
Robust Spatio-Temporal Centralized Interaction for OOD Learning

Jiaming Ma 1 Binwu Wang * 1 2 Pengkun Wang 1 2 Zhengyang Zhou 1 2 Xu Wang 1 2 Yang Wang * 1 2

Abstract
Recently, spatio-temporal graph convolutional
networks have achieved dominant performance in
spatio-temporal prediction tasks. However, most
models relying on node-to-node messaging in-
teraction exhibit sensitivity to spatio-temporal
shifts, encountering out-of-distribution (OOD)
challenges. To address these issues, we intro-
duce Spatio-Temporal OOD Processor (STOP),
which employs a centralized messaging mecha-
nism along with a message perturbation mech-
anism to facilitate robust spatio-temporal inter-
actions. Specifically, the centralized messaging
mechanism integrates Context-Aware Units for
coarse-grained spatio-temporal feature interac-
tions with nodes, effectively blocking traditional
node-to-node messages. We also implement a
message perturbation mechanism to disrupt this
messaging process, compelling the model to ex-
tract generalizable contextual features from gener-
ated variant environments. Finally, we customize
a spatio-temporal distributionally robust optimiza-
tion approach that exposes the model to challeng-
ing environments, thereby further enhancing its
generalization capabilities. Compared with 14
baselines across six datasets, STOP achieves up
to 17.01% improvement in generalization per-
formance and 18.44% improvement in inductive
learning performance. The code is available at
https://github.com/PoorOtterBob/STOP.

1. Introduction
Spatio-temporal prediction is a critical task in urban comput-
ing with positive effects for various applications including
traffic management, energy control, and atmospheric analy-
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Figure 1. Subfigure (a) (upper half) illustrates the predictive perfor-
mance of STGNNs in various scenarios and subfigure (b) (lower
half) demonstrates the sensitivity of the node-to-node messaging
mechanism to spatio-temporal shift.

sis (Xia et al., 2024; Liang et al., 2023; Miao et al., 2024;
Zhang et al., 2023; Liu et al., 2024a). Currently, spatio-
temporal graph convolutional networks (STGNNs) have
emerged as the primary tools in this field. These models
generalize spatio-temporal graph dependencies and employ
node-to-node messaging mechanism (such as GCN or Trans-
former) for feature interaction. Finally, the generated unique
representation is fed into a decoder to generate prediction.

However, the encouraging success of STGNNs is predicated
on the independent and identically distributed (IID) assump-
tion. In reality, the distributional characteristics (such as
mean and variance) or graph structures of spatio-temporal
data evolve over time, presenting out-of-distribution (OOD)
generalization challenges for STGNNs.

With the LargeST-SD dataset (Liu et al., 2023b) as an ex-
ample, we report the performance of advanced STGNNs in
both IID and OOD scenarios, as shown in Figure 1 (a). The
results indicate that their performance rapidly deteriorates
when facing spatio-temporal OOD challenges, particularly
in structural shift (S-OOD) scenario. Embarrassingly, the
models’ reliance on node-to-node messaging appears to hin-
der their effectiveness. Ablation experiments (as shown in
Table 2) further support this: for some advanced STGNNs,
variants without node-to-node messaging mechanism per-
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form embarrassingly better. This is because the knowledge
learned acquired through this mechanism is coupled with
the features of the training graph, and this knowledge is diffi-
cult to generalize to unseen graphs during testing (Hamilton
et al., 2017). As illustrated in Figure 1 (b), when node
features change, STGNNs struggle to accurately represent
these nodes. Furthermore, when certain nodes disappear
from the graph, their neighbors are significantly impacted, as
they can no longer aggregate information along the trained
paths. This propagation of errors through the node-to-node
messaging mechanism adversely affects the accuracy of the
entire graph representation. On the other hand, generating
accurate representations for new nodes, i.e., inductive learn-
ing, also poses a significant challenge for STGNNs (Zheng
et al., 2023; 2024; Wang et al., 2024b).

In this paper, we propose a Spatio-Temporal OOD
Processor (STOP). Specifically, STOP’s core contribution is
a spatio-temporal centralized interaction strategy: first, we
design a centralized message passing mechanism configured
with Context-Aware Units (ConAU) to learn generalizable
contextual features. The interaction is realized through
message exchange between ConAU and nodes - blocking
node-to-node messages. Furthermore, we employ a Gener-
alized Perturbation Unit (GenPU) to randomly perturb the
message interaction process, effectively promoting diverse
training environments through the introduction of uncer-
tainty, preventing the model from coupling with a single
training environment. Furthermore, we customize a spatio-
temporal Distributionally Robust Optimization (DRO) ob-
jective for GenPU to help the model learn robust knowl-
edge from challenging environments. STOP can effectively
generalize this knowledge to new nodes to generate good
representations. Finally, STOP synthesizes two prediction
components from temporal and spatial dimensions to gener-
ate the final prediction, which can enhance model robustness
across comprehensive OOD scenarios.

Our contributions can be four-folds: ❶ We introduce a
Spatio-Temporal OOD Processor (STOP), incorporating a
robust centralized messaging mechanism and a message
perturbation mechanism. ❷ The centralized messaging
constrains nodes to interact exclusively with Context Aware
Units (ConAU) for feature interaction, thereby enhancing
the resilience of model to spatio-temporal shifts. ❸ The mes-
sage perturbation mechanism, equipped with Generalized
Perturbation Units (GenPU), disrupts node interactions with
ConAU and includes a specialized spatio-temporal distribu-
tionally robust optimization (DRO) for GenPU, facilitating
the model’s acquisition of causal knowledge across diverse
environments. ❹ We evaluate STOP’s effectiveness against
14 baselines across six datasets, where it can achieve up to
17.01% improvement in generalization performance and up
to 18.44% improvement in inductive learning performance.

2. Preliminaries
We use a graph G = (V,A) to represent spatio-temporal
data, where V means the node set with N nodes and
A ∈ RN×N is the weighted adjacency matrix of the graph
G. We use Xt ∈ RN×c to represent the observed graph
signal at time step t, where c indicates the number of feature
channels.

Training environment e∗ contains two characteristic ele-
ments: a training graph G∗ = (V∗,A∗) and training data
(X ∗,Y∗). With this training environment, spatio-temporal
OOD learning aims to learn a robust function f , which
can accurately predict values after TP time steps given ob-
served data of past T time steps X = [X1, X2, . . . , XT ] ∈
RT×N×c and the graph sampled from any environment
e ∼ E , where e may have different two characteristic ele-
ments with training environment e∗,

argminf sup
e∈E

E(X,Y)∼p(X ,Y|e) [L (f (X) ,Y)] , (1)

where Y =
[
XT+1, XT+2, . . . , XT+Tp

]
∈ RTp×N×c is

the ground-truth value.

3. Methdology
STOP employs a channel mixing module to model temporal
and spatial dynamics, and after utilizing centralized mes-
saging and message perturbation mechanisms for feature
interaction, the generated temporal and spatial prediction
components jointly determine the final prediction. The de-
tails of STOP are illustrated in Figure 2 and Algorithm 1.

3.1. Temporal Prediction Component

Temporal decomposition. In time series analysis, re-
searchers (Cleveland et al., 1990; Wu et al., 2021; Zeng
et al., 2023) often decompose time series into components
at various time scales. Long-term patterns, such as seasonal
or periodic trends, are relatively stable, while short-term
patterns, like hourly traffic fluctuations, are unstable. Intu-
itively, when the spatio-temporal distribution of the node
changes over time, long-term patterns may remain robust
(Wang et al., 2024b). Hence, we employ temporal decom-
position technique to model temporal dynamics at different
scales. Specifically, we use the padding moving average ker-
nel AvgPool (·; ξ) with kernel size ξ to decouple the input
X ∈ RT×N×c into long-term patterns Xl and short-term
patterns Xs:

Xl = AvgPool (X; ξ) ∈ RT×N×c, (2)

Xs = X−Xl ∈ RT×N×c. (3)

where we employ padding operation AvgPool in (·; ξ) along
temporal dimension, ensuring a consist time length. Subse-
quently, two distinct MLP(·) : RT×N×c → RT×N×d are
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leveraged to model the temporal interdependencies within
these kinds of patterns. Finally, the outputs are mixed to
yield the data representation,

H0 = MLP1 (Xl) +MLP2 (Xs) ∈ RT×N×d0 . (4)

Spatio-temporal Embedding. To comprehensively cap-
ture spatio-temporal dynamics, we employ embedding tech-
niques to encode various prior information that is indepen-
dent of spatio-temporal data, which facilitates the model’s
ability to capture generalizable spatio-temporal knowledge.
Specifically, we utilize a timestamp-of-day embedding
Et ∈ RNt×dp to capture the periodic dependencies of each
temporal step and a day-of-week embedding Ed ∈ RNd×dp

to model the periodic patterns at daily intervals, where
Nd = 7 is the number of days in one week and Nt indicates
the number of sampling points in a day. For example, for
some PeMS datasets, the data sampling frequency of traffic
flow is five minutes, so Nt is set to 60× 24/5 = 288. dp is
the dimension of each embedding.

In addition, we further use the positional embedding P
followed by Transformer (Vaswani et al., 2017) to encode
the position of each data point in X. Finally, we integrate
temporal prior embedding and data positional embedding to
generate the output ZI denoted as the input representation:

ZI = Concat (H0 +P,Et,Ed) ∈ RT×N×(d0+2dp). (5)

Channel Mixing Module. To capture temporal dynamics,
we first mix-up the channel and temporal dimensions of the
output ZI into shape N × dt, where dt = T ∗ (d0 + 2dp).
Subsequently, we use L-layer MLP for hybrid modeling.
Given the input of l-th MLP layer with residual connection
technology Z

(l)
T , where Z

(0)
T = ZI, the forward process of

l-th MLP layer is as follows:

Z
(l+1)
T = GELU

(
Z

(l)
T W

(l)
1

)
W

(l)
2 + Z

(l)
T ∈ RN×dt , (6)

where l ∈ {0, 1, ..., L − 1} and GELU (·) (Hendrycks &
Gimpel, 2016) is an activation function. W(l)

1 ∈ Rdt×4dt

and W
(l)
2 ∈ R4dt×dt are learnable parameters. After L

MLP layers, we get the temporal representation denoted as
ZT = Z

(L)
T ∈ RN×dt . Finally, we use a linear transforma-

tion as decoder to generate a temporal prediction component
Yt as follows,

Yt = ZTWt + bt ∈ RN×(TP ∗c), (7)

where Wt ∈ Rdt×(TP ∗c) and bt ∈ RTP ∗c are learnable
parameters.

3.2. Robust Spatio-temporal Centralized Interaction

3.2.1. CENTRALIZED MESSAGING MECHANISM

STGNNs, relying on node-to-node message interaction
mechanisms, are sensitive to structural shifts (Finkelshtein

et al., 2023; Han et al., 2024b), which limits their general-
ization capability on unknown graph structures. To address
these limitations, we propose a novel centralized message
passing mechanism where each graph node interacts specifi-
cally with an established context-aware unit through a novel
low-rank attention mechanism.

Context Aware Units. We first set K context aware units
(ConAU), where K is a hyperparameter and K ≪ N .
ConAUs are used to perceive generalizable contextual fea-
tures from nodes, which nodes extract to achieve interac-
tions. Specifically, we adopt a learnable feature vector
c ∈ Rdt for each ConAU, where dt indicates the num-
ber of feature channels. Thus, we can get a series of context
feature vectors C = [c1, c2, . . . , cK ] ∈ RK×dt . Next, we
propose a multi-head low-rank attention method to achieve
the interaction between nodes and ConAUs.

Multi-head Low-rank Attention. This mechanism can
be summarized in two processes: aggregating node fea-
tures to extract contextual features and diffusing contextual
features for feature interaction between nodes. It takes
ZT ∈ RN×dt and C as input. Inspired by the multi-head
mechanism (Vaswani et al., 2017), we utilize distinct lin-
ear layers to project Query, Key, and Value separately into
dh = dt/h dimensions with h heads. Specifically, for the i-
th head where i = {1, 2, . . . , h}, the calculation of low-rank
attention is as follows:

Z(i)
c =A (Q,K,V) (8)

=softmax
(
αQK⊤)︸ ︷︷ ︸

Diffusion

× softmax
(
αKQ⊤)︸ ︷︷ ︸

Aggregation

V, (9)

where Q = ZTW
(i)
q ∈ RN×dh ,K = CJ

(i)
dt
∈ RK×dh

and V = ZTJ
(i)
dt
∈ RN×dh . Here α is a scaling factor

and equals to 1/
√
dh. W

(i)
q ∈ Rdt×dh is a learnable pa-

rameter matrix, and J
(i)
dt
∈ [0, 1]

dt×dh is a column subma-
trix of dt-order identity matrix Idt ∈ [0, 1]

dt×dt , which
contains all rows and the columns (dh ∗ (i− 1) + 1) to
(dh ∗ i) of Idt

. J
(i)
dt

is used to project the feature sub-
space corresponding to the i-th head. The computed at-
tention matrix is low-rank with high efficiency, which is
explained in Appendix C.1. Finally, we splice outputs
of multiple heads to generate representation for nodes:
Zc = Concat

(
Z

(1)
c ,Z

(2)
c , . . . ,Z

(h)
c

)
∈ RN×dt .

This attention comprises both aggregation and diffusion
processes, as shown in the right half of Figure 2. The ag-
gregation process, denoted by KQ⊤ ∈ RK×N , extracts
node features for updating context features. Conversely, the
diffusion process, denoted by QK⊤ ∈ RN×K , disperses
the context features to individual nodes to facilitate feature
interaction and node representation generation.

Theory 1 (Low-rank Attention). Our attention matrix has
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Figure 2. Overall architecture (left) and centralized messaging mechanism for robust spatio-temporal interaction (right).

a low-rank property, resulting in high computational effi-
ciency of O (KNdh), which is significantly better than the
complexity of vanilla self-attention mechanism O

(
N2dh

)
.

Detailed description can be found in Appendix Section C.1.

3.2.2. MESSAGE PERTURBATION MECHANISM

We introduce the Generalized Perturbation Units (GenPU)
to perturb the interaction process of centralized messaging
to improving generalization of the model to unknown envi-
ronments. Additionally, we specifically design a Distribu-
tionally Robust Optimization (DRO) (Duchi & Namkoong,
2019) objective to optimize models and GenPU.

Generalized Perturbation Units (GenPU). To acquire ro-
bust contextual features, our strategy involves disrupting
the aggregation process of the centralized messaging mech-
anism, which is responsible for updating context features.
This approach enables us to circumvent the significant com-
putational overhead associated with directly perturbing the
data. Specifically, we create M learnable perturbation vec-
tor in the training process, denoted G = {g1, g2, . . . , gM},
where gi ∈ RN with i ∈ {1, 2, · · · ,M} means i-th GenPU.
Then, we use softmax operation to normalize gi ∈ RN

to get the corresponding masking probability vector g′
i =

softmax (gi) ∈ (0, 1)
N . Subsequently, we create a multi-

nomial distributionM (g′
i; s). Based on this distribution,

we sample a masking indices g̃i ∼ M (g′
i; s) ∈ {0, 1}

N ,
where s ∈ (0, N) indicates the number of sample hits (i.e.
the number of values equal to 1 in g̃i). Finally, we create K
replicas of g̃i corresponding to K ConAU. As a result, we
can obtain a mask matrix with log operation as follows:

Gi = log ([g̃i, g̃i, . . . , g̃i]) ∈ {−∞, 0}K×N
. (10)

The logarithmic operation is to facilitate the masking op-
eration during the exponential activation in the subsequent
softmax normalization. If Gi[m,n] = 0, the message be-
tween m-th node and n-th ConAU is not be affected. If
Gi[m,n] = −∞, the message between m-th node and n-th
ConAU is masked. Then we integrate Gi into low-rank

attention mechanism to control the aggregation process:

Ãi (Q,K,V;Gi) (11)

= softmax
(
αQK⊤)× softmax

(
αKQ⊤ +Gi

)︸ ︷︷ ︸
Perturbation operation

V.

From the perspective of ConAU, random perturbations dur-
ing the aggregation process introduce environmental uncer-
tainty variations, thereby forcing the model to learn gen-
eralizable contextual features from these varying environ-
ments. In the training phase, we leverage M GenPU in
parallel to conduct the perturbation operation. Accordingly,
according to Equation 20, the model will individually gen-
erate predictions for these M environments, represented as
{Ŷ1, Ŷ2, . . . , ŶM}, which will be explained below.

Spatio-temporal Distributionally Robust Optimization.
With M predictions generated from different environments,
our propose spatio-temporal DRO, which does not require
optimizing all M branches sequentially; instead, it selects
the branch with the highest loss for gradient descent, as
shown in the right half of Figure 2. This approach indicates
that the model performs worst in that particular environment,
thereby enhancing training efficiency and encouraging the
model to learn purely invariant knowledge. We designate
the GenPU responsible for generating this environment as
g. The specific optimization objective is defined as follows:

min
f

sup
g∈RN

E(X,Y)∼(X ,Y|e∗) [L (f (X) ,Y; g)] , (12)

s.t. ||g̃||0 = s ∈ (0, N) . (13)

where || · ||0 stands for zero norm. GenPUs participate in the
learning process by influencing the sampling distribution
of the mask matrix, which is essentially non-differentiable,
rather than participating in the backpropagation process as
part of the parameters. Thus, we optimize the model param-
eters and GenPUs alternately, as shown in Algorithm 2.

In fact, our proposed objective belongs to the DRO
paradigm, which theoretically has superior generalization
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compared to the Empirical Risk Minimization (ERM)
paradigm followed by most spatio-temporal models. ERM
optimizes the model using only single training environment.
The details are provided in Appendix Section D.

Theory 2. Within a predefined uncertainty set of environ-
ments E , DRO substitutes the expected risk under a single
distribution with the worst-case expected risk. DRO yields
tighter upper bounds compared to ERM:

sup
e∈E

{
E(X,Y)∼p(X ,Y|e);D(e,e∗)≤ρ [L (f (X) ,Y)]

}
≥ E(X,Y)∼p(X ,Y|e∗) [L (f (X) ,Y)] + ϕ, (14)

where ϕ =
√

2ρVar(X,Y)∼p(X ,Y|e∗) [L (f (X) ,Y)] and
the distance D (·, ·) between any e ∈ E and training envi-
ronment e∗ is less than or equal to ρ, and “sup” means the
supremum. This reveals that DRO allows the model to adapt
more robustly to various environments than ERM.

Robustness Analysis. Centralized message mechanism re-
stricts interactions to operate between nodes and ConAUs,
avoiding the complexities of node-to-node interactions.
Structural shift does not significantly disrupt the message
passing paths between nodes and ConAUs. Furthermore,
GenPU introduces uncertain perturbations during this spatio-
temporal interaction process, generating diverse training
environments. This strategy prevents the model from
over-relying on a single training environment. Our spatio-
temporal DRO forces the model to interact with the most
challenging instances in the generated environments, which
can further enhance the model’s robustness. Moreover, the
learned context features can flexibly extend to newly added
nodes, improving its inductive learning capability.

3.2.3. SPATIAL PREDICTION COMPONENT

After feature interaction, we extract shared contextual fea-
tures from ConAUs for each node. To further enhance the
node representation, we refine the personalized features of
individual nodes. This refinement involves subtracting the
contextual features from the temporal representation to iso-
late the personalized feature representation of each node,
denoted as Zp:

Zp = ZT − Zc ∈ RN×dt . (15)

Subsequently, we concatenate the decoupled context fea-
tures Zc and personalized features Zp, and then linearly
map them back to the initial representation.

Z′
t =GELU (Concat (Zp,Zc)W1)W2 ∈ RN×dt , (16)

Z̃t =LayerNorm (Z′
t + ZT) ∈ RN×dt , (17)

where W1 ∈ Rdt×4dt and W2 ∈ R4dt×dt are learnable
parameters. We then decouple spatial components by calcu-
lating the difference between the input representation ZI and

the temporal representation Z̃t, denoted as Z(0)
s = ZI − Z̃t.

Next, we utilize a channel mixing module with L-layer MLP
to capture spatial high-dimensional features, with the final
output denoted as the spatial representation ZS = Z

(L)
s . The

forward process of the l-th MLP layer is as follows:

Z(l+1)
s = GELU

(
Z(l)

s W
(l)
3

)
W

(l)
4 + Z(l)

s ∈ RN×dt ,

(18)
where W

(l)
3 ∈ Rdt×4dt and W

(l)
4 ∈ R4dt×dt are learnable

parameters. Finally, same as the temporal part, we also
use a linear layer to decode the spatial representation Zs to
produce a prediction from the spatial component:

Ys = ZSWs + bs ∈ RN×(TP ∗c), (19)

where Ws ∈ Rdt×(TP ∗c) and bs ∈ RTP ∗c are learnable
parameters.

3.3. Final Prediction

We sum the predictions from the spatial and temporal di-
mensions to get finial prediction Ŷ as follow,

Ŷ =Yt +Ys ∈ RN×TP×c. (20)

4. Experiments
In this section, we conduct a comprehensive evaluation of
the proposed model. We will answer the following poten-
tial questions in the following subsections one-by-one: Q.1.
What is the generalization performance of STOP in spatio-
temporal OOD scenarios? Q.2. Is the proposed centralized
messaging mechanism effective? Q.3. How sensitive is the
model to hyperparameters M and K? Q.4. Is each compo-
nent of the model valid for OOD capabilities? Q.5. How
efficient is the model? Q.6.What is the inductive learning
ability of STOP for new nodes?

In Appendix, we analyze the effectiveness of STOP in vari-
ous OOD scenarios (temporal OOD or structural OOD in
Section E.5, rapid expansion OOD in Section E.6), and
provide visualization examples in Section E.13.

Table 1. Summary of the used datasets.
Dataset Nodes Edges Years

LargeST-SD 716 17,319 2017 ∼ 2021
LargeST-GBA 2,352 61,246 2017 ∼ 2021
LargeST-GLA 3,834 201,363 2017 ∼ 2021
LargeST-CA 8,600 525,888 2017 ∼ 2021
PEMSD3-Stream 655 1,577 2011 ∼ 2017
KnowAir 184 3,796 2015 ∼ 2018

4.1. Experiment Setting

❶ Setting. We set both the input and prediction windows
to 12 in traffic prediction and 24 in atmospheric prediction.
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Temporal decomposition kernel size ξ is equal to 3 in traffic
datasets and 7 in KnowAir. The number of ConAU K is
set to {8, 24, 32, 64, 8, 4} and the number of GenPU M
is equal to {3, 3, 3, 3, 2, 4} in six datasets in Table 1. The
dimensions of embeddings are set to 64. We use 8 heads in
multi-head low-rank attention. We implement all models
using PyTorch framework of Python 3.8.3 and leveraging
the Nvidia A100-PCIE-40GB as support, MAE, RMSE, and
MAPE are used as metrics for comparison.

❷ Datasets & Baselines. We conduct a comprehensive eval-
uation of our model on six spatio-temporal datasets spanning
multiple years across two domains. These datasets include
LargeST (Liu et al., 2024b) and PEMSD3-Stream (Chen
et al., 2021) in the traffic domain, and KnowAir (Wang et al.,
2020) in the atmospheric domain. The dataset summary is
presented in Table 1. Our comparison involves advanced
spatio-temporal prediction, spatio-temporal OOD learn-
ing, and spatio-temporal continual learning model. ➀
Spatio-temporal predictionn models include STGCN (Yu
et al., 2017), GWNet (Wu et al., 2019), STNorm (Deng et al.,
2021), STID (Shao et al., 2022a), STAEformer (Liu et al.,
2023a), STNN (Yang et al., 2021), D2STGNN (Shao et al.,
2022b), BigST (Han et al., 2024a), and RPMixer (Yeh et al.,
2024). ➁ Spatio-temporal OOD learning models include
CaST (Xia et al., 2024) and STONE (Wang et al., 2024a).
➂ Spatio-temporal continual learning models include Traf-
ficStream (Chen et al., 2021), PEMCP (Wang et al., 2023b),
and TFMoE (Lee & Park, 2024). Some models require the
removal of non-essential components (such as node embed-
ding in STID or adaptive graph learning method in GWNet)
to adapt them to the ST-OOD setting, as the parameters of
them are intertwined with the scale of the graph structure,
as elaborated in Appendix E.1.

❸ ST-OOD Datasets. For the evaluation of temporal shift,
we train the models using data from the first year and test
them on each subsequent year. The training set comprises
the first 60% of data from the initial year dataset, while
the following 20% of data is used as the validation set. In
each subsequent year, the last 20% of data is designated
as the test set. This setup aims to accentuate the temporal
distribution difference between the test and training sets,
while maintaining a ratio of approximately 6:2:2 for the
training, validation, and test sets. Regarding structural shift
evaluation, we select a subset of nodes for training and
validation. In the test set, we decrease the number of nodes
by 10% and introduce 30% new nodes to simulate shifts in
the graph structure and scale. More detailed settings can be
found in Appendix E.2.

4.2. OOD Performance Comparison(Q.1)

As shown in Table 3, we report the average values across
all years of test sets on four datasets. Experiments on large

datasets can be found in Appendix E.3, and detailed year-
specific reports can be found in Appendix E.9. The com-
parison with spatio-temporal continuous learning models is
shown in Table 11.

GCN-based models like STGCN and GWNet underperform
in OOD settings due to their reliance on the global messag-
ing mechanism of GCN, rendering them highly sensitive to
spatio-temporal shifts. Transformer-based models such as
STAEformer and D2STGNN exhibit improved predictive ac-
curacy by leveraging self-attention mechanisms to aggregate
global node features, effectively addressing spatio-temporal
shift errors. Despite these advancements, STGNNs still face
challenges in generalizing weights for unseen graph struc-
tures. On the other hand, spatio-temporal OOD learning
baselines like STONE introduce diverse training environ-
ments utilizing perturbation-generated semantic relations
to learn invariant causal knowledge, resulting in enhanced
performance. STOP demonstrates significant improvements
across various metrics, with a maximum enhancement of
17.01%. This improvement can be attributed to its robust
centralized messaging mechanism, which facilitates effec-
tive spatial feature interaction.

4.3. Node-to-node Interaction vs. Ours (Q.2)

We used two representative backbone models, STGCN and
STAEformer, to compare the effectiveness of different mes-
sage mechanisms. The former utilizes graph convolution for
inter-node interaction, while the latter employs self-attention
mechanisms for node-to-node interaction. We removed their
node-to-node message mechanisms and labeled these vari-
ants as “-graph”. Additionally, we replaced their inter-node
interactions with our spatial interaction mechanism, denot-
ing these variants as “+Ours”. Using the SD and KnowAir
datasets with OOD settings, the performance results are
shown in Table 2. We can find that variants without node-
to-node message mechanisms performed better than the
original models, indicating that the initial mechanism lim-
ited the models’ generalization performance. Furthermore,
these models achieve generalization performance improve-
ments after integrating our centralized messaging mecha-
nism. Therefore, this further validates the effectiveness and
necessity of our central interaction mechanism.

Table 2. Comparison of two interaction mechanisms.

Variant
SD KnowAir

MAE RMSE MAPE MAE RMSE MAPE

STGCN 25.72 40.03 18.21 29.49 40.93 63.85
STGCN - graph 25.45 39.62 17.98 26.18 38.03 55.75
STGCN + Ours 24.87 38.98 17.65 25.44 37.42 52.80

STAEformer 26.20 41.18 18.39 27.25 38.93 56.48
STAEformer - graph 25.80 40.84 17.45 25.82 37.28 55.65
STAEformer + Ours 24.65 38.46 17.30 25.46 37.25 55.04
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Table 3. OOD performance comparisons on four datasets. The unit of MAPE is percent (%). We bold the best-performing model results
in red and underline the sub-optimal model results in blue.

Method Ours STONE CaST RPMixer BigST D2STGNN STNN STAEformer STID STNorm GWNet STGCN

SD

3
MAE 17.71 18.44 21.35 24.92 18.56 18.70 36.46 18.70 19.68 18.82 20.15 18.68

RMSE 28.45 29.55 33.28 39.88 29.93 29.31 56.84 28.97 29.56 30.06 31.34 29.61
MAPE 11.73 12.32 16.04 15.63 12.18 13.04 26.91 12.62 13.18 12.82 14.44 12.92

6
MAE 23.62 25.10 29.28 42.37 25.66 25.13 36.91 25.80 25.87 26.00 28.07 25.25

RMSE 37.71 39.66 45.24 66.45 40.61 38.77 57.59 40.73 40.86 41.20 43.00 39.48
MAPE 15.99 17.56 21.49 26.15 18.03 17.46 27.15 17.59 18.03 18.03 21.17 17.34

12
MAE 32.59 37.12 42.40 77.31 37.89 36.35 41.69 37.17 38.30 38.08 39.75 36.15

RMSE 51.82 54.60 64.05 115.62 58.74 53.60 64.99 57.81 59.40 59.24 61.08 55.74
MAPE 22.89 25.90 31.73 49.48 27.12 25.98 31.32 27.07 26.90 27.89 31.46 26.41

G
B

A

3
MAE 18.33 20.19 21.85 24.79 19.92 19.10 40.61 20.91 19.09 20.86 20.65 21.49

RMSE 29.70 33.65 34.32 39.59 32.33 32.64 60.07 33.59 31.40 32.92 32.21 33.57
MAPE 13.64 15.10 18.61 17.06 14.75 14.29 33.77 14.93 14.36 16.00 15.70 14.79

6
MAE 24.75 25.84 29.70 40.77 28.64 26.10 40.50 28.61 26.90 31.24 28.39 30.05

RMSE 38.48 41.96 45.16 62.24 43.93 41.72 59.96 44.03 42.15 46.69 42.60 44.97
MAPE 20.48 21.24 25.77 29.48 22.25 21.26 33.68 22.41 21.79 25.57 22.74 22.84

12
MAE 34.93 39.56 42.60 72.51 42.87 36.26 44.62 41.68 39.36 45.73 39.61 43.29

RMSE 53.10 56.18 63.33 104.93 63.06 56.23 65.61 62.28 59.60 65.62 58.33 62.34
MAPE 31.09 32.18 36.88 56.28 34.52 32.23 38.28 34.99 33.43 41.02 33.67 35.23

PE
M

SD
3-

St
re

am

3
MAE 11.39 13.27 15.43 14.68 12.79 12.89 17.04 12.81 12.96 13.03 12.97 13.39

RMSE 19.48 21.48 24.53 23.73 20.79 21.14 28.47 21.02 20.95 21.07 21.11 21.60
MAPE 15.45 17.06 32.15 18.02 17.30 16.58 23.63 16.48 16.66 20.44 16.41 16.71

6
MAE 12.47 14.30 17.13 17.41 14.05 14.08 17.26 14.14 14.18 14.51 14.14 14.63

RMSE 21.62 23.68 27.63 28.61 23.07 23.26 29.27 23.38 23.19 23.67 23.31 23.82
MAPE 16.02 18.23 33.77 20.90 19.54 17.62 25.63 19.71 18.52 22.43 17.91 18.33

12
MAE 14.36 16.28 20.96 24.00 16.65 16.55 18.19 16.71 16.56 17.04 16.37 17.25

RMSE 24.95 28.41 33.82 39.64 27.46 27.44 30.14 27.92 27.31 27.94 27.10 28.20
MAPE 18.66 20.94 39.07 27.84 23.59 20.12 30.81 20.95 21.25 25.30 20.29 21.30

K
no

w
A

ir

6
MAE 24.37 25.68 26.20 30.56 26.89 26.43 27.85 26.19 26.49 28.46 27.84 27.92

RMSE 36.56 37.59 38.42 45.34 39.16 37.91 39.07 37.82 38.90 41.47 40.25 39.47
MAPE 51.94 52.41 59.53 69.06 57.45 58.39 65.74 52.90 57.84 65.26 52.42 58.32

12
MAE 27.03 28.96 29.49 38.45 29.77 30.06 30.48 29.45 30.85 30.86 31.11 31.63

RMSE 40.29 42.64 41.98 55.26 41.75 42.52 42.67 41.71 44.59 43.87 43.65 43.71
MAPE 54.45 71.99 70.15 87.60 68.39 67.10 71.05 61.64 68.44 71.83 61.51 69.83

24
MAE 28.70 30.56 31.63 42.67 31.57 30.94 31.48 30.96 32.78 32.52 32.99 34.68

RMSE 42.39 45.48 45.21 61.30 44.52 46.21 44.72 43.48 46.67 44.80 44.14 47.19
MAPE 57.96 75.11 75.36 94.76 76.76 69.84 74.14 65.31 74.02 81.32 70.84 80.49

4.4. Hyperparameter Sensitivity Analysis (Q.3)

We analyze the sensitivity of the numer of ConAU and
GenPU on the SD (upper) and KnowAir (lower) datasets on
the Figure 3. Hyperparameter experiments on other datasets
are provided in Appendix Section E.11. When the number
of ConAU K is set to 8 in SD dataset and 4 in KnowAir
dataset. When K exceeds this value, the model creates too
many ConAU, making it unable to focus on extracting in-
variant contextual features, thus introducing noise. When
K is less than this value, too few perception units fail to
learn sufficient invariant knowledge, leading to a decrease
in the model’s generalization performance. The number
of GenPU M is set to 3 in SD dataset and 4 in KnowAir
dataset. A smaller M may not provide sufficient training
environment diversity, resulting in performance degradation.
On the other hand, an excessive number of GenPU does
not necessarily improve performance. Too large M means
that the generated environment is too complex, which in-

creases the learning difficulty of the model to extract causal
knowledge.

4.5. Ablation Study (Q.4)

In this section, we evaluate the effectiveness of each compo-
nent on SD and KnowAir datasets. “w/o decom” removes
the time decomposition module, “w/o prompt” eliminates
the spatio-temporal prompting method, “w/o Yt” uses only
spatial prediction as the final prediction. “w/o LA” means
that we use vanilla self-attention mechanism to replace the
low-rank attention module.

As illustrated in Figure 4, the results show that each com-
ponent of STOP helps to improve the OOD generaliza-
tion. “w/o Yt” achieves poor prediction performance, which
proves that the proposed collaborative component is effec-
tive for OOD. “w/o ConAU” removes ConAU and achieves
high errors, proving that spatio-temporal interaction is also
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Figure 3. Hyperparameter Experiments for K and M .

necessary in OOD scenarios. “w/o GenPU” has higher pre-
diction errors because GenPU can help the model extract
causal knowledge and enhance model robustness. Ablation
experiments demonstrate the necessity and effectiveness of
each module of our model, while we further perform a com-
prehensive ablation experiment including double module
ablation in Appendix Section E.10.

4.6. Efficiency Study (Q.5)

The training time of per epoch is illustrated in Figure 5, we
can see that STOP demonstrates remarkable effectiveness
and efficiency on the SD dataset. Since our model primarily
uses lightweight MLP layers to model temporal and spa-
tial dynamics. Compared to the SOTA model D2STGNN,
which is a Transformer-based model with RNNs for tem-
poral dynamics modeling and GNNs for spatial dynamics
modeling, our model has improved the efficiency by about
20 times (60.57 s/epoch vs 1220.79 s/epoch). Because its
transformer-based architecture introduces a quadratic de-
pendency on the number of spatial nodes, leading to high
computational complexity. Furthermore, its recursive tem-
poral modeling mechanism requires storing hidden repre-
sentations at each time step, which significantly increases
both memory consumption and inference latency. Conse-
quently, such sequential approaches encounter substantial
scalability barriers when applied to large-scale air quality
forecasting tasks. In contrast, our model demonstrates supe-
rior computational efficiency. This is attributed to our novel
spatiotemporal interaction module, which captures complex
dynamics with near-linear time complexity. As a result, our
approach enables highly scalable deployment.

4.7. Inductive Learning Performance of STOP (Q.6)

In OOD scenarios, the model’s ability to represent unseen
nodes is a challenge, which mainly involves the model’s
inductive learning. We report the performance of some ad-
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Figure 4. Ablation experiments on SD (upper) and KnowAir
(lower) datasets.

vanced baselines for new nodes on SD and GBA datasets in
Table 4 and on CA and GLA datasets in Table 7. Specifically,
Transformer-based models, like D2STGNN, are good at gen-
eralizing because they can create accurate representations
for new nodes. GCN-based models are poor at generalizing
because they rely heavily on the original graph structure
and can not generate accurate representations for new nodes.
Transformer-based models struggle because they can not
create robust weights for new nodes. However, the STONE
framework uses a novel embedding method to generate good
initial representations for new nodes. Our model stands out
by using a centralized messaging mechanism to access con-
textual features and enhance representations, making it excel
in extending performance to new nodes.
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Figure 5. Efficiency study of STOP on SD dataset.

5. Related Work
5.1. Spatio-temporal Prediction

As a crucial task in intelligent transportation systems, cur-
rent SOTA spatio-temporal prediction models primarily rely

8
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Table 4. Inductive learning performance comparisons.

Model
SD GBA

MAE RMSE MAPE MAE RMSE MAPE

STONE 25.06 39.15 18.12 26.28 42.02 24.12
CaST 28.83 44.10 22.93 29.62 44.97 25.56
BigST 25.22 39.22 18.02 28.75 43.80 24.32

D2STGNN 25.85 39.33 20.07 26.36 42.15 25.96
STAEformer 25.28 39.42 18.41 28.61 44.87 27.61

STID 25.40 39.53 18.66 26.83 43.94 24.42
GWNet 29.01 44.18 22.82 29.15 43.60 28.00

Ours 22.74 36.09 16.82 24.76 38.52 19.67

on STGNNs (Wang et al., 2024b;c; Zhang et al., 2025; 2024;
Huang et al., 2023). However, they assume similarity be-
tween training and testing environments. To learn from
evolving spatio-temporal graphs, some representative con-
tinual learning methods (Chen et al., 2021; Wang et al.,
2023a) sequentially fine-tune models using data subsets
with new distributions to adapt to spatio-temporal changes.
Unfortunately, these models’ effectiveness is only proven
in environments similar to the training set, leading to chal-
lenges when encountering OOD scenarios. To overcome
OOD challenges, researchers initially addressed temporal
shift challenges, with models focusing on extracting invari-
ant spatio-temporal knowledge from training data. However,
they largely overlooked the evolution of spatio-temporal
graph structures—which poses challenges for their relied-
upon node-to-node interaction mechanisms. In this paper,
we propose a novel message passing mechanism to over-
come these challenges.

5.2. Spatio-temporal OOD Learning

Inspired by advances in time series shift learning (Liu et al.,
2022) discussed in Appendix A, researchers have specifi-
cally designed spatio-temporal OOD learning models. For
example, CauSTG (Zhou et al., 2023a) introduces a causal
framework that transfers global invariant spatio-temporal
relationships to OOD scenarios. CaST (Xia et al., 2023)
employs a structural causal model to elucidate the data gen-
eration process of spatio-temporal graphs. STONE (Wang
et al., 2024a) proposes a causal graph structure to learn ro-
bust spatio-temporal semantic relationship. STEVE (Hu
et al., 2023) encodes traffic data into two disentangled rep-
resentations and utilizes spatio-temporal environments as
self-supervised signals. In this paper, we reformulate their
message-passing mechanism, addressing the OOD chal-
lenge from a novel perspective.

5.3. Temporal Shift in Time Series

Various models have been developed in the time series do-
main to address temporal shifts in time series data, par-
ticularly focusing on OOD learning challenges. For in-

stance, RevIN (Kim et al., 2021) employs a symmetric
structure to eliminate and reconstruct distribution informa-
tion based on the input window’s statistics. AdaRNN (Du
et al., 2021) categorizes historical time sequences into dif-
ferent classes and dynamically matches input data to these
classes for contextual information identification. Addition-
ally, a reversible instance normalization technique, proposed
by (Kim et al., 2021), aims to mitigate temporal distribution
shift issues. Non-stationary Transformers (Liu et al., 2022)
introduce a normalization-denormalization technique to sta-
bilize time series data, mainly for transformer-based mod-
els. SAF (Arik et al., 2022) suggests test-time adaptation
through a self-supervised objective to enhance adaptation
against distribution shifts. DIVERSIFY (Lu et al., 2024)
aims to leverage subdomains within a dataset to mitigate
challenges arising from non-stationary generalized repre-
sentation learning. However, these models often overlook
the modeling of spatial dependencies. Spatial modeling is
crucial in the field of spatio-temporal prediction, as it can
examine the states of neighboring nodes to enhance predic-
tion performance, given the strong correlations that often
exist among neighboring nodes (Jin et al., 2023; Shao et al.,
2023).

6. Conclusion
In this paper, we propose a Spatio-temporal Out-of-
distribution Processor (STOP), which combines spatial inter-
action mechanisms and message perturbation mechanisms
to enhance adaptation to spatio-temporal variations. We
employ a centralized message passing mechanism and mes-
sage shape perturbation mechanism to replace traditional
point-to-point message interaction strategies. STOP can
learn generalizable knowledge from diverse training envi-
ronments. Evaluation on extensive datasets across various
OOD scenarios demonstrates the model’s robust generaliza-
tion, inductive learning capabilities, and efficiency.
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A. Related Work
A.1. Spatio-temporal Prediction

Current popular spatio-temporal prediction models are predominantly based on spatio-temporal graph neural networks
(STGNNs) (Zhang et al., 2016; Wang et al., 2024b; Zhou et al., 2023c; Liu et al., 2025a; Pan et al., 2019; Wang et al., 2023c;
Zhou et al., 2023b; Ma et al., 2025). These models focus on developing advanced variants to accurately characterize spatio-
temporal data, typically combining GCNs with sequential models to learn complex dynamics. GWNet (Wu et al., 2019),
STGCN (Yu et al., 2017) leverage GNNs with TCN to model spatial and temporal dynamics, respectively. D2STGNN (Shao
et al., 2022b), DGCRN (Li et al., 2023) and DCRNN (Li et al., 2017) integrate diffusion graph convolutional networks with
RNN to effectively capture temporal patterns. Meanwhile, STAEformer (Liu et al., 2023a) and STNN (Yang et al., 2021)
utilize Transformer to model long-term temporal dependencies. AGCRN (Bai et al., 2020) directly treats the graph topology
as a trainable parameter of the model and goes through the training process to find the optimal graph topology. In addition,
some spatio-temporal models choose other ways of spatial interaction, such as STNorm (Deng et al., 2021) which adjusts the
data distribution of all nodes by normalization to accomplish spatial information influence among nodes, and STID (Shao
et al., 2022a) captures and distinguishes spatial patterns of each node in a data-driven manner by assigning learnable node
embeddings. However, these kind of spatial modeling on nodes has no capability of out-of-distribution learning since these
parameters in models are coupled with the spatial scale. Furthermore, some continual learning approaches (Chen et al., 2021)
sequentially fine-tune models using data subsets with new distributions to adapt to spatio-temporal changes. Unfortunately,
the effectiveness of these models can only be demonstrated in environments similar to the training set, leading to challenges
when encountering OOD scenarios.

A.2. Continual Learning with Spatio-temporal Shift

Several studies (Chen et al., 2021; Miao et al., 2024; Wang et al., 2023a; Miao et al., 2025; Chen & Liang, 2024) have
proposed continual learning strategies to tackle spatio-temporal graph prediction in scenarios with spatio-temporal shifts.
When the spatio-temporal data distribution undergoes changes, these models engage in fine-tuning using a subset of new
data to adjust to the updated data distribution. For instance, TrafficStream (Chen et al., 2021) recommends utilizing subsets
of newly added nodes and significant temporal pattern data changes for fine-tuning the model. PECPM (Wang et al., 2023b)
identifies conflicting nodes to enhance the fine-tuning process, focusing on nodes that have experienced substantial changes.
DLF (Wang et al., 2024b) introduces a streaming training strategy to continuously fine-tune the model to adapt to the
dynamic nature of spatio-temporal data. TFMoE (Lee & Park, 2024) partitions traffic flow into multiple homogeneous
groups and assigns an expert model responsible for each group, enabling each expert model to specialize in learning and
adapting to specific patterns. However, these models often compromise performance to improve learning efficiency, resulting
in lower performance compared to traditional spatio-temporal models. Primarily, these models train and fine-tune on a
sufficient amount of new distribution data (approximately 21 days in one month) and test on the new data distribution,
thereby adhering to the IID assumption and encountering difficulties in OOD learning.

B. Algorithm & Optimization
We have provided the pseudocode of the algorithm in Algorithm 1, where we can observe that STOP makes final predictions
based on the temporal component and spatial component. This includes a perturbation process to extract robust knowledge.
This perturbation process only occurs in the training phase and we no longer use it in the test phase. We also provide the
optimization flow of GenPU and model parameters in Algorithm 2. As shown, we interleaved the optimization of GenPU
and model parameters.

C. Theoretical Explanation and Analysis
C.1. Low-rank Attention

In the centralized messaging mechanism, We first define low-rank attention as follows:

Z(i)
c =A (Q,K,V) = softmax

(
αQK⊤)︸ ︷︷ ︸

Diffusion

× softmax
(
αKQ⊤)︸ ︷︷ ︸

Aggregation

V, (21)

where Q =ZTW
(i)
q ∈ RN×dh , K = CJ

(i)
dt
∈ RN×dh , V = ZTJ

(i)
dt
∈ RN×dh . (22)
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Algorithm 1 STOP for spatio-temporal prediction
Input: Historical data X ∈ RT×N×c.
Output: Future prediction Ŷ ∈ RTP×N×c.
# Data encode;
H0 ← X in Eq. 2 ∼ 4 ▷ Temporal decomposition
ZI ← H0, T̃,E in Eq. 5 ▷ Input representation
# Temporal modeling and prediction;
ZT ← ZI in Eq. 6 ▷ Temporal representation learning
Yt ← ZT in Eq. 7 ▷ Temporal prediction component
# Spatial modeling and prediction;
if test phase then
Zc ← ZT,C in Eq. 8 ∼ 9 ▷ ConAU

end if
if training phase then
Zc ← ZT,C, g in Eq. 8 ∼ 9, 10 ∼ 11 ▷ ConAU & GenPU
Zs ← Zc,ZT in Eq. 15 ∼ 18 ▷ Spatial representation learning
Ys ← Zs in Eq. 19 ▷ Spatial prediction component
# Final prediction;
Ŷ ← Yt +Ys in Eq. 20 ▷ Final prediction

end if

Algorithm 2 Optimization process of STOP
Input: Historical data X ∈ RT×N×c, GenPU G = {g1, g2, . . . , gM} ⊆ RN , sample hits s ∈ (0, N), future label
Y ∈ RTP×N×c, loss function L, initialized parameters Θ of STOP function f , patience P , learning rates α and β.
Output: Well-trained parameters Θ∗ of STOP.
while maximum epochs not reached or not converged do

for patience = 1, 2, . . . , P do
for j = 1, 2, . . . ,M do
g′
j ← softmax (gj)

g̃j ← sampling from multinomial distributionM
(
g′
j ; s

)
Gj ← g̃j in Eq. 10 ▷ Generalized Perturbation Units
Lj ← L (f (X) ,Y;Gj)

end for
L∗ ← max {L1,L2, . . . ,LM}
Θ← Θ− α∇ΘL∗ ▷ Update the parameters of STOP

end for
i← argmax {L1,L2, . . . ,LM}
gi ← gi + β

(
(1− g̃i) g

⊤
i − log || exp gi||1

)
L∗ ▷ Update GenPU

end while

Let Sa = softmax
(
αKQ⊤) ∈ RK×N be the aggregation component of the attention score, and Sd = softmax

(
αQK⊤) ∈

RN×K be the diffusion component of the attention score, hence the attention score matrix S ∈ RN×N can be expressed as

S = Sd × Sa ∈ RN×N . (23)

And the rank of S is satisfied,

rank (S) = rank (Sd × Sa) ≤ min (rank (Sd) , rank (Sa)) ≤ K ≪ N. (24)

The final inequality is a consequence of the fact that the maximum rank of a matrix is no more than the minimum of the
ranks of its rows and columns (Greub, 2012). The rank of S, up to K, is much lower than its size N , i.e., the number of
rows and columns, hence the attention score matrix of our attention mechanism is a low-rank matrix. This constitutes the
basis for the low ranking observed in our low-rank attention mechanism.
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The low-rank characteristic in the centralized messaging mechanism offers one key advantage: it exhibits linear complexity
compared to the self-attention mechanism, allowing for a larger spatio-temporal efficiency.

C.1.1. EFFICIENCY ANALYSIS

The low-rank attention function in Equation 21 can be rewritten as follows,

A (Q,K,V) = SV = (SdSa)×V = Sd × (SaV) . (25)

Consequently, in contrast to the unlike vanilla self-attention mechanism (Vaswani et al., 2017), which necessitates the
pre-computation of the attention score matrix with complexity O

(
N2dh

)
, we have the option of computing SaV ∈

RK×dh initially with complexity O (KNdh) and subsequently determining Sd × (SaV) ∈ RN×dh with same complexity
O (KNdh), resulting in the efficient computation of low-rank attention with linear time complexity O (N) by K ≪ N . As
shown, we reduce the computational complexity from quadratic to nearly linear. This enables our method to effectively
process graph data with a large number of nodes without requiring excessive GenPU memory resources. See Figure 9 and
Figure 6 for experimental analysis.

D. Distributionally Robust Optimization
We theoretically analyzed STOP’s generalization performance. Since STOP’s optimization objective belongs to the
distributionally robust optimization class (Duchi & Namkoong, 2019), which exhibits good generalization properties. Note
that distributionally robust optimization class is a general term for optimization objectives that satisfy specific conditions -
our contribution lies in how to implement optimization strategies that meet these conditions in the spatio-temporal OOD
problem. First, we will introduce what constitutes a distributionally robust optimization class and the necessary conditions
for membership, then analyze its beneficial properties, and finally extend these concepts to STOP.

D.1. What is DRO?

Distributionally Robust Optimization (DRO) (Duchi & Namkoong, 2019) refers to a class of loss functions that aim to
optimize by considering the worst-case scenario within a certain range of all possible distributions of the data. In practical
terms, an optimization object that takes the following form with respect to the training environment e∗ can be categorized
under DRO (Duchi & Namkoong, 2019; Staib & Jegelka, 2019; Levy et al., 2020),

argminf sup
e∈E

{
E(X,Y)∼p(X ,Y|e);D(e,e∗)≤ρ [L (f (X) ,Y)]

}
, (26)

where f is the function we optimized, usually a deep neural network with learnable parameters. D (·, ·) is the distribution
distance metric (Namkoong & Duchi, 2016; Shafieezadeh Abadeh et al., 2018), which is used to calculate the distance
between distributions. ρ is a hyperparamer to limit the extent to which the distribution is explored. In fact, this merely
indicates an exploration constraint, limiting the explored environments from being completely different from the training
environment.

Mark. If an optimization satisfies: (1) modeling of different environments, (2) applying constraints, and (3) emphasizing the
most challenging environments, then this optimization belongs to DRO and possesses the following beneficial properties.

D.2. Robust Properties of DRO

Recall that in the preliminary, the task of spatio-temporal OOD learning aims to learn a robust function f , which can
accurately predict values after TP time steps given observed data of past T time steps X and the graph sampled from any
environment e ∼ E , where e may have different spatio-temporal distributions with training environment e∗,

argminf sup
e∈E

E(X,Y)∼p(X ,Y|e) [L (f (X) ,Y)] . (27)

In a more intuitive sense, Equation. 1 is designed to find a function that reduces the loss associated with the most challenging
scenario across all possible distributions e ∼ E . This task is particularly challenging because we lack access to data
from any unfamiliar distributions outside of the training set (Qiao & Peng, 2023). Although traditional Empirical Risk
Minimisation (Vapnik, 1998),

argminf E(X,Y)∼p(X ,Y|e∗) [L (f (X) ,Y)] , (28)
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which optimises solely based on the raw training environment e∗, performs well under the IID assumption, it is not possible
to guarantee its performance in the presence of distributional drifts (Arjovsky et al., 2019). For all possible e ∈ E and
function f , with high probability in mathematics, the following property holds,

E(X,Y)∼p(X ,Y|e);D(e,e∗)≤ρ {[L (f (X) ,Y)]}

≤ E(X,Y)∼p(X ,Y|e∗) [L (f (X) ,Y)] +O

√
Var(X,Y)∼p(X ,Y|e∗) [L (f (X) ,Y)]

Ne∗

 ,
(29)

where Ne∗ is the number of data point in traning environment. Therefore, due to the presence of subsequent variance terms,
optimizing ERM alone cannot guarantee performance improvement in other environments e′ ∈ E − {e∗}. Compared to
the IID-only condition of the ERM, distributionally robust optimization explores a certain range of challenging training
data distributions, mathematically, distributionally robust optimization is equivalent to adding variance regularization to the
standard ERM (Duchi & Namkoong, 2019),

sup
e∈E

{
E(X,Y)∼p(X ,Y|e);D(e,e∗)≤ρ [L (f (X) ,Y)]

}
= E(X,Y)∼p(X ,Y|e∗) [L (f (X) ,Y)] +

√
2ρVar(X,Y)∼p(X ,Y|e∗) [L (f (X) ,Y)] + ε (f) ,

(30)

where ε (f) ≥ 0 and it is O(1/Ne∗) uniformly about f . Therefore, if we do not consider the subsequent asymptotic terms
ϵ(f), the above formula is equivalent to the following inequality,

sup
e∈E

{
E(X,Y)∼p(X ,Y|e);D(e,e∗)≤ρ [L (f (X) ,Y)]

}
≥ E(X,Y)∼p(X ,Y|e∗) [L (f (X) ,Y)] +

√
2ρVar(X,Y)∼p(X ,Y|e∗) [L (f (X) ,Y)].

(31)

DRO explores a certain range of training data distributions and tries to optimise on data distributions that may match
the distribution of the test set, providing ideas for solving the OOD problem. Therefore, DRO mathematically provides
more rigorous constraints than using empirical loss functions alone in OOD environments, preventing the model from
over-relying on training data. This enables the model to flexibly adapt to different environments, improving its generalization
performance in unknown environments.

D.3. Does STOP have properties of DRO?

We will demonstrate that our optimization objective of STOP belongs to DRO, inheriting its good properties. Our
optimization objective is as follows:

min
f

sup
g∈RN

E(X,Y)∼(X ,Y|e∗) [L (f (X) ,Y; g)] , s.t. ||g̃||0 = s ∈ (0, N) . (32)

Next, we demonstrate according to Mark 1 that our proposed optimization strategy satisfies the necessary conditions for
DRO, thus inheriting its beneficial properties.

Diverse environments. STOP creates a diverse training environment by adding a perturbation process through a message
perturbation mechanism.

Applying constraints. Our perturbation process follows polynomial distribution sampling, and we strictly control the
perturbation ratio, which imposes constraints on the generated environments.

Exploring challenging environments: We emphasize selecting environments with the largest gradients during training for
optimization, encouraging the model to be exposed to challenging environments.

In summary, our optimization strategy belongs to DRO and thus inherits its good generalization property.

E. Experiments
E.1. Baseline Details

In experiments, we compare a lot of spatio-temporal prediction models with spatio-temporal OOD models. However, the
original versions of many of these models are not compatible with the OOD setting. Consequently, we had to remove certain
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non-essential code related to graph structures, particularly node embedding techniques and adaptive graph structure learning
techniques.

❶ Node embedding technology. The researchers set a node embedding vector E ∈ RN×ds to capture node patterns
adaptively, which are coupled with the size N of the graph structure. Therefore, when the model is trained, it cannot be run
directly into the test environment with ST-OOD. STID, STAEformer, and BigST use this technology.

❷ Adaptive graph learning. This method generally use two noode embedding vectors E1 ∈ RN×ds and E2 ∈ RN×ds ,
and they multiply these two node embedding matrices, As = E1E

⊤
2 ∈ RN×N , to generate an adaptive adjacency matrix As

for learning the adjacency matrix, which is then used for GCN. GWNet, D2STGNN, and CaST adopt this method.

E.2. Experimental dataset details

In this paper, we utilized six datasets to evaluate the effectiveness of the models in OOD scenarios, primarily from the
domains of transportation and atmosphere. These datasets often span multiple years. Among them, LargeST (Liu et al.,
2024b) collected five years of data from 8600 records, sampled at a frequency of five minutes. PEMSD3-Stream (Chen
et al., 2021) is a naturally streaming traffic dataset, recording data from July each year from 2011 to 2017, where the traffic
structure expands year by year, naturally representing spatio-temporal shifts. Knowair (Wang et al., 2020) collected 18
atmospheric features sampled at an hourly frequency. We followed the following rules to create spatio-temporal OOD
datasets.

❶ Temporal shift: We used the first 60% of data from the first year as the training set, followed by 20% of data for the
validation set. We used the last 20% of data from subsequent years for the test set. This longer time interval ensures changes
in temporal distribution characteristics.

❷ Structural shift: Apart from the PEMSD3-Stream dataset, we selected a subset of nodes for training and validation,
approximately 75% of the total number, in the test set, we randomly masked 10% of nodes to simulate node disappearance
and added 30% of nodes as new nodes. This is because for spatio-temporal systems, cities or detection systems generally
tend to expand. Since PEMSD3-Stream is a natural streaming data set, we use it directly.

Table 5. The details of used datasets.

Dataset

Training set Test set

Time range
Graph

Temporal shift
Structural shift

Nodes New nodes Removed Nodes

LargeST-SD First 60% data in 2017 550 Last 20% data in 2018-2021 165 55
LargeST-GBA First 60% data in 2017 1809 Last 20% data in 2018-2021 542 180
LargeST-GLA First 60% data in 2017 2949 Last 20% data in 2018-2021 884 294
LargeST-CA First 60% data in 2017 6615 Last 20% data in 2018-2021 1984 661

KnowAir First 60% data in 2011 141 Last 20% data in 2012-2017 42 14
PEMSD3-Stream First 60% data in 2015 655 Last 20% data in 2016-2021 (60, 131, 167, 179, 195, 216) 0

E.3. OOD Performance Comparison on Large Datasets

As the largest collection of spatio-temporal data available in open source today, CA represents an invaluable test case for
the OOD capability of the model. The performance of STOP and the baseline is evaluated on large-scale and large-scale
spatio-temporal datasets, respectively, under identical conditions.

Based on the same partitioning strategy as described in Section 4.1, we divide the LargeST dataset into the two largest
subdatasets, GLA and CA. Due to the parameter complexity of Transformer-based baselines such as STAEformer, STNN,
D2STGNN, and STONE, which scales at least quadratically with the number of nodes, deploying these models on GLA and
CA datasets is not feasible.

As shown in Table 6, STOP consistently outperforms the baselines on both the large-scale spatio-temporal OOD dataset in
terms of overall performance and performance on newly added nodes, with improvements of up to 14.01%. On large-scale
spatio-temporal datasets, the performance of baselines based on global message passing mechanisms declines significantly
due to the introduction of more new nodes. STID, which does not involve node interactions, achieves the second-best
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performance among the baselines. In contrast, STOP benefits from ConAU by decomposing large-scale spatio-temporal
scenes into stable spatio-temporal subenvironments, leading to the best performance while ensuring node interactions. This
highlights STOP’s remarkable OOD capabilities even in large-scale scenarios.

Table 6. OOD performance comparisons on GLA and CA datasets. The absence of baselines indicates that the models incur out-of-memory
issues.

Method Ours CaST RPMixer BigST STID STNorm GWNet STGCN

G
L

A

3
MAE 19.13 23.36 25.89 20.32 19.87 21.05 21.17 20.51

RMSE 30.33 35.53 41.10 32.56 31.78 33.03 32.96 32.24
MAPE 11.93 21.44 14.90 12.93 12.03 13.34 13.87 12.81

6
MAE 26.29 31.43 43.33 28.83 28.30 30.70 29.91 29.13

RMSE 40.66 47.49 66.65 44.69 43.92 46.35 45.47 44.50
MAPE 17.60 27.75 26.18 18.49 17.72 20.57 19.90 19.36

12
MAE 36.87 43.48 77.32 42.12 41.38 46.13 41.81 43.92

RMSE 55.96 65.08 114.02 62.99 62.69 66.98 62.08 64.34
MAPE 27.07 36.46 53.23 30.33 27.90 34.63 28.21 31.14

C
A

3
MAE 17.47 21.87 23.72 18.77 18.35 19.10 19.01 19.23

RMSE 28.24 34.44 38.43 30.77 30.01 30.86 30.30 30.89
MAPE 12.69 17.79 16.02 13.60 12.92 15.38 13.62 13.68

6
MAE 23.70 29.13 39.52 26.80 26.06 27.63 26.64 27.30

RMSE 37.17 45.30 61.88 42.34 41.33 43.10 41.32 42.51
MAPE 18.39 23.63 27.42 19.98 19.33 23.24 19.56 20.23

12
MAE 32.86 41.26 70.64 39.59 38.23 40.77 37.63 40.64

RMSE 50.28 62.85 105.36 60.24 59.16 61.20 57.07 61.01
MAPE 27.65 34.71 53.26 32.00 29.77 35.50 30.31 31.93

Table 7. Inductive learning preformance on GLA and CA datasets of new nodes. The absence of baselines indicates that the models incur
out-of-memory issues.

Method Ours CaST RPMixer BigST STID STNorm GWNet STGCN

G
L

A

3
MAE 18.99 23.09 25.65 20.17 19.71 20.92 21.35 20.36

RMSE 30.13 35.16 40.89 32.36 31.55 32.84 33.30 32.05
MAPE 11.94 21.32 14.86 12.91 12.03 13.26 14.01 12.81

6
MAE 26.17 31.15 42.95 28.66 28.14 30.56 30.46 29.00

RMSE 40.57 47.16 66.35 44.51 43.76 46.24 46.51 44.39
MAPE 17.64 27.62 26.09 18.47 17.73 20.47 20.25 19.38

12
MAE 36.78 43.12 76.60 41.84 41.13 45.87 42.97 43.70

RMSE 55.89 64.65 113.41 62.56 62.36 66.70 63.92 64.04
MAPE 27.17 36.35 53.12 30.24 27.87 34.35 28.98 31.14

C
A

3
MAE 17.48 21.86 23.73 18.76 18.35 19.10 19.38 19.23

RMSE 28.39 34.50 38.59 30.86 30.14 30.98 30.87 30.96
MAPE 12.87 18.46 16.15 13.85 13.12 16.06 15.62 13.97

6
MAE 23.71 29.11 39.50 26.79 26.05 27.65 27.47 27.30

RMSE 37.29 45.31 62.03 42.38 41.40 43.20 42.50 42.53
MAPE 18.73 24.37 27.65 20.34 19.70 24.45 22.76 20.62

12
MAE 32.83 41.22 70.53 39.53 38.18 40.75 39.27 40.61

RMSE 50.30 62.78 105.38 60.14 59.13 61.20 59.43 60.94
MAPE 28.24 35.75 53.61 32.69 30.44 37.24 35.64 32.53

E.4. Inductive Learning Comparison on Large Datasets

To evaluate the inductive learning capabilities of each model, we further report the performance of added nodes in Table
7. We can see that GCN-based models have overall poor inductive capabilities. While they can rely on message passing
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mechanisms to generalize learned information to unseen nodes, the spatially confused interactions cannot guarantee accurate
descriptions of added nodes, leading to subpar performance. In this regard, STID achieves better predictive results because
it assumes nodes are independent, allowing the model to learn time-related knowledge that is unrelated to nodes, which can
generalize to added nodes and avoid error accumulation. Our model demonstrates strong inductive learning capabilities on
large-scale graphs, as added nodes can access shared context features to obtain good representations.

E.5. Performance in S-OOD and T-OOD Scenarios

With LargeST-SD dataset, we investigate the performance of models in T-OOD and S-OOD scenarios. Used two datasets
are simplified versions of ST-OOD. For S-OOD, we use the last 20% of the 2017 data as the test set with the graph structure
unchanged. For T-OOD, we maintain the graph structure consistent between the training and testing environments, aligning
the data selection with ST-OOD. The experimental results are shown in Table 8, and we can observe that STGNNs exhibit
poor performance in the S-OOD scenario, mainly due to the sensitivity of the node-to-node interaction method to structural
shifts. The poor performance of STNN can be attributed to its use of Transformer, which lacks robustness against noise
introduced by temporal and spatial shifts. Our model has achieved competitive performance in both T-OOD and S-OOD
scenarios.

Table 8. Comparison in T-OOD and S-OOD scenarios.
Method Ours STONE D2STGNN STNN STGCN GWNet

S-OOD
MAE 23.21 25.00 26.56 35.06 29.74 26.79

RMSE 36.95 39.12 42.77 55.12 44.45 41.47
MAPE 14.45 16.72 19.80 23.42 21.79 18.16

T-OOD
MAE 22.91 25.41 24.23 36.14 25.73 23.38

RMSE 37.17 37.56 39.04 56.26 40.07 37.63
MAPE 15.35 16.38 17.37 26.46 17.68 16.58

E.6. Performance on Rapid Evoluting Spatio-temporal Dynamical System

In the main experiment, the proportion of added nodes is relatively small (only 30%), which may not cover rapidly developing
urban scenarios. We further create a challenging scenario where we train on 30% of nodes from the year 2017 and test on
the remaining 70% of nodes from subsequent years. Details of the experimental dataset are provided in Table 9.

Table 9. Rapidly growth OOD setting on SD dataset.
Training set Test set

Time range Graph (Nodes) Temporal shift Strucal shift
Firtst 60% data in 2017 214 Last 20% data in 2018-2021 500 new nodes & 0 removed nodes

We observe that for baseline models based on Transformer and GCN, such as D2STGNN and GWNet, the rapid and large
influx of new nodes significantly disrupts the model’s learning of message passing mechanisms, leading to a decrease in
performance for models relying on such global message passing mechanisms. Models like BigST based on linear attention
mechanisms and STONE based on relaxed mapping perform better than the former in out-of-distribution (OOD) scenarios
with rapid growth. On the other hand, STID, based on node independence, shows limitations in generalizing features to
new nodes when faced with a large number of additional nodes. In contrast, STOP benefits from its innovative ConAU and
GenPU-oriented low-order attention mechanism, capturing flexible adaptations to changes in the overall spatio-temporal
environment through sub-environments, showing the highest relative improvement rate at 16.35% and demonstrating
robustness in scenarios with rapid node growth.

E.7. Compare Continuous Learning Method

We compared STOP with several continual learning methods on out-of-distribution (OOD) tasks. Taking the PEMSD3-
Stream dataset as an illustration, when encountering spatio-temporal shifts, these models require fine-tuning using 21-day
data from the new distribution. To ensure a fair comparison, we aligned the OOD task settings by conducting tests directly
in the subsequent years following the initial year of training. This training methodology is denoted as ‘static-STModel’ in
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Table 10. OOD performance with rapidly growth on SD dataset.
Method Ours STONE CaST RPMixer BigST D2STGNN STNN STAEformer STID STNorm GWNet STGCN

A
ll

no
de

s

3
MAE 18.04 18.61 21.47 25.20 18.85 20.98 42.24 18.99 18.78 19.14 22.62 20.61

RMSE 29.17 29.82 33.75 40.13 30.36 33.46 65.12 30.29 30.17 30.84 34.70 32.56
MAPE 12.32 13.74 15.92 15.64 12.59 14.50 33.68 14.87 12.91 15.79 17.83 15.15

6
MAE 23.64 25.03 28.80 42.69 26.32 30.83 42.67 26.68 26.52 26.60 32.67 28.28

RMSE 38.10 39.92 44.71 66.85 41.79 47.76 65.66 41.82 41.93 42.20 49.31 44.40
MAPE 16.49 18.89 20.73 26.13 17.79 21.61 34.18 22.79 18.89 22.20 25.61 20.54

12
MAE 32.29 38.97 41.95 77.90 38.60 45.12 46.48 38.76 39.44 38.59 48.05 40.62

RMSE 51.74 55.20 63.40 116.56 60.11 68.19 71.04 59.68 60.79 60.35 71.78 63.28
MAPE 22.95 26.80 31.80 49.35 26.72 31.83 36.88 33.16 30.24 35.07 40.56 29.35

N
ew

no
de

s

3
MAE 18.28 18.84 21.53 25.24 18.97 21.26 44.82 19.16 18.92 19.37 22.97 20.86

RMSE 29.47 30.11 33.67 39.93 30.34 33.81 68.42 30.43 30.22 31.06 35.27 32.98
MAPE 12.50 14.07 16.20 15.66 12.72 14.98 35.29 15.21 13.08 16.38 18.45 15.54

6
MAE 24.02 25.39 28.94 42.76 26.55 31.34 45.26 27.00 26.79 27.02 33.27 28.71

RMSE 38.57 40.39 44.74 66.81 41.94 48.51 68.97 42.19 42.17 42.74 50.15 45.06
MAPE 16.77 19.40 21.04 26.13 18.02 22.34 35.86 23.34 19.22 23.22 26.58 21.08

12
MAE 32.81 39.40 42.19 77.95 38.86 45.73 48.99 39.22 39.78 39.24 48.98 41.26

RMSE 52.31 55.68 63.55 116.44 60.25 68.94 74.23 60.24 61.08 61.32 72.91 63.97
MAPE 23.33 27.39 32.22 49.28 26.88 32.76 38.59 33.87 30.86 37.24 41.97 30.12

TrafficStream (Chen et al., 2021), ‘SurSTG-Static’ in PEMCP (Wang et al., 2023b), and ‘Static-TFMoE’ in TFMoE (Lee &
Park, 2024). We directly extracted their experimental results from the PEMSD3-Stream dataset. For an intuitive comparison,
we have added the predicted performance of STGCN.

As depicted in Table 11, the performance of continual learning strategies is notably inferior to traditional prediction models
because they trade performance for accelerated training processes. And our model significantly surpasses existing continual
learning models in OOD tasks.

It is noteworthy that in this experiment, the performance indicated by STOP is slightly superior to that in the primary
experiment because the results amalgamate the performance of testing data in the first year, which was omitted in the
primary experiment to emphasize the disparities in data distribution between the test and training sets as much as possible.

Table 11. Compared with spatio-temporal continuous learning methods on PEMSD3-Stream dataset.

Model
15min 30min 60min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

PECMP 13.37 21.10 28.35 14.78 23.54 30.88 16.32 27.20 34.28
TrafficStream 13.98 21.88 29.36 15.12 23.98 31.67 17.46 28.01 36.44

TFMoE 12.95 21.18 18.97 14.51 23.90 19.62 18.07 29.87 24.92

STGCN 13.27 21.03 16.64 14.47 23.64 18.03 17.05 27.95 21.04
Ours 11.37 19.16 15.38 12.41 21.18 15.92 14.24 24.39 18.51

E.8. Efficiency Study on KnowAir Dataset

The training time per epoch is depicted in Figure 6, showcasing the remarkable effectiveness and efficiency of STOP on the
KnowAir dataset. Transformer-based models like STNN, STARformer, and D2STGNN exhibit substantial computational
time and high memory usage due to their utilization of self-attention mechanisms to calculate dependencies between node
pairs, resulting in a time and space complexity that scales quadratically with the number of nodes. Similarly, GCN-based
models rely on GCN mechanisms for spatial feature interactions, leading to a time complexity that is also quadratic with
the number of nodes. In contrast, our model, with a complexity linear with the number of nodes, significantly reduces the
computational complexity.
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Figure 6. Visual case and efficiency study of STOP on KnowAir dataset.

E.9. Detailed Performance Analysis of OOD in Each Year

In the main experiment, we reported the average OOD performance over multiple years. To provide a more detailed
comparison, we present the performance changes of each model in LargeST OOD datasets for each year. As shown in Table
12 to 14, the results demonstrate that in fine-grained performance analysis, our model remains highly effective.

E.10. Ablation Experiment

We conduct thorough ablation experiments to evaluate the effectiveness of each component. The variants we created are
shown in Table 15 and the experiments are shown in Table 16.

For the time module, we found that time decomposition and prompting provided the model with better capabilities to
capture the temporal patterns from the sequence perspective, while the introduction of Yt to make predictions from multiple
components enhanced the model’s robustness.

Regarding the C&S messaging mechanism, the “w/o ConAU” variant, which removes the spatial interaction module, resulted
in a significant increase in error, indicating that the spatial interaction is still necessary in OOD scenarios. The “w/o LA”
variant, which removes the low-rank attention mechanism in the C&S spatial interaction module, performed poorly in
prediction, as the traditional node-to-node messaging mechanism is less robust to spatio-temporal shifts. The “w/o LA
+ DRO” variant performed better than the “w/o LA + RandomDrop” variant, demonstrating that the proposed message
perturbation mechanism is more effective than directly perturbing the dataset to generate diverse training environments in
helping the model extract robust representations.

The “w/o DRO” variant exhibited a larger prediction error, suggesting that the inability to effectively optimize the deployed
GenPU mask matrix increased the complexity of the model’s learning process. The “w/o (GenPU&DRO)” variant also
showed a considerable increase in error, further highlighting the crucial importance of the proposed message perturbation
mechanism in enhancing the model’s robustness, as it allows the model to learn resilient representations from the perturbed
environments.

These ablation studies can demonstrate the positive impact of each designed component on enhancing the overall performance
of the model in out-of-distribution scenarios.
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Table 12. OOD performance on LargeST-2018 dataset
Method Ours CaST RPMixer BigST STID STNorm GWNet STGCN STONE D2STGNN STNN STAEformer

SD

3
MAE 17.80 22.07 26.22 19.13 18.65 19.48 19.84 18.68 18.83 18.38 35.32 19.01

RMSE 28.23 34.38 41.83 30.76 29.87 30.75 30.62 29.29 29.97 28.51 55.12 30.25
MAPE 10.76 14.68 15.28 11.47 12.25 11.96 12.50 11.56 11.24 11.47 23.38 11.58

6
MAE 23.40 30.03 44.55 26.41 26.01 26.76 26.97 24.53 26.38 23.98 35.77 26.21

RMSE 37.13 46.41 69.75 41.64 40.92 41.64 41.36 38.01 38.53 37.72 55.73 41.04
MAPE 14.52 19.82 25.81 16.28 16.57 16.71 17.98 15.22 15.02 15.03 23.72 16.22

12
MAE 32.06 43.42 80.17 38.86 38.31 38.93 37.66 34.78 38.77 32.97 41.51 38.25

RMSE 51.45 66.43 120.41 60.05 59.78 60.02 58.90 53.80 51.94 51.27 64.44 59.22
MAPE 20.59 29.10 48.67 24.68 24.39 25.31 26.42 22.96 22.15 21.70 28.11 24.79

G
B

A

3
MAE 19.87 24.51 28.16 22.44 21.70 22.33 21.96 22.61 20.58 20.48 41.67 23.27

RMSE 32.71 38.63 45.26 36.86 35.55 36.07 34.62 36.12 36.49 35.06 62.49 37.74
MAPE 15.74 23.37 21.21 18.03 17.34 18.08 18.71 17.26 16.65 16.67 39.87 18.17

6
MAE 25.44 32.60 45.23 30.73 29.52 30.96 28.76 30.21 26.15 26.05 41.57 31.18

RMSE 40.59 49.60 69.42 47.93 46.23 47.50 43.56 46.13 42.86 42.49 62.41 48.28
MAPE 23.19 32.35 37.04 27.13 27.55 27.63 26.81 26.59 24.30 24.63 39.73 27.59

12
MAE 33.94 45.49 77.43 43.71 41.78 43.38 38.42 41.67 36.96 34.94 46.13 44.53

RMSE 53.45 67.92 113.45 65.75 63.68 64.22 57.12 61.36 56.02 54.96 68.65 66.98
MAPE 33.85 45.54 69.67 41.11 42.03 43.41 38.80 40.22 37.77 37.31 46.05 43.32

G
L

A

3
MAE 19.70 24.78 28.12 21.81 21.03 22.27 21.52 21.73

Out of Memory

RMSE 31.31 37.70 44.37 34.75 33.54 34.76 33.47 33.99
MAPE 11.25 19.65 14.84 12.42 11.58 12.62 12.69 11.91

6
MAE 26.38 33.17 47.11 30.71 29.39 31.64 29.57 30.22

RMSE 41.01 50.28 72.19 47.55 45.86 47.81 45.05 46.24
MAPE 16.20 25.56 26.16 17.46 16.73 18.70 17.76 17.50

12
MAE 36.15 45.37 83.11 44.34 42.28 45.84 40.51 44.17

RMSE 55.61 68.36 121.95 66.37 64.77 67.03 60.64 65.32
MAPE 24.33 33.70 53.19 27.87 25.94 29.77 24.75 26.93

C
A

6
MAE 18.66 23.86 26.15 20.59 20.07 20.41 19.96 20.84

RMSE 30.26 37.58 42.44 33.80 32.72 33.06 31.84 33.53
MAPE 13.24 18.53 17.31 14.28 13.71 14.50 14.02 14.24

12
MAE 24.67 31.61 43.27 28.95 28.08 28.61 27.00 29.04

RMSE 39.12 49.24 67.85 45.85 44.60 45.05 41.99 45.49
MAPE 18.98 24.83 29.84 20.89 20.56 21.59 19.74 20.89

24
MAE 33.54 44.03 75.81 41.51 40.52 40.85 37.02 42.04

RMSE 52.42 67.48 113.33 63.71 63.08 62.43 56.46 63.80
MAPE 27.78 36.25 57.70 32.88 31.63 32.32 30.10 32.09
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Table 13. OOD performance on LargeST-2019 dataset
Method Ours CaST RPMixer BigST STID STNorm GWNet STGCN STONE D2STGNN STNN STAEformer

SD

3
MAE 18.42 22.51 26.61 19.71 19.51 19.56 21.12 19.63 19.42 19.54 37.94 19.52

RMSE 29.68 35.36 42.80 32.18 31.39 31.25 33.00 31.15 30.88 30.68 59.76 31.62
MAPE 11.73 16.02 16.03 12.27 13.18 12.65 14.57 12.99 12.76 12.91 28.17 12.58

6
MAE 24.16 30.58 44.89 26.85 26.88 26.32 28.93 26.05 25.86 25.76 38.28 26.58

RMSE 38.73 47.64 70.91 43.07 42.76 41.85 44.61 40.84 40.54 39.74 60.37 42.38
MAPE 15.81 21.39 26.91 17.42 17.95 17.44 20.96 17.25 17.80 17.12 28.40 17.50

12
MAE 32.78 43.96 80.12 39.17 39.31 38.24 40.49 37.07 36.89 35.59 43.02 38.22

RMSE 52.84 67.24 120.77 61.26 61.64 60.13 62.82 57.94 54.16 54.24 67.88 60.11
MAPE 22.22 31.30 50.17 26.46 26.42 26.47 30.52 26.08 26.00 25.06 32.33 26.42

G
B

A

3
MAE 19.95 23.90 27.07 21.52 21.01 21.98 21.95 22.43 22.26 21.46 41.80 22.59

RMSE 32.18 37.26 42.81 34.69 34.16 34.68 33.94 35.05 34.94 35.45 62.20 35.99
MAPE 15.45 21.66 19.51 16.54 15.95 17.48 17.87 16.16 16.04 16.84 38.21 16.74

6
MAE 26.30 31.96 43.87 29.93 29.05 31.42 29.34 30.51 28.25 27.84 41.72 30.51

RMSE 40.91 48.34 66.45 45.96 45.13 46.99 43.72 45.62 42.30 43.83 62.10 46.78
MAPE 23.51 30.05 34.24 24.85 25.50 27.53 25.63 25.25 25.05 24.59 38.23 25.25

12
MAE 36.07 44.88 76.42 43.52 41.75 44.80 39.71 43.12 36.93 37.50 45.94 43.56

RMSE 54.99 67.05 110.42 65.05 63.30 64.97 58.44 62.39 56.18 57.40 67.93 65.74
MAPE 34.75 42.42 65.49 37.91 38.94 43.22 37.05 38.59 35.69 36.41 43.50 38.83

G
L

A

3
MAE 19.69 24.47 27.31 21.23 20.76 21.51 21.69 21.10

Out of Memory

RMSE 30.93 37.04 43.19 33.92 32.95 33.70 33.58 33.12
MAPE 11.74 21.06 15.06 12.69 12.01 12.88 13.66 12.35

6
MAE 26.68 32.83 45.88 29.83 29.44 30.68 30.29 29.50

RMSE 41.06 49.58 70.56 46.45 45.54 46.59 45.96 45.29
MAPE 17.13 27.37 26.73 17.97 17.68 19.31 19.35 18.42

12
MAE 36.79 45.09 81.30 42.90 42.73 44.89 41.81 43.33

RMSE 56.03 67.71 119.66 64.97 64.92 66.28 62.28 64.54
MAPE 25.92 36.07 55.21 28.69 27.67 31.03 27.11 28.64

C
A

6
MAE 18.50 23.33 25.21 19.90 19.51 19.91 19.81 20.19

RMSE 29.65 36.55 40.72 32.59 31.74 32.19 31.40 32.40
MAPE 13.34 18.47 16.80 14.01 13.44 15.19 14.04 13.94

12
MAE 24.94 30.93 41.86 28.08 27.58 28.22 27.27 28.23

RMSE 38.97 48.06 65.53 44.55 43.67 44.30 42.14 44.22
MAPE 19.55 24.73 29.04 20.55 20.30 22.95 20.04 20.56

24
MAE 34.31 43.25 73.86 40.68 40.08 40.80 37.76 41.13

RMSE 52.57 66.25 110.23 62.63 62.31 62.15 57.27 62.72
MAPE 29.07 36.29 56.63 32.69 31.37 34.17 30.78 31.72
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Table 14. OOD performance on LargeST-2021 dataset
Method Ours CaST RPMixer BigST STID STNorm GWNet STGCN STONE D2STGNN STNN STAEformer

SD

3
MAE 18.24 21.42 25.11 19.24 18.92 19.29 20.97 19.33 18.61 19.54 38.32 19.69

RMSE 29.23 33.16 39.71 30.70 30.10 30.74 32.61 30.60 30.01 30.73 58.72 27.31
MAPE 12.02 15.99 15.64 12.27 13.33 12.80 15.29 13.21 12.95 13.81 27.23 12.91

6
MAE 24.22 29.31 42.46 26.47 26.50 26.78 29.11 26.33 26.09 26.55 38.64 27.21

RMSE 38.64 44.84 65.77 41.67 41.67 42.10 44.43 41.13 40.94 41.07 59.25 42.59
MAPE 16.31 21.48 26.12 18.57 18.41 17.96 21.94 17.82 17.58 18.35 27.34 18.10

12
MAE 33.06 42.01 77.24 38.48 38.91 38.60 40.88 37.16 37.77 37.26 42.59 38.66

RMSE 52.31 62.75 114.49 59.15 60.06 59.64 62.34 57.35 56.07 56.52 65.51 59.78
MAPE 22.98 31.50 49.02 26.74 27.21 27.48 31.56 26.67 26.02 26.77 31.06 27.48

G
B

A

3
MAE 17.44 20.37 23.25 18.68 17.64 20.12 19.76 21.12 18.23 18.32 39.34 19.63

RMSE 28.33 32.32 37.24 30.49 29.58 31.67 30.91 32.83 29.56 31.67 57.83 31.84
MAPE 11.46 13.84 13.74 11.88 10.73 13.67 12.54 12.59 10.72 12.06 26.84 12.03

6
MAE 24.12 27.81 38.87 27.59 25.21 31.23 27.70 30.22 25.87 25.42 39.18 26.96

RMSE 37.13 42.60 59.14 42.14 39.93 46.19 41.54 44.89 39.06 41.14 57.64 41.73
MAPE 17.16 19.18 23.40 17.63 16.38 22.01 18.15 18.99 17.21 17.75 26.75 17.39

12
MAE 35.00 39.89 70.24 41.91 37.03 45.97 39.12 43.87 36.03 36.09 42.72 39.04

RMSE 52.48 59.20 100.88 60.59 56.12 64.95 57.59 62.31 58.97 55.86 62.52 58.17
MAPE 26.56 27.65 44.32 27.42 26.84 34.75 26.88 29.04 26.67 26.96 29.43 26.71

G
L

A

3
MAE 18.86 22.84 24.75 19.69 20.31 20.59 20.98 19.98

Out of Memory

RMSE 30.05 34.85 39.70 31.81 32.13 32.59 32.77 31.76
MAPE 11.99 21.13 14.56 12.68 12.89 13.15 13.95 12.59

6
MAE 26.22 30.69 41.37 27.88 28.59 30.16 29.73 28.42

RMSE 40.56 46.41 63.92 43.35 43.85 45.63 45.22 43.60
MAPE 18.04 27.41 25.56 18.23 18.60 20.36 20.05 19.14

12
MAE 37.19 42.11 74.06 40.33 41.17 45.21 41.30 43.05

RMSE 56.17 62.84 110.23 60.29 61.56 65.44 61.33 62.86
MAPE 28.09 35.91 51.89 29.45 28.61 34.08 27.84 30.83

C
A

6
MAE 16.89 21.15 22.68 17.93 17.58 18.46 18.47 18.46

RMSE 27.45 33.42 36.75 29.54 28.99 30.00 29.52 29.84
MAPE 11.87 16.48 14.87 12.56 12.02 15.25 12.76 12.60

12
MAE 23.08 28.08 37.95 25.66 25.06 26.82 26.22 26.20

RMSE 36.07 43.74 59.24 40.57 39.82 41.83 40.67 40.85
MAPE 17.21 21.83 25.41 18.40 17.88 23.02 18.39 18.58

24
MAE 32.27 39.63 68.35 37.99 36.71 39.46 37.29 39.01

RMSE 49.11 60.16 101.84 57.47 56.62 58.96 56.56 58.40
MAPE 26.04 31.94 49.28 29.39 27.37 34.64 28.40 29.37

Table 15. Variants and their definitions in ablation experiment.

Variant Definition

w/o decom Remove the decoupling mechanism
w/o prompt Remove the temporal prompt learning

w/o (decom & prompt) Remove the decoupling mechanism and temporal prompt learning
w/o Yt Remove the temporal prediction component
w/o Ys Remove the spatio-temporal prediction component

w/o ConAU Completely remove the spatial centralized messaging mechanism
w/o LA Use naive self-attention mechanism to replace Low-rank attention

w/o LA + GenPU Add GenPU term with the variant w/o LA
w/o LA + GenPU +DRO Add GenPU and spatio-temporal DRO with the variant w/o LA
w/o LA + RandomDrop Randomly mask 20% training nodes and then train variant w/o LA

w/o DRO Remove spatio-temporal DRO
w/o (GenPU) Remove spatio-temporal DRO and GenPU

w/o (GenPU&DRO) + RandomDrop Remove spatio-temporal DRO and GenPU and randomly mask 20%
training nodes to simulate temporal and spatial shifts
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Table 16. Ablation experiments on SD and KnowAir datasets.

Variant
SD KnowAir

MAE RMSE MAPE MAE RMSE MAPE

Ours 23.79 37.94 16.24 24.78 36.77 51.02
w/o decom 24.09 38.49 17.53 25.10 37.10 54.16
w/o prompt 24.67 39.83 18.20 25.27 36.78 51.42

w/o decom & prompt 25.23 40.46 19.01 25.83 37.25 54.33
w/o Yt 23.87 38.02 16.86 25.70 36.99 53.10
w/o Ys 26.25 41.25 18.76 27.04 39.21 63.68

w/o ConAU 26.06 41.47 17.56 26.88 38.22 58.23
w/o LA 26.14 41.86 18.26 25.62 37.10 53.12

w/o LA + GenPU 26.29 42.15 18.71 25.61 36.86 55.81
w/o LA + GenPU + DRO 26.11 41.73 17.58 25.10 36.91 54.73
w/o LA + RandomDrop 27.41 43.11 18.32 25.77 37.16 59.09

w/o DRO 24.08 38.17 17.06 24.93 37.24 54.86
w/o (GenPU&DRO) 24.52 38.65 18.13 25.26 36.98 55.12

w/o (GenPU&DRO) + RandomDrop 24.77 38.90 18.48 25.45 36.87 55.90

E.11. Hyperparameter Sensitivity Experiments

In addition to the hyperparameter experiment in Section4.4 of the main body, we additionally deployed conduct experiments
on four datasets—SD, GBA, GLA, and CA—to analyze the sensitivity of two hyperparameters, the number of ConAU K
and the number of GenPU M . The numebr of nodes for training in these six datasets range from 141 to 6615 nodes. The
results on six datasets are shown in Figure 7 and Figure 8.

❶ The number of ConAU K. ConAU is the coarsening unit set up to interact with the node. Thus, the number of ConAU
K is closely related to the spatial scale. Based on our observations, we find that setting K to approximately 1% of the
spatial scale is a good choice. A larger number of ConAU can hinder the model’s ability to focus on capturing generalizable
contextual features.

❷ The number of GenPU M . The hyperparameter M represents the number of GenPU, which are used to modulate the
interaction process between nodes and ConAU. Each GenPU corresponds to a different training environment. We have
observed that the number of GenPU M is universally effective when set to between 2 and 4. When M is set to a smaller
value, an overly complex training environment can disrupt learning stability. Conversely, if there are too few GenPU, the
limited training environments may not provide sufficient diversity for the model to extract invariant knowledge. Interestingly,
this hyperparameter is insensitive to spatial scale.

We further analyze the sensitivity of this hyperparameter to the temporal span of the dataset. Long-range SD, GBA, GLA,
and CA datasets contain a full year of training data, and TrafficStream is a short-range dataset containing one month data for
training. And we can see that M is not highly correlated with the time span of the data.

Summary. Based on the above analysis, we recommend setting the initial values K to 1% of the number of training nodes
and the initial values of M between 2 and 4 for hyperparameter tuning in out-of-distribution (OOD) scenarios.

E.12. Effectiveness Evaluation of Collaborative Structure

STOP’s predictions arise from the superposition of spatial and temporal components, which helps improve the model’s
robustness across various OOD scenarios. Using the SD dataset as an example, we employ two separate scenarios: S-OOD
and T-OOD. We use Shapley Values to analyze the contribution levels of Yt and Ys components in each scenario. The
normalized results are shown in the following table: We observe that when structural shifts occur (S-OOD), the contribution
of the temporal prediction component increases, due to the decreased accuracy of spatial correlation features. The opposite
occurs in the T-OOD scenario. Through this collaborative architecture, our STOP can flexibly adapt to various OOD
scenarios.
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Figure 7. Sensitivity experiments of ConAU.
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Figure 8. Sensitivity experiments of GenPU.

E.13. Embedding visualization

Using LargeST-SD dataset as example, we visualize the temporal prompt embedding E in Figure 9 (a), Personalized features
Zp, and contextual features Zc in Figure 9 (b). We can see that temporal embeddings unveil essential periodic patterns for
OOD scenarios. Both node personalized and context features exhibit strong discriminative capabilities. Context features
capture shared node patterns, ensuring resilience to individual node variations. Meanwhile, personalized features enhance
the model’s ability to tailor predictions for each node effectively.

F. Discussion
In this section, we discuss the limitations of our work as our future work:

• Validating the Broad Impact of STOP. The spatial interaction module integrated within the STOP framework is
inherently generic, suggesting its potential for broader applicability. In upcoming research, we will propose replacing
the graph convolutional networks utilized by other spatio-temporal backbones with the spatial interaction module to
validate its effectiveness across various contexts. This initiative will help us better understand the potential value and
applicability of the STOP module in a wide range of application domains.

• Exploring a Wider Range of OOD Scenarios. Current OOD problems are typically defined within the confines of
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Table 17. Contribution of prediction components in different scenarios

Commpent
SD KnowAir

S-OOD T-OOD S-OOD T-ODD

Yt 64.04 41.95 72.62 36.23
Ys 35.96 58.05 27.38 63.77
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Figure 9. Visual case and efficiency study of STOP on LargeST-SD dataset.

single-modal data and single tasks. However, spatio-temporal data exhibits diverse modalities and varied tasks. We
believe that an improved spatio-temporal OOD handler should be capable of addressing challenges such as cross-task
and cross-modal processing, areas that have not been thoroughly explored in the spatio-temporal domain.

• Integrating Large Language Models for zero-shot learning. In OOD settings, accurately predicting new nodes poses a
significant challenge, as these nodes have not been encountered by the model during training—commonly referred to as
the zero-shot challenge. Large language models excel in this context, as their representational capabilities, developed
from extensive training on massive datasets, can enhance a model’s zero-shot learning ability (Liu et al., 2025a;c;b).
While this has been successfully demonstrated in the time series community, it remains relatively unexplored within
the spatio-temporal domain. In future work, we plan to integrate large language models into the STOP framework to
further enhance its scalability for predicting new nodes.
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