
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HIERARCHICAL QUANTIZED DIFFUSION BASED
TREE GENERATION METHOD FOR HIERARCHICAL
REPRESENTATION AND LINEAGE ANALYSIS

Anonymous authors
Paper under double-blind review

ABSTRACT

In single-cell research, tracing and analyzing high-throughput single-cell differ-
entiation trajectories is crucial for understanding complex biological processes.
Key to this is the modeling and generation of hierarchical data that represents
the intrinsic structure within datasets. Traditional methods face limitations in
terms of computational cost, performance, generative capacity, and stability. Re-
cent VAE-based approaches have made strides in addressing these challenges but
still require branch-specific network modules for each tree branch, limiting their
stability and scalability to deep hierarchies, while also suffering from posterior
collapse. To overcome these challenges, we introduce HDTree, a diffusion-based
approach that captures tree relationships within a hierarchical latent space using a
unified hierarchical codebook and quantized diffusion processes to model tree node
transitions. This method improves stability by eliminating branch-specific modules
and enhances generative capacity through gradual hierarchical changes simulated
by the diffusion process. HDTree’s effectiveness is demonstrated through com-
parisons on both general-purpose and single-cell datasets, where it outperforms
existing methods in reconstruction quality, generation diversity, and hierarchi-
cal consistency. These contributions provide a new tool for hierarchical lineage
analysis, enabling more accurate and efficient modeling of cellular differentia-
tion paths and offering insights for downstream biological tasks. (code: https:
//anonymous.4open.science/r/code_HDTree_review-A8DB).

1 INTRODUCTION

In single-cell research, tracing and analyzing cellular differentiation trajectories is essential for
understanding dynamic biological processes. This task requires not only effective modeling of
hierarchical structures (Zeng et al., 2022), but also the ability to generate data that faithfully captures
such hierarchies (Guo et al., 2024). Accurately characterizing the hierarchical organization underlying
cell differentiation facilitates the exploration of cellular systems and fate decisions, while conditional
generation based on these hierarchies enables interpretable discovery of biological mechanisms.
Importantly, hierarchical structures are not exclusive to biology—they also emerge in various domains
such as recommendation systems, molecular design, and knowledge representation (Chehreghani
& Chehreghani, 2024; Gyurek et al., 2024; Tian et al., 2024). Therefore, developing models that
can both represent and generate data along hierarchical relationships not only enhances performance
in downstream tasks such as classification and clustering, but also provides deeper insight into the
intrinsic organization of complex data.

As shown in Fig. 1, Traditional methods (Murtagh & Legendre, 2014; Rokhlin & Tygert, 2017) often
rely on a combination of dimension reduction (Jia et al., 2022), clustering (Oti & Olusola, 2024), and
data regression (Ali & Younas, 2021) techniques to achieve hierarchical modeling and data generation.
While these approaches can address the tasks to some extent, they face challenges regarding compu-
tation costs, performance, generative capacity, and stability (Zang et al., 2024b). These limitations
make them inadequate for handling the demands of large-scale, high-dimensional biological data.
Recent state-of-the-art (SOTA) methods based on Variational Autoencoders (VAEs) (Manduchi et al.,
2023; Xiao & Su, 2024; Majima et al., 2024) have unified generative tasks and hierarchical repre-
sentation within a single modeling framework, achieving notable advancements. These VAE-based

1

https://anonymous.4open.science/r/code_HDTree_review-A8DB
https://anonymous.4open.science/r/code_HDTree_review-A8DB


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) Linkage Hierarchical Clustering Method

Tabular
Data

No
Generativity Large Data

Weak
Accuracy

Training
Costs

Calculate
Distance
Matrix

Distance
Matrix

Build 
Dendr.

High
Stability

(b) Deep Tree Generation Models (e.g. TreeVAE)

Training
Costs

Limited
Generativity

Low
Stability

Limited
Accuracy

Tabular
Data

Training
VAE
Model

Predict
Tree

Structure

(c) Proposed HDTree (Ours)

Tabular
Data

Training
HDTree
Model

Controlled
Data 

Deneration

Generate
TreeTree

Results
Tree

Results Tree
Results

Training
Costs

High
Generativity

High
Stability 

High
Accuracy

···
···

Small Data Large DataSmall Data Large DataSmall Data

Figure 1: The motivations. Base method and deep method cannot meet the requirements of
hierarchical representation and lineage analysis in terms of stability, generalivity, accuracy, and
training cost.

approaches effectively reduce computational costs when processing large-scale data while improving
performance and data generation capabilities. However, a key limitation of existing SOTA methods
lies in their reliance on specialized network modules for each tree branch (Manduchi et al., 2023).
This design not only reduces stability but also constrains the ability to capture sufficiently deep and
complex hierarchical relationships. Specifically, deep branches with sparse samples cannot effectively
leverage representation knowledge learned from other branches, leading to limited generalization and
difficulty in preserving global structure (Ghahramani et al., 2010; Lakshminarayanan et al., 2016).
Moreover, independent encoder-decoder pairs at each branch node are prone to overfitting due to
noise accumulation when training data is limited, thereby limiting applicability in scenarios requiring
robust and deep hierarchical modeling.

To address these challenges, we propose a novel deep learning-based method, Hierarchical vector
quantized Diffusion Model (HDTree), which captures tree relationships in a hierarchical latent space
through a unified hierarchical codebook (Huang et al., 2024) and models branch transitions via a
quantized diffusion process (Gu et al., 2022). The core innovation of HDTree lies in its integration
of hierarchical latent space encoding with a quantized diffusion process, systematically addressing
the aforementioned limitations. First, enhanced generalization is achieved by employing a unified
latent space where all branches share the same codebook vectors, enabling even sparse deep nodes to
leverage representation knowledge from other branches while preserving global hierarchical structure.
Second, improved stability is ensured by replacing branch-specific encoder-decoder pairs with a
unified encoder and hierarchical codebook architecture, eliminating noise accumulation and overfitting
risks associated with independent modules, and conditional diffusion steps, eliminating fragmented
architecture risks while maintaining adaptability to complex tree topologies. Third, strengthened
generative capacity is realized by modeling branch transitions via a diffusion process (Liu et al., 2024),
simulating gradual hierarchical changes to produce diverse and biologically plausible outputs. Finally,
performance gains arise from soft contrastive learning and multi-scale latent space regularization,
which sharpen the representation of hierarchical dependencies and improve lineage analysis accuracy.
The coordinated work of the above modules improves the performance of the entire model.

These advancements collectively enable HDTree to capture deep hierarchical relationships robustly,
while the learned tree-structured embeddings can be directly applied to downstream tasks—such as
lineage analyses via computationally efficient graph-based algorithms. The contributions of this work
are as:

• We propose, HDTree, a novel hierarchical (tree) embeddings & data generation method that
captures complex hierarchical relationships and generates high-quality data.

• We apply HDTree to the task of lineage analyses. It analyzes the cell differentiation path
through a pathfinding algorithm based on the generated tree structure.

• Comparisons and visualizations of clustering performance, tree performance, generative
performance, and lineage analyses performance on general-purpose datasets and single-cell
datasets show that HDTree surpasses existing methods in terms of accuracy and performance,
providing new tools for hierarchical lineage analysis.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Diffusion Decoder
Single Cell Data

Image Data

General Data

Data Input Lineage Analysis

Hierarchical Tree Generation
Tree
Align.

Encoder 

Encoder HTC Generated Tree

L2

L0

L1

L3

(b)(a)

or

or

Figure 2: Overview of the HDTree framework & tasks. (a) The framework of HDTree, which
consists of three main components: encoder for semantic representation, Hierarchical Tree Code-
book (HTC) for tree-based structural modeling, and diffusion-based decoder for data generation. We
use tree structures to model hierarchical relationships and generate data based on the hierarchical
latent space. The soft contrastive loss (SCL), hierarchical quantization loss (HQL), and diffusion
loss (DDP) are used to optimize the model. (b) The hierarchical tree generation and lineage analysis.

2 RELATED WORK

2.1 Tree-Structured Representation & Generative Models
Tree-structured representations are crucial for modeling hierarchical relationships in data (Zang
et al., 2024b). Traditional methods like hierarchical clustering (Müllner, 2011) and distance-based
techniques (Bouguettaya et al., 2015) rely on predefined metrics for tree construction. Mondrian
forests (Lakshminarayanan et al., 2016) extend this paradigm by using hierarchical Gaussian priors
over leaf node parameters, enabling efficient uncertainty quantification in large-scale regression
tasks. Adams et al. (Ghahramani et al., 2010) propose tree-structured stick-breaking processes that
provide flexible nonparametric priors over hierarchies with unbounded width and depth, allowing
data to reside at internal nodes while maintaining infinite exchangeability. Recent deep learning
advancements, such as TreeVAE (Manduchi et al., 2024), leverage recursive and hierarchical latent
structures. Hyperbolic geometry methods, including HGNNs (Zhou et al., 2023), offer efficient
hierarchical representations. TreeVI (Xiao & Su, 2024) enhances variational inference by utilizing
tree structures for scalable training and improved performance in tasks like clustering and link
prediction.

2.2 Deep Learning Based Cell Lineage Analysis
Cell lineage analysis is crucial for reconstructing developmental trajectories in single-cell genomics.
Traditional methods like Monocle (Trapnell et al., 2014) and Slingshot (Street et al., 2018) infer
pseudotime trajectories but are limited by predefined metrics and difficulty modeling unobserved
progenitor states. Recent approaches such as LineageVAE (Majima et al., 2024) and Waddington-
OT (Schiebinger et al., 2021) overcome some limitations with probabilistic models and optimal
transport, though high dimensionality and sparsity remain challenges.

3 METHODS

3.1 Notation and Task Definition
Let X = {xi ∈ RD}Ni=1 denote a dataset with N samples, where each xi is a D-dimensional feature
vector. To enhance the generalization capability and robustness of the model, an augmented view x+

i
is generated for each xi using kNN-based augmentation (Zang et al., 2024a), encouraging the encoder
to preserve local semantic neighborhoods during contrastive learning. HDTree learns a hierarchical
tree-structured latent representation T to capture multi-scale semantic relationships among data
points. Formally, T is parameterized as a rooted binary tree of maximum depth L, where each node
at depth l is associated with a learnable code vector wl

j ∈ Rd. Both the node embeddings and the
tree topology are jointly optimized during training, allowing the model to automatically discover a
data-driven hierarchical organization.

Task 1 (Lineage Analysis). Given the learned hierarchical tree T , the lineage analysis task aims
to infer developmental trajectories by identifying paths that connect a specified origin node (e.g., a
progenitor or stem cell state) to one or more destination nodes (e.g., differentiated cell types). The
resulting paths represent discrete approximations of cell state transitions and reveal the hierarchical
progression of differentiation.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Task 2 (Lineage-Conditioned Data Generation). Beyond trajectory inference, HDTree can synthe-
size new data points conditioned on specific lineage paths. Given a trajectory Pathdevelopment in T , the
diffusion decoder Dθ generates samples that are consistent with the hierarchical codes along the path,
providing a controllable way to simulate intermediate or hypothetical cell states.

3.2 Model Design
HDTree addresses three key challenges in deep hierarchical modeling: (1) scalable representation
of deep trees with exponentially growing branches, (2) capturing multi-granularity relationships
across hierarchical levels, and (3) generating diverse samples along specific biological paths. These
requirements motivate our design of three synergistic modules: HDTree is achieved through three
key modules: encoder EθE , hierarchical VQ codebook CW , and diffusion decoder Dθ.

3.2.1 Encoder EθE & Hierarchical Tree Codebook (HTC) CW .
Unlike prior methods with exponentially scaling parameters (Manduchi et al., 2023), HTC achieves

linear complexity O(d ·K) while explicitly encoding parent-child relationships through a unified
codebook. The encoder EθE maps input data xi into a latent space zi ∈ Rd, where θE represents the
learnable parameters of the encoder and d is the latent dimensions. The encoding process can be
expressed as, zi = EθE (xi), z

+
i = EθE (x+

i ).

To capture the hierarchical relationships in the data, HTC CW is introduced, which is constructed as a
binary tree, where each node represents a code vector in the latent space,

T l
j = wl

j if l = L, (wl
j , T

(l+1)
2j , T (l+1)

2j+1 ) if l < L. (1)

where wl
j is the learnable code vector at depth l and index j, T 0

0 is the root node of the tree, L is
the maximum depth of the tree. The wl

j ∈ Rd is the node embeddings at level l, for level l, we
have wl nodes. The tree structure is optimized during training to capture the semantic and structural
relationships in the data. For input data xi, the HTC is used to quantize the latent representation zi
into a hierarchical sequence of code vectors si,

si = [Ωw1(zi), . . . ,Ω
wl(zi), . . . ,Ω

wL(zi)],Ω
wl(zi) = argminwl

j∈Children(wl−1
j ) ∥zi −wl

j∥2, (2)

where Ω(l)(zi) selects the nearest code vector at depth l. In the rare case of a tie (i.e., multiple wl
j

with identical distance), we break ties deterministically by choosing the codeword with the smallest
index j, ensuring that si is uniquely defined. The Children(wl−1

j ) denotes the children of the code
vector wl−1

j at level l − 1 which defined in Eq. (1). This design ensures sibling nodes (e.g., wl+1
2j ,

wl+1
2j+1) naturally inherit and refine their parent code wl

j , enabling knowledge sharing across branches
while maintaining hierarchical specialization.

3.2.2 Diffusion Decoder DθD
Unlike VAE decoders that suffer from posterior collapse and cannot enforce hierarchical constraints,
or standard diffusion models that treat path labels as unstructured categories, the diffusion decoder
DθD in HDTree explicitly aligns the generation process to the hierarchical codebook through quan-
tized conditioning. It reconstructs data or generates new samples based on the hierarchical latent
representations, guaranteeing valid path traversal across tree levels. It leverages a Denoising Diffusion
Probabilistic Model (DDPM) (Ho et al., 2020b) to iteratively generate data starting from a noise
distribution. Specifically, beginning with Gaussian noise xT ∼ Ω(0, I), the model refines xT through
T diffusion steps to produce the final data x0 conditioned on the quantized code sequence si obtained
from VQ (Eq. 5). The generation process x̃i = Gen(δ, si|DθD (·)) is formulated as,

Gen(δ, si|ϕ∗)=

{̃
x0 |x̃t−1=

1
√
αt

(
x̃t−α̃

)
+σtΩ(0, 1)

}
, α̃ =

1− αt√
1−ᾱt

DθD (x̃
t, t, si), (3)

where t ∈ {T,· · ·,1}, si = {c1zi
, . . . , cLzi

} is the hierarchical code sequence from root to leaf, and
DθD (·) is a neural network approximator that predicts noise δ conditioned on both the noisy sample
x̃t and the hierarchical path si, ensuring generated samples conform to the learned tree structure.

Although the hierarchical codebook CW is parameterized as a full binary tree for efficient indexing,
this does not restrict the generated tree topology to be binary (see Appendix Fig. B.1). Each data
point follows a binary latent path during quantization, but multiple points can share partial paths and
diverge at different levels, which naturally induces multi-branch structures in the resulting hierarchy.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Thus, HDTree is capable of representing arbitrary n-ary trees and unbalanced hierarchies, with the
binary tree serving purely as an indexing mechanism for hierarchical codes.

3.3 Loss Function Design
To optimize the HDTree model, we design a composite loss function that integrates contrastive
learning, vector quantization, and diffusion-based reconstruction.

3.3.1 Soft Contrastive Learning Loss (SCL) [LSCL(·)]
Standard contrastive methods treat all negative pairs equally, failing to capture the graded similarities
in hierarchical data (e.g., same-genus samples are more similar than cross-phylum ones). SCL (Zang
et al., 2024a) addresses this by assigning distance-dependent penalties via tree-based weights to
preserve hierarchical relationships. For a batch of embeddings z = {zi}Nb

i=1 and augmentations
{z+i }

Nb
i=1, the loss is:

LSCL =
1

2N

Nb∑
i1=1

(
log

Nb∑
i2=1

Szz+

i1i2 + log

Nb∑
i2=1

Sz+z
i1i2

)
−

Nb∑
i1=1

log diag(Szz+

i1i1 ), (4)

where Nb is the batch szie, Szz+

ij represents the similarity matrix calculated using the t-distribution
kernel, Si1i2 = (1 + (D2

i1i2
)/ν)−

ν+1
2 , and Di1i2 is the pairwise distance between zi1 and zi1i2 in

the hyperbolic space. where ν = 0.1 is the degrees of freedom of the t-distribution.

3.3.2 Hierarchical Quantization Loss (HQL) [LHQL(·)]
HQL learns robust hierarchical tree-structured representations in the HTC by aligning latent em-
beddings with multi-level code vectors while maintaining inter-level consistency. Vanilla vector
quantization (Van Den Oord et al., 2017) only constrains leaf-level representations, ignoring in-
termediate hierarchical consistency and causing codebook collapse. Unlike vanilla VQ encoders,
which rely on initialization and local perceptual losses, HQL addresses this by enforcing multi-level
alignment to capture global structural relationships across the entire tree structure. The loss is defined
as,

LHQL =

L∑
l=1

A(zi, c
l
zi
) + λA(clzi

, Ψzi(clzi
)), Ψz(wj) = argmin

zi∈z
∥zi −wj∥2, (5)

where clzi
is the nearest code vector to zi at level l, and λ = 2 balances alignment and consistency.

The first term A(zi, c
l
zi
) aligns embeddings with codes to preserve parent-child relations, while

the second term A(clzi
, Ψzi(clzi

)) enforces consistency by mapping codes back to their nearest
embeddings, separating sibling nodes and anchoring children to their parents to maintain a coherent
hierarchy. The z = {zi}Nb

i=1 denotes the latent embeddings in the current batch. The function
A(a, b) = ∥sg(a)− b∥22 + ∥a− sg(b)∥22, where sg(·) denotes the stop-gradient operation.

3.3.3 Diffusion Loss [LDDP(·)]
The diffusion loss trains the decoder DθD to predict the added Gaussian noise at each step and

progressively denoise the sample. Following the standard DDPM formulation (Ho et al., 2020a), we
define

LDDP = Et∼[1,T ],x,ϵ∼N (0,I)

[∥∥ϵ− ϵθD (
√
ᾱtx+

√
1− ᾱtϵ, t, si)

∥∥2
2

]
, (6)

where ϵθD (·) is the predicted Gaussian noise, βt is the variance schedule, αt = 1 − βt, and ᾱt =∏t
s=1 αs is the cumulative product term. The conditional vector si is obtained from Eq. (2). This

loss enforces the decoder to match the true noise ϵ and thus ensures faithful reconstruction of x while
respecting the hierarchical conditions.

Algorithm 1: Training HDTree
Input: X,X+; params Θ = {ϕ,W, θ}; lr η; batch Nb

Output: Θ∗

Init: random Θ
for mini-batch B = {(xi,x

+
i )}

Nb
i=1 do

Encode: zi = Eϕ(xi), z
+
i = Eϕ(x+

i )
Quantize: si via HTC Eq. (2)
Losses: LSCL Eq. (4), LHQL Eq. (5)
DDPM step: sample t∼ [1, T ], ϵ∼N (0, I),
xt =

√
ᾱtxi +

√
1− ᾱtϵ;

LDDP = ∥ϵ− ϵθ(xt, t, si)∥22 (Eq. 6)
Total: L = LSCL + λHQLLHQL + λDDPLDDP
Update: Θ← Θ− η∇ΘL

return Θ∗

3.3.4 Overall Loss Function
The overall loss is defined as,

L = LSCL + λHQLLHQL + λDDPLDDP, (7)

where λHQL, and λDDP are hyperparameters
controlling the contributions of the contrastive
learning loss, vector quantization loss, and
diffusion-based reconstruction loss, respec-
tively. This composite loss ensures balanced

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

optimization across all components of the
HDTree model. The posudocode for training
the HDTree model is provided in Algorithm 1.

3.4 Trajectory Analysis with HDTree

3.4.1 Graph Construction
To infer developmental trajectories, the hierarchical tree structure generated by HDTree is transformed
into a weighted graph G = (V, E ,W). The graph G inherits all nodes and edges from the hierarchical
tree T , while additional edges are added within the same depth using a k-nearest neighbors (KNN)
approach. This augmentation enriches the connectivity of the graph by capturing local semantic
relationships that are not explicitly represented in the original tree structure. The nodes in the graph
correspond to the code vectors wl

j at each depth l and index j. The edges include both the hierarchical
edges from T and the newly introduced edges generated by the KNN process. For each edge (j1, j2)
in the graph, the weight is,

w(j1, j2) =

{
∥wj1 −wj2∥2, j1 = j2
∥wj1 −wj2∥2 + PL−l, j1 ̸= j2,

(8)

where PL−l is a penalty term that increases the weight of edges connecting nodes at different depths,
ensuring that the developmental trajectories follow the hierarchical structure.

3.4.2 Trajectory Inference
Using the constructed graph G, developmental trajectories are inferred by identifying the shortest
path between a predefined origin wstart and a destination wend. The shortest path is computed by
minimizing the total edge weights along the trajectory,

Pathdevelopment = argmin
Path⊆G

∑
e∈Path

w(j1, j2). (9)

The inferred developmental trajectories provide a comprehensive representation of the underlying
hierarchical relationships in the data, capturing the transitions between different cell states and the
progression of cell differentiation processes. The KNN is used only as an auxiliary augmentation
to enrich local connectivity and does not alter the global hierarchy captured by T . Empirically, our
results are stable across a wide range of k values (see Appendix for sensitivity analysis), indicating
that the primary performance gain comes from the tree-structured representation itself.

4 EXPERIMENTS

4.1 Datasets & Baseline Methods
To provide a comprehensive comparison of different methods, we use two types of datasets, general
tabular, image, and text datasets (Mnist, Fashion-Mnist, 20news-groups, Cifar10) and single-cell
datasets (Limb(Zhang et al., 2023), LHCO(He et al., 2022b), Weinreb(Weinreb et al., 2020b),
ECL(Qiu et al., 2024b)). The scale and features of these datasets are detailed in Table. 1 and 2.
Baseline methods include traditional approaches, such as Agglomerative Clustering (Agg) (Müllner,
2011), t-SNE (Linderman & Steinerberger, 2019), and UMAP (Dalmia & Sia, 2021), as well as
state-of-the-art (SOTA) deep learning methods, including VAE (Doersch, 2016; Lim et al., 2020),
LadderVAE (Sønderby et al., 2016), DeepECT (Mautz et al., 2020), and TreeVAE (Manduchi et al.,
2024). Additionally, specialized models (Geneformer (Theodoris et al., 2023), LangCell (Zhao et al.,
2024), CellPLM (Wen et al., 2024)) tailored for the single-cell domain are incorporated to ensure a
thorough evaluation across diverse tasks. More details are provided in the Appendix.

4.2 Evaluation Metrics
To comprehensively evaluate HDTree and baseline methods, the testing protocol is divided into

three parts: clustering performance, tree structure performance, and reconstruction performance.
Clustering performance is measured using Clustering Accuracy (ACC) (Nazeer et al., 2009) and
Normalized Mutual Information (NMI)(Estévez et al., 2009). To obtain these metrics, the input data
is first mapped into a latent space using the respective method. The clustering results are then derived
directly from this latent representation. For methods that do not inherently produce clustering results,
hierarchical clustering is applied to the latent space to generate cluster labels. This ensures a fair and
consistent comparison across all evaluated methods.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of tree performance, clustering performance, and reconstruction perfor-
mance (Rec. Performance) on four gengeral image and text datasets. The A means directly use
agglomerative clustering on the embeddings to gat the tree performance. The -RL and LL are the
reconstruction loss and negative log-likelihood. The best results are highlighted in bold.The number
after/before ± shows the mean/standard deviation with 10 different random seeds. ‘NG’ indicates
these methods do not have the generation ability.

Dataset Method Tree Performance Clustering Performance Rec. Performance AverageDP(↑) LP(↑) ACC(↑) NMI(↑) -RL(↑) LL(↑)

M
ni

st
(i

m
ag

e,
70

k×
78

4) Agg 63.7±0.0 78.6±0.0 69.5±0.0 71.1± 0.0 NG NG NG
VAEA 79.9±2.2 90.8±1.4 86.6±4.9 81.6±2.0 -84.7±2.6 -87.2±2.0 27.8±2.5

LadderVAEA 81.6±3.9 90.9±2.5 80.3±5.6 82.0±2.1 -87.8±0.7 -99.9±0.3 24.5±2.5
DeepECT 74.6±5.9 90.7±3.2 74.9±6.2 76.7±4.2 NG NG NG
TreeVAE 87.9±4.9 96.0±1.9 90.2±7.5 90.0±4.6 -80.3±0.2 -92.9±0.2 31.8±3.2
HDTreeA 92.7±0.3 97.1±1.2 97.1±0.1 92.8±0.2 NG NG NG
HDTree 91.9±2.8 96.6±1.4 96.6±1.4 92.4±1.3 -77.9±1.2 -85.4±1.4 35.7±1.6 (↑3.9)

Fa
sh

io
n-

M
ni

st
(i

m
ag

e,
70

k×
78

4) Agg 45.0±0.0 67.6±0.0 51.3±0.0 52.6±0.0 NG NG NG
VAEA 44.3±2.5 65.9±2.3 54.9±4.4 56.1±3.2 -231±3.2 -242±3.2 -32.1±3.1

LadderVAEA 49.5±2.3 67.6±1.2 55.9±3.0 60.7±1.4 -231±1.4 -239±1.4 -39.5±1.8
DeepECT 44.9±3.3 67.8±1.4 51.8±5.7 57.7±3.7 NG NG NG
TreeVAE 53.4±2.4 70.4±2.0 60.6±3.3 64.7±1.4 -226±1.4 -234±1.4 -35.4±2.0
HDTreeA 47.7±1.6 67.1±1.5 64.6±1.9 67.4±1.2 NG NG NG
HDTree 57.4±0.3 71.8±0.3 71.1±0.2 68.7±0.2 -219±0.1 -228±0.1 -29.9±0.2 (↑5.5)

20
ne

w
s-

gr
ou

ps
(t

ex
t,1

9k
×

20
00

) Agg 13.1±0.0 30.8±0.0 26.1±0.0 27.5±0.0 NG NG NG
VAEA 7.1±0.3 18.1±0.5 15.2±0.4 11.6±0.3 -45.5±0.1 -44.2±0.3 -6.3±0.3

LadderVAEA 9.0±0.2 20.0±0.7 17.4±0.9 17.8±0.6 -43.5±0.1 -44.3±0.6 -3.9±0.5
DeepECT 9.3±1.8 17.2±3.8 15.6±3.0 18.1±4.1 NG NG NG
TreeVAE 17.5±1.5 38.4±1.6 32.8±2.3 34.4±1.5 -34.4±1.5 -34.4±1.5 9.1±1.7
HDTree A 22.0±0.1 45.5±0.4 44.6±0.4 43.7±0.2 NG NG NG
HDTree 23.7±0.1 44.0±0.2 41.8±0.2 42.6±0.2 -31.1±0.3 -34.1±1.5 19.0±0.4 (↑9.9)

C
ifa

r1
0

(i
m

ag
e,

50
k×

32
×

32
) VAEA 10.5±2.3 16.3±2.3 16.3±1.6 1.86±4.2 -31.7±2.9 -39.2±2.9 -4.3±2.7

LadderVAEA 12.8±3.9 25.3±3.9 25.3±2.0 7.41±4.9 -41.8±4.7 -40.2±3.7 -1.9±3.9
DeepECT 10.5±2.5 10.3±2.5 10.3±2.8 0.18±4.2 NG NG NG
TreeVAE 35.3±4.0 53.8±3.9 52.9±7.0 41.4±5.9 -47.0±5.9 -48.3±2.4 14.7±4.9
HDTreeA 44.2±1.5 55.2±1.8 75.9±4.3 55.3±2.5 NG NG NG
HDTree 43.8±1.7 55.1±1.4 73.2±2.7 53.9±2.0 -34.7±1.9 -40.3±3.6 25.2±2.2 (↑10.5)

Tree structure performance (Tree performance) is evaluated using Leaf Purity (LP) (Schütze et al.,
2008) and Dendrogram Purity (DP)(Rokach & Maimon, 2005). We predict the tree structures with
different methods. Reconstruction performance is assessed using Reconstruction Loss (RL) and
Log-Likelihood (LL). These metrics quantify the ability of a method to recover the original input data
from its latent space representation. Details on evaluation metrics are provided in the Appendix.

4.3 Testing Protocol & Implementation
For all experiments, the data is split into training, validation, and testing sets with an 8:1:1 ratio,

ensuring unbiased evaluation. In testing, if the number of points in the dataset is greater than 10,000,
we randomly sample 10,000 points from testing dataset. It is important to clarify that downsampling
is purely an evaluation strategy to accelerate metric computation (particularly for clustering metrics
like ACC/NMI which require expensive assignment operations), not a model limitation. Our model
performs training and inference on complete datasets. Details on downsampling and its rationale are
provided in the Appendix. We implemented HDTree using PyTorch and trained the model on a single
NVIDIA A100 GPU. The model is trained using the AdamW optimizer with a learning rate of 1e-4
and a batch size of 128. The number of diffusion steps T is set to 1000, and the tree depth L is set to
10. More details on the implementation are provided in the Appendix and code.

4.4 Comparisons on General Datasets [better stability/accuracy/generativity]
The proposed HDTree is both a tree generation and data generation method. To ensure a fair

comparison of clustering, tree construction, and generation performance across different methods, we
adopted the benchmarking strategy described in the benchmark of (Manduchi et al., 2024). The results
are shown in Table 1. The A means the methods directly use the agglomerative clustering method
on the embeddings to calculate the Tree Performance. Analysis: (1) HDTree achieves superior
performance across all evaluated metrics, outperforming traditional and SOTA. This advantage
stems from HDTree’s explicit consideration of hierarchical tree structures, which enhances its
ability to capture underlying data relationships. (2) Unlike TreeVAE, HDTree uses a unified tree

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Comparison of tree performance, clustering performance on three single cell datasets.
Since most of the methods are not generative models, we did not compare generative performance.

Dataset Method Year Tree Performance Clustering Performance Average(↑)DP(↑) LP(↑) ACC(↑) NMI(↑)
L

im
b

(c
el

ll
in

ea
ge

,
66

,6
33

ce
lls

,
ce

llt
yp

e:
10

) GeneformerA 2023 25.6±5.4 35.9±0.1 34.1±0.1 34.9±0.1 32.6±1.4
CellPLMA 2024 25.6±0.1 39.9±0.1 34.1±0.2 32.9±0.2 33.1±0.2
LangCellA 2024 25.3±0.1 37.5±0.1 33.9±0.1 35.1±0.1 33.0±0.1
TreeVAEA 2024 34.7±1.7 55.6±1.0 49.8±0.1 50.0±0.0 47.5±0.7
HDTreeA Ours 38.9±1.3 57.9±1.0 52.8±1.0 49.0±0.1 49.7±0.9
HDTree Ours 41.0±0.4 57.2±1.4 55.0±1.4 46.6±0.4 50.0±0.9 (↑2.5)

L
H

C
O

(c
el

ll
in

ea
ge

,
10

,6
28

ce
lls

,
ce

llt
yp

e:
7) CellPLMA 2024 27.0±1.1 35.8±2.7 16.8±3.4 1.65±5.2 20.3±3.1

LangCellA 2024 26.5±1.2 35.2±0.8 35.2±0.6 0.02±0.9 24.2±0.9
TreeVAEA 2024 38.3±2.0 52.2±0.1 37.9±0.1 31.6±0.0 40.0±0.6
HDTreeA Ours 38.8±0.3 52.1±0.4 46.4±0.3 34.7±0.5 43.0±0.4
HDTree Ours 42.7±0.4 54.0±0.3 49.4±0.3 34.5±0.4 45.2±0.3 (↑2.2)

W
ei

nr
eb

(c
el

ll
in

ea
ge

,
13

0,
88

7
ce

lls
,

ce
llt

yp
e:

11
) LangCellA 2024 47.4±0.1 54.8±0.0 14.3±0.5 34.3±0.0 37.7±0.2

GeneformerA 2024 45.1±0.4 55.3±0.1 21.4±0.1 32.3±0.1 38.5±0.2
TreeVAEA 2024 60.4±2.6 61.4±0.5 41.0±0.1 35.2±0.0 49.5±0.8
HDTreeA Ours 63.3±2.6 78.2±1.1 50.6±1.0 45.2±1.2 59.3±1.5 (↑7.5)
HDTree Ours 61.0±0.4 67.0±0.3 62.6±0.3 42.6±0.3 58.3±0.4

Table 3: Comparisons on Lineage Ground Truth. The ratio of observed time points (Lineage
Ground Truth) in the k-neighborhood (k=30). Top: LineageVAE dataset. Bottom: C. elegans dataset.

Time Waddington
OT

LineageVAE
(semi-supervised)

scVI+Agg
(unsupervised)

TreeVAE
(unsupervised)

HDTree
(unsupervised)

LineageVAE
Dataset

Day 2 22.1% 2.2% 16.1% 12.1% 23.2% (↑ +1.1%)
Day 4 21.4% 37.4% 28.2% 30.4% 38.4% (↑ +1.0%)
Day 6 56.6% 60.3% 53.2% 56.4% 62.0% (↑ +1.7%)

C. Elegans
Dataset

100–300 – 15.4% 10.8% 13.8% 15.2% (↑ −0.2%)
300–500 – 41.5% 40.6% 32.5% 45.8% (↑ +4.3%)
500–750 – 62.3% 51.8% 62.8% 66.3% (↑ +4.0%)

representation framework, leading to lower standard variance and enhanced stability. (3) The
HDTree exhibits smaller variance and generally better performance than HDTreeA, demonstrating
that its hierarchical tree representation effectively enhances modeling and generation capabilities. (4)
HDTree’s advantages become more pronounced with dataset complexity increases, highlighting its
robustness and effectiveness.

4.5 Comparisons on Single Cell Datasets [better stability/accuracy]
Due to the lack of established benchmarks in the single-cell domain, we incorporated data from

high-impact published studies into the TreeVAE benchmark. The results are shown in Table 2.
Analysis: (1) Similar to the general dataset, HDTree consistently demonstrates superior performance
across all evaluated metrics, including tree structure quality, clustering accuracy, and hierarchical
integrity. (2) We observed that the zero-shot capabilities of single-cell large language models are
often unsatisfactory and, in some cases, fail to surpass basic single-cell methods. This conclusion
has also been validated in recent studies (Lan et al., 2024; He et al., 2024). In comparison with
foundational single-cell models, traditional single-cell tree analysis methods, and TreeVAE, HDTree
shows relative advantages in performance and achieves better stability. (3) These results establish
HDTree as a robust and reliable approach for single-cell data analysis.

4.6 Comparisons on Lineage Ground Truth [better stability/accuracy]
We evaluate the alignment between latent space structure and true developmental progression using
the ratio of observed time points (Lineage Ground Truth) in the k-nearest neighborhood (k = 30).
As shown in Table 3, HDTree consistently outperforms both classical and recent unsupervised
methods across two benchmark datasets. On the LineageVAE dataset, HDTree achieves the highest
local temporal consistency on all time points, even surpassing the semi-supervised LineageVAE
by +1.7% at Day 6. This highlights the advantage of our diffusion-based hierarchical modeling in
capturing temporal lineage progression without relying on labeled supervision. Analysis: On the
C. elegans dataset, HDTree maintains strong performance across early, mid, and late developmental
stages. It improves over TreeVAE by +4.3% and +4.0% in the 300-500 and 500-750 windows,

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Ablation Study on MNIST & ECL Datasets. The best performance is highlighted in bold.

Ablation Setups MNIST (General Dataset) ECL (Single-Cell Dataset)

DP(↑) LP(↑) ACC(↑) NMI(↑) DP(↑) LP(↑) ACC(↑) NMI(↑)
A1. Full Model (Ours) 92.7 97.1 96.6 92.4 69.0 83.2 83.2 79.0
A2. w/o HTC 87.4 85.3 84.1 75.2 58.7 71.4 70.8 66.5
A3. w/o SCL (LSCL) 78.9 82.1 81.5 73.1 55.6 68.9 68.3 63.1
A4. w/o HQL (LHQL) 84.1 89.3 86.8 81.7 61.4 74.2 73.7 69.4

(d) HDTree Visualization  HDTree 
Lineage Visualization

HDTree
Lineage Ground Truth(a) TreeVAE Visualization TreeVAE

Lineage Visualization
TreeVAE Visualization

 with Ground Truth

Body_wall_muscle Ciliated_amphid_neuron Ciliated_non_amphid_neuron Seam_cell Pharyngeal_muscle HypodermisUnannotated

100
Time

750
Time

450
Time

(b) (c) (e) (f)

Figure 3: Comparison of TreeVAE and HDTree methods for visualization and lineage inference.
(a) and (d) are the latent space visualization of TreeVAE and HDTree, color shows the cell type
information. (b) and (e) are the lineage structure inferred by TreeVAE and HDTree, overlaid on
the data distribution. The blue arrows indicate the inferred lineage relationships. (c) and (f) are the
ground truth lineage visualization for comparison, the color shows the real-time infomation (from
blue to red). The results show that HDTree captures more accurate lineage relationships and generates
more realistic data than TreeVAE.

respectively, and even slightly outperforms the supervised LineageVAE in the early stage. These
results demonstrate that HDTree’s hierarchical latent structure provides a more faithful reflection of
biological differentiation dynamics, offering robust generalization across varying levels of trajectory
complexity.

(b) Celegan Data Generation 

Unannotated
Ciliated_
amphid_
neuron
Ciliated_
non_
amphid_
neuron

digit 6->3
digit 6->1
digit 6->9

(a) Mnist Data Generation 

Figure 4: Data generation of HDTree on MNIST and Cel-
egan. Each scatter is the generated data visualized by tSNE.
Color indicates the label. For MNIST, data is generated from
digit 6 to 3, 1, and 9. For Celegan, from stem cell to somatic
cell (pie charts: odr-10, osm-6, elt-5.)

4.7 Case Study on HDTree Data
Generation [better generativity]
The diffusion generation of HDTree
can generate transformation processes
between different tree branches ac-
cording to the tree structure, which is
very important in phylogenetic analy-
sis because often people are interested
in how different cell types are trans-
formed under natural conditions (for
example, from stem cells to somatic
cells). We demonstrate how HDTree
solves the above problem based on
two datasets (MNIST and C. elegans).
The results are shown in Fig. 4. Analysis: (1) The results on the generic MNIST data show the
visualization of the result from the number 6 to three different numbers (3, 1, 9). The result shows
that the model can complete the generation process well, and the data changes slowly throughout the
process. (2) The results on C. elegans data show the visualization of the result from the stem cell
to the somatic cell. Although we cannot visually display every gene, we have selected three iconic
genes and then used pie charts to display the trend of data changes.

4.8 Case Study on C. elegans Lineage [better accuracy]
To evaluate the performance of HDTree on real lineage labels, we utilized labeled data provided

by (Packer et al., 2019). The C. elegans dataset not only labels the type of cell but also the relative
time at which the cell is collected, which can be regarded as the gold label for our analysis of the
cell’s differentiation lineage. HDTree demonstrates superior performance compared to TreeVAE in
capturing lineage relationships and generating biologically meaningful results. A detailed introduction
is in the caption of Fig. 3. Analysis: (1) By analyzing Fig. 3(a) and Fig. 3(d), both TreeVAE and
HDTree can distinguish different cell types well because they map cells of the same type to similar
locations. (2) TreeVAE cannot accurately model the differentiation process of cells. This is because

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

the differentiation lineage visualization (Fig. 3(b)) based on the TreeVAE representation does not
match the real-time gold label (Fig. 3(c)). In contrast, the differentiation lineage inferred by HDTree
basically (Fig. 3(e)) overlaps with the time gold label (Fig. 3(f)).

Table 5: Training time comparison on general and single-
cell datasets. Bold denotes the best result. (mm:ss)

tSNE+Agg UMAP+Agg TreeVAE HDTree

MNIST 854:10 2:09 192:09 42:23
F-MNIST 915:13 2:22 206:13 45:02
LHCO 1708:28 13:51 246:20 53:23
Weinreb 5879:27 340:18 361:12 53:47

4.9 Comparisons on Computational
Cost [better effectively]
To evaluate the computational effi-
ciency of HDTree, we compared the
training time of HDTree with TreeVAE
and TreeVAEA on four dataset (in Ta-
ble 5). We observe that traditional
methods do have an advantage when
dealing with small datasets. However,
when the dataset size becomes large,
traditional methods will become slow due to the their complexity.

4.10 Ablation Study [better accuracy]
To evaluate the contributions of HDTree’s components, we conducted ablation experiments on MNIST
and ECL datasets. The setups included (A1) Full Model (HDTree), (A2) without the HCL and directly
use vanilla codebook, (A3) without the SCL (LSCL) and directly use the contrastive learning loss, and
(A4) without the HQL loss and directly use the VQ Loss (Lhq). Performance is measured using tree
structure (DP, LP) and clustering metrics (ACC, NMI). The results are shown in Table 4. Analysis:
The full model consistently achieved the best performance. Removing the HCL (A2) caused the most
significant performance drop across both datasets, highlighting its role in structural and clustering
performance. The SCL (A3) is essential for maintaining tree depth and clustering interpretability.
All components contribute to HDTree’s success, with the HCL and contrastive loss being the most
critical for optimal performance.

256 128 64 32 8 2
Dimensionality

20

30

40

50

De
pt

h 
Pr

es
er

va
tio

n 
(D

P,
 %

)

LangCell
CellPLM
TSNE
UMAP
TreeVAE
HDTree

Table 6: Sensitivity Analysis of Dimensionality on Den-
drogram Purity (DP) Across Methods. The performance
of various methods on the ECL dataset with different latent
dimensionalities.

4.11 Parameter Sensitivity Analy-
sis [better stability]
To evaluate the impact of latent dimen-
sionality on model performance, we
conducted a sensitivity analysis using
tree performance (DP) as the primary
metric. The baseline and SOTA meth-
ods are evaluated on the ECL dataset
with varying latent dimensionalities.
The results are presented in Fig. 6.
Analysis: (1) HDTree achieves its
best performance at a latent dimen-
sionality of 64-256, beyond which no
further improvements are observed.
This observation suggests that HDTree effectively captures the essential structural information
at moderate dimensionalities, avoiding over-parameterization. (2) Moreover, regardless of the choice
of dimensionality, HDTree maintains a consistent advantage over competing methods, underscoring
its superiority in preserving tree structures and hierarchical relationships. The sensitivity of HDTree
to key hyperparameters is examined.

5 CONCLUSION

We introduce HDTree, a unified diffusion-based framework for hierarchical representation and data
generation. By combining a quantized diffusion process with a hierarchical codebook, HDTree
captures tree-structured relationships without relying on branch-specific modules, leading to en-
hanced stability, generative quality, and interpretability. Experimental results demonstrate consistent
improvements in clustering accuracy, tree structure fidelity, and lineage alignment. Limitations.
Although HDTree achieves high-quality hierarchical generation, its diffusion-based decoder remains
computationally expensive during sampling, especially for large-scale datasets. Future work will
focus on accelerating generation via fast-sampling strategies and more efficient latent diffusion
schemes.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Parveen Ali and Ahtisham Younas. Understanding and interpreting regression analysis. Evidence-
Based Nursing, 24(4):116–118, 2021.

Athman Bouguettaya, Qi Yu, Xumin Liu, Xiangmin Zhou, and Andy Song. Efficient agglomerative
hierarchical clustering. Expert Systems with Applications, 42(5):2785–2797, 2015.

Morteza Haghir Chehreghani and Mostafa Haghir Chehreghani. Hierarchical correlation clustering
and tree preserving embedding. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 23083–23093, 2024.

Ayush Dalmia and Suzanna Sia. Clustering with umap: Why and how connectivity matters. arXiv
preprint arXiv:2108.05525, 2021.

Carl Doersch. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908, 2016.

Pablo A Estévez, Michel Tesmer, Claudio A Perez, and Jacek M Zurada. Normalized mutual
information feature selection. IEEE Transactions on neural networks, 20(2):189–201, 2009.

Zoubin Ghahramani, Michael Jordan, and Ryan P Adams. Tree-structured stick breaking for hierar-
chical data. Advances in neural information processing systems, 23, 2010.

Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and
Baining Guo. Vector quantized diffusion model for text-to-image synthesis. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 10696–10706, 2022.

Zhiye Guo, Jian Liu, Yanli Wang, Mengrui Chen, Duolin Wang, Dong Xu, and Jianlin Cheng.
Diffusion models in bioinformatics and computational biology. Nature reviews bioengineering, 2
(2):136–154, 2024.

Croix Gyurek, Niloy Talukder, and Mohammad Al Hasan. Binder: Hierarchical concept represen-
tation through order embedding of binary vectors. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 980–991, 2024.

Laleh Haghverdi et al. Diffusion pseudotime robustly reconstructs lineage branching. Nature Methods,
13(10):845–848, 2016.

Fei He, Ruixin Fei, Mingyue Gao, Li Su, Xinyu Zhang, and Dong Xu. Parameter-efficient fine-tuning
enhances adaptation of single cell large language model for cell type identification. bioRxiv, 2024.

Z. He, A. Maynard, A. Jain, et al. Lineage recording in human cerebral organoids. Nat Methods, 19:
90–99, 2022a. doi: 10.1038/s41592-021-01344-8.

Zhisong He, Ashley Maynard, Akanksha Jain, Tobias Gerber, Rebecca Petri, Hsiu-Chuan Lin,
Malgorzata Santel, Kevin Ly, Jean-Samuel Dupré, Leila Sidow, et al. Lineage recording in human
cerebral organoids. Nature methods, 19(1):90–99, 2022b.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin
(eds.), NeurIPS, 2020a. URL https://proceedings.neurips.cc/paper/2020/
hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. arXiv preprint
arXiv:2006.11239, 2020b.

Lun Huang, Qiang Qiu, and Guillermo Sapiro. Pq-vae: Learning hierarchical discrete representations
with progressive quantization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 7550–7558, 2024.

Weikuan Jia, Meili Sun, Jian Lian, and Sujuan Hou. Feature dimensionality reduction: a review.
Complex & Intelligent Systems, 8(3):2663–2693, 2022.

Leonard Kaufman and Peter J Rousseeuw. Finding groups in data: an introduction to cluster analysis.
John Wiley & Sons, 2009.

11

https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jogendra Nath Kundu, Maharshi Gor, Dakshit Agrawal, and R Venkatesh Babu. Gan-tree: An
incrementally learned hierarchical generative framework for multi-modal data distributions. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8191–8200, 2019.

Balaji Lakshminarayanan, Daniel M Roy, and Yee Whye Teh. Mondrian forests for large-scale
regression when uncertainty matters. Proceedings of the 19th International Conference on Artificial
Intelligence and Statistics (AISTATS), 2016.

Wei Lan, Guohang He, Mingyang Liu, Qingfeng Chen, Junyue Cao, and Wei Peng. Transformer-
based single-cell language model: A survey. Big Data Mining and Analytics, 7(4):1169–1186,
2024.

Kart-Leong Lim, Xudong Jiang, and Chenyu Yi. Deep clustering with variational autoencoder. IEEE
Signal Processing Letters, 27:231–235, 2020.

George C Linderman and Stefan Steinerberger. Clustering with t-sne, provably. SIAM journal on
mathematics of data science, 1(2):313–332, 2019.

Qijiong Liu, Xiaoyu Dong, Jiaren Xiao, Nuo Chen, Hengchang Hu, Jieming Zhu, Chenxu Zhu,
Tetsuya Sakai, and Xiao-Ming Wu. Vector quantization for recommender systems: A review and
outlook. arXiv preprint arXiv:2405.03110, 2024.

Koichiro Majima, Yasuhiro Kojima, Kodai Minoura, Ko Abe, Haruka Hirose, and Teppei Shimamura.
Lineagevae: reconstructing historical cell states and transcriptomes toward unobserved progenitors.
Bioinformatics, 40(10):btae520, 2024.

Laura Manduchi, Moritz Vandenhirtz, Alain Ryser, and Julia Vogt. Tree variational autoencoders.
Advances in Neural Information Processing Systems, 36:54952–54986, 2023.

Laura Manduchi, Moritz Vandenhirtz, Alain Ryser, and Julia Vogt. Tree variational autoencoders.
Advances in Neural Information Processing Systems, 36:54952–54986, 2024.

Dominik Mautz, Claudia Plant, and Christian Böhm. Deepect: The deep embedded cluster tree. Data
Science and Engineering, 5:419–432, 2020.

Daniel Müllner. Modern hierarchical, agglomerative clustering algorithms. arXiv preprint
arXiv:1109.2378, 2011.

Fionn Murtagh and Pierre Legendre. Ward’s hierarchical agglomerative clustering method: which
algorithms implement ward’s criterion? Journal of classification, 31:274–295, 2014.

KA Abdul Nazeer, MP Sebastian, et al. Improving the accuracy and efficiency of the k-means
clustering algorithm. In Proceedings of the world congress on engineering, volume 1, pp. 1–3.
Association of Engineers London, UK, 2009.

Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representations.
Advances in neural information processing systems, 30, 2017.

E Oti and M Olusola. Overview of agglomerative hierarchical clustering methods. British Journal of
Computer, Networking and Information Technology, 7:14–23, 2024.

Jonathan S Packer, Qin Zhu, Chau Huynh, Priya Sivaramakrishnan, Elicia Preston, Hannah Dueck,
Derek Stefanik, Kai Tan, Cole Trapnell, Junhyong Kim, et al. A lineage-resolved molecular atlas
of c. elegans embryogenesis at single-cell resolution. Science, 365(6459):eaax1971, 2019.

C. Qiu, B.K. Martin, I.C. Welsh, et al. A single-cell time-lapse of mouse prenatal development from
gastrula to birth. Nature, 626:1084–1093, 2024a. doi: 10.1038/s41586-024-07069-w.

Chengxiang Qiu, Beth K Martin, Ian C Welsh, Riza M Daza, Truc-Mai Le, Xingfan Huang, Eva K
Nichols, Megan L Taylor, Olivia Fulton, Diana R O’Day, et al. A single-cell time-lapse of mouse
prenatal development from gastrula to birth. Nature, 626(8001):1084–1093, 2024b.

Lior Rokach and Oded Maimon. Clustering methods. Data mining and knowledge discovery
handbook, pp. 321–352, 2005.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Vladimir Rokhlin and Mark Tygert. Hierarchical clustering for data sets and networks: Practical
issues and adaptive algorithms. Proceedings of the National Academy of Sciences, 114(29):
7535–7540, 2017.

Geoffrey Schiebinger et al. Optimal transport for developmental trajectories. Proceedings of NeurIPS,
2021.

Hinrich Schütze, Christopher D Manning, and Prabhakar Raghavan. Introduction to information
retrieval, volume 39. Cambridge University Press Cambridge, 2008.

Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther. Ladder
variational autoencoders. Advances in neural information processing systems, 29, 2016.

Kelly Street, Davide Risso, Robert B Fletcher, et al. Slingshot: cell lineage and pseudotime inference
for single-cell transcriptomics. BMC Genomics, 19:477, 2018.

Christina V Theodoris, Ling Xiao, Anant Chopra, Mark D Chaffin, Zeina R Al Sayed, Matthew C
Hill, Helene Mantineo, Elizabeth M Brydon, Zexian Zeng, X Shirley Liu, et al. Transfer learning
enables predictions in network biology. Nature, 618(7965):616–624, 2023.

Feng Tian, Sen Lei, Yingbo Zhou, Jialin Cheng, Guohao Liang, Zhengxia Zou, Heng-Chao Li, and
Zhenwei Shi. Hirenet: Hierarchical-relation network for few-shot remote sensing image scene
classification. IEEE Transactions on Geoscience and Remote Sensing, 2024.

Alex Tong and Xin Huang. Trajectorynet: Continuous modeling of cell trajectories with neural
networks. Proceedings of ISMB, 2020.

Cole Trapnell, Davide Cacchiarelli, James Grimsby, et al. The dynamics and regulators of cell fate
decisions are revealed by pseudotemporal ordering of single cells. Nature Biotechnology, 32(4):
381–386, 2014.

Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. Advances in neural
information processing systems, 33:19667–19679, 2020.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Caleb Weinreb, Alejo Rodriguez-Fraticelli, Fernando D. Camargo, and Allon M. Klein. Lineage
tracing on transcriptional landscapes links state to fate during differentiation. Science, 367(6479):
eaaw3381, 2020a. doi: 10.1126/science.aaw3381. URL https://www.science.org/doi/
abs/10.1126/science.aaw3381.

Caleb Weinreb, Alejo Rodriguez-Fraticelli, Fernando D Camargo, and Allon M Klein. Lineage
tracing on transcriptional landscapes links state to fate during differentiation. Science, 367(6479):
eaaw3381, 2020b.

Hongzhi Wen, Wenzhuo Tang, Xinnan Dai, Jiayuan Ding, Wei Jin, Yuying Xie, and Jiliang Tang.
CellPLM: Pre-training of cell language model beyond single cells. In ICLR, 2024. URL https:
//openreview.net/forum?id=BKXvPDekud.

Junxi Xiao and Qinliang Su. Treevi: Reparameterizable tree-structured variational inference for
instance-level correlation capturing. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

Zelin Zang, Yuhao Wang, Jinlin Wu, Hong Liu, Yue Shen, Stan Li, Zhen Lei, et al. Dmt-hi: Moe-based
hyperbolic interpretable deep manifold transformation for unspervised dimensionality reduction.
arXiv preprint arXiv:2410.19504, 2024a.

Zelin Zang, Yongjie Xu, Chenrui Duan, Jinlin Wu, Stan Z Li, and Zhen Lei. A review of artificial
intelligence based biological-tree construction: Priorities, methods, applications and trends. arXiv
preprint arXiv:2410.04815, 2024b.

13

https://www.science.org/doi/abs/10.1126/science.aaw3381
https://www.science.org/doi/abs/10.1126/science.aaw3381
https://openreview.net/forum?id=BKXvPDekud
https://openreview.net/forum?id=BKXvPDekud


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Andy GX Zeng, Suraj Bansal, Liqing Jin, Amanda Mitchell, Weihsu Claire Chen, Hussein A
Abbas, Michelle Chan-Seng-Yue, Veronique Voisin, Peter van Galen, Anne Tierens, et al. A
cellular hierarchy framework for understanding heterogeneity and predicting drug response in
acute myeloid leukemia. Nature medicine, 28(6):1212–1223, 2022.

B. Zhang, P. He, J.E.G. Lawrence, et al. A human embryonic limb cell atlas resolved in space and
time. Nature, 635:668–678, 2024. doi: 10.1038/s41586-023-06806-x.

Bao Zhang, Peng He, John EG Lawrence, Shuaiyu Wang, Elizabeth Tuck, Brian A Williams, Kenny
Roberts, Vitalii Kleshchevnikov, Lira Mamanova, Liam Bolt, et al. A human embryonic limb cell
atlas resolved in space and time. Nature, pp. 1–11, 2023.

Suyuan Zhao, Jiahuan Zhang, Yushuai Wu, YIZHEN LUO, and Zaiqing Nie. Langcell: Language-cell
pre-training for cell identity understanding. In Forty-first International Conference on Machine
Learning, 2024.

Min Zhou, Menglin Yang, Bo Xiong, Hui Xiong, and Irwin King. Hyperbolic graph neural networks:
A tutorial on methods and applications. In Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 5843–5844, 2023.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX: DETAILS OF RELATED WORK

Tree-Structured Representation & Generative Models. Tree-structured representations are essen-
tial for modeling hierarchical relationships within data (Zang et al., 2024b). Traditional approaches,
such as hierarchical clustering (Müllner, 2011) and distance-based methods (Kaufman & Rousseeuw,
2009; Bouguettaya et al., 2015), use predefined metrics to construct trees and have been foundational
in many applications. Recent advancements in deep learning have introduced adaptive techniques
for tree construction, such as the Nouveau VAE (NVAE)(Vahdat & Kautz, 2020), which captures
hierarchical semantics through recursive structures, and the Tree Variational Autoencoder (Tree-
VAE)(Manduchi et al., 2024), which encodes hierarchical latent structures in generative models.
Furthermore, hyperbolic geometry has emerged as a powerful framework for representing hierarchical
relationships, with methods like Poincaré Embeddings(Nickel & Kiela, 2017) and Hyperbolic Graph
Neural Networks (HGNNs)(Zhou et al., 2023) offering efficient and expressive representations of
such structures. TreeVI (Xiao & Su, 2024) extends variational inference by using a tree structure
to efficiently capture correlations among latent variables in the posterior, enabling scalable repa-
rameterization and training while improving performance in tasks like constrained clustering, user
matching, and link prediction. Tree-based generative models offer powerful solutions for modeling
hierarchical relationships and multi-modal data distributions. GAN-Tree(Kundu et al., 2019) intro-
duces a hierarchical divisive strategy with a mode-splitting algorithm for unsupervised clustering,
effectively addressing mode-collapse and discontinuities in data, while enabling incremental updates
by modifying only specific tree branches.

Deep Learning Based Cell Lineage Analysis. Cell lineage analysis is a vital task in single-
cell genomics, aiming to reconstruct developmental trajectories of cells. Traditional methods like
Monocle(Trapnell et al., 2014) and Slingshot(Street et al., 2018) infer pseudotime trajectories but are
limited by reliance on predefined metrics and inability to model unobserved progenitor states. Recent
advances, such as LineageVAE(Majima et al., 2024) and Waddington-OT(Schiebinger et al., 2021),
address these limitations using probabilistic models and optimal transport, yet often face challenges
with the high dimensionality and sparsity of single-cell data. Generative models like Diffusion
Pseudotime Models(Haghverdi et al., 2016) and TrajectoryNet(Tong & Huang, 2020) enhance
scalability and interpretability but typically lack mechanisms to model hierarchical relationships
in differentiation. Our proposed HDTree integrates hierarchical tree structures into the generative
process, enabling accurate reconstruction of both observed and unobserved cell states while improving
the interpretability of cell lineage trajectories.

B APPENDIX: ADDITIONAL ILLUSTRATION OF LATENT INDEXING AND
OUTPUT TREE

The binary structure of the hierarchical codebook CW is used solely as an efficient indexing mecha-
nism for latent representations and does not impose a binary topology on the generated tree. Each
sample follows a unique path in the latent codebook, and shared prefixes across samples naturally
form branching points. When aggregated over the entire dataset, these paths induce an n-ary and
possibly unbalanced output tree that better reflects the underlying semantic hierarchy. Figure B.1
provides a textual illustration: the top panel shows binary latent paths labeled with their associated
cell types, while the bottom panel shows how they merge into the expected hematopoietic tri-branch
lineage (lymphoid, myeloid, erythroid).

C APPENDIX: SENSITIVITY ANALYSIS ON k IN THE AUXILIARY K-NN GRAPH

To verify that the auxiliary k-NN graph does not dominate the trajectory inference performance,
we evaluate HDTree with different k values when constructing the within-level connectivity graph
(k ∈ {5, 10, 20, 30}). Table C.1 reports the performance on the lineage inference task using the same
metrics as in the main paper.

As shown in Table C.1, the performance varies only slightly (<1%) when changing k from 5 to 30,
indicating that the k-NN graph acts mainly as a local smoothing component while the global hierarchy
is determined by the learned tree structure.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

(a) Binary latent codebook (indexing only)

[Root]
/ \

[Node0] [Node1]
| / \

[HSC (latent)] [Node2] [Node3]
| |

[Myeloid (latent)] [Erythroid (latent)]

(b) Output lineage (multi-branch)

HSC
/ | \

lymphoid myeloid erythroid

Mapping: paths ending at HSC(latent), Myeloid(latent),
Erythroid(latent) map to the corresponding
cell fates in the output tree.

Figure B.1: Binary latent indexing vs. multi-branch output (textual illustration). Top: the
hierarchical codebook is a binary tree where leaf nodes store latent codewords associated with
cell types (e.g., HSC, myeloid, erythroid). Bottom: when aggregating latent paths across samples,
these leaves naturally form a multi-branch lineage tree that matches biological differentiation (e.g.,
hematopoietic tri-furcation). This clarifies that the binary structure is used only for latent indexing
and does not constrain the number of output branches.

Table C.1: Sensitivity of HDTree to the choice of k. Results are averaged over three runs. The
performance remains stable across a wide range of k, showing that the tree structure provides the
main contribution.

k 5 10 20 30

ARI ↑ 0.842 0.845 0.847 0.843
NMI ↑ 0.792 0.794 0.795 0.791

D APPENDIX: ANY ROOTED TREE CAN BE REPRESENTED AS A BINARY
TREE

We show that any finite rooted tree (optionally ordered) can be encoded as a binary tree via the
left-child/right-sibling (LCRS) transformation, and that this encoding is bijective up to isomorphism.
Hence a binary hierarchical codebook can index arbitrary n-ary branching structures without loss of
information.

Setting. Let T be a finite rooted tree with node set V , root r, and (optional) left-to-right order
among the children of each node. The standard binary tree has at most two pointers per node: left
child and right child.

LCRS Encoding (Rooted Tree → Binary Tree). Construct a binary tree B on the same node set
V by:

1. For each node u ∈ V , if u has children c1, . . . , ck in left-to-right order (possibly k = 0), set
the left child of u in B to c1 (or NULL if k = 0).

2. For each sibling pair ci, ci+1 (1 ≤ i < k), set the right child of ci in B to ci+1; if u has no
(i+ 1)-th child, set the right child to NULL.

Intuitively: “left child = first child” and “right child = next sibling.”

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table E.2: Dataset-wise Hyperparameter Settings.
Dataset ν (t-dist) k (k-NN) P λRecon λSCL λHQL Hierarchy Depth LR

MNIST 0.2 5 1.0 1.0 0.5 1.0 10 0.005
FMNIST 0.5 5 1.0 1.0 0.5 1.0 10 0.005
20News 0.2 5 1.0 1.0 0.5 1.0 10 0.005
CIFAR-10 0.5 5 1.0 1.0 0.5 1.0 10 0.005
LIMB 0.5 5 1.0 1.0 0.5 1.0 10 0.005
LHCO 0.2 5 1.0 1.0 0.5 1.0 10 0.005
Weinreb 0.2 5 1.0 1.0 0.5 1.0 10 0.005

Decoding (Binary Tree → Rooted Tree). Given B produced by the above rules, recover T by:

1. For each node u, its (ordered) children in T are exactly the nodes reachable by starting at the
left child of u in B and repeatedly following right child links (c1 = left(u), ci+1 = right(ci)
until NULL).

2. The root is the unique node not appearing as a right child of any other node.

Theorem. For any finite rooted tree T (optionally ordered), the LCRS encoding produces a binary
tree B such that decoding B recovers a tree isomorphic to T . Moreover, the transformation preserves
ancestor/descendant relations and sibling order.

Proof. (Well-defined & injective) By construction, every node has at most one left and one right child
in B; thus B is a binary tree. The children of u in T become a right-linked list starting at left(u)
in B, preserving order. Different T yield different sets of right-linked lists, hence distinct B up to
isomorphism.

(Surjective onto image & decoding correctness) The decoding procedure inverts the encoding by
reading off, for each u, exactly the right-linked list rooted at left(u) as the children sequence of u.
Therefore decoding(encoding(T )) returns a tree isomorphic to T .

(Preserved relations) For any nodes u, v, u is an ancestor of v in T iff there exists a path in B that
alternates: zero or more “right” edges within a sibling list to reach the correct child, followed by a
“left” edge to descend to the first child at the next level, and so on. Hence ancestor/descendant and
sibling order are preserved. □

Complexity and Size. The transformation is linear time O(|V |) and space O(|V |). No dummy
nodes are required; the node set is unchanged. Degree-k branching in T becomes a length-k
right-sibling chain under the left child of the parent in B.

What Is Preserved (and Not). The transformation preserves node identities, parent–child and
ancestor relations, sibling order (if present), the number of nodes, and the lowest common ancestor
(LCA) up to isomorphism. It does not preserve raw edge lengths or exact out-degree counts; the depth
of a root-to-leaf path may shift by the number of right-sibling steps between successive left-child
descents, though this mapping remains deterministic and fully reversible.

Consequence for Modeling. Using a binary hierarchical codebook for latent indexing (left = first
child, right = next sibling) does not constrain the output branching factor: aggregating decoded paths
over samples recovers arbitrary n-ary (possibly unbalanced) hierarchies. Thus a binary latent tree
suffices to represent any rooted tree topology without loss of structural information.

E APPENDIX: DETAILS OF EXPERIMENTAL SETUP

Table E.2 summarizes the dataset-wise hyperparameter settings used in all experiments. All hyperpa-
rameters, including the weights in Eq. (8), are fixed across datasets except the t-distribution parameter
ν, which is tuned via a small grid search ν ∈ {0.05, 0.1, 0.2, 0.5}.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

F APPENDIX: DETAILS OF DATASET

F.1 DATASETS

In this section, we provide an overview of the datasets used in our evaluation. We consider a diverse
set of datasets, including image, text, and single-cell data, to assess the performance of hierarchical
clustering methods across different domains. The datasets are selected based on their popularity,
complexity, and relevance to real-world applications. We provide a brief description of each dataset,
along with key statistics and preprocessing steps.

MNIST: A widely-used dataset consisting of 70,000 grayscale images of handwritten digits, each of
size 28× 28. Each image is flattened into a 784-dimensional vector. This dataset is primarily used
for benchmarking tree structure modeling and hierarchical clustering methods. More details can be
found at 1.

Fashion-MNIST: A dataset of 70,000 grayscale images representing 10 categories of clothing items,
each with a resolution of 28× 28. The images are flattened into 784-dimensional vectors for analysis.
This dataset is used to evaluate the robustness of methods on visual data with more complex patterns
than MNIST. Dataset details are available at 2.

20News-Groups: A text dataset with 18,846 newsgroup posts across 20 categories. The features
are represented as TF-IDF vectors with dimensionality reduced to 2,000 features for computational
feasibility. This dataset is employed to test methods on high-dimensional text data and hierarchical
categorization tasks. More details can be found at 3.

CIFAR-10: A dataset of 60,000 color images spanning 10 classes, with each image sized at 32× 32.
The pixel intensity values are flattened into a 3,072-dimensional vector. This dataset is utilized for
evaluating hierarchical modeling methods on high-dimensional image data. Details are available at 4.

Limb: A single-cell RNA-seq dataset collected from limb bud development experiments. It contains
approximately 10,000 cells with 20,000 genes per cell after preprocessing. This dataset is used to
study developmental trajectories in biological processes. Dataset details are available in Zhang et al.
(2024).

LHCO: Single-cell transcriptomics data derived from lung and heart cell ontogeny studies. The
features represent gene expression profiles across 15,000 cells with dimensionality reduced to 10,000
genes. This dataset is used to explore differentiation patterns in complex organ systems. Dataset
details can be found in He et al. (2022a).

Weinreb: A lineage-specific dataset focused on Darwinian lineage inference from single-cell data. It
contains 8,000 cells with high-dimensional transcriptomic data preprocessed to 12,000 genes. This
dataset is employed for benchmarking methods for lineage tracing tasks. Dataset details are provided
in Weinreb et al. (2020a).

ECL: Single-cell data from embryonic cell lineages, designed for studying early developmental
processes. It comprises 12,000 cells with 15,000 genes per cell after quality filtering. This dataset is
used to test hierarchical modeling on datasets with complex lineage structures. Details are available
in Qiu et al. (2024a).

The key characteristics of the datasets are summarized in Table F.3.

F.2 DATASET ORGANIZATION

In our experiment, the all dataset after download from our offered source link should be organized as
follows: For Image data, the organization is:

1http://yann.lecun.com/exdb/mnist/
2https://github.com/zalandoresearch/fashion-mnist
3http://qwone.com/ jason/20Newsgroups/
4https://www.cs.toronto.edu/ kriz/cifar.html

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table F.3: Summary of Dataset Statistics.
Dataset Type Class Samples Features Source URL or Reference

MNIST Image 10 70,000 784 http://yann.lecun.com/exdb/mnist/
Fashion-MNIST Image 10 70,000 784 https://github.com/zalandoresearch/

fashion-mnist
20News-Groups Text 20 18,846 2,000 http://qwone.com/~jason/20Newsgroups/
CIFAR-10 Image 10 60,000 3,072 https://www.cs.toronto.edu/~kriz/cifar.

html
Limb Single-cell 10 66,633 500 https://limb-dev.cellgeni.sanger.ac.uk/
LHCO Single-cell 7 10,628 500 https://www.ebi.ac.uk/biostudies/

arrayexpress/studies/E-MTAB-10973
Weinreb Single-cell 11 130,887 500 https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSM4185642
ECL Single-cell 10 838,000 500 https://cellxgene.cziscience.com/

collections/45d5d2c3-bc28-4814-aed6-0bb6f0e11c82

Image Datasets Directory Structure

datasets/
|-- MNIST/
| |-- train-images-idx3-ubyte
| |-- train-labels-idx1-ubyte
| |-- t10k-images-idx3-ubyte
| \-- t10k-labels-idx1-ubyte
|-- FashionMNIST/
| |-- train-images-idx3-ubyte
| |-- train-labels-idx1-ubyte
| |-- t10k-images-idx3-ubyte
| \-- t10k-labels-idx1-ubyte
|-- 20news/
| |-- alt.atheism/
| | |-- 12345.txt
| | |-- 67890.txt
| | \-- ...
| |-- comp.graphics/
| | |-- 12346.txt
| | |-- 67891.txt
| | \-- ...
| \-- ...
\-- cifar-10-batches-py/

|-- data_batch_1
|-- data_batch_2
|-- data_batch_3
|-- data_batch_4
|-- data_batch_5
|-- test_batch
\-- batches.meta

For biology data, the organization is:

19

http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
http://qwone.com/~jason/20Newsgroups/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://limb-dev.cellgeni.sanger.ac.uk/
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-10973
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-10973
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM4185642
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM4185642
https://cellxgene.cziscience.com/collections/45d5d2c3-bc28-4814-aed6-0bb6f0e11c82
https://cellxgene.cziscience.com/collections/45d5d2c3-bc28-4814-aed6-0bb6f0e11c82


1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Biology Datasets Directory Structure

datasets_bio/
|- original/
| |- EpitheliaCell.h5ad
| |- LimbFilter.h5ad
| |- He_2022_NatureMethods_Day15.h5ad
| |- Weinreb_inVitro_clone_matrix.mtx
| |- Weinreb_inVitro_gene_names.txt
| |- Weinreb_inVitro_metadata.txt
| - Weinreb_inVitro_normed_counts.mtx
- processed/ (exists once the process is run)
|- EpitheliaCell_data_n.npy
|- EpitheliaCell_label.npy
|- LimbFilter_data_n.npy
|- LimbFilter_label.npy
|- LHCO.h5ad
- Weinreb.h5ad

F.3 PREPROCESSING

Before training, datasets need to be preprocessed. Preprocessing steps differ depending on the type
of dataset. Below are the detailed guidelines:

F.3.1 IMAGE DATA

For image datasets (e.g., MNIST, FMINST), preprocessing is straightforward and can leverage the
code from TreeVAE. The steps include: Initially, downloading and organizing the data ensures
that all necessary dataset files, including images and corresponding labels, are retrieved from their
sources and systematically placed into the appropriate directories within the project structure. This
step is essential for maintaining data integrity and facilitating efficient access during subsequent
processing stages. Next, converting raw data into NumPy arrays involves using provided scripts
to load the raw image and label data. These scripts parse the binary or structured data formats
and convert them into NumPy arrays, which are optimized for numerical computations in Python.
This conversion facilitates further data manipulation and model training processes by providing a
standardized format for handling large-scale datasets. Finally, normalization and formatting of the
pixel values are performed. This typically includes scaling the pixel intensities to a range of [0, 1] to
standardize the input features across different images. Additionally, any necessary adjustments are
made to ensure the data format aligns with the requirements of the HDTree model, such as ensuring
correct dimensionality and data type consistency. Proper normalization enhances model convergence
and stability during training.

F.3.2 BIOLOGICAL DATA

For biological datasets (LHCO, Limb, Weinreb, ECL), preprocessing is more complex and tailored to
each dataset. Below are the detailed preprocessing steps for each:

LHCO: Initially, data cleaning is performed to enhance the quality of the dataset. This includes the
removal of duplicate entries and invalid samples that could introduce bias or noise into subsequent
analyses. Additionally, strategies for handling missing values are implemented, which may involve
imputation techniques or filtering out rows with an excessive amount of missing data. Following data
cleaning, feature extraction is conducted to identify and extract relevant features from the raw data.
For LHCO datasets, these features often include particle kinematics or event-level characteristics that
are critical for analysis. Once extracted, feature scaling is applied to normalize or standardize the data,
ensuring consistency across different scales and facilitating more efficient model training. Finally,
the dataset is split into training, validation, and test sets according to predefined configurations.

This is the key code of our preprocessed methods:

1 adata = sc.read(f"{input_path}/He_2022_NatureMethods_Day15.h5ad")

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

2 sc.pp.highly_variable_genes(adata, n_top_genes=500)
3 adata = adata[:, adata.var[’highly_variable’]]
4 data = adata.X
5 data = adata.X.toarray()
6 data = np.array(data).astype(np.float32)
7 mean = data.mean(axis=0)
8 std = data.std(axis=0)
9 data = (data - mean) / std

Listing 1: Preprocess of Lhco

Limb: It begins with data loading, where the dataset is read from the provided files—typically
in formats such as CSV or HDF5—into a structured representation suitable for further processing.
Next, the data undergoes filtering and cleaning to enhance its quality and reliability. This includes
the removal of noise or artifacts that may have been introduced during data acquisition, as well
as deduplication to eliminate redundant entries. Missing values are addressed through appropriate
strategies, such as imputation or selective removal of incomplete records. Following this, feature
engineering is performed to transform raw biological signals into more interpretable and informative
features. For instance, limb motion patterns or other domain-specific characteristics may be extracted
to better capture the underlying structure of the data. These features are then normalized to ensure
uniformity in scale, which is essential for many machine learning algorithms. Finally, the dataset is
stratified and split into training, validation, and test subsets. This is the key code of our preprocessed
methods:

1 adata = sc.read(f"{input_path}/LimbFilter.h5ad")
2 data_all = adata.X.toarray().astype(np.float32)
3 label_celltype = adata.obs[’celltype’].to_list()
4 vars = np.var(data_all, axis=0) # HVG
5 mask_gene = np.argsort(vars)[-500:]
6 data_hvg = data_all[:, mask_gene]
7 label_count = {}
8 for i in list(set(label_celltype)):
9 label_count[i] = label_celltype.count(i)

10 label_count = sorted(label_count.items(), key=lambda x: x[1], reverse=
True)

11 label_count = label_count[:10]
12 mask_top10 = np.zeros(len(label_celltype)).astype(np.bool_)
13 for str_label in label_count:
14 mask_top10[str_label[0] == np.array(label_celltype)] = 1
15 data_n = np.array(data_hvg).astype(np.float32)[mask_top10]
16 mean = data_n.mean(axis=0)
17 std = data_n.std(axis=0)
18 data = (data_n - mean) / std

Listing 2: Preprocess of Limb

Weinreb: Initially, data transformation is performed to normalize the raw gene expression counts.
This typically includes log-transformation or conversion into normalized values such as Counts Per
Million (CPM), Transcripts Per Million (TPM), or Fragments Per Kilobase of transcript per Million
mapped reads (FPKM). Low-expression genes, as well as cells with insufficient sequencing depth or
missing data, are filtered out to improve signal-to-noise ratio and computational efficiency. Following
normalization, dimensionality reduction techniques—such. These methods reduce the feature space
while preserving the major sources of variation in the data, which can improve model performance
and reduce computational burden. When the dataset originates from multiple experimental batches
or sources, batch effect correction is employed to mitigate technical variability that could confound
biological signal detection. Various statistical or machine learning-based approaches may be used
depending on the nature of the data and experimental design. Finally, the dataset is stratified and
partitioned into training, validation, and test sets.

This is the key code of our preprocessed methods:

1 matrix_file = f"{input_path}Weinreb_inVitro_normed_counts.mtx"
2 genes_file = f"{input_path}Weinreb_inVitro_gene_names.txt"

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

3 metadata_file = f"{input_path}Weinreb_inVitro_metadata.txt"
4 mtx = mmread(matrix_file).tocsr()
5 genes = pd.read_csv(genes_file, header=None, names=[’genes’])
6 adata = sc.AnnData(mtx, var=genes)
7 metadata = pd.read_csv(metadata_file, sep=’\t’)
8 adata.obs = metadata.set_index(adata.obs.index)
9 adata.write(f’{output_path}Weinreb.h5ad’)

10 sc.pp.log1p(adata)
11 adata.obs[’celltype’]=adata.obs[’Cell type annotation’]
12 adata = adata[~adata.obs[’celltype’].isna()]
13 sc.pp.highly_variable_genes(adata, n_top_genes=500)
14 adata = adata[:, adata.var[’highly_variable’]]
15 data = adata.X.toarray()
16 data = np.array(data).astype(np.float32)
17 mean = data.mean(axis=0)
18 std = data.std(axis=0)
19 data = (data - mean) / std

Listing 3: Preprocess of Weinreb

ECL: Initially, raw data files are parsed and converted into structured tabular formats that facilitate
further computational processing. This is followed by a preprocessing stage that includes normaliza-
tion—commonly achieved through z-score transformation or Min-Max scaling—and the handling of
missing values, which may involve either imputation techniques or the removal of incomplete samples.
Subsequently, feature selection is performed with an emphasis on retaining biologically meaningful
attributes, often guided by domain-specific knowledge such as known molecular signatures. Finally,
the dataset is partitioned into training, validation, and test subsets, ensuring that class distributions
are preserved across splits to support unbiased model evaluation and generalization.

This is the key code of our preprocessed methods:

1 adata = sc.read(f"{input_path}/EpitheliaCell.h5ad")
2 adata.obs[’celltype’]=adata.obs[’cell_type’]
3 label_celltype = adata.obs[’celltype’].to_list()
4 adata_sub = adata.copy()
5 sc.pp.subsample(adata_sub, fraction=0.1)
6 data_all = adata_sub.X.toarray().astype(np.float32)
7 vars = np.var(data_all, axis=0)
8 mask_gene = np.argsort(vars)[-500:]
9 adata = adata[:, mask_gene]

10 data = adata.X.toarray().astype(np.float32)
11 label_count = {}
12 for i in list(set(label_celltype)):
13 label_count[i] = label_celltype.count(i)
14 label_count = sorted(label_count.items(), key=lambda x: x[1], reverse=

True)
15 label_count = label_count[:10]
16 mask_top10 = np.zeros(len(label_celltype)).astype(np.bool_)
17 for str_label in label_count:
18 mask_top10[str_label[0] == np.array(label_celltype)] = 1
19 data_n = np.array(data).astype(np.float32)[mask_top10]
20 label_train_str = np.array(list(np.squeeze(label_celltype)))[mask_top10]
21 # downsample the 10k data for every cell type
22 mask = np.zeros(len(label_train_str)).astype(np.bool_)
23 for i in range(10):
24 # random select 10k data for each cell type
25 random_index = np.random.choice(
26 np.where(label_train_str == label_count[i][0])[0],
27 10000, replace=False)
28 mask[random_index] = 1
29 data_n = data_n[mask]
30 mean = data_n.mean(axis=0)
31 std = data_n.std(axis=0)
32 data= (data_n - mean) / std

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Listing 4: Preprocess of ECL

G APPENDIX: DETAILS OF BASELINE METHODS

We used the TreeVAE, CellPLM, LangCell, Geneformer as the reference methods. The detial use
should follow:

1. TreeVAE You should clone the project "treevae" from https://github.com/
lauramanduchi/treevae.git, and install necessary package followed by "mini-
mal_requirements.txt".

2. CellPLM You should clone the project "CellPLM" from https://github.com/
OmicsML/CellPLM.git, and install necessary package followed by "requirements.txt".
The use of CellPLM is shown in the official tutorial in https://github.com/
OmicsML/CellPLM/blob/main/tutorials/cell_embedding.ipynb

3. LangCell You shold clone the project "LangCell" from gitclonehttps://github.
com/PharMolix/LangCell.git, and install necessary package followed by "require-
ments.txt". Then you should install the "geneformer_001". The use of LangCell is shown
in the official tutorial in https://github.com/PharMolix/LangCell/blob/
main/LangCell-annotation-zeroshot/zero-shot.ipynb

4. Geneformer After you install LangCell, the Geneformer package has been in-
stalled. The use of Geneformer is shown in the official tutorial in https:
//github.com/jkobject/geneformer/blob/main/examples/extract_
and_plot_cell_embeddings.ipynb

H APPENDIX: DETAILS OF TESTING PROTOCOL

To ensure a comprehensive and reproducible evaluation, we report clustering quality, hierarchical
structure quality, and generative/reconstruction quality. Unless noted, metrics are computed on the
test split and averaged over multiple runs (with fixed random seeds).

Clustering Accuracy (ACC). ACC is computed via an optimal one-to-one relabeling using the
Hungarian algorithm. Let yi be the ground-truth label and ŷi the predicted cluster.

ACC =
1

n
max
π∈S

n∑
i=1

1{yi = π(ŷi)},

where S is the set of all label permutations. We use the standard Hungarian implementation to obtain
π.

Normalized Mutual Information (NMI). Given predicted clustering C and ground-truth clustering
G,

NMI(C,G) =
2 I(C;G)

H(C) +H(G)
,

where I(·; ·) is mutual information and H(·) is entropy. We use the symmetric NMI with natural
logarithms. NMI ∈ [0, 1] (higher is better).

Leaf Purity (LP). Let the learned tree T have leaf nodes {L1, . . . , Lk}. For leaf Li, define
Ly
i = {x ∈ Li : label(x) = y}. We report the macro-average over non-empty leaves:

LP =
1

k

k∑
i=1

maxy |Ly
i |

|Li|
.

Empty leaves (no assigned samples) are excluded from the average.

23

https://github.com/lauramanduchi/treevae.git
https://github.com/lauramanduchi/treevae.git
https://github.com/OmicsML/CellPLM.git
https://github.com/OmicsML/CellPLM.git
https://github.com/OmicsML/CellPLM/blob/main/tutorials/cell_embedding.ipynb
https://github.com/OmicsML/CellPLM/blob/main/tutorials/cell_embedding.ipynb
git clone https://github.com/PharMolix/LangCell.git
git clone https://github.com/PharMolix/LangCell.git
https://github.com/PharMolix/LangCell/blob/main/LangCell-annotation-zeroshot/zero-shot.ipynb
https://github.com/PharMolix/LangCell/blob/main/LangCell-annotation-zeroshot/zero-shot.ipynb
https://github.com/jkobject/geneformer/blob/main/examples/extract_and_plot_cell_embeddings.ipynb
https://github.com/jkobject/geneformer/blob/main/examples/extract_and_plot_cell_embeddings.ipynb
https://github.com/jkobject/geneformer/blob/main/examples/extract_and_plot_cell_embeddings.ipynb


1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Dendrogram Purity (DP). Throughout the paper, DP denotes Dendrogram Purity, consistent
with hierarchical clustering literature and prior work. For each class c, consider all pairs (i, j) with
yi = yj = c. Let LCA(i, j) be the lowest common ancestor cluster of xi and xj in the dendrogram,
and let Sij be the set of samples contained in that cluster. The pairwise purity is

pur(i, j) =
|{p ∈ Sij : yp = c}|

|Sij |
.

DP is the average of pur(i, j) over all intra-class pairs across all classes. This metric increases when
intra-class pairs meet early in the tree (at purer LCA nodes).

Reconstruction Loss (RL). Given inputs X = {xi} and reconstructions X̂ = {x̂i}, we compute
MSE:

RL =
1

n

n∑
i=1

∥xi − x̂i∥22.

To align the “higher-is-better” convention across metrics, we report −RL in tables (i.e., larger is
better). Reconstructions for diffusion models are obtained by conditioning on the learned latent path
and running the standard deterministic denoising trajectory at evaluation time.

Log-Likelihood (LL) for Diffusion Models. Exact log-likelihood is intractable for DDPMs; we
report the negative ELBO (variational lower bound) following standard practice. Concretely, we
sum the per-timestep KL (or reweighted MSE) terms under the chosen {βt} schedule and include
the analytic prior and decoder terms as in Ho et al. (2020). We report the per-sample LL (higher is
better). Implementation matches our training loss with the appropriate constants added back.

Fréchet Inception Distance (FID). Images: we compute FID in the 2048-D Inception-V3 pool3
feature space, matching the number of generated and real samples and using the same preprocessing.
Single-cell (scRNA-seq): we compute FID in a biologically meaningful feature space: (i) select
HVGs (e.g., top-1,000 by variance) on the training set; (ii) normalize real and generated matrices
identically; (iii) optionally correct batch effects (e.g., Harmony/Scanorama) before feature extraction;
(iv) run PCA to retain > 90% variance (typically ∼50 PCs); (v) estimate Gaussians in the PC space
and compute FID via covariance square roots (with a small diagonal regularizer if needed). We fix
random seeds and average FID over multiple generations.

Ratio of Observed Time Points (ROP) for Lineage Consistency. For time-resolved single-cell
datasets, we quantify local temporal coherence by measuring, for each cell, the fraction of its k-nearest
neighbors (in the learned representation) whose time stamps are consistent with its developmental
order; we then average over all cells and report by time window as in the main paper. Ablations
show ROP strongly correlates (negatively) with tree-edit distance, supporting its biological relevance
(Appendix §??).

Implementation Notes (All Metrics). (i) ACC relabeling uses the Hungarian algorithm; ties are
broken deterministically. (ii) Empty leaves are excluded from LP; singleton leaves contribute 1.0.
(iii) All metrics are averaged across r runs (defaults given in code) with fixed seeds and identical
preprocessing. (iv) For diffusion metrics (RL/LL/FID), generation uses the same {βt} schedule and
evaluation pipeline across methods.

I APPENDIX: DETAILS OF IMPLEMENTATION

For all experiments, the data is split into training, validation, and testing sets with an 8:1:1 ratio,
ensuring unbiased evaluation. In testing, if the number of points in the dataset is greater than 10,000,
we randomly sample 10,000 points from testing dataset. Details on downsampling and its rationale
are provided in the Appendix. We implemented HDTree using PyTorch and trained the model on a
single NVIDIA A100 GPU. The model is trained using the AdamW optimizer with a learning rate of
1e-4 and a batch size of 128. The number of diffusion steps T is set to 1000, and the tree depth L
is set to 10. The loss weights λtree and λvq were set to 1.0 and 0.25, respectively. The encoder and
diffusion model are implemented using the multi-multilayer perceptron (MLP).

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table J.4: Time Efficiency Comparison Across Methods and Data Sizes: We conducted an
empirical evaluation by selecting varying numbers of highly expressed channels to assess the com-
putational time cost of our model under different data sizes. For this experiment, we set the output
dimensionality of the Embedding method to 512 dimensions and employed UMAP for dimensionality
reduction to facilitate visualization. The resulting features were then subjected to clustering analysis.
As the dataset size increased from 10,000 to 100,000 samples, we observed a dramatic increase
in the computational time required for both the dimensionality reduction and clustering processes.
Notably, the clustering process escalated from a response time measured in minutes (ranging from
30 to 41 seconds) to one that took several hours (ranging from 2201 to 20429 seconds). Such
prolonged processing times are impractical for model evaluation purposes. Consequently, we opted
to downsample the data to 10,000 samples for further processing.

Metod PCA TSNE UMAP CellPLM LangCell GeneFormer
Cin=100, C=512, N=10000

Embedding None None 820s 6s 13s 27s
DR None None 120s 129s 133s 150s
Cluster None None 41s 37s 30s 25s

Cin=1000, C=512, N=10000
Embedding 140s None 800s 7s 13s 25s
Dimentional Reduction 140s None 120s 130s 130s 105s
Cluster 45s None 40s 37s 34s 30s

Cin=1000, C=512, N=100000
Embedding 224s None 3153s 13s 11s 220s
Dimentional Reduction 413s None 825s 416s 430s 420s
Cluster 9637s None 7083s 5037s 2032s 3285s

Useing K-means to 5000 clusters
Embedding 221s None 1834s 14s 123s 110s
Dimentional Reduction 458s None 411s 350s 427s 410s
Cluster 2925s None 20429s 5500s 3432s 2200s

J APPENDIX: DETAILS OF DOWNSAMPLING IN TESTING

As shown in Table J.4, the computational time required for encoding, dimensionality reduction
(LowDim), and clustering significantly increases with larger data sizes. For instance, when the
input size increases to N=100,000, the encoding time for UMAP rises from 820s to 3153s, and the
clustering time for GeneFormer increases from 25s to 3285s. These trends are consistent across all
tested methods.

Such exponential growth in computational overhead makes the evaluation process infeasible for large-
scale datasets. To address this challenge, we uniformly downsample the data to 10,000 points for all
methods during metric computation. This ensures consistent and fair comparisons while significantly
improving testing efficiency. Additionally, the downsampling procedure preserves the overall data
distribution and class proportions, ensuring that the evaluation results remain representative of the
original dataset.

The detailed justification for selecting 10,000 points as the downsampling target is discussed in the
Appendix.

K APPENDIX: DETAILS OF EXPERIMENTAL ENVIRONMENT

The experiments were conducted on a high-performance computing system with robust hardware
and software configurations to ensure efficient handling of large datasets and complex computations.
The hardware setup included NVIDIA A100 GPUs with 40GB memory for accelerated computation,
Intel Xeon Platinum 8260 CPUs with 24 cores operating at 2.40GHz for efficient multi-threaded
processing, 512GB of RAM, and 10TB of NVMe SSD storage for fast input/output operations.

The software environment was carefully configured for compatibility and reproducibility. The
operating system used was Ubuntu 20.04 LTS (64-bit), and the primary deep learning framework was

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table L.5: Compare on different sample size: HDTree on different sample size of ECL. ECL-N k
means we use ECL dataset and downsample it into N*1000 data point for training, while keeping the
same test dataset.

ECL-10k ECL-20k ECL-30k ECL-50k ECL-100k ECL-200k ECL-300k
ACC 82.2±1.5 82.2±1.5 82.5±0.3 82.6±0.5 82.9±0.3 83.1±0.4 83.1±0.3
DP 67.0±1.2 67.6±1.5 68.3±0.9 69.1±0.7 68.5±0.9 68.9±0.8 67.0±0.8

PyTorch (version 2.4.1), supplemented by TorchVision and Torchaudio extensions. The experiments
were conducted using Python 3.11.6, with Conda (version 24.9.2) employed as the package manager
to handle dependencies and virtual environments.

Key Python packages essential for the experiments included NumPy (1.26.4), SciPy (1.14.1), and
pandas (2.2.3) for data preprocessing and analysis. Visualization tasks were performed using Mat-
plotlib (3.9.2), Seaborn (0.13.2), and Plotly (5.24.1). For deep learning tasks, PyTorch (2.4.1) served
as the primary frameworks. Dimensionality reduction and clustering were supported by UMAP-learn
(0.5.6) and scikit-learn (1.5.2). Single-cell data analysis relied on specialized packages like Scanpy
(1.10.3) and anndata (0.10.9).

A comprehensive list of installed Python packages is available upon request, capturing all dependen-
cies required for reproducing the experiments. This configuration ensures the reported results are
reproducible and highlights the environment’s compatibility with the experimental setup.

L APPENDIX: DETAILS OF EXPERIMENTS ON SINGLE CELL

L.1 DETAILED COMPARISONS ON MORE SINGLE CELL DATASETS.

We selected four single-cell datasets: LHCO, Limb, Weinreb, and ECL. For LHCO, Limb, and
Weinreb, we used the full data. For ECL, to reduce computational cost in the metrics computation,
we downsampled the testing dataset to 100,000 cells.

We evaluated both traditional (t-SNE, UMAP) and deep learning-based methods (Geneformer,
LangCell, CellPLM, TreeVAE). For traditional models, we first selected 500 highly variable genes
(HVGs), applied log1p transformation where needed, and normalized the data using Z-score. For deep
learning-based models, the preprocessing was handled automatically by their built-in pipelines. Thus,
for fairness, we directly read the h5ad files, selected HVGs, and fed the results into the respective
model pipelines to obtain cell embeddings.

After obtaining cell embeddings from all models, we performed unsupervised clustering using K-
Means. Cluster assignments were compared with true cell type labels to compute clustering and
tree-structure-based performance metrics. Due to the lack of established benchmarks in the single
cell domain, we incorporated data from high-impact published studies into the TreeVAE benchmark.
The results are shown in Table 2.

Analysis: (1) Similar to the general dataset, HDTree consistently demonstrates superior performance
across all evaluated metrics, including tree structure quality, clustering accuracy, and hierarchical
integrity. (2) We observed that the zero-shot capabilities of single-cell large language models are
often unsatisfactory and, in some cases, fail to surpass basic single-cell methods. This conclusion
has also been validated in recent studies (Lan et al., 2024; He et al., 2024). In comparison with
foundational single-cell models, traditional single-cell tree analysis methods, and TreeVAE, HDTree
shows relative advantages in performance and achieves better stability. (3) These results establish
HDTree as a robust and reliable approach for single-cell data analysis.

L.2 STABILITY OF MODEL PERFORMANCE ACROSS VARYING TRAINING DATA SIZES

To verify that downsampling did not significantly affect model performance, we conducted additional
experiments on subsampled versions of the ECL dataset at varying scales. The results are shown in
Table L.5

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table L.6: Comparison of tree performance, clustering performance on four single cell datasets.
Since most of the methods are not generative models, we did not compare generative performance.

Dataset Method Year Tree Performance Clustering Performance Average(↑)DP(↑) LP(↑) ACC(↑) NMI(↑)
L

im
b

(c
el

ll
in

ea
ge

,
66

,6
33

po
in

ts
,

ce
llt

yp
e:

10
)

tSNE+AggA 2014 34.9±1.4 55.4±1.1 48.9±0.7 47.5±1.0 46.7±1.0
UMAP+AggA 2018 30.9±2.0 50.1±1.0 49.1±1.0 41.4±1.4 42.9±1.4
GeneformerA 2023 25.6±5.4 35.9±0.1 34.1±0.1 34.9±0.1 32.6±1.4
CellPLMA 2024 25.6±0.1 39.9±0.1 34.1±0.2 32.9±0.2 33.1±0.2
LangCellA 2024 25.3±0.1 37.5±0.1 33.9±0.1 35.1±0.1 33.0±0.1
TreeVAEA 2024 34.7±1.7 55.6±1.0 49.8±0.1 50.0±0.0 47.5±0.7
HDTreeA Ours 38.9±1.3 57.9±1.0 52.8±1.0 49.0±0.1 49.7±0.9
HDTree Ours 41.0±0.4 57.2±1.4 55.0±1.4 46.6±0.4 50.0±0.9 (↑2.5)

L
H

C
O

(c
el

ll
in

ea
ge

,
10

,6
28

po
in

ts
,

ce
llt

yp
e:

7)

tSNE+AggA 2014 37.4±1.6 52.8±0.8 43.6±1.0 29.8±0.5 40.9±1.0
UMAP+AggA 2018 40.0±1.4 50.6±0.2 46.2±0.2 34.2±0.2 43.0±0.5
CellPLMA 2024 27.0±1.1 35.8±2.7 16.8±3.4 1.65±5.2 20.3±3.1
LangCellA 2024 26.5±1.2 35.2±0.8 35.2±0.6 0.02±0.9 24.2±0.9
TreeVAEA 2024 38.3±2.0 52.2±0.1 37.9±0.1 31.6±0.0 40.0±0.6
HDTreeA Ours 38.8±0.3 52.1±0.4 46.4±0.3 34.7±0.5 43.0±0.4
HDTree Ours 42.7±0.4 54.0±0.3 49.4±0.3 34.5±0.4 45.2±0.3 (↑2.2)

W
ei

nr
eb

(c
el

ll
in

ea
ge

,
13

0,
88

7
po

in
ts

,
ce

llt
yp

e:
11

)

tSNE+AggA 2014 57.9±1.5 63.3±1.1 35.3±1.0 38.5±0.6 48.8±1.1
UMAP+AggA 2018 51.8±0.1 62.1±0.8 47.2±4.9 46.1±1.2 51.8±1.8
LangCellA 2024 47.4±0.1 54.8±0.0 14.3±0.5 34.3±0.0 37.7±0.2
GeneformerA 2024 45.1±0.4 55.3±0.1 21.4±0.1 32.3±0.1 38.5±0.2
TreeVAEA 2024 60.4±2.6 61.4±0.5 41.0±0.1 35.2±0.0 49.5±0.8
HDTreeA Ours 63.3±2.6 78.2±1.1 50.6±1.0 45.2±1.2 59.3±1.5 (↑7.5)
HDTree Ours 61.0±0.4 67.0±0.3 62.6±0.3 42.6±0.3 58.3±0.4

E
C

L
(c

el
ll

in
ea

ge
,

83
8k

po
in

ts
,

ce
llt

yp
e:

10
) tSNE+AggA 2014 55.5±5.4 73.7±4.2 73.1±5.4 70.9±3.8 68.3±4.7

UMAP+AggA 2018 53.2±1.4 73.6±1.0 71.2±1.5 71.8±0.8 67.4±
TreeVAEA 2024 41.86±1.9 60.7±2.0 57.0±3.0 61.8±1.8 55.3±2.2
HDTreeA Ours 60.1±0.1 74.7±0.5 70.9±0.4 78.9±0.4 71.2±0.4
HDTree Ours 69.0±0.7 83.2±0.3 83.2±0.3 79.±0.3 78.6±0.4 (↑10.3)

The experimental results showed that the model performance did not change significantly with
variations in the size of the training data. This indicates that the model’s performance remained
relatively stable regardless of the dataset size, without notable improvements or declines. This
finding suggests that the current amount of data is sufficient for the model to learn robust feature
representations, or that data quantity is not the key factor influencing model performance in this task.

27


	Introduction
	Related Work
	Methods
	Experiments
	Conclusion
	Appendix: Details of Related Work
	Appendix: Additional Illustration of Latent Indexing and Output Tree
	Appendix: Sensitivity Analysis on k in the Auxiliary k-NN Graph
	Appendix: Any Rooted Tree Can Be Represented as a Binary Tree
	Appendix: Details of Experimental Setup
	Appendix: Details of Dataset
	Datasets
	Dataset Organization
	Preprocessing
	Image Data
	Biological Data


	Appendix: Details of Baseline Methods
	Appendix: Details of Testing Protocol
	Appendix: Details of Implementation
	Appendix: Details of Downsampling in Testing
	Appendix: Details of Experimental Environment
	Appendix: Details of Experiments on Single Cell
	Detailed Comparisons on More Single Cell Datasets.
	Stability of Model Performance Across Varying Training Data Sizes


