Under review as a conference paper at ICLR 2026

HIERARCHICAL QUANTIZED DIFFUSION BASED
TREE GENERATION METHOD FOR HIERARCHICAL
REPRESENTATION AND LINEAGE ANALYSIS

Anonymous authors
Paper under double-blind review

ABSTRACT

In single-cell research, tracing and analyzing high-throughput single-cell differ-
entiation trajectories is crucial for understanding complex biological processes.
Key to this is the modeling and generation of hierarchical data that represents
the intrinsic structure within datasets. Traditional methods face limitations in
terms of computational cost, performance, generative capacity, and stability. Re-
cent VAE-based approaches have made strides in addressing these challenges but
still require branch-specific network modules for each tree branch, limiting their
stability and scalability to deep hierarchies, while also suffering from posterior
collapse. To overcome these challenges, we introduce HDTree, a diffusion-based
approach that captures tree relationships within a hierarchical latent space using a
unified hierarchical codebook and quantized diffusion processes to model tree node
transitions. This method improves stability by eliminating branch-specific modules
and enhances generative capacity through gradual hierarchical changes simulated
by the diffusion process. HDTree’s effectiveness is demonstrated through com-
parisons on both general-purpose and single-cell datasets, where it outperforms
existing methods in reconstruction quality, generation diversity, and hierarchi-
cal consistency. These contributions provide a new tool for hierarchical lineage
analysis, enabling more accurate and efficient modeling of cellular differentia-
tion paths and offering insights for downstream biological tasks. (code: https:
//anonymous.4open.science/r/code_HDTree_review-A8DB).

1 INTRODUCTION

In single-cell research, tracing and analyzing cellular differentiation trajectories is essential for
understanding dynamic biological processes. This task requires not only effective modeling of
hierarchical structures (Zeng et al.,|2022), but also the ability to generate data that faithfully captures
such hierarchies (Guo et al.,2024). Accurately characterizing the hierarchical organization underlying
cell differentiation facilitates the exploration of cellular systems and fate decisions, while conditional
generation based on these hierarchies enables interpretable discovery of biological mechanisms.
Importantly, hierarchical structures are not exclusive to biology—they also emerge in various domains
such as recommendation systems, molecular design, and knowledge representation (Chehreghani
& Chehreghanil [2024; |Gyurek et al., [2024; [Tian et al.| [2024). Therefore, developing models that
can both represent and generate data along hierarchical relationships not only enhances performance
in downstream tasks such as classification and clustering, but also provides deeper insight into the
intrinsic organization of complex data.

As shown in Fig.[T] Traditional methods (Murtagh & Legendrel [2014; [Rokhlin & Tygert, 2017) often
rely on a combination of dimension reduction (Jia et al., [2022)), clustering (Oti & Olusola, |2024)), and
data regression (Ali & Younas,[2021) techniques to achieve hierarchical modeling and data generation.
While these approaches can address the tasks to some extent, they face challenges regarding compu-
tation costs, performance, generative capacity, and stability (Zang et al.,|2024b). These limitations
make them inadequate for handling the demands of large-scale, high-dimensional biological data.
Recent state-of-the-art (SOTA) methods based on Variational Autoencoders (VAEs) (Manduchi et al.,
2023}; Xiao & Sul 2024; Majima et al., [2024)) have unified generative tasks and hierarchical repre-
sentation within a single modeling framework, achieving notable advancements. These VAE-based

https://anonymous.4open.science/r/code_HDTree_review-A8DB
https://anonymous.4open.science/r/code_HDTree_review-A8DB

Under review as a conference paper at ICLR 2026

(a) Linkage Hierarchical Clustering Method (b) Deep Tree Generation Models (e.g. TreeVAE) (c) Proposed HDTree (Ours)
= ; Controlled
u > Data
Calculate Build Tralnlng Nt P{_ed'm Training Deneration
Distance Dendr. X st '919 HDTree E T D >
Matnx Model ¢ ructure Model
Tabular Distar]ce P Tree Tabular < B Tree Tabular G%—",Zfle Tree
Data Matrix Results Data g E Results Data Results
Training °° @ @ Training @ = = Training
~, ~, Costs 5
co Ml 00 AN By o0 .., Ty 0o . /‘i
Hi No Weak lelted Limited

gh — 1>
Small Data Large Data Stability Generativity Accuracy Small Data Large Data Stablllty Generativity Accuracy Small Data Large Data S(abllny Generatlvny Accuracy

Figure 1: The motivations. Base method and deep method cannot meet the requirements of
hierarchical representation and lineage analysis in terms of stability, generalivity, accuracy, and
training cost.

approaches effectively reduce computational costs when processing large-scale data while improving
performance and data generation capabilities. However, a key limitation of existing SOTA methods
lies in their reliance on specialized network modules for each tree branch (Manduchi et al}, [2023).
This design not only reduces stability but also constrains the ability to capture sufficiently deep and
complex hierarchical relationships. Specifically, deep branches with sparse samples cannot effectively
leverage representation knowledge learned from other branches, leading to limited generalization and
difficulty in preserving global structure (Ghahramani et al} 2010} [Cakshminarayanan et al.| 2016).
Moreover, independent encoder-decoder pairs at each branch node are prone to overfitting due to
noise accumulation when training data is limited, thereby limiting applicability in scenarios requiring
robust and deep hierarchical modeling.

To address these challenges, we propose a novel deep learning-based method, Hierarchical vector
quantized Diffusion Model (HDTree), which captures tree relationships in a hierarchical latent space
through a unified hierarchical codebook (Huang et all,[2024) and models branch transitions via a
quantized diffusion process 2022). The core innovation of HDTree lies in its integration
of hierarchical latent space encoding with a quantized diffusion process, systematically addressing
the aforementioned limitations. First, enhanced generalization is achieved by employing a unified
latent space where all branches share the same codebook vectors, enabling even sparse deep nodes to
leverage representation knowledge from other branches while preserving global hierarchical structure.
Second, improved stability is ensured by replacing branch-specific encoder-decoder pairs with a
unified encoder and hierarchical codebook architecture, eliminating noise accumulation and overfitting
risks associated with independent modules, and conditional diffusion steps, eliminating fragmented
architecture risks while maintaining adaptability to complex tree topologies. Third, strengthened
generative capacity is realized by modeling branch transitions via a diffusion process 2024),
simulating gradual hierarchical changes to produce diverse and biologically plausible outputs. Finally,
performance gains arise from soft contrastive learning and multi-scale latent space regularization,
which sharpen the representation of hierarchical dependencies and improve lineage analysis accuracy.
The coordinated work of the above modules improves the performance of the entire model.

These advancements collectively enable HDTree to capture deep hierarchical relationships robustly,
while the learned tree-structured embeddings can be directly applied to downstream tasks—such as
lineage analyses via computationally efficient graph-based algorithms. The contributions of this work
are as:

* We propose, HDTree, a novel hierarchical (tree) embeddings & data generation method that
captures complex hierarchical relationships and generates high-quality data.

* We apply HDTree to the task of lineage analyses. It analyzes the cell differentiation path
through a pathfinding algorithm based on the generated tree structure.

* Comparisons and visualizations of clustering performance, tree performance, generative
performance, and lineage analyses performance on general-purpose datasets and single-cell
datasets show that HDTree surpasses existing methods in terms of accuracy and performance,
providing new tools for hierarchical lineage analysis.

Under review as a conference paper at ICLR 2026

l_)>LSCL < Lppp E -
H 1
— : =
eneral Data <7 | ! (w17x27-~-7$6)—)LE :
or Xi g 4 ' Tg
8 9 + Hierarchical Tree Generation
Q]
Image Data '—Jr)] & = | 5 .
err X S 5% g ! T T2 z6
RO D T g Y
Single Cell Data te : 1
Data Input Encoder HTC Generated Tree Diffusion Decoder Lineage Analysis
() (b)

Figure 2: Overview of the HDTree framework & tasks. (a) The framework of HDTree, which
consists of three main components: encoder for semantic representation, Hierarchical Tree Code-
book (HTC) for tree-based structural modeling, and diffusion-based decoder for data generation. We
use tree structures to model hierarchical relationships and generate data based on the hierarchical
latent space. The soft contrastive loss (SCL), hierarchical quantization loss (HQL), and diffusion
loss (DDP) are used to optimize the model. (b) The hierarchical tree generation and lineage analysis.

2 RELATED WORK

2.1 Tree-Structured Representation & Generative Models

Tree-structured representations are crucial for modeling hierarchical relationships in data
2024b). Traditional methods like hierarchical clustering and distance-based
techniques (Bouguettaya et al, 2015) rely on predefined metrics for tree construction. Mondrian
forests (Lakshminarayanan et al.|[2016)) extend this paradigm by using hierarchical Gaussian priors
over leaf node parameters, enabling efficient uncertainty quantification in large-scale regression
tasks. Adams et al. (Ghahramani et al.|[2010) propose tree-structured stick-breaking processes that
provide flexible nonparametric priors over hierarchies with unbounded width and depth, allowing
data to reside at internal nodes while maintaining infinite exchangeability. Recent deep learning
advancements, such as Tree VAE (Manduchi et all,[2024)), leverage recursive and hierarchical latent
structures. Hyperbolic geometry methods, including HGNNs (Zhou et al, 2023)), offer efficient
hierarchical representations. TreeVI enhances variational inference by utilizing
tree structures for scalable training and improved performance in tasks like clustering and link
prediction.

2.2 Deep Learning Based Cell Lineage Analysis

Cell lineage analysis is crucial for reconstructing developmental trajectories in single-cell genomics.
Traditional methods like Monocle (Trapnell et al, [2014) and Slingshot (Street et al, 2018) infer
pseudotime trajectories but are limited by predefined metrics and difficulty modeling unobserved
progenitor states. Recent approaches such as LineageVAE (Majima et all, [2024) and Waddington-
OT (Schiebinger et al., 2021)) overcome some limitations with probabilistic models and optimal
transport, though high dimensionality and sparsity remain challenges.

3 METHODS

3.1 Notation and Task Definition

Let X = {x; € RP} | denote a dataset with N samples, where each x; is a D-dimensional feature
vector. To enhance the generalization capability and robustness of the model, an augmented view x;r
is generated for each x; using KNN-based augmentation 20244), encouraging the encoder
to preserve local semantic neighborhoods during contrastive learning. HDTree learns a hierarchical
tree-structured latent representation 7 to capture multi-scale semantic relationships among data
points. Formally, 7 is parameterized as a rooted binary tree of maximum depth L, where each node
at depth [is associated with a learnable code vector wé- € R?. Both the node embeddings and the
tree topology are jointly optimized during training, allowing the model to automatically discover a
data-driven hierarchical organization.

Task 1 (Lineage Analysis). Given the learned hierarchical tree 7, the lineage analysis task aims
to infer developmental trajectories by identifying paths that connect a specified origin node (e.g., a
progenitor or stem cell state) to one or more destination nodes (e.g., differentiated cell types). The
resulting paths represent discrete approximations of cell state transitions and reveal the hierarchical
progression of differentiation.

Under review as a conference paper at ICLR 2026

Task 2 (Lineage-Conditioned Data Generation). Beyond trajectory inference, HDTree can synthe-
size new data points conditioned on specific lineage paths. Given a trajectory Pathgevelopment in 7, the
diffusion decoder Dy generates samples that are consistent with the hierarchical codes along the path,
providing a controllable way to simulate intermediate or hypothetical cell states.

3.2 Model Design

HDTree addresses three key challenges in deep hierarchical modeling: (1) scalable representation
of deep trees with exponentially growing branches, (2) capturing multi-granularity relationships
across hierarchical levels, and (3) generating diverse samples along specific biological paths. These
requirements motivate our design of three synergistic modules: HDTree is achieved through three
key modules: encoder &y, hierarchical VQ codebook Cyy-, and diffusion decoder Dy.

3.2.1 Encoder &, & Hierarchical Tree Codebook (HTC) Cyy .

Unlike prior methods with exponentially scaling parameters (Manduchi et al} 2023), HTC achieves
linear complexity O(d - K) while explicitly encoding parent-child relationships through a unified
codebook. The encoder £y, maps input data x; into a latent space z; € R?, where 0 represents the
learnable parameters of the encoder and d is the latent dimensions. The encoding process can be
expressed as, z; = &g, (%), 2 = Eapp (X7).

? %

To capture the hierarchical relationships in the data, HTC Cyy is introduced, which is constructed as a
binary tree, where each node represents a code vector in the latent space,
1 ls 1 (41 I+1)y -
Ti=wlifi=0, (w\, T\, TUD)ifi < L. (1)
where wg- is the learnable code vector at depth [and index j, 77 is the root node of the tree, L is
the maximum depth of the tree. The Wé— € R? is the node embeddings at level [, for level I, we

have w' nodes. The tree structure is optimized during training to capture the semantic and structural
relationships in the data. For input data x;, the HTC is used to quantize the latent representation z;
into a hierarchical sequence of code vectors s;,

S; = [Q“’l(zi), e le(zi), ce QWL(ZZ-)], Q“’l(zi) = argminwgecmldren(w;_l) |z — w§»||2,)

where Q) (z;) selects the nearest code vector at depth I. In the rare case of a tie (i.e., multiple wé
with identical distance), we break ties deterministically by choosing the codeword with the smallest
index j, ensuring that s; is uniquely defined. The Children(wé-*l) denotes the children of the code

vector wéfl at level [— 1 which defined in Eq. . This design ensures sibling nodes (e.g., ng’

wl;zr i]) naturally inherit and refine their parent code wé-, enabling knowledge sharing across branches

while maintaining hierarchical specialization.

3.2.2 Diffusion Decoder Dy,

Unlike VAE decoders that suffer from posterior collapse and cannot enforce hierarchical constraints,
or standard diffusion models that treat path labels as unstructured categories, the diffusion decoder
Dy, in HDTree explicitly aligns the generation process to the hierarchical codebook through quan-
tized conditioning. It reconstructs data or generates new samples based on the hierarchical latent
representations, guaranteeing valid path traversal across tree levels. It leverages a Denoising Diffusion
Probabilistic Model (DDPM) to iteratively generate data starting from a noise
distribution. Specifically, beginning with Gaussian noise x7 ~ (0, I), the model refines x through
T diffusion steps to produce the final data x(conditioned on the quantized code sequence s, obtained
from VQ (Eq. [5). The generation process X; = Gen(d,s;|Dy,, (-)) is formulated as,

1l—«a
Gen(d, s;|¢")=4X" |x! 1= X' —a 00,1, 6 = ——Dy, (X4, 1,81), 3
0= (@@ 000 & = =D, (), O
where t € {T,---,1},8; = {(:é[, . ,cﬁi is the hierarchical code sequence from root to leaf, and

Dg,, (+) is a neural network approximator that predicts noise § conditioned on both the noisy sample
x! and the hierarchical path s;, ensuring generated samples conform to the learned tree structure.

Although the hierarchical codebook Cyy is parameterized as a full binary tree for efficient indexing,
this does not restrict the generated tree topology to be binary (see Appendix Fig.[B.I). Each data
point follows a binary latent path during quantization, but multiple points can share partial paths and
diverge at different levels, which naturally induces multi-branch structures in the resulting hierarchy.

Under review as a conference paper at ICLR 2026

Thus, HDTree is capable of representing arbitrary n-ary trees and unbalanced hierarchies, with the
binary tree serving purely as an indexing mechanism for hierarchical codes.

3.3 Loss Function Design
To optimize the HDTree model, we design a composite loss function that integrates contrastive
learning, vector quantization, and diffusion-based reconstruction.

3.3.1 Soft Contrastive Learning Loss (SCL) [LscL(+)]

Standard contrastive methods treat all negative pairs equally, failing to capture the graded similarities
in hierarchical data (e.g., same-genus samples are more similar than cross-phylum ones). SCL
let al| 2024a) addresses this by assigning distance-dependent penalties via tree-based weights to
preserve hierarchical relationships. For a batch of embeddings z = {z; 1’1 and augmentations

{2z}, the loss is:

Ny
‘CSCL 2N Z <10g Z Slle + IOg Z Slllg> - Z IOg dlag S’Lzlzll) (4)

21 1 12 1 12 1 ’i1:1

where N, is the batch szie, Szz+ represents the similarity matrix calculated using the t-distribution

kernel, S; ;, = (1 + (Dfm)/y) “ and D,,;, is the pairwise distance between z;, and z;,;, in

the hyperbolic space. where v = 0.1 i 1s the degrees of freedom of the t-distribution.
3.3.2 Hierarchical Quantization Loss (HQL) [Lror(-)]

HQL learns robust hierarchical tree-structured representations in the HTC by aligning latent em-
beddings with multi-level code vectors while maintaining inter-level consistency. Vanilla vector
quantization (Van Den Oord et al [2017) only constrains leaf-level representations, ignoring in-
termediate hierarchical consistency and causing codebook collapse. Unlike vanilla VQ encoders,
which rely on initialization and local perceptual losses, HQL addresses this by enforcing multi-level
alignment to capture global structural relationships across the entire tree structure. The loss is defined
as,

LuqL =) Alzi,cy,) + MG, U% (cy,), W*(w;) = argmin |lz; — wyll2, (5)
=1 =

where cl

is the nearest code vector to z; at level [, and A\ = 2 balances alignment and consistency.
The hrst term Az, cL ¢y,) aligns embeddings with codes to preserve parent-child relations, while
the second term A(c Zi,Wzl(z)) enforces consistency by mapping codes back to their nearest
embeddings, separating sibling nodes and anchoring children to their parents to maintain a coherent
hierarchy. The z = {zz}z ®, denotes the latent embeddings in the current batch. The function
A(a,b) = ||sg(a) — bl|3 + ||a — sg(b)||3, where sg(-) denotes the stop-gradient operation.

3.3.3 Diffusion Loss [Lppp(-)]
The diffusion loss trains the decoder Dy, to predict the added Gaussian noise at each step and
progressively denoise the sample. Following the standard DDPM formulation 2020a), we

define
Lppp = Etw[l,T],x,eNN(O,I)[HE —eop (Varx + V1 — age, t, Sz)“ﬂ ; (0)

where €y, (+) is the predicted Gaussian noise, j3; is the variance schedule, a; = 1 — 3¢, and & =
HZ:r s is the cumulative product term. The conditional vector s; is obtained from Eq. H This
loss enforces the decoder to match the true noise € and thus ensures faithful reconstruction of x while
respecting the hierarchical conditions.

3.3.4 Overall Loss Function Algorithm 1: Training HDTree

The overall loss is defined as, Input: X, X' ; params © — {4, W, 0}; Ir 1, batch N

L = LscL + AuqLLuqL + ApppLppp, (7) Output: ©°
Init: random ©
where AuqL, and Appp are hyperparameters gor mini-batch B = {(x:,x;)}, do

controlling the contributions of the contrastive Encode: z; = £4(x:), z + = £4(x})
learning loss, vector quantization loss, and Quantize: s; via HTC Eq. @
diffusion-based reconstruction loss, respec- Losses: Lsct Eq. @), LuoL Eq.
tively. This composite loss ensures balanced DDPM step: sample t~[1,T], e~N(0,I),
= Varx; + V1 — aue
l:DDP = HE — Ee(xmt Si ||2 (Eq. EI)
S Total: L = LscL + AnoLLuqL + ApppLppp
| Update: © <+ © —nVeLl

return ©*

Under review as a conference paper at ICLR 2026

optimization across all components of the
HDTree model. The posudocode for training
the HDTree model is provided in Algorithm T}

3.4 Trajectory Analysis with HDTree

3.4.1 Graph Construction

To infer developmental trajectories, the hierarchical tree structure generated by HDTree is transformed
into a weighted graph G = (V, £, W). The graph G inherits all nodes and edges from the hierarchical
tree 7, while additional edges are added within the same depth using a k-nearest neighbors (KNN)
approach. This augmentation enriches the connectivity of the graph by capturing local semantic
relationships that are not explicitly represented in the original tree structure. The nodes in the graph
correspond to the code vectors wé- at each depth [and index j. The edges include both the hierarchical
edges from 7 and the newly introduced edges generated by the KNN process. For each edge (j1, j2)
in the graph, the weight is,

[= e i =
i =i ®)
63 = “le P, 57

where PL~! is a penalty term that increases the weight of edges connecting nodes at different depths,
ensuring that the developmental trajectories follow the hierarchical structure.

3.4.2 Trajectory Inference

Using the constructed graph G, developmental trajectories are inferred by identifying the shortest
path between a predefined origin W, and a destination weng. The shortest path is computed by
minimizing the total edge weights along the trajectory,

Pathdevelopmem = arg min Z W(Jl)]2) (9)
PathCG cpan

The inferred developmental trajectories provide a comprehensive representation of the underlying
hierarchical relationships in the data, capturing the transitions between different cell states and the
progression of cell differentiation processes. The KNN is used only as an auxiliary augmentation
to enrich local connectivity and does not alter the global hierarchy captured by 7. Empirically, our
results are stable across a wide range of k values (see Appendix for sensitivity analysis), indicating
that the primary performance gain comes from the tree-structured representation itself.

4 EXPERIMENTS

4.1 Datasets & Baseline Methods

To provide a comprehensive comparison of different methods, we use two types of datasets, general
tabular, image, and text datasets (Mnist, Fashion-Mnist, 20news-groups, Cifar10) and single-cell
datasets (Limb(Zhang et al., 2023), LHCO(He et al., |2022b), Weinreb(Weinreb et al., 2020b),
ECL(Q1u et al., 2024b)). The scale and features of these datasets are detailed in Table. E] and @
Baseline methods include traditional approaches, such as Agglomerative Clustering (Agg) (Miillner,
2011), t-SNE (Linderman & Steinerberger, [2019), and UMAP (Dalmia & Sia, [2021)), as well as
state-of-the-art (SOTA) deep learning methods, including VAE (Doersch| 2016} |Lim et al.,2020),
LadderVAE (Sgnderby et al.||2016), DeepECT (Mautz et al.| 2020), and TreeVAE (Manduchi et al.,
2024). Additionally, specialized models (Geneformer (Theodoris et al.,|2023), LangCell (Zhao et al.,
2024), CellPLM (Wen et al.,[2024)) tailored for the single-cell domain are incorporated to ensure a
thorough evaluation across diverse tasks. More details are provided in the Appendix.

4.2 Evaluation Metrics

To comprehensively evaluate HDTree and baseline methods, the testing protocol is divided into
three parts: clustering performance, tree structure performance, and reconstruction performance.
Clustering performance is measured using Clustering Accuracy (ACC) (Nazeer et al.| |2009) and
Normalized Mutual Information (NMI)(Estévez et al.| | 2009). To obtain these metrics, the input data
is first mapped into a latent space using the respective method. The clustering results are then derived
directly from this latent representation. For methods that do not inherently produce clustering results,
hierarchical clustering is applied to the latent space to generate cluster labels. This ensures a fair and
consistent comparison across all evaluated methods.

Under review as a conference paper at ICLR 2026

Table 1: Comparison of tree performance, clustering performance, and reconstruction perfor-
mance (Rec. Performance) on four gengeral image and text datasets. The means directly use
agglomerative clustering on the embeddings to gat the tree performance. The -RL and LL are the
reconstruction loss and negative log-likelihood. The best results are highlighted in bold.The number
after/before + shows the mean/standard deviation with 10 different random seeds. ‘NG’ indicates
these methods do not have the generation ability.

Dataset Method H Tree Performance Clustering Performance Rec. Performance H Average
DP(1) LP(T) ACC(1) NMI(T) -RL(T) LL(T)
ey Agg 63.7+0.0 78.6£0.0 69.5£0.0 71.14+0.0 NG NG NG
2 VAEA 79.9+£2.2 90.8+1.4 86.6+4.9 81.61+2.0 -84.74+2.6 -87.242.0 27.8+2.5
2 ol LadderVAE*|| 81.643.9 90.9+£2.5 80.3+5.6 82.0+2.1 -87.84+0.7 -99.94+0.3 24.5+£2.5
g g DeepECT 74.6£5.9 90.7£3.2 74.9+6.2 76.7+£4.2 NG NG NG
go TreeVAE 87.9+4.9 96.0£1.9 90.2+7.5 90.0+4.6 -80.3+0.2 -92.940.2 31.8+£3.2
E HDTree® 92.7+£0.3 97.1+1.2 97.1£0.1 92.8+0.2 NG NG NG
e HDTree 91.9+2.8 96.6+1.4 96.6+1.4 92.4+1.3 -77.9+1.2 -85.4+14 35.7£1.6 (13.9)
o9 Agg 45.0£0.0 67.6£0.0 51.3£0.0 52.6£0.0 NG NG NG
Z R VAEA 44.3£2.5 65.9£2.3 54.9+4.4 56.1£3.2 -231+3.2 -24243.2 -32.1£3.1
2, § LadderVAE® || 49.542.3 67.6£1.2 55.9+3.0 60.7+1.4 -231+14 -2394+1.4 -39.5+1.8
g S DeepECT 44.9+3.3 67.8t1.4 51.8£5.7 57.7£3.7 NG NG NG
= gn TreeVAE 53.4+2.4 70.4£2.0 60.6+£3.3 64.7+£1.4 -226+1.4 -234+1.4 -35.442.0
s E HDTree” 47.7£1.6 67.1£1.5 64.6+1.9 67.4+1.2 NG NG NG
= HDTree 57.4+0.3 71.8+£0.3 71.1£0.2 68.7+0.2 -219+0.1 -228+0.1 -29.940.2 (15.5)
) Agg 13.1£0.0 30.8+0.0 26.1£0.0 27.5+£0.0 NG NG NG
%‘8 VAEA 7.1+£0.3 18.1£0.5 15.2+0.4 11.6+0.3 -45.540.1 -44.240.3 -6.3£0.3
15 ? LadderVAE* 9.0+0.2 20.0+0.7 17.4£0.9 17.8+0.6 -43.540.1 -44.31+0.6 -3.9+0.5
é 2 DeepECT 9.3+1.8 17.2+£3.8 15.6£3.0 18.1+4.1 NG NG NG
o ;r TreeVAE 17.5£1.5 38.4+1.6 32.842.3 34.4+1.5 -34.4+1.5 -34.4+1.5 9.1£1.7
& 2 HDTree * 22.0+£0.1 45.5+0.4 44.6+0.4 43.710.2 NG NG NG
HDTree 23.7+£0.1 44.0+0.2 41.8+0.2 42.6+0.2 -31.1+0.3 -34.1+1.5 19.04+0.4 (19.9)
VAEA 10.5£2.3 16.3£2.3 16.3£1.6 1.86+4.2 -31.7+2.9 -39.24+2.9 -4.3+£2.7
§ LadderVAE* || 12.843.9 25.3£3.9 25.3£2.0 7.41+£4.9 -41.8+4.7 -40.243.7 -1.94£3.9
% é’;é DeepECT 10.5£2.5 10.3£2.5 10.3£2.8 0.18+4.2 NG NG NG
S g T TreeVAE 35.3+4.0 53.8+£3.9 52.9+£7.0 41.4£5.9 -47.0+5.9 -48.31+2.4 14.7+£4.9
S = HDTree” 44.2+1.5 55.2+1.8 75.9+4.3 55.3+2.5 NG NG NG
N HDTree 43.8+1.7 55.1+1.4 73.2+£2.7 53.9+2.0 -34.7£1.9 -40.34£3.6 25.242.2 (110.5)

Tree structure performance (Tree performance) is evaluated using Leaf Purity (LP) (Schiitze et al.|
2008) and Dendrogram Purity (DP)(Rokach & Maimon| 2005). We predict the tree structures with
different methods. Reconstruction performance is assessed using Reconstruction Loss (RL) and
Log-Likelihood (LL). These metrics quantify the ability of a method to recover the original input data
from its latent space representation. Details on evaluation metrics are provided in the Appendix.

4.3 Testing Protocol & Implementation

For all experiments, the data is split into training, validation, and testing sets with an 8:1:1 ratio,
ensuring unbiased evaluation. In testing, if the number of points in the dataset is greater than 10,000,
we randomly sample 10,000 points from testing dataset. It is important to clarify that downsampling
is purely an evaluation strategy to accelerate metric computation (particularly for clustering metrics
like ACC/NMI which require expensive assignment operations), not a model limitation. Our model
performs training and inference on complete datasets. Details on downsampling and its rationale are
provided in the Appendix. We implemented HDTree using PyTorch and trained the model on a single
NVIDIA A100 GPU. The model is trained using the AdamW optimizer with a learning rate of 1le-4
and a batch size of 128. The number of diffusion steps 7" is set to 1000, and the tree depth L is set to
10. More details on the implementation are provided in the Appendix and code.

4.4 Comparisons on General Datasets [better stability/accuracy/generativity]

The proposed HDTree is both a tree generation and data generation method. To ensure a fair
comparison of clustering, tree construction, and generation performance across different methods, we
adopted the benchmarking strategy described in the benchmark of (Manduchi et al.,|2024). The results
are shown in Table The 4 means the methods directly use the agglomerative clustering method
on the embeddings to calculate the Tree Performance. Analysis: (1) HDTree achieves superior
performance across all evaluated metrics, outperforming traditional and SOTA. This advantage
stems from HDTree’s explicit consideration of hierarchical tree structures, which enhances its
ability to capture underlying data relationships. (2) Unlike TreeVAE, HDTree uses a unified tree

Under review as a conference paper at ICLR 2026

Table 2: Comparison of tree performance, clustering performance on three single cell datasets.
Since most of the methods are not generative models, we did not compare generative performance.

Duwset Method Year || ppfseferormane | QusernePerfomines | averagecy
6 s~ Geneformer® 2023 25.6+5.4 35.940.1 34.140.1 34.940.1 32.6+1.4
. 23 S CellPLM* 2024 25.640.1 39.940.1 34.140.2 32.940.2 33.140.2
EEo & LangCel® 2024 25.340.1 37.540.1 33.940.1 35.140.1 33.040.1
Q=82 TreeVAE? 2024 34.74+1.7 55.6+1.0 49.840.1 50.040.0 47.540.7
888 THDTree® Ours 38.9+1.3 57.9+1.0 52.8+1.0 49.0+0.1 49.7+0.9
HDTree Ours 41.0+0.4 57.2+1.4 55.0+1.4 46.6+0.4 50.0+0.9 (12.5)
g4~ CellPLM 2024 27.0+1.1 35.842.7 16.843.4 1.65+5.2 20.343.1
9883 LangCell* 2024 26.5+1.2 352408 35.240.6 0.02+0.9 242409
E=X 2z TreeVAE! 2024 38.342.0 52.240.1 37.940.1 31.640.0 40.0+0.6
“F5ST HDTree” Ours 38.8+0.3 52.1+0.4 46.4+03 347505 43.0+0.4
= HDTree Ours 42.74+0.4 54.0+0.3 49.4+0.3 34.5+0.4 45.24+0.3 (12.2)
¢4~ LangCell 2024 47.440.1 54.8+0.0 14.340.5 34.340.0 37.740.2
£¢8 7 Geneformer* 2024 45.140.4 55.340.1 21.440.1 32.340.1 38.54+0.2
SE% 5 TreeVAE! 2024 60.442.6 61.440.5 41.04+0.1 35.240.0 49.5+0.8
BT o= HDIree" Ours 633126 782+1.1 50.6+1.0 452+1.2 59.3+1.5 (17.5)
229 HDTree Ours 61.0+0.4 67.0+0.3 62.6+0.3 42.6+0.3 58.3+0.4

Table 3: Comparisons on Lineage Ground Truth. The ratio of observed time points (Lineage
Ground Truth) in the k-neighborhood (k=30). Top: LineageVAE dataset. Bottom: C. elegans dataset.

Ti Waddington LineageVAE scVI+Agg TreeVAE HDTree
me oT (semi-supervised) | (unsupervised) | (unsupervised) (unsupervised)

. Day 2 22.1% 2.2% 16.1% 12.1% 23.2% (T +1.1%)
L“]‘;;gles\e’?'i Day 4 21.4% 37.4% 28.2% 30.4% 38.4% (1 +1.0%)
Day 6 56.6% 60.3% 53.2% 56.4% 62.0% (T +1.7%)
C. Elesans 100-300 - 15.4% 10.8% 13.8% 15.2% (1 —0.2%)
i)ata%et 300-500 - 41.5% 40.6% 32.5% 45.8% (1 +4.3%)
’ 500-750 - 62.3% 51.8% 62.8% 66.3% (1 +4.0%)

representation framework, leading to lower standard variance and enhanced stability. (3) The
HDTree exhibits smaller variance and generally better performance than HDTree”, demonstrating
that its hierarchical tree representation effectively enhances modeling and generation capabilities. (4)
HDTree’s advantages become more pronounced with dataset complexity increases, highlighting its
robustness and effectiveness.

4.5 Comparisons on Single Cell Datasets [better stability/accuracy]

Due to the lack of established benchmarks in the single-cell domain, we incorporated data from
high-impact published studies into the TreeVAE benchmark. The results are shown in Table [
Analysis: (1) Similar to the general dataset, HDTree consistently demonstrates superior performance
across all evaluated metrics, including tree structure quality, clustering accuracy, and hierarchical
integrity. (2) We observed that the zero-shot capabilities of single-cell large language models are
often unsatisfactory and, in some cases, fail to surpass basic single-cell methods. This conclusion
has also been validated in recent studies (Lan et al.| [2024} He et al.l [2024)). In comparison with
foundational single-cell models, traditional single-cell tree analysis methods, and TreeVAE, HDTree
shows relative advantages in performance and achieves better stability. (3) These results establish
HDTree as a robust and reliable approach for single-cell data analysis.

4.6 Comparisons on Lineage Ground Truth [better stability/accuracy]

We evaluate the alignment between latent space structure and true developmental progression using
the ratio of observed time points (Lineage Ground Truth) in the k-nearest neighborhood (k = 30).
As shown in Table |3] HDTree consistently outperforms both classical and recent unsupervised
methods across two benchmark datasets. On the Lineage VAE dataset, HDTree achieves the highest
local temporal consistency on all time points, even surpassing the semi-supervised LineageVAE
by +1.7% at Day 6. This highlights the advantage of our diffusion-based hierarchical modeling in
capturing temporal lineage progression without relying on labeled supervision. Analysis: On the
C. elegans dataset, HDTree maintains strong performance across early, mid, and late developmental
stages. It improves over TreeVAE by +4.3% and +4.0% in the 300-500 and 500-750 windows,

Under review as a conference paper at ICLR 2026

Table 4: Ablation Study on MNIST & ECL Datasets. The best performance is highlighted in bold.

Ablation Setups [MNIST (General Dataset) [ECL (Single-Cell Dataset)
| DP(t) LP(H) | ACC(H) NMI() || DP() LP() | ACC(H) NMI(H)
Al. Full Model (Ours) 92.7 97.1 96.6 92.4 69.0 83.2 83.2 79.0
A2. w/o HTC 87.4 85.3 84.1 75.2 58.7 71.4 70.8 66.5
A3. w/o SCL (LscL) 78.9 82.1 81.5 73.1 55.6 68.9 68.3 63.1
A4. w/o HQL (LuqL) 84.1 89.3 86.8 81.7 61.4 74.2 73.7 69.4
®Unannotated ®Body_wall_muscle ®Ciliated_amphid_neuron @Ciliated_non_amphid_neuron ®Seam_cell ®Pharyngeal_muscle @ Hypodermis Time
. i
[. 450
P M # Time
e, 3 & 100
R e, R
7 .
¥4 ég"q« s
R

N

TreeVAE (C)TreeVAE Visualization (d) HDTree Visualization) HDTree f HDTree
Lineage Visualization with Ground Truth Lineage Visualization Lineage Ground Truth

(a) TreeVAE Visualization (b)

Figure 3: Comparison of TreeVAE and HDTree methods for visualization and lineage inference.
(a) and (d) are the latent space visualization of TreeVAE and HDTree, color shows the cell type
information. (b) and (e) are the lineage structure inferred by TreeVAE and HDTree, overlaid on
the data distribution. The blue arrows indicate the inferred lineage relationships. (c) and (f) are the
ground truth lineage visualization for comparison, the color shows the real-time infomation (from
blue to red). The results show that HDTree captures more accurate lineage relationships and generates
more realistic data than Tree VAE.

respectively, and even slightly outperforms the supervised LineageVAE in the early stage. These
results demonstrate that HDTree’s hierarchical latent structure provides a more faithful reflection of
biological differentiation dynamics, offering robust generalization across varying levels of trajectory
complexity.

4.7 Case Study on HDTree Data
Generation [better generativity]
The diffusion generation of HDTree
can generate transformation processes
between different tree branches ac-
cording to the tree structure, which is
very important in phylogenetic analy- ;
sis because often people are interested (@ Mnist Data Generation (b) Celegan Data Generation

in how different cell types are trans- Figure 4: Data generation of HDTree on MNIST and Cel-
formed under natural conditions (for egan. Each scatter is the generated data visualized by tSNE.
example, from stem cells to somatic Color indicates the label. For MNIST, data is generated from

cells). We demonstrate how HDTree digit 6 to 3, 1, and 9. For Celegan, from stem cell to somatic
solves the above problem based on cel] (pie charts: , 0sm-6, elt-5.)

two datasets (MNIST and C. elegans).

The results are shown in Fig.] Analysis: (1) The results on the generic MNIST data show the
visualization of the result from the number 6 to three different numbers (3, 1, 9). The result shows
that the model can complete the generation process well, and the data changes slowly throughout the
process. (2) The results on C. elegans data show the visualization of the result from the stem cell
to the somatic cell. Although we cannot visually display every gene, we have selected three iconic
genes and then used pie charts to display the trend of data changes.

@ Unannotated
\'| @ Ciliated_
amphid_
neuron
@ Ciliated_
non_
amphid_
neuron

digit 6->3
B - digit 6->1
digit 6->9

4.8 Case Study on C. elegans Lineage [better accuracy]

To evaluate the performance of HDTree on real lineage labels, we utilized labeled data provided
by (Packer et al.,|2019). The C. elegans dataset not only labels the type of cell but also the relative
time at which the cell is collected, which can be regarded as the gold label for our analysis of the
cell’s differentiation lineage. HDTree demonstrates superior performance compared to TreeVAE in
capturing lineage relationships and generating biologically meaningful results. A detailed introduction
is in the caption of Fig.[3] Analysis: (1) By analyzing Fig. 3(a) and Fig.3(d), both TreeVAE and
HDTree can distinguish different cell types well because they map cells of the same type to similar
locations. (2) TreeVAE cannot accurately model the differentiation process of cells. This is because

Under review as a conference paper at ICLR 2026

the differentiation lineage visualization (Fig. [3[b)) based on the TreeVAE representation does not
match the real-time gold label (Fig. Ekc)). In contrast, the differentiation lineage inferred by HDTree
basically (Fig. [3[e)) overlaps with the time gold label (Fig. 3f)).

4.9 Comparisons on Computational

Cost [better effectively]

To evaluate the computational effi- Table 5: Training time comparison on general and single-
ciency of HDTree, we compared the cell datasets. Bold denotes the best result. (mm:ss)

training time of HDTree with TreeVAE | tSNE+Agg UMAP+Agg TreeVAE HDTree

and TreeVAE# on four dataset (in Ta-

ble §). We observe that traditional MNIST 854:10 2:09 192:09 42:23

methods do have an advantage when F-MNIST 915:13 2:22 206:13 45:02

deali ith 1l datasets. H LHCO 1708:28 13:51 246:20 53:23
caling with small datasets. HOWEVEL, - yyei, ety 5879:27 340:18 361:12 53:47

when the dataset size becomes large,
traditional methods will become slow due to the their complexity.

4.10 Ablation Study [better accuracy]

To evaluate the contributions of HDTree’s components, we conducted ablation experiments on MNIST
and ECL datasets. The setups included (A1) Full Model (HDTree), (A2) without the HCL and directly
use vanilla codebook, (A3) without the SCL (Lgcr) and directly use the contrastive learning loss, and
(A4) without the HQL loss and directly use the VQ Loss (Lpq). Performance is measured using tree
structure (DP, LP) and clustering metrics (ACC, NMI). The results are shown in TableEl Analysis:
The full model consistently achieved the best performance. Removing the HCL (A2) caused the most
significant performance drop across both datasets, highlighting its role in structural and clustering
performance. The SCL (A3) is essential for maintaining tree depth and clustering interpretability.
All components contribute to HDTree’s success, with the HCL and contrastive loss being the most
critical for optimal performance.

4.11 Parameter Sensitivity Analy-

sis [better stability] g 50 B LangCell
To evaluate the impact of latent dimen- ¢ CellPLM
sionality on model performance, we % 40 mmm TSNE
conducted a sensitivity analysis using g . UMAP
tree performance (DP) as the primary ~ = °° = Lr;?/AE
metric. The baseline and SOTA meth- § 20 ree

ods are evaluated on the ECL dataset 256 128 64 32 8 2

with varying latent dimensionalities. Dimensionaity

The results are presented in Fig. [0l Table 6: Sensitivity Analysis of Dimensionality on Den-
Analysis: (1) HDTree achieves its drogram Purity (DP) Across Methods. The performance
best performance at a latent dimen- of various methods on the ECL dataset with different latent
sionality of 64-256, beyond which no dimensionalities.

further improvements are observed.

This observation suggests that HDTree effectively captures the essential structural information
at moderate dimensionalities, avoiding over-parameterization. (2) Moreover, regardless of the choice
of dimensionality, HDTree maintains a consistent advantage over competing methods, underscoring
its superiority in preserving tree structures and hierarchical relationships. The sensitivity of HDTree
to key hyperparameters is examined.

5 CONCLUSION

We introduce HDTree, a unified diffusion-based framework for hierarchical representation and data
generation. By combining a quantized diffusion process with a hierarchical codebook, HDTree
captures tree-structured relationships without relying on branch-specific modules, leading to en-
hanced stability, generative quality, and interpretability. Experimental results demonstrate consistent
improvements in clustering accuracy, tree structure fidelity, and lineage alignment. Limitations.
Although HDTree achieves high-quality hierarchical generation, its diffusion-based decoder remains
computationally expensive during sampling, especially for large-scale datasets. Future work will
focus on accelerating generation via fast-sampling strategies and more efficient latent diffusion
schemes.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Parveen Ali and Ahtisham Younas. Understanding and interpreting regression analysis. Evidence-
Based Nursing, 24(4):116-118, 2021.

Athman Bouguettaya, Qi Yu, Xumin Liu, Xiangmin Zhou, and Andy Song. Efficient agglomerative
hierarchical clustering. Expert Systems with Applications, 42(5):2785-2797, 2015.

Morteza Haghir Chehreghani and Mostafa Haghir Chehreghani. Hierarchical correlation clustering
and tree preserving embedding. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 23083-23093, 2024.

Ayush Dalmia and Suzanna Sia. Clustering with umap: Why and how connectivity matters. arXiv
preprint arXiv:2108.05525, 2021.

Carl Doersch. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908, 2016.

Pablo A Estévez, Michel Tesmer, Claudio A Perez, and Jacek M Zurada. Normalized mutual
information feature selection. IEEE Transactions on neural networks, 20(2):189-201, 2009.

Zoubin Ghahramani, Michael Jordan, and Ryan P Adams. Tree-structured stick breaking for hierar-
chical data. Advances in neural information processing systems, 23, 2010.

Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and
Baining Guo. Vector quantized diffusion model for text-to-image synthesis. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 10696—10706, 2022.

Zhiye Guo, Jian Liu, Yanli Wang, Mengrui Chen, Duolin Wang, Dong Xu, and Jianlin Cheng.
Diffusion models in bioinformatics and computational biology. Nature reviews bioengineering, 2
(2):136-154, 2024.

Croix Gyurek, Niloy Talukder, and Mohammad Al Hasan. Binder: Hierarchical concept represen-
tation through order embedding of binary vectors. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 980-991, 2024.

Laleh Haghverdi et al. Diffusion pseudotime robustly reconstructs lineage branching. Nature Methods,
13(10):845-848, 2016.

Fei He, Ruixin Fei, Mingyue Gao, Li Su, Xinyu Zhang, and Dong Xu. Parameter-efficient fine-tuning
enhances adaptation of single cell large language model for cell type identification. bioRxiv, 2024.

Z. He, A. Maynard, A. Jain, et al. Lineage recording in human cerebral organoids. Nat Methods, 19:
90-99, 2022a. doi: 10.1038/s41592-021-01344-8.

Zhisong He, Ashley Maynard, Akanksha Jain, Tobias Gerber, Rebecca Petri, Hsiu-Chuan Lin,
Malgorzata Santel, Kevin Ly, Jean-Samuel Dupré, Leila Sidow, et al. Lineage recording in human
cerebral organoids. Nature methods, 19(1):90-99, 2022b.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Hugo
Larochelle, Marc’ Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin
(eds.), NeurIPS, 2020a. URL https://proceedings.neurips.cc/paper/2020/
hash/4cbhbcfec8584af0d967f1labl0179cadb-Abstract.htmll

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. arXiv preprint
arXiv:2006.11239, 2020b.

Lun Huang, Qiang Qiu, and Guillermo Sapiro. Pg-vae: Learning hierarchical discrete representations
with progressive quantization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 7550-7558, 2024.

Weikuan Jia, Meili Sun, Jian Lian, and Sujuan Hou. Feature dimensionality reduction: a review.
Complex & Intelligent Systems, 8(3):2663-2693, 2022.

Leonard Kaufman and Peter J Rousseeuw. Finding groups in data: an introduction to cluster analysis.
John Wiley & Sons, 2009.

11

https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html

Under review as a conference paper at ICLR 2026

Jogendra Nath Kundu, Maharshi Gor, Dakshit Agrawal, and R Venkatesh Babu. Gan-tree: An
incrementally learned hierarchical generative framework for multi-modal data distributions. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8191-8200, 2019.

Balaji Lakshminarayanan, Daniel M Roy, and Yee Whye Teh. Mondrian forests for large-scale
regression when uncertainty matters. Proceedings of the 19th International Conference on Artificial
Intelligence and Statistics (AISTATS), 2016.

Wei Lan, Guohang He, Mingyang Liu, Qingfeng Chen, Junyue Cao, and Wei Peng. Transformer-
based single-cell language model: A survey. Big Data Mining and Analytics, 7(4):1169-1186,
2024.

Kart-Leong Lim, Xudong Jiang, and Chenyu Yi. Deep clustering with variational autoencoder. IEEE
Signal Processing Letters, 27:231-235, 2020.

George C Linderman and Stefan Steinerberger. Clustering with t-sne, provably. SIAM journal on
mathematics of data science, 1(2):313-332, 2019.

Qijiong Liu, Xiaoyu Dong, Jiaren Xiao, Nuo Chen, Hengchang Hu, Jieming Zhu, Chenxu Zhu,
Tetsuya Sakai, and Xiao-Ming Wu. Vector quantization for recommender systems: A review and
outlook. arXiv preprint arXiv:2405.03110, 2024.

Koichiro Majima, Yasuhiro Kojima, Kodai Minoura, Ko Abe, Haruka Hirose, and Teppei Shimamura.
Lineagevae: reconstructing historical cell states and transcriptomes toward unobserved progenitors.
Bioinformatics, 40(10):btae520, 2024.

Laura Manduchi, Moritz Vandenhirtz, Alain Ryser, and Julia Vogt. Tree variational autoencoders.
Advances in Neural Information Processing Systems, 36:54952-54986, 2023.

Laura Manduchi, Moritz Vandenhirtz, Alain Ryser, and Julia Vogt. Tree variational autoencoders.
Advances in Neural Information Processing Systems, 36:54952-54986, 2024.

Dominik Mautz, Claudia Plant, and Christian Bohm. Deepect: The deep embedded cluster tree. Data
Science and Engineering, 5:419—432, 2020.

Daniel Miillner. Modern hierarchical, agglomerative clustering algorithms. arXiv preprint
arXiv:1109.2378, 2011.

Fionn Murtagh and Pierre Legendre. Ward’s hierarchical agglomerative clustering method: which
algorithms implement ward’s criterion? Journal of classification, 31:274-295, 2014.

KA Abdul Nazeer, MP Sebastian, et al. Improving the accuracy and efficiency of the k-means
clustering algorithm. In Proceedings of the world congress on engineering, volume 1, pp. 1-3.
Association of Engineers London, UK, 2009.

Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representations.
Advances in neural information processing systems, 30, 2017.

E Oti and M Olusola. Overview of agglomerative hierarchical clustering methods. British Journal of
Computer, Networking and Information Technology, 7:14-23, 2024.

Jonathan S Packer, Qin Zhu, Chau Huynh, Priya Sivaramakrishnan, Elicia Preston, Hannah Dueck,
Derek Stefanik, Kai Tan, Cole Trapnell, Junhyong Kim, et al. A lineage-resolved molecular atlas
of c. elegans embryogenesis at single-cell resolution. Science, 365(6459):eaax1971, 2019.

C. Qiu, B.K. Martin, I.C. Welsh, et al. A single-cell time-lapse of mouse prenatal development from
gastrula to birth. Nature, 626:1084—1093, 2024a. doi: 10.1038/s41586-024-07069-w.

Chengxiang Qiu, Beth K Martin, Ian C Welsh, Riza M Daza, Truc-Mai Le, Xingfan Huang, Eva K
Nichols, Megan L Taylor, Olivia Fulton, Diana R O’Day, et al. A single-cell time-lapse of mouse
prenatal development from gastrula to birth. Nature, 626(8001):1084—1093, 2024b.

Lior Rokach and Oded Maimon. Clustering methods. Data mining and knowledge discovery
handbook, pp. 321-352, 2005.

12

Under review as a conference paper at ICLR 2026

Vladimir Rokhlin and Mark Tygert. Hierarchical clustering for data sets and networks: Practical
issues and adaptive algorithms. Proceedings of the National Academy of Sciences, 114(29):
7535-7540, 2017.

Geoffrey Schiebinger et al. Optimal transport for developmental trajectories. Proceedings of NeurIPS,
2021.

Hinrich Schiitze, Christopher D Manning, and Prabhakar Raghavan. Introduction to information
retrieval, volume 39. Cambridge University Press Cambridge, 2008.

Casper Kaae Sgnderby, Tapani Raiko, Lars Maalge, Sgren Kaae Sgnderby, and Ole Winther. Ladder
variational autoencoders. Advances in neural information processing systems, 29, 2016.

Kelly Street, Davide Risso, Robert B Fletcher, et al. Slingshot: cell lineage and pseudotime inference
for single-cell transcriptomics. BMC Genomics, 19:477, 2018.

Christina V Theodoris, Ling Xiao, Anant Chopra, Mark D Chaffin, Zeina R Al Sayed, Matthew C
Hill, Helene Mantineo, Elizabeth M Brydon, Zexian Zeng, X Shirley Liu, et al. Transfer learning
enables predictions in network biology. Nature, 618(7965):616-624, 2023.

Feng Tian, Sen Lei, Yingbo Zhou, Jialin Cheng, Guohao Liang, Zhengxia Zou, Heng-Chao Li, and
Zhenwei Shi. Hirenet: Hierarchical-relation network for few-shot remote sensing image scene
classification. IEEE Transactions on Geoscience and Remote Sensing, 2024.

Alex Tong and Xin Huang. Trajectorynet: Continuous modeling of cell trajectories with neural
networks. Proceedings of ISMB, 2020.

Cole Trapnell, Davide Cacchiarelli, James Grimsby, et al. The dynamics and regulators of cell fate
decisions are revealed by pseudotemporal ordering of single cells. Nature Biotechnology, 32(4):
381-386, 2014.

Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. Advances in neural
information processing systems, 33:19667-19679, 2020.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Caleb Weinreb, Alejo Rodriguez-Fraticelli, Fernando D. Camargo, and Allon M. Klein. Lineage
tracing on transcriptional landscapes links state to fate during differentiation. Science, 367(6479):
eaaw3381, 2020a. doi: 10.1126/science.aaw3381. URL https://www.science.org/doi/
abs/10.1126/science.aaw3381l

Caleb Weinreb, Alejo Rodriguez-Fraticelli, Fernando D Camargo, and Allon M Klein. Lineage
tracing on transcriptional landscapes links state to fate during differentiation. Science, 367(6479):
eaaw3381, 2020b.

Hongzhi Wen, Wenzhuo Tang, Xinnan Dai, Jiayuan Ding, Wei Jin, Yuying Xie, and Jiliang Tang.
CellPLM: Pre-training of cell language model beyond single cells. In ICLR, 2024. URL https:
//openreview.net/forum?id=BKXvPDekud.

Junxi Xiao and Qinliang Su. Treevi: Reparameterizable tree-structured variational inference for
instance-level correlation capturing. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

Zelin Zang, Yuhao Wang, Jinlin Wu, Hong Liu, Yue Shen, Stan Li, Zhen Lei, et al. Dmt-hi: Moe-based
hyperbolic interpretable deep manifold transformation for unspervised dimensionality reduction.
arXiv preprint arXiv:2410.19504, 2024a.

Zelin Zang, Yongjie Xu, Chenrui Duan, Jinlin Wu, Stan Z Li, and Zhen Lei. A review of artificial

intelligence based biological-tree construction: Priorities, methods, applications and trends. arXiv
preprint arXiv:2410.04815, 2024b.

13

https://www.science.org/doi/abs/10.1126/science.aaw3381
https://www.science.org/doi/abs/10.1126/science.aaw3381
https://openreview.net/forum?id=BKXvPDekud
https://openreview.net/forum?id=BKXvPDekud

Under review as a conference paper at ICLR 2026

Andy GX Zeng, Suraj Bansal, Liging Jin, Amanda Mitchell, Weihsu Claire Chen, Hussein A
Abbas, Michelle Chan-Seng-Yue, Veronique Voisin, Peter van Galen, Anne Tierens, et al. A
cellular hierarchy framework for understanding heterogeneity and predicting drug response in
acute myeloid leukemia. Nature medicine, 28(6):1212-1223, 2022.

B. Zhang, P. He, J.E.G. Lawrence, et al. A human embryonic limb cell atlas resolved in space and
time. Nature, 635:668-678, 2024. doi: 10.1038/s41586-023-06806-x.

Bao Zhang, Peng He, John EG Lawrence, Shuaiyu Wang, Elizabeth Tuck, Brian A Williams, Kenny
Roberts, Vitalii Kleshchevnikov, Lira Mamanova, Liam Bolt, et al. A human embryonic limb cell
atlas resolved in space and time. Nature, pp. 1-11, 2023.

Suyuan Zhao, Jiahuan Zhang, Yushuai Wu, YIZHEN LUO, and Zaiqing Nie. Langcell: Language-cell
pre-training for cell identity understanding. In Forty-first International Conference on Machine
Learning, 2024.

Min Zhou, Menglin Yang, Bo Xiong, Hui Xiong, and Irwin King. Hyperbolic graph neural networks:
A tutorial on methods and applications. In Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 5843-5844, 2023.

14

Under review as a conference paper at ICLR 2026

A APPENDIX: DETAILS OF RELATED WORK

Tree-Structured Representation & Generative Models. Tree-structured representations are essen-
tial for modeling hierarchical relationships within data (Zang et al.,|2024b)). Traditional approaches,
such as hierarchical clustering (Miillner; [2011)) and distance-based methods (Kaufman & Rousseeuw,
2009; Bouguettaya et al., 2015), use predefined metrics to construct trees and have been foundational
in many applications. Recent advancements in deep learning have introduced adaptive techniques
for tree construction, such as the Nouveau VAE (NVAE)(Vahdat & Kautz, |2020), which captures
hierarchical semantics through recursive structures, and the Tree Variational Autoencoder (Tree-
VAE)(Manduchi et al.l [2024), which encodes hierarchical latent structures in generative models.
Furthermore, hyperbolic geometry has emerged as a powerful framework for representing hierarchical
relationships, with methods like Poincaré Embeddings(Nickel & Kiela, [2017) and Hyperbolic Graph
Neural Networks (HGNNs)(Zhou et al., 2023) offering efficient and expressive representations of
such structures. TreeVI (Xiao & Su, [2024)) extends variational inference by using a tree structure
to efficiently capture correlations among latent variables in the posterior, enabling scalable repa-
rameterization and training while improving performance in tasks like constrained clustering, user
matching, and link prediction. Tree-based generative models offer powerful solutions for modeling
hierarchical relationships and multi-modal data distributions. GAN-Tree(Kundu et al.,|2019) intro-
duces a hierarchical divisive strategy with a mode-splitting algorithm for unsupervised clustering,
effectively addressing mode-collapse and discontinuities in data, while enabling incremental updates
by modifying only specific tree branches.

Deep Learning Based Cell Lineage Analysis. Cell lineage analysis is a vital task in single-
cell genomics, aiming to reconstruct developmental trajectories of cells. Traditional methods like
Monocle(Trapnell et al.,|2014)) and Slingshot(Street et al., 2018) infer pseudotime trajectories but are
limited by reliance on predefined metrics and inability to model unobserved progenitor states. Recent
advances, such as LineageVAE(Majima et al.,|2024) and Waddington-OT(Schiebinger et al., [2021)),
address these limitations using probabilistic models and optimal transport, yet often face challenges
with the high dimensionality and sparsity of single-cell data. Generative models like Diffusion
Pseudotime Models(Haghverdi et al., 2016) and TrajectoryNet(Tong & Huang|, 2020) enhance
scalability and interpretability but typically lack mechanisms to model hierarchical relationships
in differentiation. Our proposed HDTree integrates hierarchical tree structures into the generative
process, enabling accurate reconstruction of both observed and unobserved cell states while improving
the interpretability of cell lineage trajectories.

B APPENDIX: ADDITIONAL ILLUSTRATION OF LATENT INDEXING AND
OUTPUT TREE

The binary structure of the hierarchical codebook Cyy is used solely as an efficient indexing mecha-
nism for latent representations and does not impose a binary topology on the generated tree. Each
sample follows a unique path in the latent codebook, and shared prefixes across samples naturally
form branching points. When aggregated over the entire dataset, these paths induce an n-ary and
possibly unbalanced output tree that better reflects the underlying semantic hierarchy. Figure
provides a textual illustration: the top panel shows binary latent paths labeled with their associated
cell types, while the bottom panel shows how they merge into the expected hematopoietic tri-branch
lineage (lymphoid, myeloid, erythroid).

C APPENDIX: SENSITIVITY ANALYSIS ON k£ IN THE AUXILIARY K-NN GRAPH

To verify that the auxiliary k-NN graph does not dominate the trajectory inference performance,
we evaluate HDTree with different k£ values when constructing the within-level connectivity graph
(k € {5,10,20,30}). Tablereports the performance on the lineage inference task using the same
metrics as in the main paper.

As shown in Table[C.1] the performance varies only slightly (<1%) when changing k from 5 to 30,
indicating that the k-NN graph acts mainly as a local smoothing component while the global hierarchy
is determined by the learned tree structure.

15

Under review as a conference paper at ICLR 2026

(a) Binary latent codebook (indexing only)

[Root]
/ \
[NodeO] [Nodel]

| / \
[HSC (latent)] [Node2] [Node3]
| |
[Myeloid (latent)] [Erythroid (latent)]

(b) Output lineage (multi-branch)

HSC
/o \
lymphoid myeloid erythroid

Mapping: paths ending at HSC(latent), Myeloid(latent),
Erythroid(latent) map to the corresponding
cell fates in the output tree.

Figure B.1: Binary latent indexing vs. multi-branch output (textual illustration). 7op: the
hierarchical codebook is a binary tree where leaf nodes store latent codewords associated with
cell types (e.g., HSC, myeloid, erythroid). Botfom: when aggregating latent paths across samples,
these leaves naturally form a multi-branch lineage tree that matches biological differentiation (e.g.,
hematopoietic tri-furcation). This clarifies that the binary structure is used only for latent indexing
and does not constrain the number of output branches.

Table C.1: Sensitivity of HDTree to the choice of k. Results are averaged over three runs. The
performance remains stable across a wide range of k, showing that the tree structure provides the
main contribution.

k| 5 10 20 30

ARIT | 0.842 0.845 0.847 0.843
NMI1T | 0.792 0.794 0.795 0.791

D APPENDIX: ANY ROOTED TREE CAN BE REPRESENTED AS A BINARY
TREE

We show that any finite rooted tree (optionally ordered) can be encoded as a binary tree via the
left-child/right-sibling (LCRS) transformation, and that this encoding is bijective up to isomorphism.
Hence a binary hierarchical codebook can index arbitrary n-ary branching structures without loss of
information.

Setting. Let 7 be a finite rooted tree with node set V, root r, and (optional) left-to-right order
among the children of each node. The standard binary tree has at most two pointers per node: left
child and right child.

LCRS Encoding (Rooted Tree — Binary Tree). Construct a binary tree /3 on the same node set
V by:

1. For each node v € V, if u has children ¢y, . . ., ¢ in left-to-right order (possibly k = 0), set
the left child of w in BB to ¢; (or NULL if &k = 0).

2. For each sibling pair ¢;, ¢;+1 (1 < i < k), set the right child of ¢; in B to ¢;1; if u has no
(i + 1)-th child, set the right child to NULL.

Intuitively: “left child = first child” and “right child = next sibling.”

16

Under review as a conference paper at ICLR 2026

Table E.2: Dataset-wise Hyperparameter Settings.

Dataset v(t-dist)y k(k-NN) P Areccon Asc. Amqu Hierarchy Depth LR

MNIST 0.2 5 1.0 1.0 0.5 1.0 10 0.005
FMNIST 0.5 5 1.0 1.0 0.5 1.0 10 0.005
20News 0.2 5 1.0 1.0 0.5 1.0 10 0.005
CIFAR-10 0.5 5 1.0 1.0 0.5 1.0 10 0.005
LIMB 0.5 5 1.0 1.0 0.5 1.0 10 0.005
LHCO 0.2 5 1.0 1.0 0.5 1.0 10 0.005
Weinreb 0.2 5 1.0 1.0 0.5 1.0 10 0.005

Decoding (Binary Tree — Rooted Tree). Given B produced by the above rules, recover 7 by:

1. For each node u, its (ordered) children in 7~ are exactly the nodes reachable by starting at the
left child of v in B and repeatedly following right child links (c; = left(u), ¢;41 = right(c;)
until NULL).

2. The root is the unique node not appearing as a right child of any other node.

Theorem. For any finite rooted tree T (optionally ordered), the LCRS encoding produces a binary
tree BB such that decoding B recovers a tree isomorphic to T. Moreover, the transformation preserves
ancestor/descendant relations and sibling order.

Proof. (Well-defined & injective) By construction, every node has at most one left and one right child
in B; thus B is a binary tree. The children of « in 7 become a right-linked list starting at left(u)
in B, preserving order. Different 7 yield different sets of right-linked lists, hence distinct B up to
isomorphism.

(Surjective onto image & decoding correctness) The decoding procedure inverts the encoding by
reading off, for each u, exactly the right-linked list rooted at left(u) as the children sequence of w.
Therefore decoding(encoding(7)) returns a tree isomorphic to 7.

(Preserved relations) For any nodes u, v, u is an ancestor of v in 7 iff there exists a path in B that
alternates: zero or more “right” edges within a sibling list to reach the correct child, followed by a
“left” edge to descend to the first child at the next level, and so on. Hence ancestor/descendant and
sibling order are preserved. O

Complexity and Size. The transformation is linear time O(|V'|) and space O(|V]). No dummy
nodes are required; the node set is unchanged. Degree-k branching in 7 becomes a length-k
right-sibling chain under the left child of the parent in B.

What Is Preserved (and Not). The transformation preserves node identities, parent—child and
ancestor relations, sibling order (if present), the number of nodes, and the lowest common ancestor
(LCA) up to isomorphism. It does not preserve raw edge lengths or exact out-degree counts; the depth
of a root-to-leaf path may shift by the number of right-sibling steps between successive left-child
descents, though this mapping remains deterministic and fully reversible.

Consequence for Modeling. Using a binary hierarchical codebook for latent indexing (left = first
child, right = next sibling) does not constrain the output branching factor: aggregating decoded paths
over samples recovers arbitrary n-ary (possibly unbalanced) hierarchies. Thus a binary latent tree
suffices to represent any rooted tree topology without loss of structural information.

E APPENDIX: DETAILS OF EXPERIMENTAL SETUP

Table summarizes the dataset-wise hyperparameter settings used in all experiments. All hyperpa-
rameters, including the weights in Eq. (8), are fixed across datasets except the t-distribution parameter
v, which is tuned via a small grid search v € {0.05,0.1,0.2,0.5}.

17

Under review as a conference paper at ICLR 2026

F APPENDIX: DETAILS OF DATASET

F.1 DATASETS

In this section, we provide an overview of the datasets used in our evaluation. We consider a diverse
set of datasets, including image, text, and single-cell data, to assess the performance of hierarchical
clustering methods across different domains. The datasets are selected based on their popularity,
complexity, and relevance to real-world applications. We provide a brief description of each dataset,
along with key statistics and preprocessing steps.

MNIST: A widely-used dataset consisting of 70,000 grayscale images of handwritten digits, each of
size 28 x 28. Each image is flattened into a 784-dimensional vector. This dataset is primarily used
for benclﬁlmarking tree structure modeling and hierarchical clustering methods. More details can be
found at

Fashion-MNIST: A dataset of 70,000 grayscale images representing 10 categories of clothing items,
each with a resolution of 28 x 28. The images are flattened into 784-dimensional vectors for analysis.
This dataset is used to evaluate the robustness of methods on visual data with more complex patterns
than MNIST. Dataset details are available at]

20News-Groups: A text dataset with 18,846 newsgroup posts across 20 categories. The features
are represented as TF-IDF vectors with dimensionality reduced to 2,000 features for computational
feasibility. This dataset is employed to test methods on high-dimensional text data and hierarchical
categorization tasks. More details can be found at[}]

CIFAR-10: A dataset of 60,000 color images spanning 10 classes, with each image sized at 32 x 32.
The pixel intensity values are flattened into a 3,072-dimensional vector. This dataset is utilized for
evaluating hierarchical modeling methods on high-dimensional image data. Details are available atﬂ

Limb: A single-cell RNA-seq dataset collected from limb bud development experiments. It contains
approximately 10,000 cells with 20,000 genes per cell after preprocessing. This dataset is used to
study developmental trajectories in biological processes. Dataset details are available in|Zhang et al.
(2024).

LHCO: Single-cell transcriptomics data derived from lung and heart cell ontogeny studies. The
features represent gene expression profiles across 15,000 cells with dimensionality reduced to 10,000
genes. This dataset is used to explore differentiation patterns in complex organ systems. Dataset
details can be found in[He et al.|(2022a]).

Weinreb: A lineage-specific dataset focused on Darwinian lineage inference from single-cell data. It
contains 8,000 cells with high-dimensional transcriptomic data preprocessed to 12,000 genes. This
dataset is employed for benchmarking methods for lineage tracing tasks. Dataset details are provided
in|Weinreb et al.|(2020al).

ECL: Single-cell data from embryonic cell lineages, designed for studying early developmental
processes. It comprises 12,000 cells with 15,000 genes per cell after quality filtering. This dataset is
used to test hierarchical modeling on datasets with complex lineage structures. Details are available
in|Qiu et al.|(2024a).

The key characteristics of the datasets are summarized in Table

F.2 DATASET ORGANIZATION

In our experiment, the all dataset after download from our offered source link should be organized as
follows: For Image data, the organization is:

"http://yann.lecun.com/exdb/mnist/
2https://github.com/zalandoresearch/fashion-mnist
3http://qwone.com/ jason/20Newsgroups/
*https://www.cs.toronto.edu/ kriz/cifarhtm]

18

Under review as a conference paper at ICLR 2026

Table F.3: Summary of Dataset Statistics.

Dataset Type Class Samples Features Source URL or Reference

MNIST Image 10 70,000 784 http://yann.lecun.com/exdb/mnist/

Fashion-MNIST Image 10 70,000 784 https://github.com/zalandoresearch/
fashion-mnist

20News-Groups Text 20 18,846 2,000 http://qgwone.com/~jason/20Newsgroups/

CIFAR-10 Image 10 60,000 3,072 https://www.cs.toronto.edu/~kriz/cifar.
html

Limb Single-cell 10 66,633 500 https://limb-dev.cellgeni.sanger.ac.uk/

LHCO Single-cell 7 10,628 500 https://www.ebi.ac.uk/biostudies/
arrayexpress/studies/E-MTAB-10973

Weinreb Single-cell 11 130,887 500 https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSM4185642

ECL Single-cell 10 838,000 500 https://cellxgene.cziscience.com/

collections/45d5d2c3-bc28-4814-aed6-0bb6£f0ellc82

Image Datasets Directory Structure

datasets/

| -— MNIST/

\ |-— train-images-idx3-ubyte
| -— train-labels-idxl-ubyte
|-— tl0k-images—-idx3-ubyte
\—— tl0k-labels-idxl-ubyte

—-— FashionMNIST/
| -— train-images—-idx3-ubyte
|-— train-labels-idxl-ubyte
|-— tl0k-images—-idx3-ubyte
\-— tlOk-labels—-idxl-ubyte

|-— alt.atheism/
| |—— 12345.txt
| |-— 67890.txt

| -—— comp.graphics/

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\ | \——
\
\

| |—=— 12346.txt
| |-—— 67891.txt
\—— ...

-— cifar-10-batches-py/

|-— data_batch_1
| -— data_batch_2
| -— data_batch_3
|-— data_batch_4
| -— data_batch_5
| -— test_batch

\—— batches.meta

For biology data, the organization is:

19

http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
http://qwone.com/~jason/20Newsgroups/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://limb-dev.cellgeni.sanger.ac.uk/
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-10973
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-10973
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM4185642
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM4185642
https://cellxgene.cziscience.com/collections/45d5d2c3-bc28-4814-aed6-0bb6f0e11c82
https://cellxgene.cziscience.com/collections/45d5d2c3-bc28-4814-aed6-0bb6f0e11c82

Under review as a conference paper at ICLR 2026

Biology Datasets Directory Structure

datasets_bio/

|- original/

| |- EpitheliaCell.hbad

| |- LimbFilter.hb5ad

| |- He_2022_NatureMethods_Dayl5.h5ad
| |- Weinreb_inVitro_clone_matrix.mtx
| |- Weinreb_inVitro_gene_names.txt

| |- Weinreb_inVitro_metadata.txt

| — Weinreb_inVitro_normed_counts.mtx
- processed/ (exists once the process is run)
|- EpitheliaCell_data_n.npy

|- EpitheliaCell_label.npy

|- LimbFilter_data_n.npy

|- LimbFilter_label.npy

| - LHCO.hb5ad

- Weinreb.hb5ad

F.3 PREPROCESSING

Before training, datasets need to be preprocessed. Preprocessing steps differ depending on the type
of dataset. Below are the detailed guidelines:

F.3.1 IMAGE DATA

For image datasets (e.g., MNIST, FMINST), preprocessing is straightforward and can leverage the
code from TreeVAE. The steps include: Initially, downloading and organizing the data ensures
that all necessary dataset files, including images and corresponding labels, are retrieved from their
sources and systematically placed into the appropriate directories within the project structure. This
step is essential for maintaining data integrity and facilitating efficient access during subsequent
processing stages. Next, converting raw data into NumPy arrays involves using provided scripts
to load the raw image and label data. These scripts parse the binary or structured data formats
and convert them into NumPy arrays, which are optimized for numerical computations in Python.
This conversion facilitates further data manipulation and model training processes by providing a
standardized format for handling large-scale datasets. Finally, normalization and formatting of the
pixel values are performed. This typically includes scaling the pixel intensities to a range of [0, 1] to
standardize the input features across different images. Additionally, any necessary adjustments are
made to ensure the data format aligns with the requirements of the HDTree model, such as ensuring
correct dimensionality and data type consistency. Proper normalization enhances model convergence
and stability during training.

F.3.2 BIOLOGICAL DATA

For biological datasets (LHCO, Limb, Weinreb, ECL), preprocessing is more complex and tailored to
each dataset. Below are the detailed preprocessing steps for each:

LHCO: Initially, data cleaning is performed to enhance the quality of the dataset. This includes the
removal of duplicate entries and invalid samples that could introduce bias or noise into subsequent
analyses. Additionally, strategies for handling missing values are implemented, which may involve
imputation techniques or filtering out rows with an excessive amount of missing data. Following data
cleaning, feature extraction is conducted to identify and extract relevant features from the raw data.
For LHCO datasets, these features often include particle kinematics or event-level characteristics that
are critical for analysis. Once extracted, feature scaling is applied to normalize or standardize the data,
ensuring consistency across different scales and facilitating more efficient model training. Finally,
the dataset is split into training, validation, and test sets according to predefined configurations.

This is the key code of our preprocessed methods:

adata = sc.read (f"{input_path}/He_2022_NatureMethods_Dayl5.h5ad")

20

e ® N R W

© ® N9 L R W D~

S

1
2

Under review as a conference paper at ICLR 2026

sc.pp.highly_variable_genes (adata, n_top_genes=500)
adata = adatal:, adata.var[’highly_variable’]]
data = adata.X

data = adata.X.toarray ()

data = np.array(data) .astype (np.float32)
mean = data.mean (axis=0)

std = data.std(axis=0)

data = (data - mean) / std

Listing 1: Preprocess of Lhco

Limb: It begins with data loading, where the dataset is read from the provided files—typically
in formats such as CSV or HDF5—into a structured representation suitable for further processing.
Next, the data undergoes filtering and cleaning to enhance its quality and reliability. This includes
the removal of noise or artifacts that may have been introduced during data acquisition, as well
as deduplication to eliminate redundant entries. Missing values are addressed through appropriate
strategies, such as imputation or selective removal of incomplete records. Following this, feature
engineering is performed to transform raw biological signals into more interpretable and informative
features. For instance, limb motion patterns or other domain-specific characteristics may be extracted
to better capture the underlying structure of the data. These features are then normalized to ensure
uniformity in scale, which is essential for many machine learning algorithms. Finally, the dataset is
stratified and split into training, validation, and test subsets. This is the key code of our preprocessed
methods:

adata = sc.read(f"{input_path}/LimbFilter.h5ad")

data_all = adata.X.toarray () .astype(np.float32)

label_celltype = adata.obs[’celltype’].to_list ()

vars = np.var (data_all, axis=0) # HVG

mask_gene = np.argsort (vars) [-500:]

data_hvg = data_all[:, mask_gene]

label_count = {}

for i in list (set(label_celltype)):
label_count[i] = label_celltype.count (1)

label_count = sorted(label_count.items (), key=lambda x: x[1l], reverse=
True)

label_count = label_count[:10]

mask_topl0 = np.zeros(len(label_celltype)) .astype(np.bool_)

for str_label in label_count:

mask_toplO[str_label[0] == np.array(label_celltype)] =1
data_n = np.array(data_hvg) .astype (np.float32) [mask_topl0]
mean = data_n.mean (axis=0)
std = data_n.std(axis=0)
data = (data_n - mean) / std

Listing 2: Preprocess of Limb

Weinreb: Initially, data transformation is performed to normalize the raw gene expression counts.
This typically includes log-transformation or conversion into normalized values such as Counts Per
Million (CPM), Transcripts Per Million (TPM), or Fragments Per Kilobase of transcript per Million
mapped reads (FPKM). Low-expression genes, as well as cells with insufficient sequencing depth or
missing data, are filtered out to improve signal-to-noise ratio and computational efficiency. Following
normalization, dimensionality reduction techniques—such. These methods reduce the feature space
while preserving the major sources of variation in the data, which can improve model performance
and reduce computational burden. When the dataset originates from multiple experimental batches
or sources, batch effect correction is employed to mitigate technical variability that could confound
biological signal detection. Various statistical or machine learning-based approaches may be used
depending on the nature of the data and experimental design. Finally, the dataset is stratified and
partitioned into training, validation, and test sets.

This is the key code of our preprocessed methods:

matrix_file = f"{input_path}Weinreb_inVitro_normed_counts.mtx"
genes_file = f"{input_path}Weinreb_inVitro_gene_names.txt"

21

© ® N L R W~

Under review as a conference paper at ICLR 2026

metadata_file = f"{input_path}Weinreb_inVitro_metadata.txt"

mtx = mmread (matrix_file) .tocsr ()
genes = pd.read_csv(genes_file, header=None, names=[’genes’])
adata = sc.AnnData(mtx, var=genes)

metadata = pd.read_csv (metadata_file, sep=’'\t’)
adata.obs = metadata.set_index (adata.obs.index)
adata.write (f’ {output_path}Weinreb.h5ad’)

sc.pp.loglp (adata)

adata.obs[’celltype’]=adata.obs[’Cell type annotation’]
adata = adata[~adata.obs[’celltype’].isna()]
sc.pp.highly_variable_genes (adata, n_top_genes=500)
adata = adatal:, adata.var[’highly_variable’]]

data = adata.X.toarray()

data = np.array(data) .astype (np.float32)
mean = data.mean (axis=0)

std = data.std(axis=0)

data = (data - mean) / std

Listing 3: Preprocess of Weinreb

ECL: Initially, raw data files are parsed and converted into structured tabular formats that facilitate
further computational processing. This is followed by a preprocessing stage that includes normaliza-
tion—commonly achieved through z-score transformation or Min-Max scaling—and the handling of
missing values, which may involve either imputation techniques or the removal of incomplete samples.
Subsequently, feature selection is performed with an emphasis on retaining biologically meaningful
attributes, often guided by domain-specific knowledge such as known molecular signatures. Finally,
the dataset is partitioned into training, validation, and test subsets, ensuring that class distributions
are preserved across splits to support unbiased model evaluation and generalization.

This is the key code of our preprocessed methods:

adata = sc.read(f"{input_path}/EpitheliaCell.h5ad")
adata.obs[’celltype’]=adata.obs[’cell_type’]
label_celltype = adata.obs[’celltype’].to_list()
adata_sub = adata.copy ()

sc.pp.subsample (adata_sub, fraction=0.1)

data_all = adata_sub.X.toarray () .astype(np.float32)

vars = np.var (data_all, axis=0)
mask_gene = np.argsort (vars) [-500:]
adata = adatal[:, mask_gene]

data = adata.X.toarray () .astype (np.float32)
label_count = {}
for i in list (set(label_celltype)):

label_count[i] = label_celltype.count (1)
label_count = sorted(label_count.items (), key=lambda x: x[1l], reverse=
True)

label_count = label_count[:10]
mask_topl0 = np.zeros(len(label_celltype)) .astype (np.bool_)
for str_label in label_count:
mask_toplO[str_label[0] == np.array(label_celltype)] =1
data_n = np.array(data) .astype (np.float32) [mask_topl0]
label_train_str = np.array(list (np.squeeze(label_celltype))) [mask_topl0]
downsample the 10k data for every cell type
mask = np.zeros(len(label_train_str)) .astype (np.bool_)
for i in range (10):
random select 10k data for each cell type
random_index = np.random.choice (
np.where (label_train_str == label_count[i][0]) [0],
10000, replace=False)
mask [random_index] = 1
data_n = data_n[mask]
mean = data_n.mean (axis=0)
std = data_n.std(axis=0)
data= (data_n - mean) / std

22

Under review as a conference paper at ICLR 2026

Listing 4: Preprocess of ECL

G APPENDIX: DETAILS OF BASELINE METHODS

We used the TreeVAE, CellPLM, LangCell, Geneformer as the reference methods. The detial use
should follow:

1. TreeVAE You should clone the project "treevae" from https://github.com/
lauramanduchi/treevae.qgit, and install necessary package followed by "mini-
mal_requirements.txt".

2. CellPLM You should clone the project "CellPLM" from https://github.com/
OmicsML/CellPLM.git, and install necessary package followed by "requirements.txt".
The use of CellPLM is shown in the official tutorial in https://github.com/
OmicsML/CellPLM/blob/main/tutorials/cell_embedding.ipynb

3. LangCell You shold clone the project "LangCell" from gitclonehttps://github.
com/PharMolix/LangCell.git) and install necessary package followed by "require-
ments.txt". Then you should install the "geneformer_001". The use of LangCell is shown
in the official tutorial in https://github.com/PharMolix/LangCell/blob/
main/LangCell-annotation—-zeroshot/zero—shot.ipynb

4. Geneformer After you install LangCell, the Geneformer package has been in-
stalled. The use of Geneformer is shown in the official tutorial in https|
//github.com/jkobject/geneformer/blob/main/examples/extract_
and_plot_cell embeddings.ipynb

H APPENDIX: DETAILS OF TESTING PROTOCOL

To ensure a comprehensive and reproducible evaluation, we report clustering quality, hierarchical
structure quality, and generative/reconstruction quality. Unless noted, metrics are computed on the
test split and averaged over multiple runs (with fixed random seeds).

Clustering Accuracy (ACC). ACC is computed via an optimal one-to-one relabeling using the
Hungarian algorithm. Let y; be the ground-truth label and §j; the predicted cluster.

1 . X
ACC = — 17{13;(; Yy = n(9:)},

where S is the set of all label permutations. We use the standard Hungarian implementation to obtain
.

Normalized Mutual Information (NMI). Given predicted clustering C' and ground-truth clustering
G7

2I1(C;G)
H(C)+H(G)’
where I(-;) is mutual information and H (-) is entropy. We use the symmetric NMI with natural
logarithms. NMI € [0, 1] (higher is better).

NMI(C, G) =

Leaf Purity (LP). Let the learned tree T have leaf nodes {Li,...,Ly}. For leaf L;, define
LY ={z € L, : label(z) = y}. We report the macro-average over non-empty leaves:

Empty leaves (no assigned samples) are excluded from the average.

23

https://github.com/lauramanduchi/treevae.git
https://github.com/lauramanduchi/treevae.git
https://github.com/OmicsML/CellPLM.git
https://github.com/OmicsML/CellPLM.git
https://github.com/OmicsML/CellPLM/blob/main/tutorials/cell_embedding.ipynb
https://github.com/OmicsML/CellPLM/blob/main/tutorials/cell_embedding.ipynb
git clone https://github.com/PharMolix/LangCell.git
git clone https://github.com/PharMolix/LangCell.git
https://github.com/PharMolix/LangCell/blob/main/LangCell-annotation-zeroshot/zero-shot.ipynb
https://github.com/PharMolix/LangCell/blob/main/LangCell-annotation-zeroshot/zero-shot.ipynb
https://github.com/jkobject/geneformer/blob/main/examples/extract_and_plot_cell_embeddings.ipynb
https://github.com/jkobject/geneformer/blob/main/examples/extract_and_plot_cell_embeddings.ipynb
https://github.com/jkobject/geneformer/blob/main/examples/extract_and_plot_cell_embeddings.ipynb

Under review as a conference paper at ICLR 2026

Dendrogram Purity (DP). Throughout the paper, DP denotes Dendrogram Purity, consistent
with hierarchical clustering literature and prior work. For each class ¢, consider all pairs (7, j) with
y; = y; = c. Let LCA(%, j) be the lowest common ancestor cluster of z; and z; in the dendrogram,
and let S;; be the set of samples contained in that cluster. The pairwise purity is

[{p € Sij :yp = c}|
S5

pur(i, j) =

DP is the average of pur(i, j) over all intra-class pairs across all classes. This metric increases when
intra-class pairs meet early in the tree (at purer LCA nodes).

Reconstruction Loss (RL). Given inputs X = {;} and reconstructions X = {&;}, we compute
MSE:

1 — .
RL = — >l — 243.
=1

To align the “higher-is-better” convention across metrics, we report —RL in tables (i.e., larger is
better). Reconstructions for diffusion models are obtained by conditioning on the learned latent path
and running the standard deterministic denoising trajectory at evaluation time.

Log-Likelihood (LL) for Diffusion Models. Exact log-likelihood is intractable for DDPMs; we
report the negative ELBO (variational lower bound) following standard practice. Concretely, we
sum the per-timestep KL (or reweighted MSE) terms under the chosen {8;} schedule and include
the analytic prior and decoder terms as in Ho et al. (2020). We report the per-sample LL (higher is
better). Implementation matches our training loss with the appropriate constants added back.

Fréchet Inception Distance (FID). Images: we compute FID in the 2048-D Inception-V3 pool3
feature space, matching the number of generated and real samples and using the same preprocessing.
Single-cell (scRNA-seq): we compute FID in a biologically meaningful feature space: (i) select
HVGs (e.g., top-1,000 by variance) on the training set; (ii) normalize real and generated matrices
identically; (iii) optionally correct batch effects (e.g., Harmony/Scanorama) before feature extraction;
(iv) run PCA to retain > 90% variance (typically ~50 PCs); (v) estimate Gaussians in the PC space
and compute FID via covariance square roots (with a small diagonal regularizer if needed). We fix
random seeds and average FID over multiple generations.

Ratio of Observed Time Points (ROP) for Lineage Consistency. For time-resolved single-cell
datasets, we quantify local temporal coherence by measuring, for each cell, the fraction of its k-nearest
neighbors (in the learned representation) whose time stamps are consistent with its developmental
order; we then average over all cells and report by time window as in the main paper. Ablations
show ROP strongly correlates (negatively) with tree-edit distance, supporting its biological relevance
(Appendix §2?).

Implementation Notes (All Metrics). (i) ACC relabeling uses the Hungarian algorithm; ties are
broken deterministically. (ii) Empty leaves are excluded from LP; singleton leaves contribute 1.0.
(iii) All metrics are averaged across r runs (defaults given in code) with fixed seeds and identical
preprocessing. (iv) For diffusion metrics (RL/LL/FID), generation uses the same {;} schedule and
evaluation pipeline across methods.

I APPENDIX: DETAILS OF IMPLEMENTATION

For all experiments, the data is split into training, validation, and testing sets with an 8:1:1 ratio,
ensuring unbiased evaluation. In testing, if the number of points in the dataset is greater than 10,000,
we randomly sample 10,000 points from testing dataset. Details on downsampling and its rationale
are provided in the Appendix. We implemented HDTree using PyTorch and trained the model on a
single NVIDIA A100 GPU. The model is trained using the AdamW optimizer with a learning rate of
le-4 and a batch size of 128. The number of diffusion steps 7’ is set to 1000, and the tree depth L
is set to 10. The loss weights Agee and Ayq were set to 1.0 and 0.25, respectively. The encoder and
diffusion model are implemented using the multi-multilayer perceptron (MLP).

24

Under review as a conference paper at ICLR 2026

Table J.4: Time Efficiency Comparison Across Methods and Data Sizes: We conducted an
empirical evaluation by selecting varying numbers of highly expressed channels to assess the com-
putational time cost of our model under different data sizes. For this experiment, we set the output
dimensionality of the Embedding method to 512 dimensions and employed UMAP for dimensionality
reduction to facilitate visualization. The resulting features were then subjected to clustering analysis.
As the dataset size increased from 10,000 to 100,000 samples, we observed a dramatic increase
in the computational time required for both the dimensionality reduction and clustering processes.
Notably, the clustering process escalated from a response time measured in minutes (ranging from
30 to 41 seconds) to one that took several hours (ranging from 2201 to 20429 seconds). Such
prolonged processing times are impractical for model evaluation purposes. Consequently, we opted
to downsample the data to 10,000 samples for further processing.

Metod PCA TSNE UMAP CellPLM LangCell GeneFormer
Cin=100, C=512, N=10000

Embedding None None 820s 6s 13s 27s

DR None None 120s 129s 133s 150s

Cluster None None 41s 37s 30s 25s
Cin=1000, C=512, N=10000

Embedding 140s None 800s 7s 13s 25s

Dimentional Reduction 140s None 120s 130s 130s 105s

Cluster 45s None 40s 37s 34s 30s
Cin=1000, C=512, N=100000

Embedding 224s None 3153s 13s 11s 220s

Dimentional Reduction 413s None 825s 416s 430s 420s

Cluster 9637s None 7083s 5037s 2032s 3285s

Useing K-means to 5000 clusters

Embedding 221s None 1834s 14s 123s 110s

Dimentional Reduction 458s None 411s 350s 427s 410s

Cluster 2925s None 20429s 5500s 3432s 2200s

J APPENDIX: DETAILS OF DOWNSAMPLING IN TESTING

As shown in Table [l.4] the computational time required for encoding, dimensionality reduction
(LowDim), and clustering significantly increases with larger data sizes. For instance, when the
input size increases to N=100,000, the encoding time for UMAP rises from 820s to 3153s, and the
clustering time for GeneFormer increases from 25s to 3285s. These trends are consistent across all
tested methods.

Such exponential growth in computational overhead makes the evaluation process infeasible for large-
scale datasets. To address this challenge, we uniformly downsample the data to 10,000 points for all
methods during metric computation. This ensures consistent and fair comparisons while significantly
improving testing efficiency. Additionally, the downsampling procedure preserves the overall data
distribution and class proportions, ensuring that the evaluation results remain representative of the
original dataset.

The detailed justification for selecting 10,000 points as the downsampling target is discussed in the
Appendix.

K APPENDIX: DETAILS OF EXPERIMENTAL ENVIRONMENT

The experiments were conducted on a high-performance computing system with robust hardware
and software configurations to ensure efficient handling of large datasets and complex computations.
The hardware setup included NVIDIA A100 GPUs with 40GB memory for accelerated computation,
Intel Xeon Platinum 8260 CPUs with 24 cores operating at 2.40GHz for efficient multi-threaded
processing, 512GB of RAM, and 10TB of NVMe SSD storage for fast input/output operations.

The software environment was carefully configured for compatibility and reproducibility. The
operating system used was Ubuntu 20.04 LTS (64-bit), and the primary deep learning framework was

25

Under review as a conference paper at ICLR 2026

Table L.5: Compare on different sample size: HDTree on different sample size of ECL. ECL-N k
means we use ECL dataset and downsample it into N*1000 data point for training, while keeping the
same test dataset.
ECL-10k ECL-20k ECL-30k ECL-50k ECL-100k ECL-200k ECL-300k
ACC 82.2+1.5 82.2+15 825+03 82.6+0.5 829+0.3 83.1£04 83.1+0.3
DP 67.0+12 67.6+1.5 683+0.9 69.1+£0.7 685+09 68.9+0.8 67.0£0.8

PyTorch (version 2.4.1), supplemented by TorchVision and Torchaudio extensions. The experiments
were conducted using Python 3.11.6, with Conda (version 24.9.2) employed as the package manager
to handle dependencies and virtual environments.

Key Python packages essential for the experiments included NumPy (1.26.4), SciPy (1.14.1), and
pandas (2.2.3) for data preprocessing and analysis. Visualization tasks were performed using Mat-
plotlib (3.9.2), Seaborn (0.13.2), and Plotly (5.24.1). For deep learning tasks, PyTorch (2.4.1) served
as the primary frameworks. Dimensionality reduction and clustering were supported by UMAP-learn
(0.5.6) and scikit-learn (1.5.2). Single-cell data analysis relied on specialized packages like Scanpy
(1.10.3) and anndata (0.10.9).

A comprehensive list of installed Python packages is available upon request, capturing all dependen-
cies required for reproducing the experiments. This configuration ensures the reported results are
reproducible and highlights the environment’s compatibility with the experimental setup.

L APPENDIX: DETAILS OF EXPERIMENTS ON SINGLE CELL

L.1 DETAILED COMPARISONS ON MORE SINGLE CELL DATASETS.

We selected four single-cell datasets: LHCO, Limb, Weinreb, and ECL. For LHCO, Limb, and
Weinreb, we used the full data. For ECL, to reduce computational cost in the metrics computation,
we downsampled the testing dataset to 100,000 cells.

We evaluated both traditional (t-SNE, UMAP) and deep learning-based methods (Geneformer,
LangCell, CellPLM, TreeVAE). For traditional models, we first selected 500 highly variable genes
(HVGs), applied log1p transformation where needed, and normalized the data using Z-score. For deep
learning-based models, the preprocessing was handled automatically by their built-in pipelines. Thus,
for fairness, we directly read the h5ad files, selected HVGs, and fed the results into the respective
model pipelines to obtain cell embeddings.

After obtaining cell embeddings from all models, we performed unsupervised clustering using K-
Means. Cluster assignments were compared with true cell type labels to compute clustering and
tree-structure-based performance metrics. Due to the lack of established benchmarks in the single
cell domain, we incorporated data from high-impact published studies into the TreeVAE benchmark.
The results are shown in Table 2]

Analysis: (1) Similar to the general dataset, HDTree consistently demonstrates superior performance
across all evaluated metrics, including tree structure quality, clustering accuracy, and hierarchical
integrity. (2) We observed that the zero-shot capabilities of single-cell large language models are
often unsatisfactory and, in some cases, fail to surpass basic single-cell methods. This conclusion
has also been validated in recent studies (Lan et al.| [2024} He et al.| [2024)). In comparison with
foundational single-cell models, traditional single-cell tree analysis methods, and TreeVAE, HDTree
shows relative advantages in performance and achieves better stability. (3) These results establish
HDTree as a robust and reliable approach for single-cell data analysis.

L.2 STABILITY OF MODEL PERFORMANCE ACROSS VARYING TRAINING DATA SIZES

To verify that downsampling did not significantly affect model performance, we conducted additional
experiments on subsampled versions of the ECL dataset at varying scales. The results are shown in
Table

26

Under review as a conference paper at ICLR 2026

Table L.6: Comparison of tree performance, clustering performance on four single cell datasets.
Since most of the methods are not generative models, we did not compare generative performance.

Tree Performance Clustering Performance
Dataset Method Year H DP(1) LP(1) ACC(D) g NMI(t) H Average(T)
tSNE+Agg” 2014 349+14 55.4+1.1 48.94+0.7 47.5+1.0 46.7+1.0
5 g~ UMAP+Agg® 2018 30.9+2.0 50.1£1.0 49.1+1.0 41.4+1.4 429+1.4
- %"-g S Geneformer® 2023 25.6+5.4 35.940.1 34.140.1 34.940.1 32.6+1.4
E 5 (:‘ é CellPLM* 2024 25.61+0.1 39.94+0.1 34.140.2 32.940.2 33.1+0.2
— =8= LangCell* 2024 25.340.1 37.54+0.1 33.940.1 35.14+0.1 33.010.1
S g 8 TreeVAE* 2024 34.7+1.7 55.6+1.0 49.84+0.1 50.0+0.0 47.5+0.7
HDTree® Ours 38.9+1.3 57.9+1.0 52.8+1.0 49.0+0.1 49.7+£0.9
HDTree Ours 41.0+0.4 57.2+14 55.0+1.4 46.6+0.4 50.0+£0.9 (12.5)
A tSNE+Agg? 2014 37.4+1.6 52.84+0.8 43.6+1.0 29.84+0.5 40.9£1.0
g £ I UMAP+Agg® 2018 40.0+1.4 50.6+0.2 46.2+0.2 34.240.2 43.0+0.5
8 § 'g g CellPLM* 2024 27.0+1.1 35.8+2.7 16.8+3.4 1.65+5.2 20.3+3.1
E Sz LangCell* 2024 26.5+1.2 35.24+0.8 35.240.6 0.02+0.9 24.240.9
3 g 3 TreeVAE® 2024 38.3+2.0 52.240.1 37.940.1 31.64+0.0 40.0+0.6
= HDTree® Ours 38.8+0.3 52.1+0.4 46.41+0.3 34.7+0.5 43.0+0.4
HDTree Ours 42.7+0.4 54.0+0.3 49.4+0.3 34.5+0.4 45.2+0.3 (12.2)
“ tSNE+Agg? 2014 57.9+1.5 63.3+1.1 353+1.0 38.54+0.6 48.8+1.1
N g2 5 UMAP+Agg® 2018 51.8£0.1 62.1+0.8 47.2+4.9 46.1£1.2 51.8+1.8
Q‘E) § 2 g LangCell* 2024 47.440.1 54.84+0.0 14.34+0.5 34.3+0.0 37.7+0.2
3= S = Geneformer® 2024 45.1+0.4 55.3£0.1 21.4+0.1 32.340.1 38.5+0.2
B 3 2 @ TreeVAE* 2024 60.412.6 61.44+0.5 41.0+0.1 35.240.0 49.5+0.8
3 HDTree® Ours 63.31+2.6 78.2+1.1 50.6+1.0 45.2+1.2 59.3+1.5 (17.5)
HDTree Ours 61.0+0.4 67.0+0.3 62.6+0.3 42.6+0.3 58.3+0.4
$,43 tSNE+Agg” 2014 55.54+5.4 73.7+£4.2 73.1+£5.4 70.94+3.8 68.31+4.7
a3 -g 3 UMAP+Agg® 2018 53.2+1.4 73.6+1.0 71.2+1.5 71.8+0.8 67.4+
8 é ;“ g TreeVAE* 2024 41.86£1.9 60.7+2.0 57.04+3.0 61.8+1.8 55.3+2.2
B xS HDTree® Ours 60.1+0.1 74.7+0.5 70.9+0.4 78.9+0.4 71.2+0.4
= ° HDTree Ours 69.0+0.7 83.2+0.3 83.2+0.3 79.+40.3 78.6+0.4 (110.3)

The experimental results showed that the model performance did not change significantly with
variations in the size of the training data. This indicates that the model’s performance remained
relatively stable regardless of the dataset size, without notable improvements or declines. This
finding suggests that the current amount of data is sufficient for the model to learn robust feature
representations, or that data quantity is not the key factor influencing model performance in this task.

27

	Introduction
	Related Work
	Methods
	Experiments
	Conclusion
	Appendix: Details of Related Work
	Appendix: Additional Illustration of Latent Indexing and Output Tree
	Appendix: Sensitivity Analysis on k in the Auxiliary k-NN Graph
	Appendix: Any Rooted Tree Can Be Represented as a Binary Tree
	Appendix: Details of Experimental Setup
	Appendix: Details of Dataset
	Datasets
	Dataset Organization
	Preprocessing
	Image Data
	Biological Data

	Appendix: Details of Baseline Methods
	Appendix: Details of Testing Protocol
	Appendix: Details of Implementation
	Appendix: Details of Downsampling in Testing
	Appendix: Details of Experimental Environment
	Appendix: Details of Experiments on Single Cell
	Detailed Comparisons on More Single Cell Datasets.
	Stability of Model Performance Across Varying Training Data Sizes

