Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

LLARGE LANGUAGE MODEL CASCADES WITH MIX-
TURE OF THOUGHT REPRESENTATIONS FOR COST-
EFFICIENT REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) such as GPT-4 have exhibited remarkable per-
formance in a variety of tasks, but this strong performance often comes with the
high expense of using paid API services. In this paper, we are motivated to study
building an LLM cascade to save the cost of using LLMs, particularly for perform-
ing reasoning (e.g., mathematical, causal) tasks. Our cascade pipeline follows the
intuition that simpler questions can be addressed by a weaker but more afford-
able LLM, whereas only the challenging questions necessitate the stronger and
more expensive LLM. To realize this decision-making, we consider “answer con-
sistency” of the weaker LLM as a signal of the question difficulty and propose
several methods for the answer sampling and consistency checking, including one
leveraging a mixture of two thought representations. Through experiments on six
reasoning benchmark datasets, with GPT-3.5-turbo and GPT-4 being the weaker
and stronger LLMs, respectively, we demonstrate that our proposed LLM cas-
cades can achieve performance comparable to using solely the stronger LLM but
require only 40% of its cost.

1 INTRODUCTION

Large language models (LLMs) such as GPT-4 have exhibited remarkable performance in reasoning
tasks (Rae et al., 2021; |[Lewkowycz et al., [2022; [Zhong et al., 2023). Because of the intensive
computing resources required for training and hosting the LLMs for inference, many such LLMs
are only accessible via paid API services, thus leading to high monetary costs. In this work, we
are motivated to study strategies for reducing the costs of using LLMs while not sacrificing task
performance, particularly for LLMs’ applications to reasoning tasks.

Different types and versions of LLMs often come with different capabilities and costs. Typically,
LLMs with better performance (termed “stronger LLMs”) are more expensive than those with rel-
atively worse overall performance (termed “weaker LLMs”). It thus implies a promising solution
to cost-saving. That is, simple questions could be answered by the weaker but more affordable
LLM, whereas only the difficult questions need to be tackled by the more expensive, stronger LLM.
Drawing inspirations from here, |(Chen et al.| (2023a) explored the idea of “LLM cascades”, where a
question is always first answered by a weaker LLM, and then optionally routed to a stronger LLM
when the the weaker LLM’s answer is not accepted (Figure [I). To decide this routing, this work
suggested fine-tuning a smaller LLM to score each question along with its answer produced by the
weaker LLM. While this approach could work for some tasks, in practice, we observed that it did
not yield satisfying performance for intricate reasoning tasks. Intuitively, it is very challenging to
evaluate the difficulty and the answer correctness of a reasoning question solely based on its literal
expression, even with a large enough LLM, since the errors could be nuanced despite the reasoning
paths appearing promising (Madaan et al., 2023).

In this work, we proposed to devise this routing decision-maker from a different angle, i.e., the
“answer consistency” of the weaker LLM (Wang et al., |2023). This is inspired by the observation
that answers from the weaker LLM tend to be consistent in multiple sampling paths when the ques-
tion is easy, but inconsistent when the question is hard. To implement this idea, we proposed two
types of methods, a vote-based method that examines if the agreement of multiple answer samples

Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

on the majority-voted answer surpasses a pre-defined confidence threshold, and a verification-based
method that checks if the majority-voted answers sampled from different prompts are consistent. To
realize the two methods in reasoning tasks, we further investigated multiple strategies for answer
sampling, including sampling from a single set versus two sets of task demonstrations. In particu-
lar, we proposed to leverage a “mixture of thought (MoT) representations”, which samples answers
from both Chain-of-Thought (Wei et al.| 2022, CoT) and Program-of-Thought (Chen et al., 2022;
Gao et al.;[2023| PoT) prompts, emulating how experts can provide diverse perspectives to the same
question. This follows the same spirit of ensembling (Rokach, |2010)), but is applied to developing
LLM cascades for the first time. By pairing different sampling strategies with the two answer consis-
tency checking methods (i.e., vote and verification), we end up with ten approaches to implementing
the LLM cascade.

To evaluate the proposed approaches, we conducted experiments on six reasoning datasets, covering
mathematical, symbolic, and causal reasoning tasks. The experimental results demonstrated that
different approaches we proposed for LLM cascades can generally achieve performance comparable
to or even better than fully using the stronger LLM, while they require only half or less relative cost
to the latter. In particular, our approaches based on a mixture of thought representations achieved
comparable task performance with only 40% of the cost of GPT-4.

2 LLM CASCADES FOR COST-EFFICIENT REASONING

2.1 OVERVIEW OF LLM CASCADES

We leverage a cascade of LLMs to save the cost Final Anser

of in-context LLM reasoning, as illustrated in Query» @ -

Figure [I] Specifically, we assume two LLMs. wester Decision Maker | os A AT, Finat nor
The weaker LLM (denoted as LLM™) yields
relatively worse performance but is less costly,
whereas the stronger LLM (denoted as LLM?®)
enjoys better task performance but is more ex- Figure 1: Ilustration of LLM cascade chaining a
pensive. Given a question (), the LLM cascade weaker but cheaper LLM with a stronger but more
first employs the weaker LLM to obtain an ini- costly one.

tial answer A". This answer, along with other

metadata produced by the weaker LLM, will then be fed to a cascade decision maker to decide
whether the answer can be accepted as the final one. If the answer is rejected, the stronger LLM
should be invoked to provide a more reliable answer A°.

> Stronger

2.2 ANSWER CONSISTENCY-BASED CASCADE DECISION-MAKING

The core of our LLM cascade is the decision maker, which takes in the output from the weaker LLM,
and then decides whether to route to the stronger LLM or not. We propose two methodologies based
on the “answer consistency” of the weaker LLM.

Answer Consistency and Sources of Sampling Answer consistency has been found helpful for
improving the LLM performance in reasoning tasks (Wang et al., |2023). Drawing inspiration from
prior works, we make the following hypothesis: When the weaker LLM samples highly consistent
answers for a given question, it reveals a high “confidence” in solving this question. In this case,
there is thus no need to invoke the stronger LLM. To realize this intuition, we generalize from Wang
et al.| (2023) and consider three sources of sampling consistency:

* In-distribution sampling: As|Wang et al.| (2023)), we consider sampling multiple answers given
the same prompt input to the weaker LLM. In practice, this can be achieved by setting a non-zero
temperature for the weaker LLM.

» Sampling from different in-context demonstrations: We further consider sampling answers
from two different sets of task demonstrations under the same thought representation.

» Sampling from different thought representations: While existing literature typically investi-
gated either CoT or PoT independently, in this work, we propose to leverage the synergy of both
thought representations in a single task. We hypothesize that an LLM obtains truly high confi-
dence in its problem-solving, only when it is able to produce a consistent answer agnostic to how
the intermediate steps are represented. Therefore, we propose to sample the weaker LLM answers
from a “mixture of thought (MoT) representations”, which includes both CoT and PoT prompts.

Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

Qu ery Q Joelle has 5 orchids and 4 African

daisies on her balcony...How v
bt CoT-1D-Vote fmj)
many petals do the daisies have © ote

compared to the orchids?" w w

'
'
:
Question: Kobe and Pauwentto | = |oooo----omm-a-- \
a restaurant... PoT-1D-Vote &), PoT-2D-Vote
'
'
'
'
'

CoT-2D-Vote Majority| 3, gw
AW Av. WM pw AV Vote
11 R [Ao B oK,

. _ Consnstency
A_nswer. Pau qrdered 5x2=10 A 4 A 10 N qw A Measure
fried chickens in total. Therefore, l_ 1 K 118 1K B2 B 2K,
> Pauate 10x2 =20 pieces of fried | | =~ [=----eoeommaoaoos v syprAccept
chicken. Ans = 20 MoT-1D =/ 2D -Vote

Reject

Question: Joelle has 5 orchids and
4 African daisies on her balcony... 0] il - S) - D) Vote based
@nswer:) _)@_) I = —

112 . CO2Dale =T £y, .“u ok,
m Weaker ' -- ~-d
#Question: Kobe and Pau went to LLM g

o

a restaurant...

#Python code, returnans | | | _EEEL T BT T 0 T U0 TO_ B el 2
kobe_order=5

Ly pau_order=kobe_order*2

N
=

pau_eaten =2*pau_order T T
#Question: Joelle has 5 orchids and Majority Majority

; isi Vote L 2 Vote
4 African daisies on her balcony... Y N

¢Python code, return ans) Accept Reject Verify-based

Figure 2: An overview of our approaches (6 vote-based and 4 verification-based). We use W to
represent the answers from PoT and M to represent the answers from CoT. Demo; is the i-th set of
demonstrations.

Method 1: Vote-based decision-making The first method calculates the consistency of the
weaker LLM’s answer samples by voting. The most consistent answer can be selected as the one
that most samples agree with, and this answer will also be regarded as the final answer A" by the
weaker LLM. The decision maker measures the weaker LLM’s consistency via the agreement score.
The larger the score is, the more consistent the weaker LLM’s answer samples. In conjunction with
a pre-defined threshold value, the decision maker accepts the weaker LLM’s most consistent answer
A" when the agreement score is higher than the threshold and rejects it otherwise. As a result, the
total cost of answering a question can vary depending on the threshold.

Method 2: Verification-based decision-making In the case of producing samples from two dif-
ferent prompt settings (i.e., different demonstrations or thought representations), we propose the
second method, which compares the most consistent answers produced by each prompt. Our method
verifies the most consistent answers within each prompt. Only when the two answers are the same,
the weaker LLM’s answer will be accepted by the decision maker. In this case, the final answer of
the weaker LLM will be the same as the two most consistent answers.

We instantiate the proposed two methods in LLM reasoning tasks with different sampling sources,
resulting in 10 approaches, as summarized in Figure 2] They utilize a voting or verification mech-
anism for decision-making based on sampled answers from either CoT or PoT prompts, with the
same or different demonstrations. More details are provided in the Appendix [A]

3 EXPERIMENT

3.1 EXPERIMENTAL SETTING

We evaluate our LLM cascade approaches on six datasets, covering (1) mathematical reasoning,
including GSM8k (Cobbe et al.,[2021), ASDIV (Ling et al.,[2017), and TabMWP (Lu et al., [2023);
(2) symbolic reasoning from BIG-Bench Hard (bench authors| [2023), including DATE and Navi-
gate; and (3) causal reasoning, including CREPE (Zhang et al., [2023). In our pipeline, we leverage
the GPT-3.5-turbo (4k context) as the weaker LLM and the GPT-4 (8k context) with CoT self-
consistency (Wang et al., 2023} SC) as the stronger LLM. Throughout our experiments, we set the
number of task demonstrations as M/ = 8. We set the number of sampling paths as K = 20 for
GPT-3.5-turbo and K = 3 for GPT-4. The sampling temperature by default is 0.4 for both LLMs.
The metrics we use are the task accuracy and the relative cost compared with the cost of GPT-4 with
CoT SC (denoted as GPT—-4-CoT-SC). Our experimental details can be found in Appendix [C]and
reproducible prompts in Appendix

3.2 MAIN RESULTS

Figure [3]illustrates the performance of our proposed approaches. For Vote-based approaches, we
draw curves by changing the pre-defined threshold 7 varying from 0.4 to 1. A high value of threshold

Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

GSM8k ASDIV TabMWP

0.95 v ov ¢ 0094 * . 0.96 , v [
> > W >0.94 *
] 90.924 v v
xa- 0.90 § § 0.92
g § 0909 go0.90
% 085 O,] 0.88 < % 0.88
4] [4]
0.86 0-86
0801 o 0.84 2
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Relative Cost Relative Cost Relative Cost
DATE Navigate CREPE
0.90 o, o 0981 * . *
2085 > % 2085
8 ; £ 0.941 ‘ g
e e e
3080 3 0.921 3 <
S g0 S 0.80
< < <
% 0.75 ¥ 0.901 x
[# 0.881 v <> £0.75
0.70 N 086 &#° .
02 04 06 08 10 12 14 02 04 06 08 1.0 12 02 04 06 08 1.0 12 14
Relative Cost Relative Cost Relative Cost
Average
Legend
0.92 D v * < GPT-3.5-CoT-SC —0— CoT-2D-Vote
2000 v * & GPT-3.5-PoT-SC —0— PoT-2D-Vote
s @ GPT-4-CoT-SC —0— MoT-2D-Vote
3088 @ GPT-4-PoT-SC I CoT-2D-Verify
< 0.86 ¥V GPT-4-CoT-Greedy] PoT-2D-Verify
= V GPT-4-PoT-Greedy M MoT-1D-Verify
@ 0-84 —8— CoT-1D-Vote I MoT-2D-Verify
0821 < ~9— PoT-1D-Vote
<& —8— MoT-1D-Vote

0.2 0.4 0.6 0.8 1.0
Relative Cost

Figure 3: Main experiment results over six reasoning datasets. The bottom figure represents the
average performance. The exact numerical results are included in Appendix @

signifies a more rigorous criterion for trusting the answers from the weaker LLM, making more
examples transferred to the stronger LLM. Our observations are as follows:

Qur pipeline achieves comparable task performance with significantly reduced costs. On av-
erage, all of our cascade variants (Vote or Verify) demonstrate significant cost efficiency. In
particular, as shown in the average plot, the four MoT variants achieve comparable task performance
(~0.929 accuracy) to GPT-4-CoT-SC (0.931) while demanding only 40% of its cost.

Sampling from diverse prompt settings helps cascade decision-making. Our results show
that variants involving diverse sources of sampling, such as CoT/PoT-2D-Vote and
MoT-1D/2D-Vote, can more precisely distinguish between easy and hard reasoning questions,
compared with their counterparts sampling from single sources, i.e., CoT/PoT-1D-Vote. For
example, between CoT-2D-Vote and CoT-1D-Vote, the former outperforms the latter by 1.4%
absolute accuracy under the same relative cost of 0.4 on average.

Mixing thought representations is particularly effective. Furthermore, we find that mixing the
two thought representations (i.e., MoT-1D/2D-Vote) outperforms decision-making using either
of them (i.e., CoT-1D/2D-vote and PoT-1D/2D-vote). Intuitively, this is because different
thought representations can bring in more diverse “opinions” of the weaker LLM on the same input
question, resembling how a group of experts with diverse perspectives could contribute to more ef-
fective results in collaborative work. We provide a further investigation of this effect in Section[D.1]
We also note that when using MoT, no obvious difference is perceived between using one set (i.e.,
MoT-1D-Vote) or two sets (i.e., MoT-2D-Vote) of task demonstrations. This result reveals that
tuning the thought representations is more helpful for measuring an LLM’s (un)certainty on its an-
swer than tuning the task demonstrations.

For more analysis, please refer to the Appendix

4 CONCLUSION

We introduce a simple yet efficient and universally applicable economical pipeline to dynamically
decide the LLMs in reasoning tasks, so as to save the token costs. Our approach based on checking
the answer consistency of the weaker LLM is novel and effective. Our discoveries emphasize that
leveraging prompts with a mixture of thought representations in weaker LLM achieves the best
performance as it introduces diverse answers. Compared with fully employing the stronger LLM,
our pipeline requires approximately 40% of expenses to achieve a comparable result. Future works
are listed in Appendix [M]

Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

REFERENCES

BIG bench authors. Beyond the imitation game: Quantifying and extrapolating the capabilities of
language models. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL
https://openreview.net/forum?id=uyTL5Bvos .

Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models while
reducing cost and improving performance. arXiv preprint arXiv:2305.05176, 2023a.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, 2022.

Xinyun Chen, Maxwell Lin, Nathanael Schirli, and Denny Zhou. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128, 2023b.

Zhoujun Cheng, Jungo Kasai, and Tao Yu. Batch prompting: Efficient inference with large language
model apis. arXiv preprint arXiv:2301.08721, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan,
and Graham Neubig. PAL: Program-aided language models. In Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.),
Proceedings of the 40th International Conference on Machine Learning, volume 202 of Pro-
ceedings of Machine Learning Research, pp. 10764-10799. PMLR, 23-29 Jul 2023. URL
https://proceedings.mlr.press/v202/gao23f.htmll

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did Aristotle
Use a Laptop? A Question Answering Benchmark with Implicit Reasoning Strategies. Transac-
tions of the Association for Computational Linguistics (TACL), 2021.

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning
without training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 14953-14962, June 2023.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez,
Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, Scott Johnston, Sheer
El-Showk, Andy Jones, Nelson Elhage, Tristan Hume, Anna Chen, Yuntao Bai, Sam Bow-
man, Stanislav Fort, Deep Ganguli, Danny Hernandez, Josh Jacobson, Jackson Kernion, Shauna
Kravec, Liane Lovitt, Kamal Ndousse, Catherine Olsson, Sam Ringer, Dario Amodei, Tom
Brown, Jack Clark, Nicholas Joseph, Ben Mann, Sam McCandlish, Chris Olah, and Jared Ka-
plan. Language models (mostly) know what they know, 2022.

Aitor Lewkowycz, Anders Johan Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski,
Vinay Venkatesh Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo,
Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative rea-
soning problems with language models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=IFXTZERXdM7.

Jianzhe Lin, Maurice Diesendruck, Liang Du, and Robin Abraham. Batchprompt: Accomplish more
with less, 2023.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale gen-
eration: Learning to solve and explain algebraic word problems. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 158-167, Vancouver, Canada, July 2017. Association for Computational Linguistics. doi:
10.18653/v1/P17-1015. URL https://aclanthology.org/P17-1015.

https://openreview.net/forum?id=uyTL5Bvosj
https://proceedings.mlr.press/v202/gao23f.html
https://openreview.net/forum?id=IFXTZERXdM7
https://aclanthology.org/P17-1015

Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Ro{bert}a: A robustly optimized {bert} pre-
training approach, 2020. URL https://openreview.net/forum?id=SyxS0T4tvS|

Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu, Tanmay Rajpurohit, Peter
Clark, and Ashwin Kalyan. Dynamic prompt learning via policy gradient for semi-structured
mathematical reasoning. In International Conference on Learning Representations (ICLR), 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. arXiv preprint arXiv:2303.17651, 2023.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

Lior Rokach. Ensemble-based classifiers. Artificial intelligence review, 33:1-39, 2010.

Marija Sakota, Maxime Peyrard, and Robert West. Fly-swat or cannon? cost-effective language
model choice via meta-modeling. arXiv preprint arXiv:2308.06077, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=1PLINIMMrw.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Ad-
vances in Neural Information Processing Systems, 2022. URL https://openreview.net/
forum?id=_VjQlMeSB_J.

Li Zhang, Hainiu Xu, Yue Yang, Shuyan Zhou, Weiqiu You, Manni Arora, and Chris Callison-
burch. Causal reasoning of entities and events in procedural texts. In Findings of the Associa-
tion for Computational Linguistics: EACL 2023, pp. 415431, Dubrovnik, Croatia, May 2023.
Association for Computational Linguistics. URL https://aclanthology.org/2023.
findings—-eacl.31.

Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhenguo Li, and Yu Li. Progressive-hint prompting
improves reasoning in large language models. arXiv preprint arXiv:2304.09797, 2023.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied,
Weizhu Chen, and Nan Duan. Agieval: A human-centric benchmark for evaluating foundation
models. arXiv preprint arXiv:2304.06364, 2023.

https://openreview.net/forum?id=SyxS0T4tvS
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://aclanthology.org/2023.findings-eacl.31
https://aclanthology.org/2023.findings-eacl.31

Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

A DIFFERENT APPROACHES IN LLM CASCADE

Specifically, 6 approaches adopt vote-based decision-making: CoT-1D-Vote collects K answers
sampled from prompting the weaker LLM with the CoT representation, and then calculates the
answer consistency for decision-making. Similarly, PoT-1D-Vote bases its decision-making on
answers sampled from a PoT prompt. To diversify the sources of the answers, for each thought
representation, we further consider sampling from two sets of CoT or PoT demonstrations, resulting
in CoT-2D-Vote and PoT-2D-Vote, respectively. Finally, the vote-based approaches also in-
clude two variants leveraging a mixture of thought (MoT) representations. For MoT-1D-Vote, K3
answers are sampled from the CoT prompt and another K5 from the PoT prompt, and a union set of
their answers are then used to compute the consistency score s. For MoT-2D-Vote, the procedure
is similar, except that the CoT and the PoT prompts are annotated from two sets of demonstration
examples.

The verification-based approaches assume answer samples from two different prompts. We instan-
tiate 4 variants, including CoT-2D-Verify, where we prompt the weaker LLM with two sets of
CoT demonstrations, resulting in two answer sets for decision-making; PoT-2D-Verify, where
we similarly prompt the weaker LLM with two sets of PoT demonstrations; MoT-1D-Verify,
where we consider two sets of answers from two thought representation prompts (but on the same
set of task demonstration examples); and MoT-2D-Verify, which additionally employs different
sets of demonstrations when prompting the weaker LLM with different thought representations.

B CosT ANALYSIS OF LLM CASCADE APPROACHES

We introduced ten approaches to implement the LLM cascade decision maker. As we are inter-
ested in saving the cost of LLM usage, we first analyze the token usage of each approach. While
different thought representations of the same task example could induce different token usages, the
difference is very hard to quantify and also depends on the specific reasoning task. For example,
for GSM8k (Cobbe et al., 2021}, the PoT representation of the same example is typically shorter
than its CoT counterpart, while a reversed comparison is observed for DATE and Navigate (bench
authors}, 2023). In addition, different demonstration examples may also consist of different numbers
of tokens, which is hard to quantify as well. To provide a unified analysis, we assume that every
demonstration example for any task, regardless of the thought representation in use, consumes Ny,
tokens.

Based on our hypothesis, we conducted a cost analysis, with results summarized in Table [} To
give an example, consider comparing the token costs of CoT-1D-Vote and CoT-2D-Vote. For
CoT-1D-Vote, the cost of calling weaker LLM is (M C + K C¥) X Nyop; for CoT-2D-Vote, it
is 2MCP + K ,C¥ 4+ K2C¥) X Nyoi. Here, C* and C'¥ are the input and output per-token cost for
the weaker LLM, respectively, and M is the number of demonstrations in each prompt. In practice,
we set K1 = Ky = Kyp/2, where Kop is the total sample size of two sets of demonstration
examples, and the total cost for CoT-2D-Vote can then be rewritten to (2MC}” + KopC¥). To

keep the costs of CoT-1D-Vote and CoT-2D-Vote consistent, we set Kop = K1p — M X giu .
Similarly, we can get the total sample size of different representations K ps,7. The analysis guides
us in configuring each approach to be “cost-comparable” (i.e., leading to similar C'"*’s). Finally,
we note that we do not change the number of task demonstrations (i.e., M) because LLMs are very

sensitive to this configuration.

C MAIN EXPERIMENTAL DETAILS

Implementation Details We run each approach two times to reduce variance and report the aver-
age results. Since DATE and Navigate do not have a training set, before experiments we sampled 8
shots of examples randomly and annotated them to be the second set of task demonstrations (for 2D
approaches). The remaining examples are used consistently across all experiments as the test set.
We adopt “Python code, return ans” in PoT prompt to let the LLM generate the Python code (Chen

Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

Method Certainty Value (s) Definition Cost Estimation

CoT-1D-Vote Agreement of K CoT samples on the majority-voted answer A, s = (MC{" + K1pCy') X Niok
S Lap—ae/K

PoT-1D-Vote Agreement of K PoT samples on the majority-voted answer A", s = (MC}{" + KipCy') X Nyok
S Lap—aw /K

MoT-1D-Vote Agreement of Kazor/2 CoT and K pror /2 PoT samples on the majority-voted — 2x (A[C’Z”JrK“,ig"TC;”) X Niok
answer A, s = Y Karor Taw—aw/Knor

CoT-2D-Vote Agreement of K3p /2 CoT samples over 2 sets of task demonstrations on the 2 x (MC}’ + %Cﬁf’) X Ntok
majority-voted answer A", s = Zf‘;lp]lAq“':Aw/K2D

PoT-2D-Vote Agreement of K>p/2 PoT samples over 2 sets of task demonstrations on the 2 x (MC}’ + I"I%Cf,”) X Niok
majority-voted answer A*, s = ZLK:Q{-’]lA:u:Am/sz

MoT-2D-Vote Agreement of Kaor/2 CoT samples on one set of task demos and Karor/2 2% (]\ICZ“JrK"‘,%C;”) X Niok

PoT samples on another set of task demos on their majority-voted answer A™,
K
s =3 T Law=aw/Knor

CoT-2D-Verify Agreement of the two majority-voted answers A} and A%’ over 2 sets of CoT 2 x (MC}’ + KI#DC;;”) X Niok
task demonstrations with K3 p examples, s = 1 yw/— gp/

PoT-2D-Verify Agreement of the two majority-voted answers A} and A% over 2 sets of PoT 2 x (MC}’ + %C’;’) X Ntok
task demonstrations with K2p examples, s = ILA?HZA%,

MoT-2D-Verify Agreement of the two majority-voted answers A}’ and A%’ over one set of 2><(IVIC},”Jr%C;”)><N,,U;c
CoT and another set of PoT task demonstrations with Kaso7 /2 examples, s =
Lagr—ags

MoT-1D-Verify Agreement of the two majority-voted answers A}’ and A%’ for CoT and 2x (MCZ“JrK“’%C;”) X Ntok
PoT over the same set of task demonstrations with K01 /2 examples, s =
L pr— e

1 T2

Table 1: Investigated approaches and cost calculations. For simplicity, we assume M -shot demon-
stration prompting and that every demonstration example has NV;,, tokens. C;" is the input price per
token and C'¥’ is the output price per token. To keep consistent costs of using the weaker LLM, we

cw
set Kyror = Kop = Kip — M x -

et al., 2022). The interpreter we used for executing PoT is Python 3.10, with some packages, such
as DateTimeﬂ to facilitate the execution of the generated code.

Metrics Details We evaluate the methods based on task accuracy and cost efficiency, with a lower
cost and higher accuracy indicating better performance. For accuracy, when the answer is a string,
we use exact matching. When the answer is a number, we relax the evaluation criteria due to po-
tential variations in the exact computations carried out by the external interpreter. Following prior
work (Chen et al.,|2022)), we adopt the tolerance to 0.001. For cost efficiency, we calculate the actual
token number based on the tiktokerﬂ and the total cost E| for each method and get the relative cost by
comparing it with the total cost of GPT-4-CoT-SC.

D ADDITIONAL ANALYSIS

D.1 ANALYSIS ON MIXTURE OF THOUGHT REPRESENTATIONS

To understand the effect of MoT, we analyze three vote-based approaches. We first group questions
into “easy” and “hard” based on whether the weaker LLM can answer them correctly (i.e., whether
the majority-voted answer A" is correct or not). For all easy/hard questions, we then calculate the
average consistency score. A higher average consistency score indicates our decision-maker places
greater trust in the answer from the weaker LLM. Hence, an effective cascade decision-maker should
reveal relatively higher consistency scores for easy questions and lower ones for hard questions,
leading to a larger ”gap” between them.

We show the results in Figure] (Top). It is observed that all approaches lead to higher consistency
scores on the easy questions than those on the hard questions, which explains their overall effec-
tiveness for cascade decision-making. Because of involving two different thought representations,
MoT-1D-Vote tends to have a lower consistency score compared with the two CoT approaches.
However, it still ends up with a larger “gap” in the consistency scores for the easy and the hard

'https://pypi.org/project /DATETime/
Zhttps://platform.openai.com/tokenizer
*https://openai.com/pricing

https://pypi.org/project/DATETime/
https://platform.openai.com/tokenizer
https://openai.com/pricing

Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

GSM8k

o

Navigate

2
©

e
®

AVG consistency rate
o o
o J

L
o

MoT-1D-Vote ~ CoT-2D-Vote

CoT-1D-Vote

MoT-1D-Vote ~ CoT-2D-Vote ~ CoT-1D-Vote

Average

B Easy Question
B Hard Question

MoT-1D-Vote ~ CoT-2D-Vote ~ CoT-1D-Vote

Question: Blake and Kelly are having a contest to see who can run the most in 15 minutes. They decide to do it on a football field that is 100
yards long. Blake runs back and forth 15 times. Kelly runs back and forth once, and then decides that she doesn't want to run next to Blake, so
she starts to run to the 40-yard line and back. She does this 34 times. How much farther does the winner run than the loser?

Black runs 200 yards for each back and
forth because...He runs 3000 yards in total
because...Kelly runs 200 yards at first
because 100 x 2 = 200. She runs 80 yards
each time she does a back and forth to the
40-yard line because... She runs 2720 from
these back and forth. She runs 2920 in total
because...The winner ran 80 yards more
because 3000 - 2920=80.

Answer: [...(Ignored)] Kelly runs to the 40-
yard line and back 34 times, so she runs
134*80=2720 yards. Thus, Blake runs 3000-
2720=280 yards farther than Kelly.

Answer: [...(Ignored)] Kelly runs 34 x (40 x 2)
= 2720 yards. Blake runs 3000 - 2720 = 280
yards farther than Kelly.

Python code, return ans
[...(Ignored)]
distance_covered_by_kelly
(length_of football_ field *
num_of laps_ for kelly * 2) + (40 *
num_of_laps_for_kelly * 2)
ans abs (distance_covered by blake
- distance_covered_by kelly)

(Answer via Python execution: 6520.0)/

[Logic Generation Error

[Value Grounding Error

Figure 4: Average consistency scores (Top) and case studies (Bottom; simplified for presentation
purposes) of various approaches showing the advantage of MoT. Shades highlight similar mistakes
by CoT even based on different task demonstrations, and dissimilar mistakes by PoT.

questions, which is particularly prominent on the Navigate dataset where it gives the best perfor-
mance gain (Figure 3). In contrast, CoT-1D-Vote results in the smallest score gap, indicating
its weakness in distinguishing between the easy and the hard questions, particularly for Navigate.
This weakness is mitigated by diversifying the prompting with two sets of task demonstrations (i.e.,
CoT-2D-Vote), but it still underperforms mixing the thought representations.

Finally, in Figure] (Bottom) we show that when CoT cannot answer a hard question, prompting the
weaker LLM with another set of task demonstrations (but still under the CoT representation) often
yields the same mistaken answer, which thus results in a high consistency score. On the contrary,
PoT tends to make mistakes in a very different way and result in a different mistaken answer, which
explains the low consistency score of MoT-1D-Vote. More cases are shown in Appendix [F}

D.2 ROBUSTNESS EVALUATION

GSM8k variant T

Date variant T

CREPE variant T

0.96 0.90 0.89
—©O— CoT-2D-Vote T=0.4
% 00a] 3 % 0.88 —o— MoT-1D-Vote T=0.4
g o e e
H 3 0.85 1 3 —©— CoT-2D-Vote T=0.8
2 052 | » <] —6— MoT-1D-Vote T=0.8
x Y 3 |
] w]
© \© 0.80 \© 0.86 1
0.90 0.85 4
T T T T T T T T T T T T T
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 02 04 06 08 10
Relative Cost Relative Cost Relative Cost
GSM8k variant K Date variant K CREPE variant K
0.90
0.88 4 —©0— CoT-2D-Vote K=20
g .04 g g —e— MoT-1D-Vote K=20
e e e
3 3 0.85 3 0877 o CoT-2D-Vote K=40
S S S
< 0.92 4 < < 0.86 —~0— MoT-1D-Vote K=40
g 2 0.80 | g
i : = 0.85 1
0.90
T T T T T T T T T T T
0.2 0.4 0.6 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Relative Cost

Relative Cost

Relative Cost

Figure 5: Robustness analysis with varying temperature 7" and sample size K.

We further analyze if our results are sensitive to the change of the sampling temperature 7" or the
sample size K. We select one dataset for each type of reasoning task and conduct experiments on
GSMS8k, DATE, and CREPE with CoT-2D-Vote and MoT-1D-Vote. Our results are shown
in Figure 5] We first look into the effect when increasing the sampling temperature 7" from 0.4
(our default setting) to 0.8. For both approaches, increasing their temperature yields comparable or
slightly better performance. This is owing to the increased answer diversity when the temperature
gets higher. However, in any case, MoT-1D-Vote consistently outperforms CoT-2D-Vote. In-
creasing the sample size K from 20 to 40, on the other hand, leads to a rightward shift of the curves,

Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

implying that it requires higher cost to achieve the same task accuracy. This can be explained by
the higher cost of the larger sample size, whereas increasing the sample size does not contribute to
the detection of easy vs. hard questions. Like in the results of varying temperatures, MoT robustly
outperforms CoT in any case.

D.3 COMPARISON TO EXTERNAL TEXT-BASED VERIFIERS

GSM8k DATE CREPE
0.90
0.95 L4 ®| oss <> GPT-3.5-CoT-SC
z 2 085 z ¢ @ GPT-4-CoT-SC
4 g g 0.86 =@~ MoT-1D-Vote
g 0.90 g 080 g S ~©~ CoT-2D-Vote
< > < < < M MoT-1D-Verify
E) % 075 % 0.84 LLM-Q
= 070 ~ LLM-QA
0.85 ' 0.82 P> Finetuned-Q
T T T T T T T T T T : T T T T T <« Finetuned-QA
02 04 06 08 10 02 04 06 08 10 0.2 0.4 0.6 0.8 1.0
Relative Cost Relative Cost Relative Cost

Figure 6: Comparison with external verifiers showing the advantages of our approaches based on
answer consistency. We do not report finetuned verifiers for DATE as it does not have a training set.

As mentioned, prior work implemented the LLM cascade decision-maker by training an external
verifier, which scores a question and its answer (from the weaker LLM) based on their literal de-
scriptions (Chen et al., 2023a; Sakota et al., 2023). Related to the above work, (Chen et al. (2023b)
and Madaan et al.| (2023) also showed the promise of prompting LLMs to evaluate their own re-
sponses. To perform a general comparison with such external verifiers, we conducted experiments on
GSM8k, DATE, and CREPE with the following baselines: Finetuned-Q, which is a RoOBERTa-
base model (Liu et al.,[2020) fine-tuned to decide whether a question should be routed to the stronger
LLM based on its description; Finet uned—-QA, which works similarly as Finetuned-Q but ad-
ditionally takes the majority-voted answer from the weaker LLM (GPT-3.5-CoT~-SC) as input;
LLM-0Q, where we instead prompt GPT-3.5-turbo as the verifier to judge based on the question de-
scription; and LLM-QA, which similarly employs GPT-3.5-turbo to decide upon the question and
the weaker LLM’s majority-voted answer. We leave details of the baselines in Appendix

The results in Figure [f] show that incorporating the external verifiers cannot achieve comparable
accuracy with GPT-4-CoT-SC. For example, on the GSM8k dataset, the highest accuracy with the
external verifiers is 0.892, which is way lower than the accuracy (0.958) of GPT-4-CoT-SC and
the accuracy (0.951) of our approaches. They also show lower task accuracies than our approaches
under the same cost. It indicates that the external verifiers cannot yield satisfying results in complex
reasoning tasks, which can be due to the intrinsic challenge of deciding question difficulty and
answer correctness solely based on their textual descriptions.

E MAIN RESULT TABLES

In this section, we show the exact numerical results that are reported in Figure[3] The GSM8k result
is in Table 2l The ASDIV result is in Table[3l The TabMWP result is in Table @l The DATE result is
in Table[§] The Navigation result is in Table[§] The CREPE result is in Table[7] The average results
are in Table

10

Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

Voting Method

CoT-1D-Vote PoT-1D-Vote CoT-2D-Vote PoT-2D-Vote MoT-1D-Vote MoT-2d-Vote
Threshold Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost
0.40 0.875 0.184 | 0.832 | 0.141 0.897 0.211 0.854 | 0.170 0.901 0.187 0.904 | 0.195
0.50 0.896 | 0.233 0.850 | 0.179 | 0912 | 0.249 0.872 | 0.209 0917 | 0.235 0918 0.241
0.55 0.907 | 0.265 0.861 0.206 | 0.929 0.309 0.894 | 0.262 0.943 0.331 0.942 | 0.334
0.60 0917 | 0302 | 0876 | 0.240 | 0.937 0.354 0910 | 0.305 0.948 | 0.381 0.948 0.381
0.65 0.924 | 0336 | 0.886 | 0.265 0.945 0.408 0.920 | 0.342 0.951 0.425 0.952 | 0425
0.70 0.929 | 0372 | 0.895 0292 | 0.945 0.408 0.920 | 0.342 0.951 0.425 0.952 | 0425
0.80 0.941 0.438 | 0910 | 0.346 | 0.952 | 0.514 0.933 0.427 0.954 | 0.528 0.955 0.530
0.90 0.950 | 0.518 0.924 | 0410 | 0.955 0.587 0.938 0.485 0.955 0.598 0.956 | 0.600
1.00 0.954 | 0.660 | 0940 | 0.517 0.956 | 0.699 0.947 0.565 0.957 | 0.693 0.957 0.691
Verify Method

CoT-2D- Verify PoT-2D-Verify MoT-1D-Verify MoT-2D-Verify

Acc Cost Acc [Cost Acc [Cost Acc [Cost

0.926 [0.322 | 0.909 [0.311 0.947 [0.401 0.949 [0.403
Without Cascade

GPT-3-CoT-SC GPT-3-PoT-SC GPT-4 CoT-Greedy GPT-4 PoT-Greedy GPT-4 CoT-SC GPT-4 PoT-SC

Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost

0.842 [0.111 0.792 [0.078 0.945 [0.789 0.942 [0.603 0.958 [1.000 | 0.947 [0.745

Table 2: Exact numerical results on GSM8k.
Voting Method
CoT-1D-Vote PoT-1D-Vote CoT-2D-Vote PoT-2D-Vote MoT-1D-Vote MoT-2d-Vote

Threshold Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost
0.40 0.902 | 0.181 0.872 | 0.173 0911 0.200 0.877 0.167 0.913 0.189 | 0916 | 0.184
0.50 0.908 | 0.209 | 0.878 0.190 | 0917 0.225 0.883 0.188 0918 | 0.218 0.920 | 0.214
0.55 0910 | 0226 | 0.882 | 0.210 | 0.924 | 0.262 0.894 | 0.222 0.930 | 0.291 0.931 0.290
0.60 0914 | 0.243 0.887 0.224 | 0.926 | 0.288 0.904 | 0.251 0.932 | 0.324 | 0.933 0.324
0.65 0917 | 0.261 0.893 0.239 | 0.929 0.312 0912 | 0.273 0.933 0.346 | 0.933 0.348
0.70 0.920 | 0.281 0.897 0.254 | 0.929 0.312 0912 | 0.275 0.933 0.347 0.933 0.348
0.80 0.924 | 0.311 0.906 | 0.283 0.930 | 0.365 0.923 0.328 0.935 0.396 | 0.934 | 0.400
0.90 0.927 | 0348 | 0916 | 0.318 0.930 | 0.402 0.927 0.360 0.935 0.430 | 0.934 | 0433
1.00 0.930 | 0429 | 0.925 0.367 0.931 0.458 0.930 | 0.393 0.935 0.473 0934 | 0474
Verify Method

CoT-2D- Verify PoT-2D-Verify MoT-1D-Verify MOoT-2D-Verify

Acc Cost Acc Cost Acc Cost Acc Cost

0.924 [0.272 | 0.908 [0.297 0.933 [0.357 0.934 [0.361
Without Cascade

GPT-3-CoT-SC GPT-3-PoT-SC GPT-4 CoT-Greedy GPT-4 PoT-Greedy GPT-4 CoT-SC GPT-4 PoT-SC

Acc [Cost Acc | Cost Acc [Cost Acc [Cost Acc [Cost Acc [Cost

0.887 [0.115 0.854 [0.106 | 0.927 [0.742 0.930 [0.725 0.933 [1.000 | 0.943 [0.927

Table 3: Exact numerical results on ASDIV.

Voting Method

CoT-1D-Vote PoT-1D-Vote CoT-2D-Vote PoT-2D-Vote MoT-1D-Vote MoT-2d-Vote
Threshold Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost
0.40 0.868 | 0.141 0.883 0.150 | 0.900 | 0.152 0.892 | 0.151 0.902 | 0.155 0912 | 0.149
0.50 0.880 | 0.169 | 0.894 | 0.177 0.909 0.183 0.897 0.179 0919 | 0.193 0.924 | 0.185
0.55 0.890 | 0.191 0.899 | 0.195 0934 | 0273 0916 | 0.238 0.951 0.324 | 0.952 | 0.329
0.60 0.899 | 0.216 | 0.905 0214 | 0.941 0.318 0.925 0.288 0.952 | 0.370 | 0.952 | 0.381
0.65 0.910 | 0.245 0910 | 0.236 | 0.945 0.355 0.935 0.327 0.954 | 0409 | 0.952 | 0.421
0.70 0917 | 0.273 0.915 0.254 | 0.945 0.355 0.935 0.327 0.954 | 0.409 | 0.952 | 0421
0.80 0.927 | 0327 | 0924 | 0.292 | 0.950 | 0.448 0.946 | 0411 0.957 | 0.484 | 0.956 | 0.496
0.90 0.935 0.393 0.934 | 0.345 0.950 | 0.513 0.952 | 0.460 0.955 0.531 0.956 | 0.548
1.00 0.946 | 0.535 0.947 0.425 0.950 | 0.601 0.955 0.524 0.955 0.610 | 0.955 0.630
Verify Method

CoT-2D-Verify PoT-2D-Verify MoT-1D-Verify MoT-2D-Verify

Acc | Cost Acc [Cost Acc [Cost Acc [Cost

0.940 [0.333 0.920 [0.262 | 0.950 [0.342 0.951 [0.357
Without Cascade

GPT-3-CoT-SC GPT-3-PoT-SC GPT-4 CoT-Greedy GPT-4 PoT-Greedy GPT-4 CoT-SC GPT-4 PoT-SC

Acc Cost Acc [Cost Acc [Cost Acc | Cost Acc | Cost Acc [Cost

0.844 [0.092 | 0.849 [0.072 | 0.958 [0.819 0.933 [0.728 0.961 [1.000 | 0.941 [0.849

Table 4: Exact numerical results on TabMWP.

11

Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

Voting Method

CoT-1D-Vote PoT-1D-Vote CoT-2D-Vote PoT-2D-Vote MoT-1D-Vote MoT-2d-Vote
Threshold Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost
0.40 0.737 | 0.192 | 0.793 0.203 0.775 0.203 0.829 | 0.208 0.805 0.207 0.812 | 0.197
0.50 0.758 | 0.235 0.806 | 0.229 | 0.792 | 0.240 0.844 | 0.235 0.821 0.240 | 0.826 | 0.225
0.55 0.769 | 0.259 | 0.818 0.256 | 0.835 0.362 0.872 | 0.324 0.871 0.367 0.868 0.367
0.60 0.779 | 0.289 | 0.828 0.283 0.849 0.431 0.877 0.367 0.881 0.417 0.872 | 0.425
0.65 0.795 0.328 | 0.837 0.306 | 0.862 | 0.489 0.882 | 0.419 0.889 | 0.469 | 0.881 0.484
0.70 0.809 | 0.357 0.848 0.329 | 0.862 | 0.489 0.882 | 0.419 0.889 | 0.469 | 0.881 0.484
0.80 0.835 0.425 0.860 | 0.378 0.877 0.604 0.890 | 0.502 0.894 | 0.569 | 0.888 0.583
0.90 0.854 | 0.511 0.877 0.425 0.883 0.666 0.892 | 0.552 0.895 0.637 0.891 0.654
1.00 0.877 | 0.657 | 0.888 0.523 0.888 0.770 0.889 | 0.625 0.892 | 0.739 | 0.892 | 0.744
Verify Method

CoT-2D- Verify PoT-2D-Verify MoT-1D-Verify MoT-2D-Verify

Acc Cost Acc [Cost Acc [Cost Acc [Cost

0.850 [0.456 | 0.873 [0.392 | 0.875 [0.449 0.869 [0.459
Without Cascade

GPT-3-CoT-SC GPT-3-PoT-SC GPT-4 CoT-Greedy GPT-4 PoT-Greedy GPT-4 CoT-SC GPT-4 PoT-SC

Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost

0.677 [0.107 | 0.770 [0.162 | 0.876 [0.750 0.873 [1.031 0.886 [1.000 | 0.890 [1.402

Table 5: Exact numerical results on DATE.

Voting Method

CoT-1D-Vote PoT-1D-Vote CoT-2D-Vote PoT-2D-Vote MoT-1D-Vote MoT-2d-Vote
Threshold Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost
0.40 0.860 | 0.132 | 0.871 0.213 0.898 0.125 0.868 0.192 0.878 | 0.145 0.880 | 0.146
0.50 0.860 | 0.134 | 0.877 0.246 | 0.898 0.125 0.874 | 0.219 0.882 | 0.153 0.883 0.152
0.55 0.862 | 0.140 | 0.881 0270 | 0913 0.233 0.882 | 0.261 0.964 | 0.368 0.964 | 0.365
0.60 0.864 | 0.144 | 0.885 0.293 0.920 | 0.265 0.892 | 0.305 0.966 | 0.402 | 0.966 | 0.400
0.65 0.866 | 0.149 | 0.839 | 0.317 0.924 | 0.282 0.908 0.371 0.968 | 0.440 | 0.967 0.437
0.70 0.869 | 0.159 | 0.892 | 0.349 | 0.924 | 0.282 0.908 0.371 0.968 | 0.440 | 0.967 0.437
0.80 0.876 | 0.175 0.903 0432 | 0934 | 0.318 0.926 | 0.537 0.971 0.545 0.970 | 0.543
0.90 0.884 | 0.193 0.920 | 0.548 0.941 0.339 0.935 0.649 0.973 0.626 | 0.972 | 0.624
1.00 0.901 0.240 | 0.942 | 0.743 0.948 0.377 0.948 0.815 0.973 0.754 | 0.973 0.754
Verify Method

CoT-2D-Verity PoT-2D-Verify MoT-1D-Verify MoT-2D-Verify

Acc Cost Acc Cost Acc Cost Acc Cost

0.929 [0.293 0.879 [0.208 0.966 [0.400 0.966 [0.398
Without Cascade

GPT-3-CoT-SC GPT-3-PoT-SC GPT-4 CoT-Greedy GPT-4 PoT-Greedy GPT-4 CoT-SC GPT-4 PoT-SC

Acc [Cost Acc | Cost Acc [Cost Acc [Cost Acc [Cost Acc [Cost

0.856 [0.128 0.859 [0.154 | 0.977 [0.701 0.877 [0.966 0.975 [1.000 | 0.878 [1.302

Table 6: Exact numerical results on Navigate.

Voting Method

CoT-1D-Vote PoT-1D-Vote CoT-2D-Vote PoT-2D-Vote MoT-1D-Vote MoT-2d-Vote
Threshold Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost
0.40 0.838 | 0.188 | 0.838 0.461 0.850 | 0.180 0.846 | 0.369 0.866 | 0.255 0.874 | 0.257
0.50 0.843 0.208 0.842 | 0.485 0.857 0.197 0.855 0.422 0.871 0.295 0.878 0.301
0.55 0.847 | 0227 | 0.846 | 0.500 | 0.865 0.241 0.870 | 0.552 0.885 0.460 | 0.885 0.471
0.60 0.852 | 0.261 0.846 | 0.517 0.865 0.280 0.869 | 0.603 0.882 | 0.519 | 0.882 | 0.525
0.65 0.856 | 0.284 | 0.847 0.537 0.868 0.320 0.869 | 0.658 0.882 | 0.573 0.881 0.575
0.70 0.863 0.312 | 0.849 | 0.557 0.869 0.369 0.872 | 0.708 0.879 | 0.614 | 0.880 | 0.620
0.80 0.867 | 0.374 | 0.853 0.603 0.868 0.419 0.874 | 0.754 0.879 | 0.660 | 0.878 0.663
0.90 0.873 0.455 0.861 0.683 0.869 0.534 0.874 | 0.851 0.877 0.760 | 0.873 0.760
1.00 0.872 | 0.594 | 0.868 0.803 0.871 0.621 0.873 0.925 0.873 0.847 0.871 0.846
Verify Method

CoT-2D-Verify PoT-2D-Verify MoT-1D-Verify MoT-2D-Verify

Acc | Cost Acc [Cost Acc [Cost Acc [Cost

0.860 [0.302 | 0.874 [0.581 0.882 [0.534 0.883 [0.536
Without Cascade

GPT-3-CoT-SC GPT-3-PoT-SC GPT-4 CoT-Greedy GPT-4 PoT-Greedy GPT-4 CoT-SC GPT-4 PoT-SC

Acc [Cost Acc [Cost Acc [Cost Acc | Cost Acc | Cost Acc [Cost

0.820 [0.157 0.719 [0.226 | 0.871 [0.577 0.876 [0.871 0.871 [1.000 | 0.882 [1.522

Table 7: Exact numerical results on CREPE.

12

Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

Voting Method

CoT-1D-Vote PoT-1D-Vote CoT-2D-Vote PoT-2D-Vote MoT-1D-Vote MoT-2d-Vote
Threshold Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost Acc Cost
0.40 0.847 | 0.167 0.848 0202 | 0.872 | 0.178 0.861 0.195 0.878 | 0.183 0.883 0.183
0.50 0.857 | 0.195 0.858 0.231 0.881 0.203 0.871 0.227 0.888 | 0.216 | 0.891 0.216
0.55 0.864 | 0216 | 0.864 | 0.253 0.900 | 0.273 0.888 0.286 0.924 | 0.345 0.924 | 0.347
0.60 0.871 0.240 | 0.871 0.276 | 0.906 | 0.312 0.896 | 0.329 0.927 | 0.389 | 0.925 0.391
0.65 0.878 | 0.263 0.877 0.297 0912 | 0.348 0.904 | 0.371 0.929 | 0.428 0.928 0.431
0.70 0.884 | 0289 | 0.882 | 0.320 | 0912 | 0.354 0.905 0.377 0.929 | 0433 0.927 0.436
0.80 0.895 0.336 | 0.893 0.370 | 0918 0.428 0.915 0.465 0.932 | 0513 0.930 | 0.517
0.90 0.904 | 0.394 | 0.905 0436 | 0.921 0.488 0.920 | 0.530 0.932 | 0.576 | 0.930 | 0.581
1.00 0.913 0.506 | 0.918 0.543 0.924 | 0.567 0.924 | 0.611 0.931 0.663 0.930 | 0.667
Verify Method

CoT-2D-Verity PoT-2D-Verify MoT-1D-Verify MoT-2D-Verify

Acc Cost Acc Cost Acc Cost Acc Cost

0.905 [0.311 0.894 [0.316 | 0.925 [0.398 0.925 [0.402
Without Cascade

GPT-3-CoT-SC GPT-3-PoT-SC GPT-4 CoT-Greedy GPT-4 PoT-Greedy GPT-4 CoT-SC GPT-4 PoT-SC

Acc [Cost Acc | Cost Acc [Cost Acc [Cost Acc [Cost Acc [Cost

0.821 [0.116 | 0.807 [0.117 0.926 [0.743 0.905 [0.763 0.931 [1.000 | 0.913 [1.017

Table 8: Exact numerical results on average across all datasets.

13

Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

F CASE STUDY

In this section, we perform a case study to learn why MoT can achieve better performance. When
CoT makes a mistake, prompting the LLM with another set of CoT task demonstrations often leads
to the same mistake. In contrast, PoT more frequently either directly gives a correct answer or
makes a different mistake than CoT’s. Among those cases, 43% fall into the former category that
PoT can solve the question, while the remaining 57% fall into the latter that PoT can make a different
mistake. Here we use CoT1, CoT2, and PoT1 to represent the different prompts. CoT1 and CoT2
share the same representation but different demonstrations while CoT1 and PoT1 share the same
demonstration but different representations.

F.1 CASES POT CAN SOLVE

Here we show cases satisfying that PoT can solve the question. The first case shows that the PoT can
provide different reasoning paths to avoid the same mistake with CoT and the second case shows
that the PoT can avoid the computation errors.

F.1.1 CAseEl

Question: Juan and his brother Carlos are selling lemonade. For each gallon they make it costs 3
for lemons and 2 for sugar. They sell each glass for 0.50 and get 20 glasses per gallon. If they made
25 in profit, how much did they spend on lemons?

Gold Answer: Each gallon sells for a total of 10 because 20 x 0.5 = 10
Each gallon costs 5 to make because 3 +2 =5

They make 5 off each gallon because 10 — 5 =5

They made and sold 5 gallons because 25/5 = 5

They spent 15 on lemons because 5 X 3 = 15

CoT1: Answer: They make 10 on each gallon of lemonade because 20 x 0.5 = 10
They made 2.5 gallons of lemonade because 25/10 = 2.5

They spent 7.5 on lemons because 2.5 X 3 = 7.5

They spent 5 on sugar because 2.5 X 2 =5

They spent 12.5 in total because 7.5 + 5 = 12.5

ans = 7.5

CoT2: Answer: They make 10 per gallon because 20 x 0.5 = 10
They sold 2.5 gallons because 25/10 = 2.5

They spent 7.5 on sugar because 2.5 X 2 x 1.5 = 7.5

They spent 7.5 on lemons because 2.5 x 3 = 7.5

ans = 7.5

PoT1:

Python code, return ans

cost_per_gallon = 3 + 2

num_of_glasses_per_gallon = 20

profit_per_gallon = num_of_glasses_per_gallon * 0.5 -\
cost_per_gallon

total_profit = 25

total_gallons = total_profit / profit_per_gallon
cost_of_lemons = total_gallons x 3

ans = cost_of_lemons

#ans = 15.0(This line is not generated by LLM.)

F.1.2 CASE2

Question: Robert wants to buy a bookshelf and a sofa and has received two offers. Furniture
United’s offer includes a 1,350 advance payment and 6 monthly installments of 350 each. Cozy
Homes’ offer includes a 1, 100 advance payment and 9 monthly installments of 250 each. What is
the cost difference between the two offers?

14

Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

Gold Answer: Furniture United’s offer is 1,350 + (6 x 350) = 3,450 Cozy Homes’ offer is
1,100 + (9 x 250) = 3, 350. The difference is 3,450 — 3,350 = 100

CoT1: Answer: Furniture United’s total cost would be 1350 4 6 x 350 = 3150. Cozy Homes’ total
cost would be 110049 x 250 = 3350. The cost difference between the two offers is 3350 — 3150 =
200. ans =200

CoT2: Answer: The total cost of Furniture United’s offer is 1350 + (6 x 350) = 3, 150. The total
cost of Cozy Homes” offer is 1100+ (9 x 250) = 3, 350. The cost difference between the two offers
is 3350 — 3150 = 200. ans = 200.

PoT1:
furniture_united_advance = 1350
furniture_united_monthly_ installment = 350
cozy_homes_advance = 1100
cozy_homes_monthly_installment = 250
furniture_united_total_cost = furniture_united_advance + \

(6 * furniture_united_monthly_installment)
cozy_homes_total_cost = cozy_homes_advance + \

(9 * cozy_homes_monthly_installment)

ans = furniture_united_total_cost - cozy_homes_total_cost

ans = 100.0(This line is not generated by LLM.)

F.2 CASES POT CANNOT SOLVE

In this section, we show some cases that PoT cannot solve but will make a different mistake. In
case 1, the CoT forgot to calculate the first 40-yard line but the PoT calculated the first 40-yard but
with an incorrect grounding value. In case 2, the CoT forgot to remove the lowest score. The PoT
removed the lowest score but grounded an incorrect number of total tests. We can see that although
both the CoT and PoT make mistakes, the reasons why they make mistakes are different, making
the final results different.

F.2.1 CASE1

Question: Blake and Kelly are having a contest to see who can run the most in 15 minutes. They
decide to do it on a football field that is 100 yards long. Blake runs back and forth 15 times. Kelly
runs back and forth once, and then decides that she doesn’t want to run next to Blake, so she starts
to run to the 40-yard line and back. She does this 34 times. How much farther does the winner run
than the loser?

Gold Answer: Blake runs 200 yards for each back and forth because 100 x 2 = 200 He runs 3000
yards in total because 200 x 15 = 3000 Kelly runs 200 yards at first because 100 x 2 = 200 She runs
80 yards each time she does a back and forth to the 40-yard line because 40 x 2 = 80 She runs 2720
from these back and forth because 34 x 80 = 2720 She runs 2920 in total because 2720 + 200 = 2920
Blake won because 3000 > 2920 The winner ran 80 yards more than the loser because 3000 - 2920
=80

CoT1: Answer: Blake runs back and forth 15 times, so she runs 15%¥100%2=3000 yards. Kelly
runs to the 40-yard line and back 34 times, so she runs 34*80=2720 yards. Thus, Blake runs 3000-
2720=280 yards farther than Kelly. ans = 280

CoT2: Answer: Blake runs a total of 15 x 100 x 2 = 3000 yards. Kelly runs 34 x (40 x 2) = 2720
yards. Blake runs 3000 - 2720 = 280 yards farther than Kelly. ans = 280.

PoT1:

Python code, return ans

length_of_football_field = 100

num_of_laps_for_blake = 15

num_of_laps_for_kelly = 34

distance_covered_by_blake = length_of_football_ field * \
num_of_laps_for_blake * 2

distance_covered_by_kelly = (length_of_football_field =\

15

Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

num_of_laps_for_kelly % 2) + (40 » num_of_laps_for_kelly * 2)
ans = abs(distance_covered_by_blake - distance_covered_by_kelly)
ans = 6520.0(This line is not generated by LLM.)

F.2.2 CASE2

Question: Brinley is in Mr. Bert’s math class. Mr. Bert gives six tests each semester. He allows the
students to remove the lowest score from the average each semester. If Brinley has scores of 89, 71,
92, 100 and 86 on the first five tests, what score does she need on the sixth test to get an average of
93?

Gold Answer: First, identify the lowest score, which is 71, and remove it. Since Brinley wants a
score of 93, we know her total score needs to be 93 (average) * 5 (tests) = 465 points So far, Brinley
has earned 89 + 92 +100 + 86 = 367 points The final test must be 465 - 367 = 98 points.

CoT1: First, we need to find Brinley’s current average by adding up her five test scores and dividing
by 5: (89 + 71 +92 + 100 + 86) / 5 = 87.6 We know that Brinley wants her average to be 93, which
means she needs to have a total of 6 test scores (since one will be dropped). The total of these
6 scores needs to be 93 x 6 = 558 To find out what score Brinley needs on the sixth test, we can
subtract the total of her first five scores from the desired total: 558 - (89 + 71 + 92 + 100 + 86) =
120 So Brinley needs to get a score of 120 on her sixth test to have an average of 93 after dropping
her lowest score. ans = 120

CoT2: Answer: Brinley’s first five test scores add up to 438. To have an average of 93, Brinley
needs a total of 93 x 6 = 558 points for all six tests. To get 558 points after five tests, Brinley needs
to score 558 - 438 = 120 points on the sixth test. ans = 120

PoT1:

Python code, return ans

num_of_tests = 6

total_of_ first_five_tests_scores = 89 + 71 + 92 + 100 + 86
desired_average = 93

lowest_score = min (89, 71, 92, 100, 86)

sum_of best five_ scores = total_of first five_tests_scores -\
lowest_score

ans = (desired_average * num_of_tests) - sum_of_ best_five_scores
ans = 191.0(This line is not generated by LLM.)

G IMPLEMENTATION DETAILS OF EXTERNAL VERIFIERS

Throughout these experiments, our choice of the weaker LLM remains GPT-3.5-turbo. We only per-
form our experiment with CoT representation because the finetuned model we utilize is not suitable
for understanding Python code.

The input to the verifier can be either the question alone or a concatenation of both the question and
the answer produced by the weaker LLM. The question texts include the context, e.g., the goal and
context in CREPE. The answer texts contain both intermediate thoughts and the final answer (e.g.,
an integer in mathematical reasoning). We have multiple generation results from the weaker LLM.
To avoid excessive input length, we only employ the majority-voted answer and its intermediate
thoughts in the test time. Specifically, in the test time, we extract the majority-voted answer from two
CoT prompts with different demonstrations as this setting shows better performance in our method,
and then randomly select one collection of intermediate thoughts that result in this majority-voted
answer.

We still use task accuracy and relative cost as the metric. Note that only the question as input doesn’t
need the answers from the weaker LLM necessarily. Therefore, the total cost C for only the question
as input becomes:

C= Cd + (1 - IL7‘eject)(jw + Ilreject C. (D

To use an LLM as the verifier, we have designed two distinct prompts: one for “question diffi-
culty prediction”, which solely relies on the questions (LLM-0Q), and another for “answer evalua-

16

Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

tion”, which incorporates both questions and answers (LLM—-QA). The difficulty prediction (LLM-Q)
prompt entails the LLM’s determination of whether a question necessitates redirection to the stronger
LLM, based solely on the question’s complexity. If the LLM deems a question challenging for dif-
ficulty prediction, it triggers forwarding to the stronger LLM. The answer evaluation (LLM-QA)
prompt is to give the LLM both the question and the answer. We then let the LLM rethink the solv-
ing steps and generate feedback to evaluate whether the solution is correct. If not, the question will
be transferred to the stronger LLM. Both prompting methods are implemented with M = 8 shots of
demonstrations, and we keep the number of “easy” and “hard” questions or the number of “correct”
and “incorrect” answers balanced. We set the sampling path as K = 20 and temperature as 7' = 0.4
to sample the major answer and then use the self-consistency (SC) to decide the final “difficulty” or
“correctness of the answers”. The reproducible prompts are in the Appendix [N} Notably, the cost
for decision C? in Eq. ?? is no longer 0 with an external verifier. For the LLM as a verifier, we
use GPT-3.5-turbo as it’s much cheaper than GPT-4. We count the number of tokens used for the
approaches LLM-Q and LLM—-QA.

For finetuning a smaller LLM (RoBERTa-base of Liu et al.| (2020)) as the verifier, we similarly
tested two variants, when the input contains only the question (Finetuned—-0Q) or when it includes
both the question and the answers (Finetuned—-QA), in which case we use a separation token to
split them. The training data for fine-tuning the models come from the original training split of
each benchmark dataset. Since DATE does not have a training split, we only performed experiments
on GSM8k and CREPE. In each training instance, we have K = 20 generated responses and we
label all of them. We label the generated responses where GPT-3.5-CoT~-SC correctly predicts
the answer as positive. Notably, the number of total training cases is the number of sampling paths
K = 20 multiplied by the number of questions. To address the data imbalance issue (i.e., most of
the training cases are positive), we perform simple under-sampling over the GSM8k. For CREPE,
the resulting training set is relatively smaller, so we did not perform the under-sampling.

In the training process, we fine-tune RoBERTa-base with the learning rate 1 x 10~° and batch size
32. We randomly split 10% of the training data to be the development set. The performance of the
best accuracy over the development set is shown in Table 0] One notable approach, predicting “all
positive”, is to assign a positive label to every example in the development set. We could learn that
the external verifier could achieve better performance than “all positive” but not significant enough.

Dataset Method Dev
All positive 0.5

GSMS8k Based on Question 0.592
Based on Question and Answer 0.615
All positive 0.715

CREPE Based on Question 0.749

Based on Question and Answer 0.812

Table 9: Performance of finetuning RoBERTa as verifier over the dev set

Table [I0] shows the exact numerical results of those presented in Figure [6] We can learn that the
external verifier could boost the performance but not that significant. Comparing LLM-Q with
LLM-QA, an interesting observation is that the latter costs less than the former. This may seem
counter-intuitive at first glance because LLM-QA includes a much longer input (a concatenation of
question and answer) than LLM-Q (only question). However, we found out that for both approaches,
their final costs are mainly determined by the number of cases transferred to the stronger LLM. That
is, when including both the question and the answer as input, LLM-QA tends to trust the weaker
LLM more frequently, leading to fewer cases being routed to the stronger LLM and hence the lower
cost. However, both approaches do not yield accuracy as high as our MoT-based approaches.

H LLAMA2-13B AS THE WEAKER LLM

Although GPT-3.5-turbo is considered to be weaker compared to GPT-4, it is still more powerful
and expensive than most of the open-source LLMs. In this section, we tested the performance of

17

Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

Dataset Method Accuracy Cost
GPT-3.5-turbo CoT-SC 0.842 0.111
LLM-Q 0.884 0.253
LLM-QA 0.862 0.135
GSM8k Finetuned-Q 0.892 0.340
Finetuned-QA 0.882 0.262
CoT-2D-Vote with threshold=0.7 0.945 0.408
MoT-1D-Vote with threshold=0.5 0.917 0.235
MoT-1D-Vote with threshold=0.7 0.951 0.425
MoT-1D-Verify 0.947 0.401
GPT-4 CoT-SC 0.958 1.000
GPT-3.5-turbo CoT-SC 0.676 0.107
LLM-Q 0.750 0.367
DATE LLM-QA 0.707 0.142
CoT-2D-Vote with threshold=0.65 0.862 0.489
MoT-1D-Vote with threshold=0.65 0.889 0.469
MoT-1D-Verify 0.875 0.449
GPT-4 CoT-SC 0.886 1.000
GPT-3.5-turbo CoT-SC 0.820 0.157
LLM-Q 0.864 0.406
LLM-QA 0.846 0.169
CREPE Finetuned-Q 0.854 0.323
Finetuned-QA 0.847 0.322
CoT-2D-Vote with threshold=0.55 0.865 0.241
MoT-1D-Vote with threshold=0.55 0.885 0.460
MoT-1D-Verify 0.882 0.534
GPT-4 CoT-SC 0.871 1.000

Table 10: Exact numerical results of various external verifiers. Specifically, because DATE does not
have a training set, we do not report finetuned models’ performance on it.

GSM8k_LLAMA2-13B DATE_LLAMA2-13B CREPE_LLAMA2-13B
1.0
> 0.90 0.9 ®| ¢ LlaMa2-13B-CoT-SC
<> LLaMa2-13B-PoT-SC
09 085 y @ GPT-4-CoT-SC
0.8 @ GPT-4-PoT-SC
0.8 —o— CoT-1D-Vote
0.80 f
> Fy I —o— PoT-1D-Vote
g, [y [—o— MoT-1D-Vote
4 Jors o 3 —0— CoT-2D-Vote
& & & —o— PoT-2D-Vote
X 06 X0 x —o— MoT-2D-Vote
E |’.m“ E 06 I CoT-2D-Verify
05 L4 Nl PoT-2D-Verify
0.65 M MoT-1D-Verify
05 I MoT-2D-Verify
0410, 0.60 Q O
<& < <&
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Relative Cost Relative Cost Relative Cost

Figure 7: The performance of using LLAMA2-13B as weaker LLM.

LLAMAZ2-13B (Touvron et al.|[2023), an open-source and easy-to-deploy LLM, as the weaker LLM
and GPT-4 as the stronger LLM.

The result is shown in the Figure[7] Through experimentation, we observe that choosing LLAMA2-
13B as a weaker LLM and applying our strategy on GSM8k and CREPE did not yield ideal results,
but it performed well on the DATE dataset. On GSM8k and CREPE datasets, accuracy and cost
change approximately linearly and we cannot achieve a comparable result with a lower cost, but on
the DATE dataset, we obtain a curve similar to the curve using GPT-3.5-turbo as a weaker LLM. To
analyze the cause, we have selected cases in MoT-1D-Vote whose agreement score s is greater
than the 0.6, 0.7, and 0.8. We report their task accuracy and proportion among all cases. A lower
accuracy in those cases is indicative of reduced overall task performance, while a diminished pro-
portion implies an increased cost.

The results are displayed in Table Comparing LLAMAZ2-13B to GPT-3.5-turbo, we observe
that LLAMAZ2-13B exhibits a significantly lower proportion. This suggests that LLAMA2-13B is
less likely to provide consistent answers across multiple samplings. For example, only 16.3% of the
cases have an agreement score greater than the 0.6 threshold on GSM8k in LLAMA2-13B but 77.3%
in GPT-3.5-turbo. However, the difference in accuracy is slight in GSM8k and DATE. This outcome
aligns with our hypothesis that the LLM can consistently answer easy questions but is hesitant to the
hard questions. The lower proportions show that the number of easy questions for LLAMA2-13B is

18

Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

far fewer than that in GPT-3.5-turbo as LLAMA?2-13B cannot solve these complex reasoning tasks
well. Therefore, LLAMAZ2-13B is not a suitable choice as a weaker LLLM for particular tasks.

Threshold Dataset Weak LLM Accuracy Proportion
GSMEK |1 Anin2138 0993 0163
oo o (i 0sT o
CREFE |1 Avin2135 0639 024
GSMEK | ANi2-135 0946 0093
o7 [own CPLitwie 0% 0ie
CREPE || Ayin213 0658 0095
o LS00 0en
s [owe G o0 0
cur GOm0

Table 11: The performance of cases where the percentage of the major answer under
MoT-1D-Vote be greater than the threshold with LLAMA?2-13B as the weaker LLM.

I CAN THE STRONGER LLM BENEFIT FROM THE WEAKER LLM’S HINTS?

Dataset Method Accuracy
W/o Hints 0.891

GSMBK \V/ Hints ~ 0.867

W/o Hints 0.892
DATE v/ Hints 0.910
CREPE W/o Hints 0.774

W/ Hints 0.727

Table 12: The GPT-4-CoT-SC accuracy over the instances that A} # AY’ in the
MoT-1D-Verify approach

We conducted an extended experiment to investigate whether progressive hints can further enhance
our pipeline. Previous works have proven that progressive hints in multiple iterations can enhance
the LLM’s reasoning performance (Zheng et al.,[2023). For example, if the answer is 13 in the first
iteration and 14 in the second one, the hint for the third iteration can be “Hint: The answers may
be close to 13, 14”. In MoT—-1D/2D-Verify, before the decision maker transfers a question to
a stronger LLM, we already have two different answers generated by the weaker LLM. However,
the answers from the weaker LLM will be discarded when using the stronger LLM. To incorporate
the answers in the leveraging process of the stronger LLM, we follow the prior work (Zheng et al.,
2023)) to provide these two inconsistent answers as hints. For example, if the main answer is 5 with
CoT and 12 with PoT, the hint for the stronger LLM can be “Hint: The answers may be close to 5,
12”. We perform the exploration of whether using these answers as hints can improve the stronger
LLM’s performance. Prompts can be found in Appendix [N} In the prompts, we acknowledge that
the hints may not always be correct. In our exploration, we choose the data that will be sent to the
stronger LLM by the MoT-1D-Verify approach. We then assess the GPT-4-CoT-SC accuracy
of these cases, both with and without the use of hints, respectively. We conduct our experiments on
GSMS8k, DATE, and CREPE datasets.

The results in Table[I2]reveal that progressive hints may not necessarily further enhance our pipeline.
Adding progressive hints only yields a slight improvement on the DATE dataset, with diminishing
returns on GSM8k and GREPE. The reason is that GPT-4 tends to be misled by the incorrect answer,
especially when both answers from GPT-3.5-turbo are incorrect.

19

Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

accuracy | cost
w/o Batch Prompting | 0.947 0.401
w Batch Prompting 0.924 0.325

Table 13: The GSMS8k results with and without batch prompting

J CAN BATCHPROMPT FURTHER REDUCE THE COST?

Batch Prompting is a method to reduce costs by inputting multiple questions into LLM at
once (Cheng et al. 2023} |Lin et al) 2023). In this section, we explore whether our method can
be used in conjunction with batch prompting.

Our experiments are based on the basic batch prompting setup (Cheng et all 2023). We use
MoT-1D-Verify for decision making. Specifically, we grouped a batch of 4 test questions into
each API call of the weaker LLM, in addition to the original 8-shot demonstrations. The prompt is
shown in Figure[39] Like in our previous experiments, we obtain multiple samples from running the
weaker LLM, and the verification-based method can then be leveraged independently for each test
question. For example, if two of four test instances are rejected by the decision maker, we only feed
the rejected two to the stronger LLM. We perform the experiment on the GSM8k dataset.

We show the result in Table[I3] The results show that adding batch prompting can indeed reduce
costs more. However, using batch prompting slightly affects the accuracy of both the weaker LLM
and the stronger LLM. The result indicates that our method is orthogonal to the batch prompting
approach.

K CALIBRATION ANALYSIS

In this section, we performed a calibration analysis comparing our approaches with baselines. For
our voting-based method, we take n/ K as the confidence score. For LLM as an external verifier, we
followed the prior works’ prompting method (Kadavath et al., [2022) to let the LLM make the deci-
sion according to the textual contents Following their setting, we consider two temperature setups,
ie.,T = 1and T = 2, and donate the variants as LLM-QA T=1 and LLM-QA T=2, respectively.
The prompts are shown in Table We also note that, in the original method of |Kadavath et al.
(2022), the authors used the token probability of an LLM in predicting the answer to be “True”
as its confidence score. Since we cannot obtain the token probability of GPT-3.5-turbo, the confi-
dence score is obtained by sampling the True/False prediction K times and reporting the frequency
of “True” (n/K). This will induce significantly more costs than our approach, but we adopted the
strategy here for this calibration analysis. We perform the calibration analysis in the GSM8k dataset.

The calibration results on GSM8Kk are illustrated in Figure Left). Our major observations are: (1)
All decision-making methods yield a monotone calibration curve, implying that when they have
higher confidence in a certain answer, the answer is generally more likely to be true. For our three
vote-based approaches, this upward trend also supports our initial hypothesis that a question is easy
if the weaker LLM exhibits consistency in its responses across multiple sampling paths; (2) LLM—QA
T=2 with a larger temperature can lead to the least calibrated decision maker; (3) However, there is
no a significant difference among other approaches in terms of their calibration degree (though all
our variants showed to be better than LLM—-QA).

We wanted to note that achieving perfect calibration with n/K as the confidence score is not nec-
essary for our task. To give an extreme example, let us consider the case that whenever an answer
has n/K > 0.5, the answer from the weaker LLM is correct (accuracy 1.0). In this case, we would
have a very poor calibration curve, but our pipeline would actually perform very well, because any
majority-voted answer it accepts in this case is perfectly true. Another factor to note is the “size”
of each bin in the calibration plot (e.g., the number of instances that have confidence scores ranging
between 0.6 and 0.7). While this factor will also dramatically impact the LLM cascade performance
in practice, it cannot be shown in the calibration plot.

*In our experiments in Section the LLM-QA model is additionally prompted to explain its decision
making, but we ignored this explanation following|Kadavath et al.|(2022) for the purpose of calibration analysis.

20

Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

1.0 / —— CoT-1D-Vote
0.98 4 —— CoT-2D-Vote
/ /// —— MoT-1D-Vote
0.8 LLM-QA T=1
096 LLM-QA T=2
0.94 4
206 b
« c
5 5
3 g 0.92
< 04 <
s —— perfect 0.90 4
—— CoT-1D-Vote: ECE = 0.035
0.2 —— CoT-2D-Vote: ECE = 0.043 0.88 4
7 —— MoT-1D-Vote: ECE = 0.060
4
. LLM-QA T=1: ECE = 0.078
00d +7 LLM-QA T=2: ECE = 0.179 0861 =
T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8
Confidence Score Confidence Score

Figure 8: The left figure is for the calibration analysis of different approaches. The number of each
method is the expected calibration error (ECE). The right figure plots the accuracy of the subset of
answers satisfying n/K greater than the confidence score.

To give a more direct comparison among different decision-making approaches, we plot Fig-
ure [§[Right), where for each approach we report the accuracy of a subset of answers satisfying
n/K greater than the confidence score, following the exact way how the approach will be applied
in the LLM cascade pipeline. As such, curves on this plot have taken into account the “bin sizes”
and can reflect their actual effectiveness. A similar analysis was also performed by Kadavath et al.
(2022). We first observed that as the confidence score grows, there is a consistent upward trend in
the subset accuracy for all approaches, which echoes the monotone curves in the calibration analy-
sis. The higher position of MoT compared with other variants and baselines also explains its superior
performance in the main experimental results.

L CAN OUR METHOD GENERALIZE TO FACTUALITY-BASED TASKS?

In prior studies, the efficacy of our approach in mathematical, symbolic, and causal reasoning has
been evidenced. This section explores its potential to be generalized to factual reasoning tasks.
Our investigation utilized StrategyQA (Geva et al., [2021), a factoid question answering dataset that
requires implicit reasoning over facts. We employed an open-domain question-answering format,
presenting only questions without context to the LLM. Our few-shot prompts are shown in Figure27]
and Figure 28]

<{ GPT-3.5-CoT-5C
0.804 < GPT-3.5-PoT-SC
@ GPT-4-CoT-SC
~@®— MoT-1D-Vote

°
S
o

°
<
3
<&

Accuracy

o
o
o

0.60 1

0.2 0.4 0.6 0.8 1.0
Relative Cost

Figure 9: Performance of MoT-1D-Vote and baselines on the dev set of strategyQA.

The result is shown in Figure[9] It shows that our method is still effective on factual reasoning tasks.
That is again owing to the fact that using different prompt representations could trigger different
reasoning paths, which often results in more trustworthy answers when the two representations
agree with each other.

21

Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

Question Golden]

A curling iron is a tool used to make the hair curly using
heat. The sport of curling requires curling brooms, stones
(rocks), and curling shoes. A curling iron is not necessary
in curling.

Is a curling iron
necessary in curling?

PoT

CoT . . S "
necessary_equipment_for_curling = ["curling stone",

"curling broom"]
equipment_used_in_curling_with_curling_iron = ["curling
iron"]

ans = ("curling iron" in necessary_equipment_for_curling)

Yes, a curling iron is necessary for
curling as it is the tool used to create
curls in the hair.

Figure 10: An example showing that MoT helps in factual reasoning tasks such as strategyQA.

An example is shown in Figure[T0] For the question “Is a curling iron necessary in curling?”, the
golden answer is “No, curling is an ice sport and doesn’t need a curling iron”. However, most of
the CoT answers are “yes” with hallucinations about the concept “curling”. In contrast, most of
the PoT answers are “No”. The PoT processes typically list the necessary equipment for curling,
such as “curling stone” and “broom”, and then check if “curling iron” is on the list. By checking
the consistency between CoT and PoT, MoT-1D-Vote is thus able to identify the incorrect or
untrustworthy answer. It is worth noting that, judging from the results of Figure[9} PoT is not better
than CoT, but the combination of CoT and PoT generates diverse thoughts and answers, instead of
leaning towards one kind of thinking, thus reducing errors in factual reasoning. Therefore, we can
still leverage consistency checking across MoT prompts in decision-making to check if the answer
from the weaker LLM is trustworthy in factual-based reasoning tasks.

M LIMITATIONS AND FUTURE WORKS

Our approach is still subject to some limitations. Firstly, its applicability is confined to tasks where
questions have clear answers, such as mathematical reasoning. Secondly, the utilization of our
pipeline might lead to increased latency in cases demanding a stronger LLM. Thirdly, our method is
based on the assumption that the intermediate steps could be expressed via different representations.
In addition, if weaker LLM has overconfidence in some incorrect beliefs, our method will fail in
these cases.

Considering these limitations, we identify some potential avenues for future research. In tackling
the initial challenge, we could integrate other metrics, such as semantic similarity, to evaluate the
consistency of the general textual generation tasks. To address the latency issue, it is essential to
establish a framework for making decisions early for some obviously easy or hard questions. For
the third one, we believe that how to represent the intermediate steps in a specific task relies on hu-
man designation. Recent research has shown some predefined programming interfaces effectively
manage complex tasks, even those that appear unrelated to traditional code generation tasks, such
as image understanding (Gupta & Kembhavil 2023)). If a task’s intermediate steps cannot be ex-
pressed directly via code, we can also introduce diverse answers by leveraging some programming
interfaces/tools.

Additionally, due to CoT and PoT being suitable for different tasks, the answer’s correctness with
different representations varies across tasks, e.g., the CoT answers are more reliable in GSM8k but
the PoT answers are more reliable in DATE. The incorporation of learning algorithms to perform
weighted voting for specific tasks yields a promising improvement.

N FULL PROMPTS

We show the prompts used for this paper according to Table[I4 We show one example prompt in
each case.

22

Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

Prompt Type Dataset Prompt Table
GSMS8k prompt |15
ASDIV prompt [T7]
TabMWP prompt 1O}
CoT Date prompt 21]
Navigate prompt 23}
CREPE prompt 23]
StrategyQA prompt 27
GSM8k prompt (16
ASDIV prompt T8}
TabMWP prompt 20}
PoT Date prompt 22}
Navigate prompt 24
CREPE prompt 26}
StrategyQA prompt 2§
GSM8k w/ Question prompt [29
GSMS8k w/ Question and Answer prompt %
. DATE w/ Question rompt
LLM as External Verifier DATE w/ Question and Answer gromgt 33|
CREPE w/ Question prompt 34
CREPE w/ Question and Answer prompt 351
GSMS8k following prompting (Kadavath et al,[2022) prompt[3]]
GSMS8k B prompt[36
Learning from hints Date prompt [371
CREPE prompt [38}
batch prompting GSM8k prompt 39
Table 14: The index of each prompt.
GSMS8k CoT

Complete the text, start with ’Answer’ and the last line starts with
— ’ans = .

Question: Manny had 3 birthday cookie pies to share with his 24
— classmates and his teacher, Mr. Keith. If each of the cookie pies
— were cut into 10 slices and Manny, his classmates, and Mr. Keith
— all had 1 piece, how many slices are left?

Answer: There is a total of 3 x 10 = <<3%10=30>>30 cookie slices. There
— are 24 + 1 + 1 = <<24+1+1=26>>26 people who ate the cookie pieces.
— There is 30 - 26 = <<30-26=4>>4 cookie slices left. ans = 4

Table 15: GSM8k CoT task demonstrations

23

Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

GSMS8k PoT

Question: Manny had 3 birthday cookie pies to share with his 24
— classmates and his teacher, Mr. Keith. If each of the cookie pies
— were cut into 10 slices and Manny, his classmates, and Mr. Keith
— all had 1 piece, how many slices are left?

Python code, return ans

num_cookie_pies = 3

num_slices_per_cookie_pie = 10

total_people =24 + 1 + 1

total_slices_needed = total_people = 1

total_slices = num-_cookie_pies * num_slices_per_cookie_pie
ans = total_slices — total_slices_needed

Table 16: GSM8k PoT task demonstrations

ASDIV CoT

Please answer the math question and return a number as the answer.

Question: Isabella’s hair is 18 inches long. By the end of the year her
— hair is 24 inches long. How much hair did she grow?

Answer: Isabella ’s hair is 18 inches long and 24 inches long.

So the length she grow in one year is 24 — 18 = 6
ans = 6

Table 17: ASDIV CoT task demonstrations

ASDIV PoT

Question: Isabella’s hair is 18 inches long. By the end of the year

<~ her hair is 24 inches long. How much hair did she grow?
Python code, return ans

Isabella_hair_before = 18
Isabella_hair_after_year = 24

hair_growth = Isabella_hair_after_year — Isabella_hair_before
ans = hair_growth

Table 18: ASDIV PoT task demonstrations

24

Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

TabMWP CoT

Read the following table regarding ”Coins” and then answer a question:
Name | Number of coins

Braden | 76
Camilla | 94
Rick | 86
Mary | 84
Hector | 80
Devin | 83
Emily | 82
Avery | 87

Question: Some friends discussed the sizes of their coin collections.

<~ What is the mean of the numbers?
Explain: Let’s think step by step.
The numbers of coins of each one are in [76, 94, 86, 84, 80, 83, 82, 87].
So the mean of the numbers is (76+94+86+84+80+83+82+87)/8 = 648/8 = 81
Answer: 81

Table 19: TabMWP CoT task demonstrations

TabMWP PoT

Read the following table regarding ”Coins” and then write Python code to
< answer a question:
Name | Number of coins

Braden | 76
Camilla | 94
Rick | 86
Mary | 84
Hector | 80
Devin | 83
Emily | 82
Avery | 87

Question: Some friends discussed the sizes of their coin collections.
— What is the mean of the numbers?
Python Code, return ans
number_of_coins_for_different_person = [76, 94, 86, 84, 80, 83, 82, 87]
ans = sum(number_of_coins_for_different_person) /
— len(number_of_coins_for_different_person)

Table 20: TabMWP PoT task demonstrations

DATE CoT

Q: Today is Christmas Eve of 1937. What is the date tomorrow in
— MM/DD/YYYY?
Explain: Today is the Christmas Eve of 1937, so today is 12/24/1937.
Today is 12/24/1937, the date tomorrow is 12/25/1937.
A: 12/25/1937

Table 21: DATE CoT task demonstrations

25

Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

DATE PoT

Write Python Code to solve the following questions.
from datetime import date, timedelta
from dateutil.relativedelta import relativedelta

Q: Today is Christmas Eve of 1937. What is the date tomorrow in
— MM/DD/YYYY?

today is Christmas Eve of 1937, then today is 12/24/1937

today = date(1937, 12, 24)

tomorrow

date_tomorrow = today + relativedelta (days=1)

The answer formatted with 9m/%d/%Y is

ans = date_tomorrow . strftime (’%m/%d/%Y’)

Table 22: DATE PoT task demonstrations

Navigate CoT

Following these instructions , if we return to the starting point, return
— ’yes’; else return ’'no’.

Instruction: Take 1 step. Take 2 steps. Take 3 steps. Turn around. Take
— 6 steps. Turn left.

Explain: start_position = [0, O], assume the start face is to x—positive

1. Take 1 step. The current position is [1, O]

2. Take 2 steps. The current position is [3, O]

3. Take 3 steps. The current position is [6, O]

4. Turn around. The face is to x—negative in the following steps.

5. Take 6 steps. The current position is [0, O]

6. Turn left. The face is y-negative in the following steps.

After all the steps, the position is [0, O], the same as the starting
— point.

Answer: yes

Table 23: Navigate CoT task demonstrations

26

Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

Navigate PoT

Following these instructions , if we return to the starting point, return

s s s

— ’yes’; else return ’'no

def left_rotate (face_direct):
face_direct = tuple(face_direct)
mapping_-dict = {(1, 0): (0, 1), (0, 1): (-1, 0), (=1, 0): (0, -1),
— (0, =1): (1, 0)}
return list(mapping_-dict[face_direct])

def right_rotate (face_direct):
face_direct = tuple(face_direct)
mapping_-dict = {(1, 0): (0, -1), (0, I): (1, 0), (-1, 0): (0, 1),
— (0, =-1): (-1, 0)}
return list(mapping-dict[face_direct])

def around_rotate(face_direct):
face_direct = tuple(face_direct)
mapping_-dict = {(1, 0): (-1, 0), (0, 1): (0, -1), (-1, 0): (1, 0),
— (0, -1): (0,)}
return list(mapping-dict[face_direct])

def move_steps(current_position , face_direct, step, step-direct=""):
new_list = []
if step-direct == ’left ":
face_direct = left_rotate (face_direct)
elif step-direct == ’right’
face_direct = right_rotate (face_direct)
elif step-direct == ’backward :
face_direct = around_rotate (face_direct)

for i in range(len(current_position)):
new_list.append(current_position[i] + face_direct[i] * step)
return new_list

Instruction: Take 1 step. Take 2 steps. Take 3 steps. Turn around.
— Take 6 steps. Turn left.

Python code, return ans

start_position = [0, O]

current_position = start_position

assume the start face is to x—positive

face_direct = [1, 0]

Take 1 step.

current_position = move_steps(current_position , face_direct, 1)
Take 2 steps.

current_position = move_steps(current_position , face_direct, 2)
Take 3 steps.

current_position = move_steps(current_position , face_direct, 3)
Turn around.

face_direct = around_rotate (face_direct)

Take 6 steps.

current_position = move_steps(current_position , face_direct, 6)
Turn left. Now the face is to y—positive

face_direct = left_rotate (face_direct)

ans = ’yes’ if current_position == start_position else ’'no’

Table 24: Navigate PoT task demonstrations

27

Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

CREPE CoT

Answer the question. The final answers are “more likely”, “equally
— likely” and "less likely”.

Goal: Wash sneakers

Current_Context: Brush off dirt from the surface of the sneakers. Remove
— shoelaces. Rinse the shoelaces in soapy water and air dry. Apply
— mild detergent to the sneakers and rub gently.

Question: What’s the likelihood that The sneakers are damp?

Explain:

For step 1, after brushing off dirt, the sneakers are damp is “equally
— likely” because there is no change for the dampness of the shoes.

For step 2, after removing shoelaces, the sneakers are damp is “equally
— likely” because there is no change for the dampness of the shoes.

For step 3, after rinsing the shoelaces in soapy water and air dry, the
— sneakers are damp is “equally likely” because we removed the
— shoelace from the sneaker so we don’t change the dampness of
— sneaker.

For step 4, after applying mild detergent to the sneakers and rubbing
— gently , the sneakers are damp is “more likely” because we put mild
— detergent to the sneakers.

Therefore , in the final step, the event is “more likely”.

Answer: more likely

Table 25: CREPE CoT task demonstrations

28

Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

CREPE PoT

Answer the question. The answers are “more likely”, “equally likely”
— and “less likely”.
Goal: Wash sneakers
Current_Context: Brush off dirt from the surface of the sneakers.
— Remove shoelaces. Rinse the shoelaces in soapy water and air dry.
— Apply mild detergent to the sneakers and rub gently.
Question: What’s the likelihood that The sneakers are damp?
Python code
class Wash_Sneakers () :
Init from Current_Context
Brush off dirt from the surface of the sneakers
Remove shoelaces
Rinse the shoelaces in soapy water and air dry
Apply mild detergent to the sneakers and rub gently.
def __init__(self):
self .event0 = None # event0 is the likelihood that The sneakers
— are damp.
def brush_off_dirt(self):
After brushing off dirt, eventO0 becomes “equally likely”
self.event0 = “equally likely”
def remove_shoelaces(self):
After removing shoelaces, event0 becomes “equally likely”
self .event0 = “equally likely”
def rinse_shoelace_in_water(self):
After rinsing in water, event0 becomes “equally likely”
self.event0 = “equally likely”
def apply_detergent_sneaker(self):
After rinsing in water, event0 becomes “more likely”
self .eventO0 = "more likely”
def call_all_funcs_in_order (self):
self .brush_off_dirt ()
self .remove_shoelaces ()
self . rinse_shoelace_in_water ()
self.apply-detergent_sneaker ()
¢ = Wash_Sneakers ()
c.call_all_funcs_in_order ()
ans = c.event0

Table 26: CREPE PoT task demonstrations

StrategyQA CoT

Question: Are more people today related to Genghis Khan than Julius
— Caesar?

Explain: Julius Caesar had three children.

Genghis Khan had sixteen children.

The children number of Genghis Khan is larger than Julius Caesar.

Answer: Yes

Table 27: StrategyQA CoT task demonstrations

29

Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

StrategyQA PoT

Question: Are more people today related to Genghis Khan than Julius
— Caesar?
Python code, return ans

children_num_of_Julius_Caesar = 3
children.num_of_Genghis_Khan = 6
ans = (children.num_of_Genghis_Khan > children_-num_of_Julius_Caesar)

Table 28: StrategyQA PoT task demonstrations

GSMBS8k Question Difficulty Prediction

Predict the hardness level of the questions.

Question: Shawna’s workout goal is 30 situps. On Monday, Shawna was only
— able to do 12 situps, so she decided that she would make up for
— the rest on Tuesday. However, she was only able to do 19 situps on
— Tuesday. How many situps would Shawna have to do on Wednesday to
— meet her minimum goal and make up for the ones she didn’t do?

Level: Hard

Table 29: GSMS8k question difficulty prediction task demonstrations

GSMS8k Question and Answer Difficulty Prediction

Generate feedback and predict if the generated answer is trustful.
Question: Shawna’s workout goal is 30 situps. On Monday, Shawna was only
— able to do 12 situps, so she decided that she would make up for

— the rest on Tuesday. However, she was only able to do 19 situps on
— Tuesday. How many situps would Shawna have to do on Wednesday to
— meet her minimum goal and make up for the ones she didn’t do?
Answer: Shawna’s goal is 30 situps, and she has already done 12 + 19 =
— <<12+19=31>>31 situps.\nTo meet her goal, she needs to do 30 - 31
— = <<30-31=-1>>-1 situps.\nSince she can’t do negative situps, she
< doesn’t need to do any more situps to meet her goal.\nans = 0
Feedback: The answer is incorrect. The goal is 30 situps everyday. So
— the total is 3%30 = 90 rather than 30.
Trustful: No

Table 30: GSM8k question and answer difficulty prediction task demonstrations

30

Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

Calibration

Question: Shawna’s workout goal is 30 situps. On Monday, Shawna was only
— able to do 12 situps, so she decided that she would make up for
— the rest on Tuesday. However, she was only able to do 19 situps on
— Tuesday. How many situps would Shawna have to do on Wednesday to
— meet her minimum goal and make up for the ones she didn’t do?

Proposed Answer: Shawna’s goal is 30 situps, and she has already done 12
— + 19 = <<12+19=31>>31 situps.\nTo meet her goal, she needs to do
— 30 - 31 = <<30-31=-1>>-1 situps.\nSince she can’t do negative
— situps , she doesn’t need to do any more situps to meet her
< goal.\nans = 0

Is the proposed answer:

(A) True

(B) False

The proposed answer is: B

Table 31: Calibration task demonstrations

DATE Question Difficulty Prediction

Predict the hardness level of the questions.

Question: Today is Christmas Eve of 1937. What is the date tomorrow in
— MM/DD/YYYY?

Level: Easy

Table 32: DATE question difficulty prediction task demonstrations

DATE Question and Answer Difficulty Prediction

Generate feedback and predict if the generated answer is trustful.

Question: Today is Christmas Eve of 1937. What is the date tomorrow in
— MM/DD/YYYY?

Explain: Today is the Christmas Eve of 1937, so today is 12/24/1937.

Today is 12/24/1937, the date tomorrow is 12/25/1937.

A: 12/25/1937

Feedback: The answer is correct.

Trustful: Yes

Table 33: DATE question and answer difficulty prediction task demonstrations

31

Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

CREPE Question Difficulty Prediction

Predict the hardness level of the questions.

Goal: Making Matcha Green Tea the Traditional Way

Current_Context: Boil 3/4 cup (180 ml) of water and pour it into your
— matcha bowl. Whisk the hot water with a chasen. Discard the hot
— water from the bowl. Scoop 2 tsp (1.5 heaping teaspoons or 10 g)
— of matcha into a fine mesh strainer. Sift the matcha into your
— empty, dry bowl. Pour boiling water into a teacup. Add a small
— amount of hot water into the matcha bowl and whisk it.

Question: What’s the likelihood that I drink the matcha?

Level: Easy

Table 34: CREPE question difficulty prediction task demonstrations

CREPE Question and Answer Difficulty Prediction

Generate feedback and predict if the generated answer is trustful.

Goal: Boating in lake

Current_Context: Rent a boat. Find a lake which allows boating. Drive to
— the lake and set the boat in lake.

Question: What’s the likelihood that the boat is in lake?

Explain: For step 1, after renting a boat, that the boat is in the lake
— is “less likely” because the boat is not yet in the lake.

For step 2, after finding a lake which allows boating, that the boat is
— in the lake is “equally likely” because we have found a lake but
— the boat is not yet in the lake.

For step 3, after driving to the lake and setting the boat in the lake,
— that the boat is in the lake is ”more likely” because we have set
— the boat in the lake.

Therefore , in the final step, the event is “more likely”.

Feedback: The answer is correct.

Trustful: Yes

Table 35: CREPE question and answer difficulty prediction task demonstrations

GSMS8Kk Hints

Given the hints(may not be correct), answer the question.

Question: Tara has a shoebox that is 4 inches tall and 6 inches wide.
— She puts a square block inside that is 4 inches per side. How many
— square inches of the box are left uncovered?

Hints: The answer may be near to 24 or 8.

Answer: The shoebox is 24 square inches because 4 x 6 = <<4%6=24>>24

The block is 16 square inches because 4 x 4 = <<4%4=16>>16

There are 8 square inches uncovered because 24 — 16 = <<24-16=8>>8

ans = 8

Table 36: GSMS8k with hints task demonstrations

32

Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

DATE Hints

Given the hints(may not be correct), answer the question.

Question: Jane was born on the last day of Feburary in 2000. Today is
— her 16-year—old birthday. What is the date 24 hours later in
— MM/DD/YYYY?

Hints: The answer may be near 02/29/2016 or 03/01/2016.

Answer: Jane was born on the last day of Feburary in 2000, so she born
— on 02/29/2000.

Today is her 16—year—old birthday. So today is 02/29/2016.

The date 24 hours later than today is 03/01/2016.

A: 03/01/2016

Table 37: DATE with hints task demonstrations

CREPE Hints

Given the hints(which may not be correct), answer the question with
— “more likely”, “equally likely” or "less likely”.

Goal: Buy a flight ticket from SF to Hawaii.

Context: Open google flights and check the flights availability during
— the dates wanted. Choose non-stop flights and check if the time
— slots work. After deciding right time slots and price, proceed to
— buy tickets. Got an email confirmation of reservation.

Question: Jane was born on the last day of Feburary in 2000. Today is
— her 16-year—old birthday. What is the date 24 hours later in
— MM/DD/YYYY?

Hints: The answer may be near “more likely” or “less likely”.

Explain: For step 1, after checking flights availability , that I can
— refund the ticket if it is refundable is “equally likely” because
— I haven’t purchased the ticket yet.

For step 2, after choosing non-stop flights and checking if the time
— slots work, that I can refund the ticket if it is refundable is
— “equally likely” because I haven’t purchased the ticket yet.

For step 3, after deciding on the right time slots and price and
— proceeding to buy tickets , that I can refund the ticket if it is
— refundable is “less likely” because I have already purchased the
— ticket.

For step 4, after getting an email confirmation of reservation, that I
— can refund the ticket if it is refundable is “more likely” because
<~ I can check the terms and conditions of the ticket and see if it
— is refundable or not.

Therefore , in the final step, the event is “more likely”.

Answer: more likely

Table 38: CREPE with hints task demonstrations

33

Under review at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

Batch Prompting

Questionl: A robe takes 2 bolts of blue fiber and half that much white
— fiber. How many bolts in total does it take?
Question2: Josh decides to try flipping a house. He buys a house for
— $80,000 and then puts in $50,000 in repairs. This increased the
— value of the house by 150%. How much profit did he make?
Question3: Every day, Wendi feeds each of her chickens three cups of
mixed chicken feed, containing seeds, mealworms and vegetables to
help keep them healthy. She gives the chickens their feed in
three separate meals. In the morning, she gives her flock of
chickens 15 cups of feed. In the afternoon, she gives her
chickens another 25 cups of feed. How many cups of feed does she
need to give her chickens in the final meal of the day if the size
of Wendi’s flock is 20 chickens?
Questiond4: Kylar went to the store to buy glasses for his new apartment.
< One glass costs $5, but every second glass costs only 60% of the
— price. Kylar wants to buy 16 glasses. How much does he need to pay
— for them?

TeLel el

Answerl: It takes 2/2=<<2/2=1>>1 bolt of white fiber\nSo the total

< amount of fabric is 241=<<2+1=3>>3 bolts of fabric
ans = 3
Answer2: The cost of the house and repairs came out to
80,000+50,000=$ < <80000+50000=130000>>130,000\nHe increased the
value of the house by 80,000%1.5=<<80000%1.5=120000>>120,000\nSo
the new value of the house is
120,0004+80,000=%$<<120000+80000=200000>>200,000\nSo he made a
profit of 200,000-130,000=$<<200000-130000=70000>>70,000
ans = 70000
Answer3: If each chicken eats 3 cups of feed per day, then for 20
chickens they would need 3%20=<<3%20=60>>60 cups of feed per
day.\ nIf she feeds the flock 15 cups of feed in the morning, and
25 cups in the afternoon, then the final meal would require
60-15-25=<<60-15-25=20>>20 cups of chicken feed.
ans 20
Answer4: The discount price of one glass is 60/100 = 5 =

U

L

— $<<60/100%5=3>>3.\nlf every second glass is cheaper, that means
— Kylar is going to buy 16 / 2 = <<16/2=8>>8 cheaper glasses.\nSo
— for the cheaper glasses, Kylar is going to pay 8 * 3 =
— $<<8+3=24>>24\nAnd for the regular—priced glasses, Kylar will pay
— 8 x 5 = $<<8x5=40>>40.\nSo in total Kylar needs to pay 24 + 40 =
— $<<24+40=64>>64 for the glasses he wants to buy.

ans = 64

Table 39: Batch Prompting task demonstrations

34

	Introduction
	LLM Cascades for Cost-Efficient Reasoning
	Overview of LLM Cascades
	Answer Consistency-based Cascade decision-making

	Experiment
	Experimental Setting
	Main Results

	Conclusion
	different approaches in LLM cascade
	Cost Analysis of LLM Cascade Approaches
	Main Experimental Details
	Additional Analysis
	Analysis on Mixture of Thought Representations
	Robustness Evaluation
	Comparison to External Text-based Verifiers

	Main Result Tables
	Case Study
	Cases PoT can Solve
	Case 1
	Case 2

	Cases PoT cannot Solve
	case 1
	case 2

	Implementation Details of External Verifiers
	LLAMA2-13B as the Weaker LLM
	Can the Stronger LLM Benefit from the Weaker LLM's Hints?
	Can BatchPrompt further reduce the cost?
	Calibration Analysis
	Can our method generalize to factuality-based tasks?
	Limitations and future works
	Full Prompts

