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Abstract

Vision-language instruction-tuning models have
recently achieved significant performance im-
provements. In this work, we discover that large-
scale 3D parallel training on those models leads
to an imbalanced computation load across dif-
ferent devices. The vision and language parts
are inherently heterogeneous: their data distribu-
tion and model architecture differ significantly,
which affects distributed training efficiency. To
address this issue, we rebalance the computational
load from data, model, and memory perspectives,
achieving more balanced computation across de-
vices. Specifically, for the data, instances are
grouped into new balanced mini-batches within
and across devices. A search-based method is
employed for the model to achieve a more bal-
anced partitioning. For memory optimization,
we adaptively adjust the re-computation strategy
for each partition to utilize the available mem-
ory fully. These three perspectives are not inde-
pendent but are closely connected, forming an
omniverse balanced training framework. Exten-
sive experiments are conducted to validate the
effectiveness of our method. Compared with
the open-source training code of InternVL-Chat,
training time is reduced greatly, achieving about
1.8× speed-up. Our method’s efficacy and gen-
eralizability are further validated across various
models and datasets. Codes will be released at
https://github.com/ModelTC/OmniBal.
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1. Introduction
Large language models (LLMs) have brought new possi-
bilities to many fields. Multi-modal models, particularly
Vision-Language Models (VLMs) (Alayrac et al., 2022;
Team et al., 2023a; Reid et al., 2024; Liu et al., 2023a;
Bai et al., 2023b; Chen et al., 2023), are advancing rapidly
due to their deeper understanding of the world. The train-
ing scale of Vision-Language Models (VLMs) continues
to expand, with increasingly larger datasets incorporating
more text and higher-resolution images. Compared with the
LLaVA-1.5 (Liu et al., 2023a), the InternVL-Chat (Chen
et al., 2024) has expanded the dataset size from 665K
to 5M and increased image resolution from 336x336 to
3840x2160. At the model level, larger vision encoders are
adopted. The InternVL-Chat upgrades the visual encoder
from ∼300M ViT-L-336px (Radford et al., 2021) to ∼6B
InternViT-448px (Chen et al., 2023).

The larger datasets and models result in a more time-
consuming training process. Therefore, efficient training
strategies are essential for the rapid advancement of the
field. 3D parallelism (Shoeybi et al., 2019; Rajbhandari
et al., 2020; microsoft, 2020) is a popular framework for
large-scale distributed training, which allows data and mod-
els to be distributed across multiple devices. Balancing
computational load across devices is crucial in 3D paral-
lelism by minimizing idle times.

In this work, we find that for instruction-tuning large vision-
language models, the heterogeneous nature of data and
model structures brings new challenges to 3D parallelism
training: (1) Varying input sizes of LLM and VIT cause
imbalanced computational loads across training iterations
and devices. (2) The heterogeneity between LLM and VIT
models leads to inherent differences in the computational
load of their transformer blocks. Along with varying in-
put sizes, this inevitably results in uneven computational
load and computational bubbles. (3) Input size variation
and computational imbalance compel us to use the most
aggressive re-computation (checkpointing) (Li et al., 2014)
strategy to prevent program crashes, which wastes compu-
tational resources. We refer to those issues caused by the
heterogeneity in data and model structures in large vision-
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language models as the Computation Imbalance problem,
which reduces training efficiency.

To address this problem, a simple and efficient training
framework called Omniverse Balance (OmniBal) is pro-
posed to balance computational load across multiple de-
vices. This framework systematically balances computation
in three bottlenecks, i.e. data, model, and memory, as shown
in Figure 1. OmniBal works in these three closely connected
aspects. Data lays the groundwork for addressing model
imbalances, while data and model form the foundation for
solving memory issues. Ultimately, these three aspects
collaborate to achieve balanced computation. Data: The
balanced dynamic mini-batch method is proposed to group
instances as new mini-batches according to text length and
number of images. Specifically, an iterative algorithm based
on sampling and filtering combines data of different sizes
into balanced groups, ensuring stable input sizes; Model:
We propose balanced model partitioning to evenly spread
the computational load of LLM and VIT across devices.
Using a search-based approach, we efficiently find optimal
partition strategies within a small search space, enabling
adaptation to different model architectures and hardware
platforms. The balanced dynamic mini-batch method facil-
itates balanced model partitioning by ensuring input sizes
are consistent in advance. Memory: A balanced adap-
tive re-computation method is proposed to optimize the
re-computation strategy on each device, maximizing both
memory utilization and training speed. We calculate the
memory requirements of different models to adjust the re-
computation strategy adaptively. Notably, our proposed
balanced dynamic mini-batch and model partitioning en-
sures balanced computational loads on each device, making
memory analysis feasible.

Extensive experiments are performed on various open-
source VLM models at different scales, reducing overall
training times significantly. GPU days are reduced for
InternVL-Chat-1.5 (6+20B) from 61.8 to 21.3 under the
Megatron-DeepSpeed (microsoft, 2020) backend. Scaling
up to InternVL-Chat-1.5-Plus (6+34B), we consistently ob-
serve a great speed-up, from 75.4 to 30.5 GPU days. We
conduct thorough generalization experiments, including var-
ious datasets, hardware configurations, and multiple model
combinations. Consistent and substantial improvements are
observed across all experiments, demonstrating the effec-
tiveness and versatility of our method.

In summary, our contributions are reflected in three levels:
framework, method, and results.

• We are the first to identify and address the computa-
tional imbalance problem in large-scale VLM (Vision-
Language Model) instruction-tuning training, propos-
ing a systematic solution tailored to this challenge.

• Our approach is systematic rather than isolated and
incremental, integrating the three interconnected mod-
ules of data, model, and memory to ensure computa-
tional balance across both inter- and intra-stage levels.

• Our method achieves a great speed-up while maintain-
ing model performance on the open-source training
code. Its efficacy and generalizability are further vali-
dated across various models datasets and tasks.

2. Related Works
2.1. Multi-Modal Large Language Model(MLLM)

Large language models, such as ChatGPT (OpenAI, 2023a),
GPT-4 (OpenAI, 2023b), Llama series (Touvron et al.,
2023a;b; AI, 2024), and Gemini series (Team et al., 2023b;
Reid et al., 2024), have seen significant advancements re-
cently. They rely on large datasets for training to achieve
strong performance, particularly in few-shot and zero-shot
scenarios. Typically, they are built on textual data and
can only accept text inputs. However, real-world scenar-
ios often involve rich multi-modal information, e.g., im-
ages. It has driven the development of large vision language
models (VLMs). Visual encoders like Vision Transformer
(ViT) (Dosovitskiy et al., 2021) usually incorporate vision
information. A cross-modal connector is also required to
align the vision encoder outputs to the language models.
LLaVA (Touvron et al., 2023a) uses the simplest MLP, BLIP
series (Li et al., 2022; 2023; Dai et al., 2024) uses Q-former,
Qwen-VL-Chat (Bai et al., 2023b) uses a cross-attention
module. VLMs expand large language models’ capabilities
and application scenarios by instruction-tuning with text
and image data. However, introducing multi-modal data and
heterogeneous encoders brings challenges to the training.

2.2. Large-Scale Distributed Training

Distributed training is essential for efficiently utilizing mul-
tiple GPUs to train large language models. It is achieved
through 3D parallelism (Shoeybi et al., 2019; Rajbhandari
et al., 2020; microsoft, 2020): data, tensor, and pipeline
parallelism. Data Parallelism splits the entire dataset into
mini-batches and assigns them to multiple devices, each
with a model replica. This approach maximizes the use of
GPU power for large datasets. DeepSpeed Zero (Rajbhan-
dari et al., 2020) enhances it by reducing weight redundancy.
However, it can still be challenged by the memory limits of
individual devices when handling huge models. Tensor Par-
allelism distributes a model’s weight matrices across mul-
tiple devices, enabling parallel matrix operations (Shoeybi
et al., 2019) and reducing per-device memory requirements.
This method accelerates computation but requires dense
inter-device communication, typically restricted to single-
node deployments to minimize latency. Pipeline Parallelism
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Figure 1. Overview of the computation imbalanced problem and our proposed solution in the Standard Vision-Language instruction-tuning
framework. We consider the bottleneck issues of data, model, and memory, and propose an omniverse solution addressing these three
aspects, each providing the foundation for the next.

Table 1. Analysis of computation imbalance.
Dimension Input Forward time Cost memory

Inter-Stage 1.4K ± 0.9Ktoken 85± 93 ms 39± 23 G

Intra-Stage-1 1.9K ± 1.2Ktoken 136± 155 sm 73± 6 G

divides a model into segments and assigns them to differ-
ent devices, creating a computation flow like a production
line. This technique facilitates larger model scaling across
nodes. GPipe (Huang et al., 2019) proposes micro-batching
to decrease forward bubbles. PipeDream (Narayanan et al.,
2019) further proposes a one-forward-one-backward (1F1B)
scheme to optimize memory usage. In pipeline parallelism,
uneven layer partitioning can cause significant pipeline bub-
bles. PipeDream (Narayanan et al., 2019) and AdaPipe (Sun
et al., 2024) optimize model partitioning and re-computation
strategies based on profiling and dynamic programming,
respectively. However, these advancements are primarily
tested in text-based models and may require adaptation for
large vision-language model scenarios.

3. Computation Imbalance
In this section, we explore the unique challenges of large-
scale distributed training for vision-language models, fo-
cusing on two dimensions: Inter-Stage and Intra-Stage
computation imbalance. Inter-Stage means the computa-
tion imbalance of different pipeline parallel stages. Intra-
Stage indicates the computation imbalance of the same stage
across time and devices. Figure 2 shows these two compu-
tation imbalances more intuitively. And they both include
three specific levels: data, model, and memory. To quantify
this problem, we used the InternVL-Chat-1.2 dataset (Chen
et al., 2024) to perform profile statistics shown in Table 1.
For the Intra-Stage, we counted the information of Stage 1

as a sample.

Data Imbalance: LLMs are trained on texts using next-
token prediction, allowing consistent input lengths through
arbitrary text sub-strings. In contrast, VLMs handle texts
and images, requiring data integrity, and preventing arbi-
trary truncation. The varying number of images, resolutions,
and text lengths result in considerable differences in input
sizes across mini-batches. From Table 1 and Figure 2, data
imbalance occurs in Inter-Stage and Intra-Stage. To better
quantify the impact of dynamic input, we define the DistRa-
tio (introduced in Section 4) to measure the degree of data
imbalance of VIT and LLM.

Data Imbalance Evidence: As shown in Figure 2, at time
T-0, the Vision and LLM inputs for DP-0 (Group 0 of data-
parallel) and DP-1 (Group 1 of data-parallel) differ (Img=4,
Text=2k vs. Img=9, Text=4k). Different inputs will bring
different computational complexities. For example, the total
forward time of DP-0 at time T-0 is 970ms (500 + 160 +
150 + 160), and the total forward time of DP-1 at time T-0
is 1730ms (900 + 300 + 260 + 270). DP-0 needs to wait for
DP-1 to complete all training before updating parameters,
which will cause DP-0’s GPU resources to wait for a long
time. This is the Intra-Stage imbalance problem across de-
vices. For DP-0, the inputs at times T-0 and T-1 on the same
device also differ significantly (e.g., Img=4, Text=2k ver-
sus Img=20, Text=16k), which is an Intra-Stage imbalance
problem over time. This results in a substantial variance
in forward time and memory usage, creating challenges in
determining a globally optimal model partition strategy.

Model Imbalance: LLMs use identical transformer mod-
ules with the same computational load. Evenly dividing
these layers in pipeline parallelism distributes the load ef-
fectively. However, VLMs require additional image pre-
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Figure 2. The Problem of Computation Imbalance in VLM Instruction-Tuning Training Pipeline. DP-0 and DP-1 represent different Data
Parallel processes. T-0 and T-1 represent different training times. TIME and MEM represent forward time and cost memory in the current
stage, respectively. STD stands for standard deviation.

processing, necessitating an image encoder. The structural
disparity between VIT and LLM results in different compu-
tational demands. From Table 1 and Figure 2, the standard
deviation of forward time is huge in both Inter-Stage and
Intra-Stage, indicating a serious computation imbalance.

Model Imbalance Evidence: As shown in Figure 2, for
DP-0, at T-0 and T-1, the standard deviation (148ms and 402
ms) of the forward time across different stages is significant,
leading to serious bubbles in pipeline parallelism and
slowing down training speed. This is the Inter-Stage
imbalance problem. Furthermore, the computation
distribution across stages shows a huge difference between
T-0 and T-1. For example, the computation distribution at T-
0 is (500:160:150:160)=(0.52:0.16:0.15:0.16),while
the computation distribution at T-1 is
(2000:1600:1000:1100)=(0.35,0.28,0.18,0.19).The
varying computation distribution makes determining the
optimal model partition strategy challenging. This includes
the Inter-Stage and Intra-Stage problems (over time).

Memory Imbalance: LLMs require significant GPU mem-
ory due to their large parameter size. When memory is
insufficient, re-computation (Li et al., 2014) techniques dis-
card some intermediate activation values and recompute
them during backward propagation to save memory. VLM
encounters great memory challenges due to the variable
scales of data inputs and the heterogeneity between vision
and language models. The presence of numerous images
or long text inputs can lead to excessive GPU memory us-
age, requiring the most aggressive re-computation settings

to prevent the program from crashing. However, excessive
re-computation can slow down the training process. From
Table 1 and Figure 2, memory imbalance is reflected in both
Inter-Stage and Intra-Stage in the existing training setting.

Memory Imbalance Evidence: As shown in Figure 2, the
memory consumption for Stage-1 at different time points is
as follows: 50 GB at T-0, 80 GB at T-1 for DP-0, 68 GB at
T-0, and 60 GB at T-1 for DP-1. To prevent program crashes,
we must configure the re-computation strategy based on the
highest memory usage, which is 80 GB. This approach in-
troduces additional computational overhead, categorized as
the Intra-Stage imbalance problem (over time). Addition-
ally, for DP-1, the memory usage across different stages
at both T-0 and T-1 has a high standard deviation (6.5 GB
and 8.4 GB, respectively). Using the same re-computation
strategy for different stages will also bring computational
overhead, according to the highest memory usage. This
variation represents the Inter-Stage imbalance problem.

Differences between VLM and LLM training: As men-
tioned above, the difference between VLM and LLM arises
from the data composition and model structure, resulting in
unique Inter-Stage and Intra-Stage challenges. Inter-Stage:
Since LLM has a fixed structure, the model can be equally
divided, and there is no Inter-Stage imbalance for any input.
Dynamic input or inconsistent text-image ratios in heteroge-
neous VLM will lead to an Inter-Stage imbalance problem.
Intra-Stage: For the LLM-Pretrain task, the input is fixed,
and there is no Intra-Stage imbalance problem. Dynamic
input can be converted into static input by simple packing
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(Kosec et al., 2021) to reduce the computation imbalance
for the LLM-SFT task. However, VLM instruction-tuning
training cannot rely on simple packing to ensure fixed in-
puts for VIT and LLM, resulting in computation imbalance
problems.

4. Method
This section presents our computation-balanced framework,
OmniBal, for training large vision-language models. To
address an imbalanced computational load across devices,
we first manage the large data input variations, which is
the most fundamental issue in the computation imbalance
problem. This enables balanced model partitioning. Finally,
the re-computation strategy for each partition is optimized.
Appendix A shows our training pipeline.

Algorithm 1 ISF: Iterative Sampling and Filtering
1: ISF: Sampling Stage
2: D = randperm(D), set G = [ ]
3: for (xi, yi) in D do
4: G ← G + (xi, yi)
5: if Iv > Qv or It > Qt then
6: G ← G − (xi, yi)
7: P ← P + G , set G = [(xi, yi), ]
8: end if
9: end for

10: return: P
11: ISF: Filtering Stage
12: Get P from Sampling Stage
13: for G in P do
14: if Iv < Q′

v and It < Q′
t then

15: P ← P − G
16: else
17: remove all (xi, yi) of G from D
18: end if
19: end for
20: return P , D

4.1. Balanced Dynamic Mini-Batch

For instruction-tuning VLMs, each training sample contains
various images and texts, resulting in non-fixed input sizes.
We evaluate data imbalance from two perspectives: within-
device samples and cross-device mini-batches.

Pad Ratio (within-device): When combining samples of
different sizes into a mini-batch, smaller samples need to
be padded to ensure aligned input sizes. The Pad Ratio is
calculated as follows:

PadRatio =

∑B
i (tmax − ti)

tmax ×B
(1)

Where tmax represents the maximum number of tokens in a
mini-batch of size B, and ti denotes the number of tokens
for sample i within that mini-batch.

Distribution Ratio (cross-device): Even after padding, the
sizes of mini-batches on different devices may vary, leading
to different input scales across devices. The distribution
ratio is calculated as follows:

DistRaito =

∑N
i (Tmax − Ti)

Tmax ×N
(2)

Where N represents the number of devices, Tmax denotes
the maximum number of mini-batch tokens across all de-
vices, and Ti refers to the number of mini-batch tokens on
the ith device. Non-fixed input sizes in VLMs have a larger
Pad Ratio and Dist Ratio, as shown in Table 3 (row 1). A
high Pad Ratio wastes computational resources, while a
high Dist Ratio causes device idle time. They significantly
impact training throughput efficiency.

To address this issue, an adaptive grouping strategy that
organizes multiple samples, ensuring that both image and
text sizes in the resulting groups remain within a relatively
fixed range is implemented. We refer to this method as
the Balanced Dynamic Mini-Batch. Determining the opti-
mal grouping strategy is a non-trivial problem, An iterative
method is designed using sampling and filtering to group
samples. As illustrated in Algorithm 1, it Iterative Sam-
pling and Filtering (ISF) involves the following steps:

1.Sampling Stage: For current dataset D = {(xi, yi) | i},
we randomly add samples di consisted of images xi, text yi
to current group G. If the total number of images Iv =∑

xi∈G |xi| or the total text length It =
∑

yi∈G |yi| reaches
the predefined maximum number of images Qv or text Qt,
we add this group to the candidate set P and create a new
group containing (xi, yi) for the subsequent samples. Other-
wise, we will continue adding samples to the current group.
At the end of the sampling stage, we will have a candidate
set P = {Gi|i = 1, 2, 3..}.

2.Filtering Stage: We first define the target number of im-
ages Q′

v and text Q′
t. For each group Gi in candidate set P ,

we keep G whose image number Iv or text length It satisfy
Iv >= Q′

v or It >= Q′
t, and remove all samples (xi, yi)

in that group from D. Otherwise, we remove non-satisfied
Gi from P . Ultimately, P becomes our target set, and D
becomes our updated dataset for the next iteration.

The sampling and filtering stages are alternately repeated
for a maximum of T times. The candidate set is acquired
P each time, which includes more valid sample groups G.
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Meanwhile, we have the updated dataset D consisting of
unselected samples, which is used for sampling and filter-
ing in the next iteration. To ensure that the mini-batches
constructed by the ISF method achieve lower Pad Ratio
and Dist ratio, appropriate values for Qv and text Qt need
to be determined. The optimal values for Qv and Qt vary
across different datasets. In practice, A statistical approach
described in Section 5.1 is used to determine these values.

4.2. Balanced Model Partitioning

Given the number of layers L in the model and the pipeline
parallel size N , our goal is to find an optimal partition
strategy P = (P (1), P (2), P (3), . . . , P (N−1)) such that the
training speed of the model is maximized. Here, P (1) <
P (2) < P (3) < . . . < P (N−1), and the ith partition stage
Si consists of layers lk, where P (i−1) ≤ lk < P (i), with
P (0) = 1 and P (N) = l + 1. For example, given a model
with L = 20 layers and pipeline size N = 4, assume that we
have an optimal partition P = (5, 10, 15). The first partition
Si consists of layers l1, l2, l3, l4 since P (0) = 1, P (1) = 5.

However, achieving balanced pipeline partitioning for
VLMs is a more challenging task compared to LLMs. We
must consider: (1) Model Heterogeneity: The structural
differences between visual and language models make sim-
ple parameter-based or layer-based partition strategies in-
effective. (2) Communication Overheads: Different par-
titioning strategies result in varying communication vol-
umes, as the number of activations in each layer can differ
significantly in VLMs. (3) Hardware Variability: Differ-
ent platforms exhibit varying levels of capability, particu-
larly in terms of communication overhead. On platforms
with high network bandwidth, communication overhead
can be negligible. Based on the above analysis, A heuris-
tic search algorithm to find the optimal partition is devel-
oped. We first identify a candidate set of partition strategies
{Pk = (P

(1)
k , P

(2)
k , P

(3)
k , . . . , P

(N−1)
k ) | k = 1, 2, 3, . . .}

that possibly contain the optimal one. Then, the optimal
partition strategy P ∗is selected based on the running time:

P ∗ = argminPi
f(Pi) (3)

Here, f(Pi) is the average running time obtained by training
the model for several iterations.

Partition Candidates: We start by profiling each layer’s
computation time FWD(li). A greedy algorithm is em-
ployed to compute the anchor partition strategy P+, making
the computation time of all partition stages Si close. Around
P+, A candidate set of partition strategies is created by jit-
tering P (1), P (2), . . . , P (N−1) within a radius of r. When
r = 1 and N = 4, there are a total of 33 = 27 candidates.

Partition Metrics: When r and N are very large, there will
be a vast number of partition candidates, making it ineffi-

cient to evaluate the running time for each one. Therefore,
two metrics to rank these candidates are designed.

The first metric is the difference in running time between
different pipeline stages Si. Smaller differences generally
result in fewer bubbles and faster execution. We use the
variance of the running times of different pipeline stages to
measure this difference.

VAR(fwd time) =
N∑
i=1

(FWD(Si)− FWD(Si))
2 (4)

The second metric is the total point-to-point communica-
tion volume of the partition strategy Pi. It depends on Pi

consisting of (P (1), P (2), P (3), . . .)

SUM(comm) =
N−1∑
i=1

ACTIV(lpi) (5)

Where lpi is the last layer of partition strategy P (i) and
ACTIV(lpi) is the activation number of layer lpi, indicating
the point-to-point communication volume of P (i). We use
the sum of VAR(fwd time) and SUM(comm) as the metric
for the partition and rank them to select the top K candidates
for speed evaluation.

4.3. Balanced Adaptive Re-Computation

Thanks to the balanced dynamic mini-batch and balanced
model partition, a balanced computational load is main-
tained across each pipeline stage. The memory require-
ments are now stabilized as the computational demand has
been fixed. As a result, we can optimize the re-computation
strategy based on actual memory needs, rather than relying
on the most aggressive approach to avoid crashes. Reduc-
ing the number of re-computations accelerates the model’s
backward pass, leading to faster training speed.

We find that heterogeneous architectures have different
memory requirements. For example, the vision model in
InternVL-Chat-1.5 requires more GPU memory than the lan-
guage model under the same computational load. Therefore,
it is necessary to analyze the memory requirements of each
layer in the vision and language models individually and
adaptively determine the optimal re-computation strategy
for each layer.

Balanced Adaptive Re-Computation Strategy. In this
context, Qv and Qt represent the inputs for Vision Trans-
former (VIT) and Large Language Model (LLM), respec-
tively. Mr denotes the remaining GPU memory at the cur-
rent stage, while Mt and Mv indicate the GPU memory
saved by each transformer layer of the LLM and VIT when
enabling re-computation.

Step-1: Given the inputs Qv and Qt, we enable the re-
computation strategy across all transformer modules of the
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Table 2. Main Results. We use open-source InternVL-Chat-1.5 6+20B and 6+34B as the models with either DeepSpeed (ZeRO-3) or
Megatron-Deepspeed backend. GPU Days are reported in the InvernVL-Chat-1.2 1.2M training dataset to show the speed-up ratio.
Models are also evaluated on five commonly used benchmarks.

Model Balance? Backend MMB-EN/CN ChartQA AI2D MMVet MME GPU Days (speed-up)

6+20B

× DeepSpeed 78.2/77.4 86.2 71.3 48.9 1901.2 38.9 (1.00×)
✓ DeepSpeed 78.7/77.6 86.5 71.4 50 1969.4 25.3 (1.54×)

× Megatron 79.5/77.7 87.3 71.6 45.0 1957.7 61.8 (0.63×)
✓ Megatron 78.6/77.5 86.7 70.9 48.5 1956.3 21.3 (1.83×)

6+34B

× DeepSpeed 80.0/79.2 86.6 73.4 45.9 2015.8 54.3 (1.00×)
✓ DeepSpeed 80.9/79.0 89.1 73.3 47.0 2153.6 35.5 (1.53×)

× Megatron 80.2/79.3 88.9 73.7 44.2 2111.9 75.4 (0.72×)
✓ Megatron 80.1/78.0 89.3 73.5 45.4 2072.7 30.5 (1.80×)

model. At each forward pass, we clear the cache and record
each stage’s remaining memory usage Mr.

Step-2: We manually disable re-computation for some lay-
ers based on the remaining GPU memory. Subsequently, we
record the GPU memory usage M ′

r for each stage.

Step-3: Based on the memory differences ∆Mr observed
between Step-1 and Step-2, along with the re-computation
strategy implemented at each stage, we estimate the memory
savings Mt and Mv for each transformer layer of the VIT
and LLM, respectively.

Step-4: Based on the estimated GPU memory savings Mt

and Mv measured in Step-3, as well as the remaining mem-
ory Mr from Step-1, we first estimate the theoretically op-
timal re-computation strategy for each stage and conduct
the training test. If the test runs successfully, we adopt this
strategy. If it fails, we incrementally increase the number of
re-computation layers by the remaining GPU memory for
each stage.

5. Experiments
In this section, the models and datasets are introduced. Then,
we demonstrate the acceleration compared to the current
state-of-the-art VLMs. Subsequently, a detailed comparison
of each component proposed in our method is presented,
highlighting its specific contribution to training acceleration.
Finally, extensive experimental analysis is conducted.

5.1. Experimental setup

Model & Dataset setting: We conduct experiments follow-
ing the open-source InternVL-Chat-1.5 setting. Our vision
and language models are InternViT-6B and InternLM2-20B,
respectively. Two configurations are employed: InternVL-
Chat-1.5 (6+20B) and InternVL-Chat-1.5-Plus (6+34B). As
the InternVL-Chat-1.5 dataset is not yet available, we utilize
the InternVL-Chat-1.2 dataset, which comprises approxi-
mately 1.2 million samples, as an alternative. All other
training settings remain unchanged. GPU Days are our

evaluation metric to estimate the total training time. Specifi-
cally, GPU Days are reported based on A100 GPU usage to
evaluate the speed-up performance.

5.2. Implementation Details

How to get Qv and Qt. We determine Qv and Qt using
dataset statistics. The total text token lengths and image
count are used to compute the average tokens per image.
Qt is set to the longest text token length, and the text-to-
image ratio determines Qv. It is challenging to maintain
an exact number of images and text length, so we relax
these conditions to allow for approximation. For images,
Q′

v = Qv, and for text, Q′
t = Qt − 128 based on results

in Table 6. In the InternVL-Chat-1.2 dataset, Qt = 4K,
Qv = 9, with each image processed into 1K tokens for VIT.

Sampling Overhead. The sampling overhead is minimal.
For instance, with 1.2 million samples, sampling can be
completed in just a few tens of seconds, adding negligible
overhead to the overall training process. The time complex-
ity of ISF is O(C · (N +M)), where N is the total number
of samples, M is the number of samples per pack, and C is
the number of iterations.

Partition Overhead. Establishing the anchor requires pro-
filing layer-wise forward time and activation values, which
takes only 5 steps and incurs minimal overhead. While the
anchor may not be optimal, we observe empirically that the
true optimum typically lies within r ≤ 3 of it.

Optimal Solution Overhead. To refine the anchor, we
measure the speed of the top 10–15 nearby partitions (as in
Section 4.2), each requiring just 3 steps. This adds only a
minor cost relative to the full training process.

5.3. Main Results

We demonstrate the superiority of OmniBal under various
settings in Table 2. Baseline model is InternVL-Chat-1.5
(6+20B) (Chen et al., 2024), with DeepSpeed ZeRO-3 back-
end. OmniBal reduces GPU days from 38.9 to 25.3, achiev-
ing a 1.54× speed-up. Simultaneously, we maintain com-
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Table 3. Importance of data balance. AVE-BS indicates average batch size. We report results with Model Balance (MB) and without MB.

Method AVE-BS Max-Seq-Len Pad Ratio Dist Ratio Balanced GPU Days

VIT LLM VIT LLM w/o MB w MB

baseline 4 20K 16K 0.31 0.34 0.30 × 61.8 42.2
length-group 4 20K 16K 0.20 0.26 0.13 × 54.0 40.0
device-group 4 20K 16K 0.378 0.125 0.15 × 54.5 43.6
ISF(ours) 4.6 9K 4K 0 0.02 0.14 ✓ 51.9 29.0

Table 4. Importance of model balance. VAR indicates variance. SUM(comm) is the summation of commutation volume (MByte)
Method VAR(param) VAR(num layer) VAR(fwd time) ∆ SUM(comm) GPU days

(1) parameter-based 0.03 13.4 93.6 +0.0 42.2
(2) layer-based 0.64 1.2 20.1 +8.2 30.6
(3) profile-based 0.85 2.1 6.5 +16.6 30.9
(4) BMP (ours) 0.83 1.5 12.2 -21.0 29.0

parable performance across commonly used datasets, such
as MMB-EN/CN (Liu et al., 2023c), ChartQA (Masry
et al., 2022), AI2D (Kembhavi et al., 2016), MMVet (Yu
et al., 2023), and MME (Fu et al., 2023). Experiments
with Megatron-DeepSpeed are conducted, which integrates
tensor, pipeline, and data parallelism for larger-scale models.
However, directly applying 3D parallelism can slow down
training due to the heterogeneous nature of VLM models.
Table 2 shows that switching to Megatron-DeepSpeed in-
creased GPU days from 38.9 to 61.8. OmniBal addresses
this issue by achieving computational balance across data,
model, and memory, reducing GPU days from 61.8 to 21.3.
This demonstrates the importance of computational balance
for effective 3D parallelism. Notably, our method also out-
performed DeepSpeed, highlighting the superiority of 3D
parallelism when balanced computation is achieved. Results
under a larger-scale setting (InternVL-Chat-1.5-Plus) are
also reported to verify the generalizability of our method.
The larger model consistently improves, accelerating the
training process while maintaining model performance.

5.4. Ablation Analysis

In this section, ablation experiments on each component
of our method are conducted, using InternVL-Chat-1.5 as
the baseline model with a 3D parallel Megatron-DeepSpeed
backend. Table 7 illustrates the impact of each component.
The baseline model experiences a considerable slowdown
in training speed due to computational imbalance, necessi-
tating a total of 61.8 GPU days. By achieving data balance,
GPU days are reduced to 51.9. Data balance allows us
to achieve a more balanced model partition, reducing the
training time. Finally, optimizing memory with an adaptive
re-computation strategy reduces GPU days to 21.3. These re-
sults demonstrate that a holistic balance encompassing data,
model, and memory is crucial for efficient VLM training.
Below, we provide a detailed analysis of each component.

The Importance of Data Balance: In Table 3, we inves-
tigate the importance of data balance in large-scale dis-
tributed training by comparing four methods: (1) Baseline:
Randomly combining data into a mini-batch with padding
aligned to the longest input within mini-batches, (2) Length-
Group: Combining samples with similar text and image
sizes into a mini-batch to minimize padding within mini-
batches. (3) Device-Group: Grouping samples with simi-
lar input sizes across devices to minimize idle times. (4)
Balanced Dynamic Mini-batch: Using ISF to construct bal-
anced mini-batches within mini-batches and across devices.

Table 3 reveals the following: (1) Baseline: is the slowest
due to the completely random combination of different-sized
samples, leading to significant size variation and excessive
padding (0.31). Meanwhile, high Dist Ratio ViT (0.34) and
LLM (0.30) result in computation disparities between de-
vices, severely impacting throughput efficiency. (2) Length-
Group: enhances throughput efficiency by pre-grouping
samples of similar sizes into mini-batches, thus reducing
the internal padding ratio (0.2). Minimizing the number of
redundant tokens within mini-batches effectively lowers the
GPU days required to 54.0. (3) Device-Group: reduce idle
time by ensuring consistent input sizes across devices. It
decreases the Dist Ratio of ViT (0.125) and LLM (0.15).
However, it only balances input sizes between devices and
neglects the balance within mini-batches. High padding
(0.378) wastes computational resources. (4) Our Approach:
balances input sizes within mini-batches on each device and
across devices simultaneously. It reduces both the Pad Ratio
and the Dist Ratio, achieving a padding ratio of 0 while
maintaining a lower Dist Ratio of 0.02 and 0.14. While
our method balances input sizes, model partitioning still
limits training speed. With model balance (MB), GPU days
are reduced from 42.2 to 29.0, a gain of 13.2, compared to
9.9 without MB (from 61.8 to 51.9). This underscores the
importance of a holistic balance approach.
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Table 5. Importance of memory balance. VRAMi denotes remaining VRAM(G) in pipeline stage Si. For the baseline model, the metric
varies as <minimum> ∼ <maximum>.

Method V-Seq-Len L-Seq-Len VRAM1 VRAM2 VRAM3 VRAM4 GPU Days

baseline 4K∼20K 1K∼16K 13∼50.2 7.3∼40.5 7.3∼40.5 7.3∼40.5 61.8
+ data & model balance 9K 4K 58.2 56.2 32.5 32.7 29.0
+ memory balance 9K 4K 12.3 21.7 24.7 30.0 21.3

Table 6. Ablation results of Qv, Qt

Qv Qt DistRatio VIT DistRatio LLM

Qv Qt − 64 0.0159 0.145
Qv Qt − 128 0.0156 0.144
Qv Qt − 256 0.018 0.141

Qv − 1 Qt − 128 0.0417 0.20

Table 7. Ablation studies of components
data balance model balance memory balance GPU Days

61.8
✓ 51.9
✓ ✓ 29.0
✓ ✓ ✓ 21.3

The Importance of Model Balance: Table 4 examines bal-
anced model partitioning, focusing on partition strategies
for pipeline parallelism. For LLM training, common meth-
ods include (1) parameter-based and (2) layer-based, (3)
profile-based methods such as DreamPipe (Narayanan et al.,
2019), which estimate the computation time for each layer,
and use this information to partition the model effectively.
Additionally, (4) our search-based Balanced Model Partition
method finds the optimal partition strategy from a set of can-
didates. As shown in Table 4, (1) Parameter-based and (2)
layer-based methods split the model’s parameters or layers
across devices, achieving low variation in VAR(param) and
VAR(num layer). However, they still show high variation
in forward time VAR(fwd time), leading to computational
inefficiencies in the pipeline. (3) The profile-based method
ensures the optimal VAR(fwd time). However, this parti-
tioning occurs before the vision model’s token sub-sampling
operation, increasing communication overhead and affect-
ing training speed. (4) Our proposed BMP method explores
a high-quality partition strategy space to identify the optimal
strategy, achieving the best results in 29.0 GPU days.

The Importance of Memory Balance: In Table 5, we ex-
amine the significance of memory balance. In the baseline
model, varying input sizes for vision (4K–20K tokens) and
language (1K–16K tokens) lead to varying GPU memory
usage. Despite aggressive re-computation, the remaining
memory can drop to 7.3 GB. ISF and BMP improve train-
ing speed by controlling computational load across devices.
However, memory demands still varied, e.g., GPUs 1 and
2 having more remaining memory. ISF further speeds up

training by adjusting the re-computation strategy to fully
utilize the remaining memory, reducing GPU days to 21.3.

5.5. Generalization Capability

We study the generalization capability of our method from
multiple aspects: (1) Different Datasets like LLava-665K,
InternVL-1.2M, and LCS558K in Appendix B; (2) Different
Models: we verify our methods on different vision models
like EVA-CLIP (Sun et al., 2023) and different language
models like Llama3 (AI, 2024), Yi-34B (NousResearch,
2023), and the Qwen1.5-110B (Bai et al., 2023a), as de-
tailed in Appendix C; (3) Different High-Resolution Setting:
Under various settings, we achieved a speedup of approxi-
mately 2.0×, as demonstrated in Appendix D; (4) Different
Tasks: Besides SFT tasks, pretraining tasks are also tested,
as shown in Appendix E, and we observed consistent im-
provements across all settings; (5) Different Image Reso-
lutions: As shown in Appendix F, our method consistently
delivers a highly satisfactory acceleration effect with differ-
ent input image resolutions; (6) Convergence of ISF: We
show that ISF can converge in a few steps on other datasets,
in Appendix G; (7) Different Model-series like LLava-1.6 in
Appendix H; (8) Pre-Processing Strategy: Qwen2-VL (team,
2024) is a recent, highly regarded open-source project that
provides strong support for dynamic image input. We adopt
the pre-processing strategy of Qwen2-VL to validate our
method in Appendix I; (9) Different Hardware like H100,
A100 in Appendix J; (10) Larger-Scale Results. To validate
our method, we conduct experiments with larger models
and 512 GPUs. Results are provided in Appendix K. These
results underscore the effectiveness and robustness of our
method across a wide range of datasets, models, and tasks.

6. Conclusion
In this work, we effectively addressed the issue of imbal-
anced computation loads in large-scale 3D parallel train-
ing of vision-language models by rebalancing across data,
model, and memory dimensions. Experimental results
demonstrate that our method can significantly speed up train-
ing on many open-source models. The effectiveness and gen-
eralizability of our approach are also validated across vari-
ous models, datasets, and hardware platforms. Our method
can accelerate the development of this field by enabling
more efficient training.
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A. Training-Pipeline of our balanced method
A.1. Training-Pipeline

ViT
ViT
ViT LLM
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Images
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Figure 3. The pipeline consists of four stages, labeled Stage-1 to Stage-4, each representing a different stage of pipeline parallelism.
Within this structure, ”ViT” stands for the Vision Transformer layer, while ”LLM” refers to the Transformer layer used for large language
models (LLM). Regarding computational execution, the darker-colored sections signify forward passes with re-computation. In contrast,
the lighter-colored sections denote a standard forward pass without re-computation.

B. Results on different datasets
We consistently achieved a low Dist Ratio across the LLava-665K, InternVL-1.2M, and LCS558K datasets, as demonstrated
in Table 8. Additionally, our approach significantly enhanced training speed.

Table 8. Results on different datasets

Dataset Dist Ratio GPU Days
VIT LLM

LLava-665K 0.02 0.145 43.3→ 12.4 (3.5×)
InternVL-1.2M 0.02 0.14 61.8→ 21.3 (2.9×)
LCS-558K 0.001 0.029 23.8→ 7.5 ( 3.2×)

C. Results on different Model Size
We test various combinations of vision and language models. As shown in Table 9, our approach significantly reduces the
required GPU days for model training, achieving nearly a 2x speedup across models of various sizes.

D. Results on Different Dynamic High-Resolution Settings
To validate the effectiveness of our method, we test it under various high-resolution settings. Our approach consistently
demonstrates low Dist Ratio and strong acceleration across all configurations, as shown in Table 10, significantly improving
training speed under different settings.
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Table 9. Results for different model sizes are shown, with TP, PP, and DP representing various distributed training strategies: Tensor
Parallel (TP), Pipeline Parallel (PP), and Data Parallel (DP), respectively. The ”Stages-Layer-Num (V+L)” column indicates the number
of Vision Transformer (V) and Language Transformer (L) layers assigned to each stage. Additionally, the ”Re-computation” column
denotes the number of re-computations enabled in each stage.

Vision-Model Language-Model TP PP DP Stages-Layer-Num (V+L) Re-computation GPU Days(speed up)

InternVL-6B Llama3-8B (1,4,8) [16,17,20,24] [8,7,10,24] 27.7 → 13.8(2.0×)
InternVL-6B InternLM2-20B (2,4,4) [22,23,24,24] [0,0,0,0] 61.8 → 21.3(2.9×)
InternVL-6B Yi-34B (4,4,2) [28,29,24,24] [3,2,0,0] 75.4 → 30.5(2.5×)
InternVL-6B Llama3-70B (4,8,2) [22,23,13,14,14,14,13,12] [11,12,8,5,3,2,0,0] 129 → 52.5(2.4×)
InternVL-6B Qwen1.5-110B (8,8,1) [21,22,13,13,14,14,14,14] [6,9,1,3,0,0,0,0] 243 → 75.2(3.2×)

EVA-CLIP-1B InternLM2-20B (2,4,4) [43,16,15,14] [0,0,0,0] 23.6 → 12.2(1.9×)
EVA-CLIP-4B InternLM2-20B (2,4,4) [39,22,21,20] [10,8,1,3] 38.1 → 17.0(2.2×)
EVA-CLIP-8B InternLM2-20B (2,4,4) [17,18,23,22] [5,5,8,10] 41.8 → 20.3(2.0×)

EVA-CLIP-18B InternLM2-20B (4,4,4) [18,19,25,34] [2,2,0,0] 63.6 → 33.8(1.9×)

Table 10. Results on different dynamic high-resolution settings. ”Max-Patch-Num” indicates the maximum number of patches into
which an image can be divided. This parameter controls the granularity of image segmentation, impacting both model performance
and computational efficiency. Adjusting the Max-Patch-Num allows for more flexible handling of high-resolution images in the model,
optimizing resource usage while maintaining accuracy.

Model Max-Patch-Num AVE-BS Max-Seq-Len Dist Ratio GPU Days (speed-up)
VIT LLM VIT LLM

InternVL-6B-20B

1 7.6 9K 4K 0.06 0.05 28.6 → 13.7 (2.1×)
4 4.6 9K 4K 0.02 0.14 61.8→ 21.3 (2.9×)
6 2.7 14K 5K 0.019 0.136 147 →72 (2.05×)
12 1.9 14K 5K 0.03 0.12 209 →105 (2.0×)

E. Results on Pretrain Setting
We evaluate our method in other tasks, such as pre-training tasks.. In Pre-training, we train both the Vision Transformer
(ViT) and MLP components for models ranging from 6B to 20B. However, for larger models, such as 6B-34B and 6B-
70B, we focus solely on training the MLP component. Across all configurations, we observe consistent performance
improvements shown in Table 11, particularly with the largest model, where GPU days are significantly reduced from 16.8
to 9.6, demonstrating enhanced training efficiency.

Table 11. Results on Pretrain Setting

Model Dataset Trainable Module AVE-BS Dist Ratio GPU Days
VIT LLM

InternVL-6B-20B LCS-558K ViT+MLP 5.8 0 0.03 9.9 → 6.0 (1.65×)
InternVL-6B-34B LCS-558K MLP 5.1 0 0.031 8.3 → 4.9 (1.69×)
InternVL-6B-70B LCS-558K MLP 5.2 0 0.029 16.8 → 9.6 (1.75×)

F. Results on Different Resolutions
We further test our method with different image resolution inputs. As shown in Table 12, our method consistently delivers
low Dist Ratio and highly satisfactory acceleration results across varying image resolutions, demonstrating its effectiveness
in improving training efficiency.

G. Convergence of ISF.
The convergence performance of ISF is evaluated, with the results illustrated in Figure 4. On the LLava-665K dataset (Liu
et al., 2023a), we observe that the Dist Ratio for both vision and language data dropped significantly after just one iteration.
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Table 12. Results on Different Resolutions

Resolution AVE-BS Dist Ratio GPU Days
VIT LLM

224 4.8 0.009 0.068 32.0→ 20 (1.6×)
336 3.3 0.005 0.07 62.0→ 33 (1.88×)
448 4.6 0.02 0.14 61.8→ 21.3 (2.9×)

Figure 4. The convergence of ISF in various scenarios, including (a) different datasets, (b) different patch sizes, and (c) different image
resolutions.

After five iterations, the Dist Ratio stabilized considerably. In practice, we perform ten iterations to ensure stable results,
which only take less than one minute. The computational cost is negligible relative to the overall runtime. Additionally, our
method is tested on two other datasets, InternVl-1.2M (Chen et al., 2024) and LCS558K (Liu et al., 2023b), and observed
similar convergence rates.

H. Results on Open-source LLava-1.6
We also validate our method using another popular open-source model, LLava-1.6, with the DeepSpeed backend, as shown
in Table 13. For the DeepSpeed backend, we employ only our balanced dynamic mini-batch strategy. In the case of the
open-source LLava model, while its ViT component is relatively small and the imbalance occurs primarily at the data level,
we still achieved a notable overall speedup. Although the speedup ratio is smaller compared to other models, our method
delivered a 30% improvement in performance.

Table 13. Results on Open-source LLava-1.6

Model AVE-BS Dist Ratio GPU Days
VIT LLM

Llava-1.6-7B 4.54 0.008 0.037 10.2→ 7.7 (1.3×)
Llava-1.6-13B 4.54 0.008 0.037 18→ 13.3 (1.35×)
Llava-1.6-34B 4.4 0.009 0.0041 42.7→ 31.3 (1.36×)

I. Results on Qwen2-VL Pre-Processing Strategy
Qwen2-VL is a recent, highly regarded open-source project that provides strong support for dynamic image input. Conse-
quently, we adopt the pre-processing strategy of Qwen2-VL to validate our method. As shown in Table 14, our approach
demonstrates a substantial acceleration effect (approximately 1.9x) when applied to the Qwen2-VL strategy, significantly
reducing both the padding ratio and dist ratio.
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Table 14. Results on Qwen2-VL Pre-Processing strategy

Model Dataset AVE-BS Pad-Ratio Dist Ratio GPU Days (speed-up)
VIT LLM

InternVL-6B-20B InternVL-1.2M 4 0.31 0.408 0.393 40.2 (1.0×)
InternVL-6B-20B InternVL-1.2M 6.6 0 0.12 0.06 21.0 (1.9×)

J. Different Hardware Results
We test our method on various hardware platforms with different GPUs (e.g., A100, H100) and network bandwidths. The
experiments in Table 15 confirmed consistent performance improvements across all platforms.

Table 15. Results on Different Hardware. IB indicates network bandwidths.

Dataset Hardware IB Dist Ratio GPU Days (speed-up)
VIT LLM

InternVL-1.2M A100 4x200G 0.02 0.145 61.8→ 21.3 (2.90×)
InternVL-1.2M A100 2x200G 0.02 0.145 64.0→ 24.8 (2.58×)
InternVL-1.2M H100 8x400G 0.02 0.145 32.5→ 12.2 (2.67×)

K. Large-Scale Results
To validate the effectiveness of our method, we conduct a study using larger-scale models and a greater number of GPUs.
As shown in the Table 16, our method achieves a speedup ratio exceeding 2.0 across varying GPU configurations. Moreover,
the results demonstrate that our approach maintains a more favorable linear speedup (85%→ 95%) as GPUs increase.

Table 16. Results on Large-Scale models (6 + 70B) and GPUs

Dataset Hardware IB GPUs Dist Ratio GPU Days (speed-up)
VIT LLM

InternVL-1.2M H100 8x400G 64 0.02 0.139 72.8→ 29.3 (2.48×)
InternVL-1.2M H100 8x400G 128 0.02 0.139 75.2→ 29.7 (2.53×)
InternVL-1.2M H100 8x400G 256 0.02 0.139 82.1→ 30.4 (2.70×)
InternVL-1.2M H100 8x400G 512 0.02 0.139 85.3→ 30.9 (2.76×)
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