

Rewriting this expression, we have that

E
[
exp

(
λ
(
∥ut − ups∥2 −

(
1− ηᾱ

2

)t ∥u0 − ups∥2
))]

exp(λν)
≤ 1.
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Applying Markov’s inequality, we have that

Pr

(
exp

(
λ

(
∥ut − ups∥2 −

(
1− ηᾱ

2

)t
∥u0 − ups∥2

))
≥ exp(λν)

δu

)

≤
E
[
exp

(
λ
(
∥ut − ups∥2 −

(
1− ηᾱ

2

)t ∥u0 − ups∥2
))]

exp(λν)/δu
≤ δu.

Therefore, setting λ = 1
ν , with probability 1− δu, we have that

∥ut − ups∥2 ≤
(
1− ηᾱ

2

)t
∥u0 − ups∥2 +

(
16c̃ησ2

ᾱ
+

2

(ηᾱ)2
ϵτ log(

e
δx
)

4(1 + L2
eq)

)
log

(
e

δu

)
, (34)

conditioned on the event Et holding. Setting ϵτ = η2σ2 (34) becomes

∥ut − ups∥2 ≤
(
1− ηᾱ

2

)t
∥u0 − ups∥2 +

(
(16c̃+ 1)ησ2

ᾱ

(
1 +

1

2(1 + L2
eq)

))
max

{
1, log

(
e

δx

)}
log

(
e

δu

)
, (35)

Then all together we have we have that (35) holds with probability (1− δu)(1− δx)
2. With δu = δx = δ for some δ ∈ [0, 1]

the claim holds.

I.3.2. BOUNDING THE TIME TO THE LOW DRIFT-TO-NOISE REGIME IN EXPECTATION

Reflecting back to Figure 3, the target accuracy can be better optimized if the agents switch their step-size to the optimal γ⋆
once in the low drift-to-noise regime. Hence, it is interesting to characterize the time T after which maxk≤T E ∥uk−1−uk∥2
ensures the agents are in the low drift-to-noise regime in expectation.

The following is the formal statement of Proposition 4.6.

Proposition I.10. Under the assumptions of Corollary I.7, the estimate maxk≤T E ∥uk − uk−1∥2 ≲
(

µ2σa
4·
√
3LeqL2

a

)2
holds

after T =
∑K
k=1 Tk ≲ O

(
L2

ᾱ2 log
(
2B2

ε

)
+ σ2

ᾱ2ε

)
epochs where ε = 1

6

(
µ2σa/(4

√
3 · LeqL

2
a)
)2

.

Once in this region the agents are naturally incentivized to optimize their learning rates (i.e., selecting γ⋆) as it will enable
them to more effectively stabilize the learning process.

Proof. We aim to show that

max
t

E ∥ut − ut−1∥2 ≤

(
µ2σa

4
√
3 · LeqL2

a

)2

.

Let us first bound the sequence of differences for any particular t. Observe that

∥ut − ut−1∥2 ≤ 2(∥ut − ups∥2 + ∥ut−1 − ups∥2) for any t ≥ 1.

Choose (ε, T ) such that ∥uT − ups∥2 ≤ ε. Then, we know that since uT+1 is an update from the (K + 1)-th stage, we have
that

E ∥uT+1 − ups∥2 ≤
(
1− ᾱη

2

)
E ∥uT − ups∥2 + 4η2Kσ

2

1 + ᾱηK+1

≤ ε+
4σ2

1 + ᾱ2

2K+1·4·L2
ℓ(1+L

2
eq)

ᾱ2

22K(4 · L2
ℓ(1 + L2

eq))
2

≤ ε+
4σ2 · 2K+1 · 4 · L2

ℓ(1 + L2
eq)

ᾱ2

ᾱ2

22K(4 · L2
ℓ(1 + L2

eq))
2

≤ ε+
2 · 4σ2

1

1

2K · 4 · L2
ℓ(1 + L2

eq)

≤ ε+
4σ2

1

L2
ℓ(1 + L2

eq)ϵ

σ2 · 4 · L2
ℓ(1 + L2

eq)

≤ 2ε
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Hence, by setting ε := 1
6

(
µ2σa

4
√
3·LeqL2

a

)2
, we have that

E ∥uT+1 − uT ∥2 ≤

(
µ2σa

4
√
3 · LeqL2

a

)2

.

This holds for any T . Thus by setting

T =

K∑
k=1

Tk ≲ O

(
L2
ℓ(1 + L2

eq)

ᾱ2
log

(
2B2

ϵ

)
+

σ2

ᾱ2ϵ

)
.

= O

(
L2
ℓ(1 + L2

eq)

ᾱ2
log

(
12B2 · (4

√
3 · LeqL

2
a)

2

(µ2σa)2

)
+

6σ2(4
√
3 · LeqL

2
a)

2

ᾱ2(µ2σa)2

)

we have that the drift-to-noise ratio is the low regime in expectation.

I.3.3. NAÏVE DECISION-MAKER: DETERMINISTIC AGENT ALGORITHMS

Additionally, agents may run some deterministic algorithm. In this case the agents do not need to run a stage-wise algorithm
since they do not introduce the additional bias due to stochasticity of their algorithm into the decision-makers problem.

Proposition I.11. Suppose that Assumptions 2.1, 4.1, and 4.3 hold, that

sup
(u,x)∈U×X

E[∥∇uℓ(u, x+ ξ)∥] ≤ Lu,

that we have available a constant R > ∥x0 − x∗(u0)∥, and that we are in the regime where α > LzLeq so that there is a
unique performatively stable equilibrium. Further, suppose the decision-maker runs Algorithm 4 with Alg := RGM using
step-size η ≤ ᾱ

4L2
ℓ(1+L

2
eq)

where ᾱ := α − LzLeq, and the agents employ a deterministic ρ-contracting algorithms (i.e.
σa = 0). Let the epoch length be given by

τ ≥ log

(
2L2

ℓ

ᾱησ2

(
ρt−1R+

ηLeqLu

1− ρ

)2
)

1

log(1/ρ2)
.

Then the following estimate holds:

Et∥ut+1 − ups∥2 ≤
(
1− ᾱη

2

)t
∥u0 − ups∥2 + 4ησ2

ᾱ
.

To prove this proposition, we need a technical lemma on the contractive deterministic dynamics.

Technical Lemma. For both the naı̈ve and strategic settings, we will need the following technical lemma on the behavior
of the stochastic agents play. Recall that in each epoch t the agents initialize their algorithm at x0t := xτt−1 and that, by an
abuse of notation, x0 = x00.

Recall that when the agents’ algorithms are deterministic, Definition 2.3 reduces to ∥xk+1
t −x∗(ut)∥2 ≤ ρ2∥xkt −x∗(ut)∥2,

so that
∥xk+1

t − x∗(ut)∥ ≤ ρ∥xkt − x∗(ut)∥.

The following lemma will be used in the proof of Theorem I.5 when the agents are deterministic.

Lemma I.12 (Deterministic Agent Contraction). Suppose that the decision-maker is running Algorithm 4 with Alg := RGM
using step-size η and under the assumption that sup(u,x)∈U×X ∥∇uℓ(u, x)∥ ≤ Lu. Further, suppose agents use a ρ-
contracting update (Definition 2.3) with ρ ∈ [0, 1) and σa = 0. Under Assumption 2.1, the following bound holds:

∥xτt (ut)− x∗(ut)∥ ≤ ρτ
(
ρt−1∥x0 − x∗(u0)∥+

ηLeqLu

1− ρ

)
.
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Proof. Given Definition 2.3, we have that

∥xτt (ut)− x∗(ut)∥ ≤ ρ∥xτ−1
t (ut)− x∗(ut)∥.

Iterating this expression we have that

∥xτt (ut)− x∗(ut)∥ ≤ ρτ∥xτt−1(ut−1)− x∗(ut)∥

Adding and subtracting appropriate terms we have that

∥xτt (ut)− x∗(ut)∥ ≤ ρτ∥xτt−1(ut−1)− x∗(ut−1) + x∗(ut−1)− x∗(ut)∥
≤ ρτ∥xτt−1(ut−1)− x∗(ut−1)∥+ ρτLeq∥ut−1 − ut∥

Continuing in this fashion we have that

∥xτt (ut)− x∗(ut)∥ ≤ ρτ∥xτt−1(ut−1)− x∗(ut−1)∥+ ρτLeq∥ut−1 − ut∥
≤ ρτ (ρτ∥xτt−2(ut−2)− x∗(ut−2)∥+ ρτLeq∥ut−2 − ut−1∥) + ρτLeq∥ut−1 − ut∥

≤ ρτρt−1∥x0 − x∗(u0)∥+ Leqρ
τ

t∑
s=1

ρs∥ut−s − ut−s−1∥

≤ ρτρt−1∥x0 − x∗(u0)∥+ LeqLuη
ρτ

1− ρ

where in the second to last inequality we use the fact that ρτ ≤ ρ for any τ ≥ 1, and in the last inequality we use the fact
that ut = ut−1 − η∇uℓ(ut−1, zt−1) and sup(u,x)∈U×X ∥∇uℓ(u, x)∥ ≤ Lu.

Proof of Deterministic Case. Now we are ready to prove the deterministic agent case.

Proof of Proposition I.11. The proof is the same as for Theorem I.5 up to bounding the bias due to the agents updates.

Given our assumption on the deterministic contractive dynamics of the followers, by Lemma I.12, we have that

Et∥Gt(ut)−Gps(ut)∥2 ≤ LℓEt∥A(xt−1, ut)− x∗(ut)∥2

≤ L2
ℓρ

2·τ
(
ρt−1∥x0 − x∗(u0)∥+

ηLeqLu

1− ρ

)2

≤ L2
ℓρ

2·τ
(
ρ∥x0 − x∗(u0)∥+

ηLeqLu

1− ρ

)2

︸ ︷︷ ︸
:=C2

Therefore

P2 ≤ L2
ℓ

ν2

(
2ρ2τC2

)
+

2L2
ℓ(1 + L2

eq)∥ut − ut+1∥2

2ν2
+
ν2Et∥ups − ut+1∥2

2
.

Coming back to the bound in (37), we have that

1 + 2ηᾱ

2
Et∥ut+1 − ups∥2 ≤ 1

2
∥ut − ups∥2 − 1

2
Et∥ut+1 − ut∥2 + η

(
σ2

2ν1
+
ν1Et∥ut+1 − ut∥2

2

)
+ η

(
L2
ℓ

ν2

(
2ρ2τC2

)
+
L2
ℓ(1 + L2

eq)Et ∥ut − ut+1∥2

ν2
+
ν2Et∥ups − ut+1∥2

2

)
,

so that

1 + 2ηᾱ− ην2
2

Et∥ut+1 − ups∥2 ≤ 1

2
∥ut − ups∥2 + ησ2

2ν1
+ η

2L2
ℓρ

2τC2

ν2

−
1− 2L2

ℓ(1 + L2
eq)ην

−1
2 − ην1

2
Et∥ut+1 − ut∥2.
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Letting ν1 = η−1 − 2L2
ℓ(1+L

2
eq)

ᾱ and ν2 = ᾱ ensures that the last term on the right is zero. By our assumption that

η ≤ ᾱ
4L2

ℓ(1+L
2
eq)

we have that 1
η ≥ 4L2

ℓ(1+L
2
eq)

ᾱ so that ν1 ≥ 1
2η ; indeed,

ν1 = η−1 −
2L2

ℓ(1 + L2
eq)

ᾱ
≥

4L2
ℓ(1 + L2

eq)

ᾱ
−

2L2
ℓ(1 + L2

eq)

ᾱ
=

2L2
ℓ(1 + L2

eq)

ᾱ
=

1

2η
.

Hence we have that

1 + ηᾱ

2
Et∥ut+1 − ups∥2 ≤ 1

2
∥ut − ups∥2 + η2σ2 + η

2L2
ℓρ

2τtC2
t

ᾱ

Now, choose τ as stated in the theorem to ensure that ηρ2τ 2L2
ℓC

2

ᾱ ≤ η2σ2. Indeed, this inequality is equivalent to

τ log ρ2 ≤ log

(
ᾱησ2

2L2
ℓC

2

)
⇐⇒ τ ≥ log

(
2L2

ℓC
2

ᾱησ2

)
1

log(1/ρ2)
,

which is precisely the stated lower bound on τ . Hence, we have that

Et∥ut+1 − ups∥2 ≤ 1

1 + ηᾱ
∥ut − ups∥2 + 4

1 + ηᾱ
η2σ2.

Recursively iterating the above expression, we have that

Et∥ut+1 − ups∥2 ≤ 1

1 + ηᾱ

(
1

1 + ηᾱ
(∥ut−1 − ups∥2 + 4

1 + ηᾱ
η2σ2

)
+

4

1 + ηᾱ
η2σ2

≤
(

1

1 + ηᾱ

)t
∥u0 − ups∥2 + 4η2σ2

t∑
s=1

(
1

1 + ηᾱ

)t
≤
(

1

1 + ηᾱ

)t
∥u0 − ups∥2 + 4η2σ2 1

ηᾱ

Given the choice of η ≤ ᾱ
4L2

ℓ(1+L
2
eq)

, we have that

Et∥ut+1 − ups∥2 ≤
(
1− ᾱη

2

)t
∥u0 − ups∥2 + 4ησ2

ᾱ
,

as claimed.

I.3.4. NAÏVE DECISION-MAKER: NON-STATIONARY NON-STRATEGIC ENVIRONMENT

Now we generalize to the case where De(u) now depends on u so that the non-strategic component of the environment is
also decision-dependent. This requires the additional assumption that the distribution De(·) is Len-Lipschitz continuous
(Assumption I.2), and we also need that α < Lz(Len + Leq) which is already required for existence and uniqueness of the
performatively stable equilibrium.

Theorem I.13 (Naı̈ve Repeated Gradient Method with Non-Stationary Non-Strategic Environment). Suppose that As-
sumptions 2.1, 4.1, I.2 and 4.3 hold, that we have available constant R > ∥x0 − x∗(u0)∥2 and B > ∥u0 − ups∥2, and
that α < Lz(Len + Leq) so that a unique performatively stable equilibrium exists. Further, suppose the decision-maker
runs Algorithm 4 with Alg := RGM using step-size η ≤ ᾱ

4L2
ℓ(1+L

2
eq+L

2
en)

where ᾱ := α − Lz(Len + Leq), and the agents

employ a ρ–contracting algorithm A with ρ ∈ [0, 1) and σa ∈ (0,∞). Suppose the agents run their ρ-contracting algorithm
stage-wise via Algorithm 2. In this case, set the epoch length to

τ =

K∑
k=0

Tk =

⌈
1

1− ρ2
· log

(
2R̄

ε

)⌉
+

K∑
k=1

⌈(
1

1− 2−kρ2

)
log(4)

⌉
, (36)
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and tolerance ϵτ = η2σ2 where K =
⌈
1 + log2

(
ρ2c2σ2

a

(1−ρ2)ε

)⌉
and

R̄ := R+
2c2σ2

a

β
+ 6

(
L2
eq

β2

(
4B +

σ2

L2
ℓ(1 + L2

eq)

))
.

Then the following estimate holds:

Et∥ut+1 − ups∥2 ≤
(
1− ᾱη

2

)t
∥u0 − ups∥2 + 4ησ2

ᾱ
.

Recall from Corollary G.5, that if the agents run stochastic gradient play in stages then we are able to characterize precisely
the number of iterations required to hit a particular specified error tolerance. This is where the epoch length in (41) is
derived.

Proof of Theorem I.5. Define the following objects:

gt := ∇uℓ(ut, (x
τ
t (ut), ξ)), where ξ ∼ De(ut);

Gt(ut) := E
ξ∼De(ut)

∇uℓ(ut, (x
τ
t (ut), ξ));

G⋆(ut) := E
ξ∼De(ut)

∇uℓ(ut, (x
∗(ut), ξ));

Gps(ut) := E
ξ∼De(ups)

∇uℓ(ut, (x
∗(ups), ξ))

Also note that Et[gt] = Gt(ut)—i.e., the gradient estimate gt is an unbiased estimate of the time varying expected gradient
Gt—and

ups = argmin
u∈U

E
z∼D(ups)

ℓ(u, z) so that ⟨Gps(u
ps), u− ups⟩ ≥ 0 ∀ u ∈ U .

Fix two constants ν1, ν2 > 0 to be specified later. Noting that ut+1 is the minimizer of the 1-strongly convex function
u 7→ 1

2∥ut − ηgt − u∥2 over U , we deduce that

1

2
∥ut+1 − ups∥2 ≤ 1

2
∥ut − ηgt − ups∥2 − 1

2
∥ut − ηtgt − ut+1∥2.

Expanding the squares on the right hand side and combining terms yields

1

2
∥ut+1 − ups∥2 ≤ 1

2
∥ut − ups∥2 − ηt⟨gt, ut+1 − ups⟩ − 1

2
∥ut+1 − ut∥2

=
1

2
∥ut − ups∥2 − η⟨gt, ut − ups⟩ − 1

2
∥ut+1 − ut∥2 − η⟨gt, ut+1 − ut⟩.

Using the fact that Et[gt] = Gt(ut), we successively compute

1

2
Et∥ut+1 − ups∥2 ≤ 1

2
∥ut − ups∥2 − η⟨Etgt, ut − ups⟩ − 1

2
Et∥ut+1 − ut∥2 − ηEt⟨gt, ut+1 − ut⟩,

≤ 1

2
∥ut − ups∥2 − η⟨Gt(ut), ut − ups⟩ − 1

2
Et∥ut+1 − ut∥2 − ηEt⟨gt, ut+1 − ut⟩,

=
1

2
∥ut − ups∥2 − ηEt⟨G⋆(ut+1), ut+1 − ups⟩ − 1

2
Et∥ut+1 − ut∥2

+ η Et⟨gt −Gt(ut), ut − ut+1⟩︸ ︷︷ ︸
P1

+ηt Et⟨Gt(ut)−G⋆(ut+1), u
ps − ut+1⟩︸ ︷︷ ︸

P2

.

Recall that for any z, the loss ℓ(u, z) is α–strongly convex in u so that

⟨Gps(ut+1), ut+1 − ups⟩ ≥ ⟨Gps(ut+1)−Gps(u
ps), ut+1 − ups⟩ ≥ α∥ut+1 − ups∥2
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Hence, adding and subtracting appropriate terms, we have that

−⟨G⋆(ut+1), ut+1 − ups⟩ = −⟨G⋆(ut+1)−Gps(ut+1), ut+1 − ups⟩ − ⟨Gps(ut+1), ut+1 − ups⟩.

The first term is upper bounded as follows:

−⟨G⋆(ut+1)−Gps(ut+1), ut+1 − ups⟩ ≤ Lz(Len + Leq)∥ut+1 − ups∥2.

The second term is upper bounded using α–strong convexity of ℓ in u as noted above. Therefore, as in the proof for the
stationary non-strategic environment, we have that

1 + 2ηᾱ

2
Et∥ut+1 − ups∥2 ≤ 1

2
∥ut − ups∥2 − 1

2
Et∥ut+1 − ut∥2 + η(P1 + P2). (37)

Applying Young’s inequality to P1, we have that

P1 ≤ Et ∥gt −Gt(ut)∥2

2ν1
+
ν1Et∥ut+1 − ut∥2

2
≤ σ2

2ν1
+
ν1Et∥ut+1 − ut∥2

2
. (38)

We have the following upper bound for P2:

P2 ≤ Et∥Gt(ut)−G⋆(ut+1)∥2

2ν2
+
ν2Et∥ups − ut+1∥2

2

≤ 2Et∥Gt(ut)−G⋆(ut)∥2 + 2Et∥G⋆(ut)−G⋆(ut+1)∥2

2ν2
+
ν2Et∥ups − ut+1∥2

2

≤
2Et∥Gt(ut)−G⋆(ut)∥2 + 2L2

ℓ(1 + L2
eq + L2

en)∥ut − ut+1∥2

2ν2
+
ν2Et∥ups − ut+1∥2

2
.

The first term in the first fraction can be bounded as follows:

Et∥Gt(ut)−G⋆(ut)∥2 = Et∥Eξ∼De(ut)∇uℓ(ut, (A(xt−1, ut), ξ))− Eξ∼De(ut)∇uℓ(ut, (x
∗(ut), ξ))∥2

≤ L2
ℓEt∥A(xt−1, ut)− x∗(ut)∥2.

This shows we have a time varying bias component in our gradient estimator. Recall that

τ =

K∑
k=0

Tk =

⌈
1

1− ρ2
· log

(
2R

ε

)⌉
+

K∑
k=1

⌈(
1

1− 2−kρ2

)
log(4)

⌉

total iterations where K :=
⌈
1 + log2

(
ρ2c2σ2

a

(1−ρ2)ε

)⌉
. Moreover, the decision-maker sets ϵτ = η2σ2. Therefore, we deduce

that

P2 ≤ L2
ℓϵτ
ν2

+
2L2

ℓ(1 + L2
eq + L2

en)∥ut − ut+1∥2

2ν2
+
ν2Et∥ups − ut+1∥2

2
.

Coming back to the bound in (37), we have that

1 + 2ηᾱ

2
Et∥ut+1 − ups∥2 ≤ 1

2
∥ut − ups∥2 − 1

2
Et∥ut+1 − ut∥2 + η

(
σ2

2ν1
+
ν1Et∥ut+1 − ut∥2

2

)
+ η

(
L2
ℓϵτ
ν2

+
2L2

ℓ(1 + L2
eq + L2

en)∥ut − ut+1∥2

2ν2
+
ν2Et∥ups − ut+1∥2

2

)
so that

1 + 2ηᾱ− ην2
2

Et∥ut+1 − ups∥2 ≤ 1

2
∥ut − ups∥2 + ησ2

2ν1
+ η

L2
ℓϵτ
ν2

−
1− 2L2

ℓ(1 + L2
eq + L2

en)ην
−1
2 − ην1

2
Et∥ut+1 − ut∥2.
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Letting ν1 = η−1 − 2L2
ℓ(1+L

2
eq+L

2
en)

ᾱ and ν2 = ᾱ ensures that the last term on the right is zero. By our assumption that

η ≤ α
4L2

ℓ(1+L
2
eq+L

2
en)

we have that 1
η ≥ 4L2

ℓ(1+L
2
eq+L

2
en)

ᾱ so that ν1 ≥ 1
2η ; indeed, we claim that

1

η
−

2L2
ℓ(1 + L2

eq + L2
en)

ᾱ
≥ 1

2η
.

Rearranging, this is equivalent to showing that

1− η
2L2

ℓ(1 + L2
eq + L2

en)

ᾱ
≥ 1

2
.

Now we can lower bound the left-hand side as follows:

1− η
2L2

ℓ(1 + L2
eq + L2

en)

ᾱ
≥ 1−

4L2
ℓ(1 + L2

eq + L2
en)

ᾱ

2L2
ℓ(1 + L2

eq + L2
en)

ᾱ
= 1− 1

2
=

1

2
.

That shows that claim. Hence we have that

1 + ηᾱ

2
Et∥ut+1 − xps∥2 ≤ 1

2
∥ut − xps∥2 + η2σ2 +

ϵτ
2

Then since ϵτ = η2σ2, we have that

Et∥ut+1 − xps∥2 ≤ 1

1 + ηᾱ
∥ut − xps∥2 + 4

1 + ηᾱ
η2σ2

Recursively iterating the above expression, we have that

Et∥ut+1 − ups∥2 ≤ 1

1 + ηᾱ

(
1

1 + ηᾱ
(∥ut−1 − ups∥2 + 4

1 + ηᾱ
η2σ2

)
+

4

1 + ηᾱ
η2σ2

≤
(

1

1 + ηᾱ

)t
∥u0 − ups∥2 + 4η2σ2

t∑
s=1

(
1

1 + ηᾱ

)t
≤
(

1

1 + ηᾱ

)t
∥u0 − ups∥2 + 4η2σ2 1

ηᾱ

Given the choice of η ≤ ᾱ
4L2

ℓ(1+L
2
eq+L

2
en)

, we have that

Et∥ut+1 − ups∥2 ≤
(

1

1 + ηᾱ

)t
∥u0 − ups∥2 + σ2

L2
ℓ(1 + L2

eq + L2
en)

≤
(
1− ᾱη

2

)t
∥u0 − ups∥2 + 4ησ2

ᾱ
.

The choice of constant R̄ follows from the same proof as in Theorem I.5. This completes the proof.

Note that L2
ℓ(1 + L2

eq + L2
en) can be replaced with L2

u + L2
z(L

2
eq + L2

en) for more precise Lipschitz constants.

J. Strategic Decision-Maker
In this appendix section, we put all the formal analysis for the strategic decision-maker. Let us introduce some needed
notation. Let

Lδt (ut) =
d

δ
E

v∼Bd

[
E

ξ∼De

[ℓ(ut + δvt,A(xt, ut + δvt),+ξ)]

]
denote the smoothed expected loss at time t, and let

Lδ(u) = d

δ
E

v∼Bd

[
E

ξ∼De

[ℓ(ut + δvt, x
∗(ut + δvt) + ξ)]

]
denote the smoothed expected risk. The smoothed expected risk is evaluated when the strategic agents are at the Nash
equilibrium x∗(ut+δvt) for the reported value ut+δvt. The estimate ĝt is an unbiased estimate of ∇Lδt—i.e., Ev∼Bd [ĝt] =
∇Lδt (ut).
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J.1. Technical Lemmas

The following series of lemmas allow us to bound the error between the true gradient of L(u) and the zeroth-order gradient
estimate gt.

Lemma J.1. Suppose that Assumptions 2.1 and 4.1 hold. The smoothed expected risk Lδ(u) satisfies ∥∇L(u)−∇Lδ(u)∥ ≤
Lδ, where L := Lℓ(1 + Leq).

Proof. For any points u, u′ ∈ U , we successively estimate

∥∇Lδ(u)−∇Lδ(u′)∥ ≤ E
w∼B

∥∇L(u+ δw)−∇L(u′ + δw)∥ ≤ L∥u− u′∥.

Therefore ∇Lδ is L-Lipschitz continuous. Next, we have that

∥∇L(u)−∇Lδ(u)∥ ≤ E
w∼B

∥∇L(δw)−∇L(u)∥ ≤ Lδ E
w∼B

∥w∥ ≤ Lδ,

which concludes the proof.

Lemma J.2. Under Assumptions 4.1 and 4.8, by choosing δ ≤ cᾱ
LH

, for any c ∈ (0, 1) the smoothed decision-dependent risk
Lδ(u) is (1− c)ᾱ–strongly convex.

Proof. We first define h(u) := ∇Lδ(u) − ∇L(u). Observe that ∇h(u) = Ew∼B[∇2L(u + δw) − ∇2L(u)]. Since
u 7→ ∇2L(u) is LH-Lipschitz continuous, we deduce that

∥∇h(u)∥op ≤ E
w∼B

∥∇2L(u+ δw)−∇2L(u)∥op ≤ δLH E
w∼B

∥w∥ ≤ δLH.

We therefore compute that

⟨∇Lδ(u)−∇Lδ(u′), u− u′⟩ = ⟨∇L(u)−∇L(u′)⟩+ ⟨h(u)− h(u′), u− u′⟩ ≥ (ᾱ− LHδ)∥u− u′∥2,

which concludes the proof of the first statement.

Now, let u∗ be the optimal point for L over U , and let uδ be the optimal point of Lδ on (1− δ)U .

Lemma J.3. Suppose Assumptions 4.1 and 4.8 hold. Choose any δ < min{r, ᾱLH
}. Then the estimate holds:

∥uδ − u∗∥ ≤ δL

ᾱ
+

(
δL

ᾱ
+ δ

)
∥u∗∥.

Proof. There are two sources of perturbation: one replacing U with (1− δ)U and the other replacing L with Lδ .

Set ϕ = 1− δ and let ũ be the optimal point for L on ϕU . Thus 0 ∈ ∇L(ũ) +NϕU (ũ). Then

∥u∗ − uδ∥ ≤ ∥u∗ − ũ∥+ ∥ũ− uδ∥.

The first term is bounded as
ᾱ∥ũ− ϕu∗∥ ≤ dist(0,∇L(ϕu∗) +NϕU (ϕu

∗)

since u 7→ ∇L(u) +NϕU (u) is ᾱ–strongly convex. For the second term, since u∗ is optimal, we have that 0 ∈ ∇L(u∗) +
NU (u

∗). Since NϕU (ϕu∗) = NU (u
∗), we have that

dist(0,∇L(ϕu∗) +NϕU (ϕu
∗)) = dist(0,∇L(ϕu∗) +NU (u

∗)) ≤ ∥∇L(ϕu∗)−∇L(u∗)∥ ≤ δL∥u∗∥.

We therefore have that

∥u∗ − ũ∥ ≤ ∥ũ− ϕu∗∥+ δ∥u∗∥ ≤ δ

(
1 +

L

ᾱ

)
∥u∗∥.

Since ũ is optimal, we have that
⟨−∇L(ũ), u− ũ⟩ ≤ 0, ∀u ∈ ϕU .
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Analogously, since uδ is also optimal we have that

⟨−∇Lδ(uδ), u− uδ⟩ ≤ 0, ∀u ∈ ϕU .

Therefore

ᾱ∥ũ− uδ∥2 ≤ ⟨∇L(ũ)−∇L(uδ), ũ− uδ⟩
≤ ⟨∇Lδ(uδ)−∇L(uδ), ũ− uδ⟩
≤ ∥∇Lδ(uδ)−∇L(uδ)∥∥ũ− uδ∥
≤ Lδ∥ũ− uδ∥.

Combining the bounds yields the claim.

The next lemma bounds the error between the converged strategies xτt (ut) and the equilibrium x∗(ut) as a function of the
previous iterates.

Lemma J.4. Suppose the agents are employing deterministic algorithms satisfying Definition 2.3 with ρ ∈ [0, 1) and σa = 0.
Under Assumptions 2.1, 4.1, and 4.8, the estimate holds:

∥A(xt, ut)− x∗(ut)∥ ≤ ρτ
(
ρt−1∥x0 − x∗(u0)∥+ ρLeqη0

ℓ∗d

δ(1− ρ)

)
Proof. Given Definition 2.3, we have that

∥xτt (ut)− x∗(ut)∥ ≤ ρ∥xτ−1
t (ut)− x∗(ut)∥.

Iterating this expression we have that

∥xτt (ut)− x∗(ut)∥ ≤ ρτ∥xτt−1

t−1 (ut−1)− x∗(ut)∥

Adding and subtracting appropriate terms we have that

∥xτt (ut)− x∗(ut)∥ ≤ ρτ∥xτt−1

t−1 (ut−1)− x∗(ut−1) + x∗(ut−1)− x∗(ut)∥
≤ ρτ∥xτt−1

t−1 (ut−1)− x∗(ut−1)∥+ ρτLeq∥ut−1 − ut∥

Continuing in this fashion we have that

∥xτt (ut)− x∗(ut)∥ ≤ ρτ∥xτt−1

t−1 (ut−1)− x∗(ut−1)∥+ ρτLeq∥ut−1 − ut∥
≤ ρτ (ρτt−1∥xτt−2

t−2 (ut−2)− x∗(ut−2)∥+ ρτt−1Leq∥ut−2 − ut−1∥) + ρτLeq∥ut−1 − ut∥

≤ ρτρt−1∥x0 − x∗(u0)∥+ Leqρ
τ

t∑
s=1

ρs∥ut−s − ut−s−1∥,

where in the last inequality we use the fact that ρτ ≤ ρ for any τ ≥ 1. Using the update for the decision maker, we have that

∥xτt (ut)− x∗(ut)∥ ≤ ρτ

(
ρt−1∥x1 − x∗(u1)∥+ ρLeq

t−1∑
s=0

ρsηt−1−s
ℓ∗d

δ

)

≤ ρτ
(
ρt−1∥x0 − x∗(u0)∥+ ρLeqη0

ℓ∗d

δ(1− ρ)

)
,

where we used the fact that η0 ≥ ηt−i for all t ≥ 1. This concludes the proof.

Next, we use Lemma J.4 to bound the error between the gradient of the smoothed expected risk Lδ(u) and the smoothed
loss Lδt (ut).
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Lemma J.5. Suppose the agents are employing deterministic algorithms satisfying Definition 2.3 with ρ ∈ [0, 1) and σa = 0.
Under Assumptions 2.1, 4.1, and 4.8, the smoothed expected risk and the smoothed loss satisfy

∥∇Lδt (ut)−∇Lδ(ut)∥2 ≤ L2
ℓ

(
ρτ
(
ρt−1∥x0 − x∗(u0)∥+

Leqη0ℓ∗d

δ(1− ρ)

))2

.

Proof. We have that

∥∇Lδt (ut)−∇Lδ(ut)∥ ≤ E
v∼Bd

∥∥∥ E
ξ∼Do

[∇ℓ(ut + δvt, x
τ
t (ut + δvt) + ξ)

−∇ℓ(ut + δv, x∗(ut + δv) + ξ)]
∥∥∥

≤ Lℓ E
v∼Bd

∥xτt (ut + δvt)− x∗(ut + δvt)∥.

Hence applying Lemma J.4 gives the result.

The above lemmas give us our main result, which establishes that the decision-maker’s updates converge to the optimal
parameter u∗ ∈ U (and correspondingly, the agents’ updates converge to the Nash equilibrium x∗(u∗)).

Let us define a useful quantity that we will use in the remaining proof:

Ct(σa) :=

(
ρt−1∥x0 − x∗(u0)∥+

Leqη0ℓ∗d

δ(1− ρ)
+

ρσac

(1− ρ)2

)
, (39)

so that

∥∇Lδt (ut)−∇Lδ(ut)∥2 ≤ L2
ℓ

(
ρτCt(σa) +

ρσac

1− ρ

)2

.

J.2. Derivative Free Method for Stochastic ρ-Contracting Agents

We now state a formal version of Theorem 4.9 and provide a proof.

Theorem J.6 (Formal Statement of Theorem 4.9). Suppose that Assumptions 2.1, 4.1, and 4.8 hold, and that we have
available a constant R > ∥x0 − x∗(u0)∥2. Further, suppose the decision-maker runs Algorithm 1 with Alg := DFM using
step-size ηt = 4

ᾱ(t+1) , query radius δ < min{b, ᾱLH
}, and the agents employ a ρ–contracting algorithm A with ρ ∈ [0, 1)

and σa ∈ (0,∞). Suppose the agents run their ρ-contracting algorithm stage-wise via Algorithm 2. In this case, set
tolerance ϵτ = 1

δ(t+1) , constant c = 16(ℓ2∗d
2 + 1), and the epoch length to

τ =

K∑
k=0

Tk =

⌈
1

1− ρ2
· log

(
2R̄

ϵτ

)⌉
+

K∑
k=1

⌈(
1

1− 2−kρ2

)
log(4)

⌉
, (40)

where K =
⌈
1 + log2

(
ρ2c2σ2

a

(1−ρ2)ϵτ

)⌉
and

R̄ := R+
2c2σ2

a

β
+ 6

(
L2
eq

β2

(
max{4ᾱ2δ2B2, 16(ℓ2∗d

2 + 1)}
δ2ᾱ2

+ 4δ2
((

1 +
L

ᾱ

)
B +

L

ᾱ

)))
.

Then the following estimate holds:

E ∥ut − u∗∥2 ≤ max{2ᾱ2δ2∥u0 − u∗∥2, c}
δ2ᾱ2(t+ 1)β

+ 2δ2
((

1 +
L

ᾱ

)
∥u∗∥+ L

ᾱ

)
.

The proof follows a similar structure to that of Theorem 4.4 (see Theorem I.5 for the longer version).
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Proof. Consider the error ∥ut+1 − u∗∥2. Add and subtract uδ, and apply the triangle inequality and Lemma J.2 to get the
following estimate:

1

2
∥ut+1 − u∗∥2 ≤ ∥ut+1 − uδ∥2 + ∥uδ − u∗∥2 ≤ ∥ut+1 − uδ∥2 +

(
δL

ᾱ
+

(
δL

ᾱ
+ δ

)
∥u∗∥

)2

.

Now, to bound the error ∥ut+1 − uδ∥2, we note by the nonexpansiveness of the projection mapping that

E[∥ut+1 − uδ∥2] ≤ E[∥ut − uδ − ηtgt∥2]
≤ E[∥ut − uδ∥2 − 2ηtE⟨gt, ut − uδ⟩+ η2tE∥gt∥2]
≤ E[∥ut − uδ∥2 − 2ηtE⟨∇Lδt (ut), ut − uδ⟩+ η2tE∥gt∥2]

where we use the fact that E[gt] = ∇Lδt (ut) in the last inequality, and the expectation is taken over the randomness in ξ and
vt up to time t.

Next, we add and subtract ∇Lδ(ut) from the middle term to get that

⟨∇Lδt (ut), ut − uδ⟩ = ⟨∇Lδ(ut), ut − uδ⟩+ ⟨∇Lδt (ut)−∇Lδ(ut), ut − uδ⟩

≤ ᾱ

2
∥ut − uδ∥2 + ⟨Lδt (ut)−∇Lδ(ut), ut − uδ⟩,

where we have used the fact that Lδ(x) is (1− c)ᾱ–strong convex with c = 1/2 (Lemma J.2). Hence, we deduce that

E[∥ut+1 − uδ∥2] ≤ E[∥ut − uδ − ηtgt∥2],
≤ E[∥ut − uδ∥2]− 2ηt E⟨∇Lδ(ut), ut − uδ⟩
− 2ηt E⟨∇Lδt (ut)−∇Lδ(ut), ut − uδ⟩+ η2t E ∥gt∥2,

≤ (1− ηtᾱ)E[∥ut − uδ∥2]− 2ηt E⟨∇Lδt (ut)−∇Lδ(ut), ut − uδ⟩+ η2t
ℓ2∗d

2

2δ2
.

The agents are running stage-based ρ–contracting algorithms. For the moment suppose our choice of R̄ is correct. In this
case, we set ϵτ = (δ2(t+ 1))−1 and choose

τ =

K∑
k=0

Tk =

⌈(
1 +

2L2
a

µ2

)
log

(
2R̄

ϵτ

)⌉
+

K∑
k=1

⌈(
1 +

2k+1L2
a

µ2

)
log(4)

⌉
,

and K =
⌈
1 + log2

(
σ2
a

L2
a ϵτ

)⌉
. Then we have that

E∥ut+1 − uδ∥2 ≤
(
1− ᾱηt

2

)
E[∥ut − uδ∥2] + 8ℓ2∗d

2

δ2α2(t+ 1)2
+

8

ᾱ2

1

δ2(t+ 1)2

≤
(
1− 2

t+ 1

)
E[∥ut − uδ∥2] +

(
ℓ2∗d

2 + 1
) 8

ᾱ2δ2(t+ 1)2
.

Next, we claim that

E ∥ut − uδ∥2 ≤ max{ᾱ2δ2∥u0 − uδ∥2, 8(ℓ2∗d2 + 1)}
δ2ᾱ2(t+ 1)

.

To see this, let Dt = E[∥ut − uδ∥2] so that we need to show the above claim given that

Dt+1 ≤
(
1− 2

t+ 1

)
Dt +

(
ℓ2∗d

2 + 1
) 8

ᾱ2δ2(t+ 1)2
.

78



Finite-Time Convergence in Stochastic Stackelberg Games with Smooth Algorithmic Agents

Clearly the claim holds for t = 1. Suppose it holds for some fixed t > 1. Then we have that

Dt+1 ≤
(
1− 2

t+ 1

)
Dt +

(
ℓ2∗d

2 + 1
) 8

ᾱ2δ2(t+ 1)2

≤
(
1− 2

t+ 1

)
8(ℓ2∗d

2 + 1)

δ2ᾱ2(t+ 1)
+
(
ℓ2∗d

2 + 1
) 8

ᾱ2δ2(t+ 1)2

≤ 8(ℓ2∗d
2 + 1)

δ2ᾱ2

(
1

(t+ 1)
− 1

(t+ 1)2

)
≤ 8(ℓ2∗d

2 + 1)

δ2ᾱ2

1

(t+ 2)

Therefore

E ∥ut − u∗∥2 ≤ max{4ᾱ2δ2∥u0 − uδ∥2, 16(ℓ2∗d2 + 1)}
δ2ᾱ2(t+ 1)

+ 2δ2
((

1 +
L

ᾱ

)
∥u∗∥+ L

ᾱ

)
.

Finding the constant R̄. What remains is to show that we set R̄ correctly. The proof follows an analogous proof to the
repeated gradient method (Theorem I.5). Recall that

E ∥ut − u∗∥2 ≤ max{4ᾱ2δ2B2, 16(ℓ2∗d
2 + 1)}

δ2ᾱ2(t+ 1)
+ 2δ2

((
1 +

L

ᾱ

)
B +

L

ᾱ

)
.

Hence, to obtain a bound on the E ∥xt−1 − x∗(ut)∥2, we simply observe that for any t ≥ 1, we have

E ∥ut − ut+1∥2 ≤ max{4ᾱ2δ2B2, 16(ℓ2∗d
2 + 1)}

δ2ᾱ2
+ 4δ2

((
1 +

L

ᾱ

)
B +

L

ᾱ

)
Moreover, this implies that

max
k≤t

E ∥uk − uk−1∥2 ≤ max{4ᾱ2δ2B2, 16(ℓ2∗d
2 + 1)}

δ2ᾱ2
+ 4δ2

((
1 +

L

ᾱ

)
B +

L

ᾱ

)
for all t,

so that

R̄ := R+
2c2σ2

a

β
+ 6

(
L2
eq

β2

(
max{4ᾱ2δ2B2, 16(ℓ2∗d

2 + 1)}
δ2ᾱ2

+ 4δ2
((

1 +
L

ᾱ

)
B +

L

ᾱ

)))

where β = (1− ρ2). This completes the proof.

Observe that we can replace the expected value bound on the drift with a high probability statement as in Theorem I.9.
Essentially, where we have bounds like E ∥xt−1 − x∗(ut)∥2 ≤ ϵτ , we replace them with bounds ∥xt−1 − x∗(ut)∥2 ≤
ϵτ · log(e/δ) which hold with probability at least (1− δ) for any selected δ ∈ (0, 1).

Theorem J.6 allows us to obtain the following convergence guarantee.

Corollary J.7. Suppose the assumptions of Theorem 4.9 hold. Fix target accuracy ε < 4b2
((
1 + L

ᾱ

)
B + L

ᾱ

)2
and set

δ = ᾱ
√
ε/4/((ᾱ + L)B + L) and ηt = 4/(ᾱ(t + 1)). The iterates (ut, xt) converge to an approximate Stackelberg

equilibrium: E[∥ut−u∗∥2] ≤ ε and E[∥xt−x∗(u∗)∥2] ≤ 2(ϵτ +Leqε) hold for all t ≥ 16max{ᾱ4εB2, 8(ℓ2∗d
2+1)((ᾱ+

L)B + L)2}/(ᾱ4ε2).

In the proceeding corollary, the lower bound on t is in terms of the number of epochs. In terms of total iterations
∑t
s=1 τs

the rate is O
(
d2

ε2

(
log
(
1/ϵτ

)
+ σ2

a/ϵτ
))

. This rate is equivalent to Õ(T−1/2) in terms of iteration complexity where
T =

∑t
s=1 τs.
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Proof of Corollary 4.10. The assumed upper bound on ε directly implies that δ ≤ ᾱ/(2LH) and δ < b. Applying Theo-
rem J.6 yields

E[∥xt − x∗∥2] ≤ max{2ᾱ2δ2∥u0 − uδ∥2, c}
δ2ᾱ2(t+ 1)

+ 2δ2
((

1 +
L

ᾱ

)
∥u∗∥+ L

ᾱ

)2

≤ max{8ᾱ4εB2, 4c((ᾱ+ L)B + L)2}
εᾱ4(t+ 1)

+
ε

2
.

Setting the right-hand side to ε and solving for t, concludes the proof.

We can also specialize the result to the case where agents run stochastic gradient play (in order to better understand the
constants).
Corollary J.8. Suppose that Assumptions 2.1, 4.1, and 4.8 hold, and that we have available constants R > ∥x0 − x∗(u0)∥2
and B > ∥u0 − u∗∥2. Further, suppose the decision-maker runs Algorithm 1 with Alg := DFM using step-size ηt = 4

ᾱ(t+1) ,
query radius δ < min{b, ᾱLH

}, and the agents employ stochastic gradient play as A with ρ ∈ [0, 1) and σa ∈ (0,∞).
Suppose the agents run their algorithm stage-wise via Algorithm 2. In this case, set tolerance ϵτ = 1

δ(t+1) , constant
c = 16(ℓ2∗d

2 + 1), and the epoch length to

τ =

K∑
k=0

Tk =

⌈
1

1− ρ2
· log

(
2R̄

ϵτ

)⌉
+

K∑
k=1

⌈(
1

1− 2−kρ2

)
log(4)

⌉
, (41)

where K =
⌈
1 + log2(

σ2
a

ϵτL2
a
)
⌉

. Then the following estimate holds:

E ∥ut − u∗∥2 ≤ max{2ᾱ2δ2∥u0 − u∗∥2, c}
δ2ᾱ2(t+ 1)β

+ 2δ2
((

1 +
L

ᾱ

)
∥u∗∥+ L

ᾱ

)
.

The proof is identical to that of Theorem J.6 and hence we omit it. Moreover, a corollary completely analogous to
Corollary J.8 immediately follows.

J.2.1. STRATEGIC DECISION-MAKER: DETERMINISTIC AGENT ALGORITHMS

We can also specialize to the case when the agents use a deterministic algorithm. In the latter case, much like the repeated
gradient method, the agents do not need to run an stage based method.
Proposition J.9. Suppose that Assumptions 2.1, 4.1, and 4.8 hold, and that we have available a constantR > ∥x0−x∗(u0)∥.
Further, suppose the decision-maker runs Algorithm 1 with Alg := DFM using step-size ηt = 4

ᾱ(t+1) , query radius
δ < min{b, ᾱLH

}, and the agents employ a ρ–contracting algorithm A with ρ ∈ [0, 1) The agents employ deterministic
algorithms (i.e., σa = 0) and the decision-maker receives a noisy observation A(xt−1, ut) + ξ in each round where ξ is
zero mean and finite variance. In this case, set the epoch length such that τ ≥ log( 2δLℓCt(0)√

ηtᾱℓ∗d

)
1

log(1/ρ) , constant c = 32ℓ2∗d
2

and agent tolerance ϵt = Ct(0)ρ
τ . Then the following estimate holds:

E ∥ut − u∗∥2 ≤ max{2ᾱ2δ2∥u0 − u∗∥2, c}
δ2ᾱ2(t+ 1)β

+ 2δ2
((

1 +
L

ᾱ

)
∥u∗∥+ L

ᾱ

)
.

Proof. The proof proceeds in a similar fashion to Theorem J.6.

Consider the error ∥ut+1 − u∗∥2. Add and subtract uδ , and apply the triangle inequality and Lemma J.2 to get the following
estimate:

1

2
∥ut+1 − u∗∥2 ≤ ∥ut+1 − uδ∥2 + ∥uδ − u∗∥2 ≤ ∥ut+1 − uδ∥2 +

(
δL

ᾱ
+

(
δL

ᾱ
+ δ

)
∥u∗∥

)2

.

Now, to bound the error ∥ut+1 − uδ∥2, we note by the nonexpansiveness of the projection mapping that

E[∥ut+1 − uδ∥2] ≤ E[∥ut − uδ − ηtgt∥2]
≤ E[∥ut − uδ∥2 − 2ηtE⟨gt, ut − uδ⟩+ η2tE∥gt∥2]
≤ E[∥ut − uδ∥2 − 2ηtE⟨∇Lδt (ut), ut − uδ⟩+ η2tE∥gt∥2]
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where we use the fact that E[gt] = ∇Lδt (ut) in the last inequality, and the expectation is taken over the randomness in ξ and
vt up to time t.

Next, we add and subtract ∇Lδ(ut) from the middle term to get that

⟨∇Lδt (ut), ut − uδ⟩ = ⟨∇Lδ(ut), ut − uδ⟩+ ⟨∇Lδt (ut)−∇Lδ(ut), ut − uδ⟩

≤ ᾱ

2
∥ut − uδ∥2 + ⟨Lδt (ut)−∇Lδ(ut), ut − uδ⟩,

where we have used the fact that Lδ(x) is (1− c)ᾱ–strong convex with c = 1/2 (Lemma J.2). Hence, we deduce that

E[∥ut+1 − uδ∥2] ≤ E[∥ut − uδ − ηtgt∥2],
≤ E[∥ut − uδ∥2]− 2ηt E⟨∇Lδ(ut), ut − uδ⟩
− 2ηt E⟨∇Lδt (ut)−∇Lδ(ut), ut − uδ⟩+ η2t E ∥gt∥2,

≤ (1− ηtᾱ)E[∥ut − uδ∥2]− 2ηt E⟨∇Lδt (ut)−∇Lδ(ut), ut − uδ⟩+ η2t
ℓ2∗d

2

2δ2
.

Now, we bound the term ⟨∇Lδt (ut)−∇Lδ(ut), ut − uδ⟩ and we apply Young’s inequality8 to this term to get that

E |⟨∇Lδt (ut)−∇Lδ(ut), ut − uδ⟩| ≤ 1

2ν1
E ∥∇Lδt (ut)−∇Lδ(ut)∥2 +

ν1
2

E ∥ut − uδ∥2

≤ 1

2ν1

(
L2
ℓ (ρ

τCt)
2
)
+
ν1
2

E ∥ut − uδ∥2,

where we have that σa = 0 so that

C̄t :=

(
ρt−1∥x0 − x∗(u0)∥+

Leqη0ℓ∗d

δ(1− ρ)

)
.

Setting ν1 := ᾱ/2, we deduce that

E∥ut+1 − uδ∥2 ≤ (1− ηtᾱ)E[∥ut − uδ∥2] + η2t ℓ
2
∗d

2

2δ2
+ 2ηt

(
1

2∆1

(
L2
ℓ

(
ρτ C̄t

)2)
+

∆1

2
∥ut − uδ∥2

)
,

≤
(
1− ᾱηt

2

)
E[∥ut − uδ∥2] + η2t ℓ

2
∗d

2

2δ2
+

2ηt
ᾱ

(
L2
ℓ

(
ρτ C̄t

)2)
.

Hence, if it is the case that
2ηt
ᾱ
L2
ℓρ

2τ C̄2
t ≤ η2t ℓ

2
∗d

2

2δ2
, (42)

then we conclude

E∥ut+1 − uδ∥2 ≤
(
1− ηt

ᾱ

2

)
E[∥ut − uδ∥2] + η2t

ℓ2∗d
2

δ2
(43)

Indeed, the bound in (42) is equivalent to

τ · log(ρ2) ≤ log

(
ηtℓ

2
∗d

2

4δ2
ᾱ

L2
ℓ C̄

2
t

)
⇐⇒ τ ≥ log

(
2δLℓC̄t√
ηtᾱℓ∗d

)
1

log(1/ρ)
,

which is precisely the assumed bound on τ .

Recall that ηt = 4
ᾱ(t+1) . Hence we apply Lemma E.1 to obtain the final bound in this case. Indeed, we have that

E ∥ut − u∗∥2 ≤ max{4ᾱ2δ2∥u0 − uδ∥2, 32d2ℓ2∗}
ᾱ2δ2(t+ 1)

+ 2δ2
((

1 +
L

ᾱ

)
∥u∗∥+ L

ᾱ

)
(44)

as claimed.

A completely analogous corollary to Corollary H.4 directly follows.

8Young’s inequality for inner product spaces says that for two vectors u, v ∈ V where V is an inner product space, we have
⟨u, v⟩ ≤ λ

2
∥u∥2 + 1

2λ
∥v∥2 for any λ > 0.
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J.3. Strategic Decision-Maker: Non-Stationary Non-Strategic Environment

Recall the gradient deviation lemma (Lemma I.1) and the assumption on the environment distributions being Lipschitz
continuous (Assumption I.2) from Appendix I.1. The following assumption implies a convex ordering on the non-strategic
decision-dependent random variable on which the loss is dependent.

Assumption J.10. The probability measures De(u) and loss ℓ satisfy mixture dominance—i.e., for any (u, x) ∈ U ×X and
λ ∈ [0, 1], the following inequality holds:

E
ξ∼De(λv+(1−λ)w)

ℓ(u, (x, ξ)) ≤ E
ξ∼λDe(v)+(1−λ)De(w)

ℓ(u, (x, ξ)) for all v, w ∈ U .

Under these additional assumptions—namely Assumption I.2 and J.10—Theorem J.6 and Corollary J.8 immediately follow.
The only change is to the gradient estimator and the Lipschitz constant for the gradient of the expected loss. Indeed, we
have the modified costs

Lδt (ut) =
d

δ
E

v∼Bd

[
E

ξ∼De(ut+δvt)
[ℓ(ut + δvt, (A(xt, ut + δvt), ξ))]

]
and the modified smoothed expected loss at time t, and let

Lδ(ut) =
d

δ
E

v∼Bd

[
E

ξ∼De(ut+δvt)
[ℓ(ut + δvt, (x

∗(ut + δvt), ξ))]

]
denote the smoothed expected risk. The smoothed expected risk is evaluated when the strategic agents are at the Nash
equilibrium x∗(ut+δvt) for the reported value ut+δvt. The estimate ĝt is an unbiased estimate of ∇Lδt—i.e., Ev∼Bd [ĝt] =
∇Lδt (ut). Further, we replace L with L := Lu + Lz(Leq + Len).
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