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Abstract

We develop a new approach to tackle communication constraints in a distributed
learning problem with a central server. We propose and analyze a new algorithm
that performs bidirectional compression and achieves the same convergence rate
as algorithms using only uplink (from the local workers to the central server)
compression. To obtain this improvement, we design MCM, an algorithm such that
the downlink compression only impacts local models, while the global model is
preserved. As a result, and contrary to previous works, the gradients on local
servers are computed on perturbed models. Consequently, convergence proofs are
more challenging and require a precise control of this perturbation. To ensure it,
MCM additionally combines model compression with a memory mechanism. This
analysis opens new doors, e.g. incorporating worker dependent randomized-models
and partial participation.

1 Introduction
Large scale distributed machine learning is widely used in many modern applications [1, 6, 28]. The
training is distributed over a potentially large number N of workers that communicate either with a
central server [see 17, 22, on federated learning], or using peer-to-peer communication [9, 34, 32].

In this work, we consider a setting using a central server that aggregates updates from remote
nodes. Formally, we have a number of features d ∈ N∗, and a convex cost function F : Rd → R.
We want to solve the following distributed convex optimization problem using stochastic gradient
algorithms [25, 5]: minw∈Rd F (w) with F (w) = 1

N

∑N
i=1 Fi(w), where (Fi)

N
i=1 is a local risk

function (empirical risk or expected risk in a streaming framework). This applies to both instances of
distributed and federated learning.

An important issue of those frameworks is the high communication cost between the workers
and the central server [16, Sec. 3.5]. This cost is a concern from several points of view. First,
exchanging information can be the bottleneck in terms of speed. Second, the data consumption
and the bandwidth usage of training large distributed models can be problematic; and furthermore,
the energetic and environmental impact of those exchanges is a growing concern. Over the last
few years, new algorithms were introduced, compressing messages in the upload communications
(i.e., from remote devices to the central server) in order to reduce the size of those exchanges
[29, 3, 36, 2, 35, 31, 30, 23, 18]. More recently, a new trend has emerged to also compress the
downlink communication: this is bidirectional compression.

The necessity for bidirectional compression can depend on the situation. For example, a single
uplink compression could be sufficient in asymmetric regimes in which broadcasting a message to
N workers (“one to N”) is faster than aggregating the information coming from each node (“N
to one”). However, in other regimes, e.g. with few machines, where the bottleneck is the transfer
time of a heavy model (up to several GB in modern Deep Learning architectures) the downlink
communication cannot be disregarded, as the upload and download speed are of the same order [24].
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Furthermore, in a situation in which participants have to systematically download an update (e.g.,
on their smartphones) to participate in the training, participants would prefer to receive a small size
update (compressed) rather than a heavier one. To encompass all situations, we consider algorithms
for which the information exchanged is compressed in both directions.

To perform downlink communication, existing bidirectional algorithms [33, 38, 26, 19, 24, 14, 37, 11]
first aggregate all the information they have received, compress them and then carry out the broadcast.
Both the main “global” model and the “local” ones perform the same update with this compressed
information. Consequently, the model hold on the central server and the one used on the local workers
(to query the gradient oracle) are identical. However, this means that the model on the central server
has been artificially degraded: instead of using all the information it has received, it is updated with
the compressed information.

Here, we focus on preserving (instead of degrading) the central model: the update made on its side
does not depend on the downlink compression. This implies that the local models are different from
the central model. The local gradients are thus measured on a “perturbed model” (or “perturbed
iterate”): such an approach requires a more involved analysis and the algorithm must be carefully
designed to control the deviation between the local and global models [21]. For example, algorithms
directly compressing the model or the update would simply not converge.

We propose MCM - Model Compression with Memory - a new algorithm that 1) preserves the central
model, and 2) uses a memory scheme to reduce the variance of the local model. We prove that the
convergence of this method is similar to the one of algorithms using only unidirectional compression.
Potential Impact. Proposing an analysis that handles perturbed iterates is the key to unlock three
major challenges of distributed learning run with bidirectionally compressed gradients. First, we show
that it is possible to improve the convergence rate by sending different randomized models to the
different workers, this is Rand-MCM. Secondly, this analysis also paves the way to deal with partially
participating machines: the adaptation of Rand-MCM to this framework is straightforward; while adapt-
ing existing algorithms [26] to partial participation is not practical. Thirdly, this framework is also
promising in terms of business applications, e.g., in the situation of learning with privacy guarantees
and with a trusted central server. We detail those three possible extensions in Subsection 4.1.

Broader impact. This work is aligned with a global effort to make the usage of large scale
Federated Learning sustainable by minimizing its environmental impact. Though the impact of such
algorithms is expected to be positive, at least on environmental concerns, cautiousness is still required,
as a rebound effect may be observed [12]: having energetically cheaper and faster algorithms may
result in an increase of such applications, annihilating the gain made by algorithmic progress.

Contributions. We make the following contributions:
1. We propose a new algorithm MCM, combining a memory process to the “preserved” update. To

convey the key steps of the proof, we also introduce an auxiliary hypothetical algorithm, Ghost.
2. For those algorithms, we carefully control the variance of the local models w.r.t. the global one.

We provide a contraction equation involving the control on the local model’s variance and show
that MCM achieves the same rate of convergence as single compression in strongly-convex, convex
and non-convex regimes. We give a comparisons of MCM’s rates with existing algorithms in Table 2.

3. We propose a variant, Rand-MCM incorporating diversity into models shared with the local workers
and show that it improves convergence for quadratic functions.

This is the first algorithm for double compression to focus on a preserved central model. We
underline, both theoretically and in practice, that we get the same asymptotic convergence rate for
simple and double compression - which is a major improvement. Our approach is one of the first to
allow for worker dependent model, and to naturally adapt to worker dependent compression levels.

The rest of the paper is organized as follows: in Section 2 we present the problem statement and
introduce MCM and Rand-MCM. Theoretical results on these algorithms are successively presented in
Sections 3 and 4. Finally, we present experiments supporting the theory in Section 5.

2 Problem statement
We consider the minimization problem described in Section 1. In the convex case, we assume there
exists an optimal parameter w∗, and denote F∗ = F (w∗). We use ‖·‖ to denote the Euclidean
norm. To solve this problem, we rely on a stochastic gradient descent (SGD) algorithm. A stochastic
gradient gik+1 is provided at iteration k in N to the device i in J1, NK. This gradient oracle can be
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Table 1: Features of the main existing algorithms performing compression. eik (resp. Ek) denotes
the use of error-feedback at uplink (resp. downlink). hik (resp. Hk) denotes the use of a memory
at uplink (resp. downlink). Note that Dist-EF-SGD is identical to Double-Squeeze but has been
developed simultaneously and independently.

Compr. eik hik Ek Hk Rand. update point

Qsgd [3] one-way
ECQ-sgd [36] one-way 3
Diana [23] one-way 3
Dore [19] two-way 3 3 degraded
Double-Squeeze [33], Dist-EF-SGD [38] two-way 3 3 degraded
Artemis [24] two-way 3 degraded

MCM two-way 3 3 non-degraded
Rand-MCM two-way 3 3 3 non-degraded

computed on a mini-batch of size b. This function is then evaluated at point wk. In the classical
centralized framework (without compression), for a learning rate γ, SGD corresponds to:

wk+1 = wk − γ
1

N

N∑
i=1

gik+1(wk) . (1)

We now describe the framework used for compression.
2.1 Bidirectional compression framework
Bidirectional compression consists in compressing communications in both directions between the
central server and remote devices. We use two different compression operators, respectively Cup and
Cdwn to compress the message in each direction. Roughly speaking, the update in eq. (1) becomes:

wk+1 = wk − γCdwn

(
1

N

N∑
i=1

Cup(gik+1(wk))

)
.

However, this approach has a major drawback. The central server receives and aggregates information
1
N

∑N
i=1 Cup(gik+1(wk)). But in order to be able to broadcast it back, it compresses it, before

applying the update. We refer to this strategy as the “degraded update” approach. Its major advantage
is simplicity, and it was used in all previous papers performing double compression. Yet, it appears to
be a waste of valuable information. In this paper, we update the global model wk+1 independently of
the downlink compression:{

wk+1 = wk − γ 1
N

∑N
i=1 Cup

(
gik+1(ŵk)

)
.

ŵk+1 = Cdwn(wk+1)
(2)

However, bluntly compressing wk+1 in eq. (2) hinders convergence, thus the second part of the update
needs to be refined by adding a memory mechanism. We now describe both communication stages
of the real MCM, which is entirely defined by the following uplink and downlink equations.

Downlink Uplink{
Ωk+1 = wk+1 −Hk ,
ŵk+1 = Hk + Cdwn(Ωk+1)
Hk+1 = Hk + αdwnCdwn(Ωk+1).


∀i ∈ J1, NK,∆i

k = gik+1(ŵk)− hik
wk+1 = wk − γ

N
∑N
i=1 Cup(∆i

k) + hik
hik+1 = hik + αupCup(∆i

k).

(3)

Downlink Communication. We introduce a downlink memory term (Hk)k, which is available
on both workers and central server. The difference Ωk+1 between the model and this memory is
compressed and exchanged, then the local model is reconstructed from this information. The memory
is then updated as defined on left part of eq. (3), with a learning rate αdwn.

Introducing this memory mechanism is crucial to control the variance of the local model ŵk+1. To
the best of our knowledge MCM is the first algorithm that uses such a memory mechanism for downlink
compression. This mechanism was introduced by Mishchenko et al. [23] for the uplink compression
but with the other purpose of mitigating the impact of heterogeneity, while we use it here to avoid
divergence of the local model’s variance.
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Uplink Communication. The motivation to introduce an uplink memory term hik for each device
i ∈ J1, NK is different, and better understood. Indeed, for the uplink direction, this mechanism is only
necessary (and then crucial) to handle heterogeneous workers [i.e., with different data distributions,
see e.g. 24]. Here, the difference ∆i

k between the stochastic gradient gik+1 at the local model ŵk (as
defined in eq. (3)) and the memory term is compressed and exchanged. The memory is then updated
as defined on right part of eq. (3) with a rate αdwn.
Remark 1 (Rate αdwn). It is necessary to use αdwn < 1. Otherwise, the compression noise tends to
propagate and is amplified, because of the multiplicative nature of the compression. In Figure 1 we
compare MCM, with 3 other strategies: compressing only the update, compressing wk − ŵk−1, (i.e.,
αdwn = 1), and compressing the model (i.e., Hk = 0), showing that only MCM converges.
Remark 2 (Memory vs Error Feedback). Error feedback is another technique, introduced by Seide
et al. [29]. In the context of double compression, it has been shown to improve convergence for a
restrictive class of contracting compression operators (which are generally biased) by Zheng et al.
[38], Tang et al. [33]. However, we note several differences to our approach. (1) For unbiased
operators - as considered in Dore, it did not lead to any theoretical improvement [Remark 2 in Sec.
4.1., 19]. (2) Moreover, only a fraction (namely (1 + ωdwn)−1) of the “error” wk+1 − ŵk+1 can
be preserved in the EF term (see line 18 in algo 1 in Liu et al.). It is thus impossible to recover the
central preserved model as a function of the degraded model and the EF term. (3) [38] consider a
biased operator and the same compression level for uplink and downlink compression. They also rely
on stronger assumptions on the gradient (uniformly bounded) and only tackle the homogeneous case.

In Table 1 we summarize the main algorithms for compression in distributed training. As downlink
communication can be more efficient than uplink, we consider distinct operators Cdwn, Cup and allow
the corresponding compressions levels to be distinct: those quantities are defined in Assumption 1.
Assumption 1. There exists constants ωup , ωdwn ∈ R∗+, such that the compression operators
Cup and Cdwn satisfy the two following properties for all w in Rd: E[Cup/dwn(w)] = w, and
E[‖Cup/dwn(w)− w‖2] ≤ ωup/dwn‖w‖2. The higher is ω, the more aggressive the compression is.
We only consider unbiased operators, that encompass sparsification, quantization and sketching.
References and a discussion on those operators, and possible extensions of our results to biased
operators are provided in Appendix A.1.
Remark 3 (Related work on Perturbed iterate analysis). The theory of perturbed iterate analysis was
introduced by Mania et al. [21] to deal with asynchronous SGD. More recently, it was used by Stich
and Karimireddy [30], Gorbunov et al. [11] to analyze the convergence of algorithms with uplink
compressions, error feedback and asynchrony. Using gradients at randomly perturbed points can
also be seen as a form of randomized smoothing [27], a point we discuss in Appendix A.2.

2.2 The randomization mechanism, Rand-MCM
In this subsection, we describe the key feature introduced in Rand-MCM: randomization. It consists
in performing an independent compression for each device instead of performing a single one for
all of them. As a consequence, each worker holds a different model centered around the global one.
This introduces some supplementary randomness that stabilizes the algorithm. Formally, we will
consider N mutually independent compression operators Cdwn,i instead of a single one Cdwn, and the
central server will send to the device i at iteration k + 1 the compression of the difference between
its model and the local memory on worker i: Cdwn,i(wk+1 −Hi

k). The tradeoffs associated with this
modification are discussed in Section 4.

The pseudocode of Rand-MCM is given in Algorithm 1 in Appendix A. It incorporates all components
described above: 1) the bidirectional compression, 2) the model update using the non-degraded point,
3) the two memories, 4) the up and down compression operators, 5) the randomization mechanism.

3 Assumptions and Theoretical analysis
We make standard assumptions on F : Rd → R. We first assume that the loss function F is smooth.
Assumption 2 (Smoothness). F is twice continuously differentiable, and is L-smooth, that is for all
vectors w1, w2 in Rd: ‖∇F (w1)−∇F (w2)‖ ≤ L‖w1 − w2‖.
Results in Section 3 are provided in a convex, strongly-convex and non-convex setting.
Assumption 3 (Strong convexity). F is µ-strongly convex (or convex if µ = 0), that is for all vectors
w1, w2 in Rd: F (w2) ≥ F (w1) + (w2 − w1)T∇F (w1) + µ

2 ‖w2 − w1‖22 .
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Next, we present the assumption on the stochastic gradients.

Assumption 4 (Noise over stochastic gradients computation). The noise over stochastic gradients
for a mini-batch of size b, is uniformly bounded: there exists a constant σ ∈ R+, such that for all k
in N, for all i in J1, NK and for all w in Rd we have: E[‖gik(w)−∇F (w)‖2] ≤ σ2/b.

We here provide guarantees of convergence for MCM. MCM incorporates an uplink memory term,
designed to handle heterogeneous workers. To highlight our main contributions, that concerns the
downlink compression, we present the results in the homogeneous setting, that is with Fi = Fj and
αup = 0. Similar results (almost identical, up to constant numerical factors) in to the heterogeneous
setting are described in Appendix G. Experiments are also performed on heterogeneous workers. We
provide here convergence results in the strongly-convex, then convex case.
Notations and settings. For k in N, we denote Υk = ‖wk −Hk−1‖2, and define Vk =

E[‖wk − w∗‖2] + 32γLω2
dwnE[Υk], which serves as Lyapunov function. Vk is composed of two

terms: the first one controls the quadratic distance to the optimal model, and the second controls
the variance of the local models ŵk. For both theorems, we choose αdwn = (8ωdwn)−1. We denote
Φ(γ) := (1 + ωup)

(
1 + 64γLω2

dwn

)
.

Limit learning rate: There exists a maximal learning rate to ensure convergence. More specif-
ically, we define γmax := min(γup

max, γ
dwn
max , γ

Υ
max), where γup

max := (2L (1 + ωup/N))−1 corre-
sponds to the classical constraint on the learning rate in the unidirectional regime [see 23, 24],
γdwn

max := (8Lωdwn)−1 is a similar constraint coming from the downlink compression, and
γΥ

max :=
(
8
√

2Lωdwn

√
8ωdwn + ωup/N

)−1
is a combined constraint that arises when control-

ling the variance term Υ.1 Overall, this constraints are weaker than in the “degraded” framework
[19, 24], in which γDore

max ≤
(
8L(1 + ωdwn)(1 + ωup/N)

)−1
. Especially, in the regime in which

ωup,dwn → ∞ and ωdwn ' ωup ': ω, the maximal learning rate for MCM is (Lω3/2)−1, while it is
(Lω2)−1 in [19, 24]. Our γmax is thus larger by a factor

√
ω, see Table 2. We define L̃ such that

γmax = (2L̃)−1.

Theorem 1 (Convergence of MCM in the homogeneous and strongly-convex case). Under Assump-
tions 1 to 4 with µ > 0, for k in N, for any sequence (γk)k≥0 ≤ γmax we have:

Vk ≤ (1− γkµ)Vk−1 − γkE [F (ŵk−1)− F (w∗)] +
γ2
kσ

2Φ(γk)

Nb
, (4)

Consequently, (1) if σ2 = 0 (noiseless case), for γk ≡ γmax we recover a linear convergence rate:
E[‖wk − w∗‖2] ≤ (1− γmaxµ)kV0; (2) if σ2 > 0, taking for all K in N, γK = 2/(µ(K + 1) + L̃),
for the weighted Polyak-Ruppert average w̄K =

∑K
k=1 λkwk−1/

∑K
k=1 λk, with λk := (γk−1)−1,

E [F (w̄K)− F (w∗)] ≤
µ+ 2L̃

4µK2 ‖w0 − w∗‖2 +
4σ2(1 + ωup)

µKNb

(
1 +

64Lω2
dwn

µK
ln(µK + L̃)

)
.

(5)

Limit Variance (Equation (4)). For a constant γ, the variance term (i.e., term proportional to σ2)
in Equation (4) is upper bounded by γ2σ2

Nb (1 + ωup)(1 + 64γLω2
dwn). The impact of the downlink

compression is attenuated by a factor γ. As γ decreases, this makes the limit variance similar to the
one of Diana, i.e., without downlink compression [23, Eq. 16 in Th. 2] and much lower than the
variance for previous algorithms using double compression for which the variance scales quadratically
with the compression constants as γ2σ2(1 + ωup)(1 + ωdwn)/N : (1) for Dore, see Corollary 1 in
Liu et al. [19] (who indicate (1− ρ)−1 ≥ (1 +ωup/N)(1 +ωdwn)), (2) for Artemis see Table 2 and
Th. 3 point 2 in [24], (3) for [11], see Theorem I.1. (with γD′1 ∝ γ2σ2(1 + ωup)(1 + ωdwn)/N ).

Bound 5 has a quadratic dependence on ωdwn, but the corresponding term is divided by an extra factor
K, the number of iterations. For example in experiments, for w8a using quantization with s = 20,
we have ωdwn ' 17, and after only 50 epoch with a batch size b = 12, we have K ' 2500. Hence,
the term ω2/K is vanishing through iterations and we asymptotically recover a rate of convergence
equivalent to algorithms using unidirectional compression.

1The dependency in ω3/2 is similar to the one obtained by Horváth et al. [15] in unidirectional compression
in the non-convex case (Theorem 4).
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Convergence and complexity: With a decaying sequence of steps, we obtain a convergence rate
scaling as O(K−1) in Equation (5), without dependency on the ωdwn in the dominating term, which
only appears in faster decaying terms scaling as K−2. The iteration complexity (i.e., number of
iterations to achieve ε expected error) is thus at first order Oε→0(

σ2(1+ωup)
µεNb ). Again, this matches the

complexity of Diana [15, see Theorem 1 and Corollary 1] and is smaller by a factor 1 + ωdwn than
the one of Artemis, Dore, DIANAsr-DQ (see Corollary I.1. in [11]). Next, we give a convergence
result in the convex case.

Theorem 2 (Convergence of MCM, convex case). Under Assumptions 1 to 4 with µ = 0. For all
k > 0, for any γ ≤ γmax, we have, for w̄k = 1

k

∑k−1
i=0 wi,

γE [F (wk−1)− F (w∗)] ≤ Vk−1 − Vk +
γ2σ2Φ(γ)

Nb
=⇒ E[F (w̄k)− F∗] ≤

V0

γk
+
γσ2Φ(γ)

Nb
. (6)

Consequently, for K in N large enough, a step-size γ =
√
‖w0−w∗‖2Nb
(1+ωup)σ2K , we have:

E[F (w̄K)− F∗] ≤ 2

√
‖w0 − w∗‖2 (1 + ωup)σ2

NbK
+O(K−1). (7)

Moreover if σ2 = 0 (noiseless case), we recover a faster convergence: E[F (w̄K)− F∗] = O(K−1).

Limit Variance (Eq. (6)). The variance term is identical to the strongly-convex case.

Convergence and complexity (Equation (7)). The downlink compression constant only appears
in the second-order term, scaling as 1/K. In other words, the convergence rate is equivalent to the
convergence rate of Diana, in the non-strongly-convex. As K increases, this complexity scales as
(1+ωup)
nε2 independently of the downlink compression. Again, for previous algorithms with double

compression the complexity is at least O
(

(1+ωup)(1+ωdwn)
nε2

)
(see Corollary I.2 in [11]).

Control of the variance of the local model.
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Figure 1: Comparing MCM on two datasets with
three other algorithms using a non-degraded
update, γ = 1/L. Artemis-ND stands for
Artemis with a non-degraded update.

We here present the backbone Lemma of MCM’s
proof. It allows to control the variance of the
local model E[‖ŵk − wk‖2 |wk] (which is upper-
bounded by ωdwnE[‖Υk‖2 |wk]) and to build the
Lyapunov function defined in Theorems 1 and 2.

This result highlights the impact of the downlink
memory term. Without memory, i.e., with αdwn =
0, the variance of the local model ‖ŵk − wk‖2
increases with the number of iterations. On the
other hand, if αdwn is too large (close to 1), this
variance diverges. This behavior is illustrated on
two real datasets on Figure 1. This phenomenon is similar to the divergence observed in frameworks
involving error feedback, when the compression operator is not contractive.

Theorem 3. Consider the MCM update as in eq. (2). Under Assumptions 1, 2 and 4 with µ = 0, if
γ ≤ (8ωdwnL)−1 and α ≤ (4ωdwn)−1, then for all k in N:

E [Υk] ≤
(

1− αdwn

2

)
E [Υk−1] + 2γ2

(
1

αdwn
+
ωup

N

)
E
[
‖∇F (ŵk−1)‖2

]
+

2γ2σ2(1 + ωup)

Nb
.

This bound provides a recursive control on Υk. Beyond the (1 − αdwn) contraction, the bound
comprises the squared-norm of the gradient at the previous perturbed iterate, and a noise term.

Summary of rates. In Table 2, we summarize the rates and complexities, and maximal learning
rate for Diana, Artemis, Dore and MCM. For simplicity, we ignore absolute constants, and provide
asymptotic values for large ωup, ωdwn, and complexities for ε→ 0.

Proof in the heterogeneous case. To extend Theorems 1 to 3 in the heterogeneous setting
for a convex objective (Appendix G), we assume that there exists a constant B in R+, s.t.:
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Table 2: Summary of rates on the initial condition, limit variance, asympt. complexities and γmax.
Problem Diana Artemis, Dore MCM, Rand-MCM

Lγmax ∝ 1/(1 + ωup) 1/(1 + ωup)(1 + ωdwn) 1/(1 + ωdwn)
√

1 + ωup ∧ 1/(1 + ωup)
Lim. var. ∝ γ2σ2/n× (1 + ωup) (1 + ωup)(1 + ωdwn) (1 + ωup)(1 + γLω2

dwn)

Str.-convex Rate on init. cond. (SC) (1− γµ)k (1− γµ)k (1− γµ)k

Complexity (1 + ωup)/µεN (1 + ωdwn)(1 + ωup)/µεN (1 + ωup)/µεN

Convex Complexity (ωup + 1)/ε2 (1 + ωup)(1 + ωdwn)/ε2 (ωup + 1)/ε2

1
N

∑N
i=0 ‖∇Fi(w∗)‖2 = B2 . We further define Ξk = 1

N2

∑N
i=1

∥∥hik −∇Fi(w∗)∥∥2
, where for

all i in J1, NK. This term is recursively controled [23, 24] and combined into the Lyapunov function.

Proofs. To convey the best understanding of the theorems and the spirit of the proof, we introduce a
Ghost algorithm (impossible to implement) in Appendix D.1. A sketch of the proof describes the
main steps in the case of Ghost, those steps are similar for MCM. Fundamentally, our proof relies on
a tight analysis, related to perturbed iterate analysis [21]. Proofs of Theorems 1 to 3 are given in
Appendix E. Th. S11 in Appendix E.4 ensures convergence for a non-convex F . Note that the proof
for non-convex follows a different approach than the one in Theorems 1 and 2.

As mentioned in the introduction, our analysis of perturbed iterate in the context of double com-
pression opens new directions: in particular, it opens the door to handling a different model for
each worker. In the next section, we detail those possibilities, and provide theoretical guarantees
for Rand-MCM, the variant of MCM in which instead of sending the same model to all workers, the
compression noises are mutually independent.
Remark 4 (Communication budget). How to split a given communication budget between uplink and
downlink to optimize the convergence is an open question which is intrinsically related to the situation.
Indeed it depends on many factors like the selected operators of compression, the upload/downlink
speed or the number of participating workers at each iteration. However, our approach provides
some insights on this question. Because asymptotically the impact of double compression is marginal,
for a fixed budget, Theorem 2 suggests to strongly compress on the downlink direction (which leads
to a large ωdwn), but to perform a weaker compression in the uplink direction.

4 Extension to Rand-MCM

4.1 Communication and convergence trade-offs
In Rand-MCM, we leverage the fact that the compressions used for each worker need not to be identical.
On the contrary, it is possible to consider independent compressions. By doing so, we reduce the
impact of the downlink compression.

The relevance of such a modification depends on the framework: while the convergence rate will
be improved, the computational time can be slightly increased. Indeed, N compressions need to be
computed instead of one: however, this computational time is typically not a bottleneck w.r.t. the
communication time. A more important aspect is the communication cost. While the size of each
message will remain identical, a different message needs to be sent to each worker. That is, we go
from a “one to N” configuration to N “one to one” communications. While this is a drawback, it is
not an issue when the bandwidth/transfer time are the bottlenecks, as Rand-MCM will result in a better
convergence with almost no cost. Furthermore, we argue that handling worker dependent models is
essential for several major applications. Rand-MCM can directly be adapted to those frameworks.

1. Worker dependent compression. A first simple situation is the case in which workers are allowed
to choose the size (or equivalently the compression level) of their updates.

2. Partial participation (PP). Similarly, having N different messages to send to each worker may
be unavoidable in the case of partial participation of the workers. This is a key feature in Federated
Learning frameworks [22]. In the classical distributed framework (without downlink constraints) it is
easy to deal with it, as each available worker just queries the global model to compute its gradient on
it [see for example 14]. On the other hand, for bidirectional compression, to ensure that all the local
models match the central model, the adaptation to partial participation relies on a synchronization
step. During this step, each worker that has not participated in the last S steps receives the last S
corresponding messages as long as it costs less to send this sequence than a full uncompressed model.
This is described in the description of the adaptation to partial participation in [24], in the remark
preceding Eq. (20) in [26] and by Tang et al. [33, v2 on arxiv for the distributed case], who use
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a buffer. On the contrary, Rand-MCM naturally handles a different model, memory and update per
worker. The adaptation to partial participation is thus straightforward. Though theoretical results are
out of the scope of this paper, we provide experiments on PP in Appendix B.1.1 and fig. 4.

One drawback is the necessity to store the N memories (Hi
k)i∈[N ] instead of one, which results in an

additional memory cost. To circumvent this issue we propose two independent solutions. 1) Keep and
use a single memory H̄k = N−1

∑N
i=1H

i
k (as suggested in [24]). It is then necessary to periodically

reset the local memories Hi
k on all workers to the averaged value H̄k (rarely enough not to impact

the communication budget). This is illustrated in fig. 4. 2) Use Rand-MCM with an arbitrary number
of groups G� N of workers. In each group Gg , g ∈ [G], all workers share the same memory (Hg

k )
and receive the same update Cdwn,g(wk+1 −Hg

k ). We call this algorithm Rand-MCM-G.

Remark 5 (Protecting the global model from honest-but-curious clients). Another business advantage
of MCM and Rand-MCM is that providing degraded models to the participants can be used to guarantee
privacy, or to ensure the workers participate in good faith, and not only to obtain the model. This
issue of detecting ill-intentioned clients (free-riders) that want to obtain the model without actually
contributing has been studied by Fraboni et al. [10].

4.2 Theoretical results
In this Section, we provide two main theoretical results for Rand-MCM. First Theorem 4 ensures that
the theoretical guarantees are at least as good for Rand-MCM as for MCM. Then, in Theorem 5, we
provide convergence result for both MCM and Rand-MCM in the case of quadratic functions.

Theorem 4. Theorems 1 to 3 are valid for Rand-MCM and Rand-MCM-G.

The improvement in Rand-MCM comes from the fact that we are ultimately averaging the gradients at
several random points, reducing the variance coming from this aspect. The goal is obviously to reduce
the impact of ωdwn. Keeping in mind that the dominating term in the rate is independent of ωdwn, we
can thus only expect to reduce the second-order term. Next, the uplink compression noise increases
with the variance of the randomized model, which will not be directly reduced by Rand-MCM. As a
consequence, we only expect the improvement to be visible in the part of the second-order term that
does not depend on ωup (that is, the effect would be the most significant if ωup is small or 0).

This intuition is corroborated by the following result, in which we show that the convergence is im-
proved when adding the randomization process for a quadratic function. Extending the proof beyond
quadratic functions is possible, though it requires an assumption on third or higher order derivatives
of F (e.g., using self-concordance [4]) to control of E

[
||∇F (ŵk−1)− E[∇F (ŵk−1)]||2

∣∣ wk−1

]
.

Theorem 5 (Convergence in the quadratic case). Under Assumptions 1 to 4 with µ = 0, if the
function is quadratic, after running K > 0 iterations, for any γ ≤ γmax, and we have

E[F (w̄K)− F∗] ≤
V0

γK
+
γσ2ΦRd(γ)

Nb
,

with ΦRd(γ) = (1 + ωup)
(

1 + 4γ2L2ωdwn

K ( 1
C +

ωup

N )
)

and C = N for Rand-MCM, C = G

Rand-MCM-G, and C = 1 for MCM.

This result is derived in Appendix F. We can make the following comments: (1) The convergence rate
for quadratic functions is slightly better than for smooth functions. More specifically, the right hand
term in Φ is multiplied by an additional γ

(
1
C +

ωup

N

)
(w.r.t. Theorem 2), which is decaying at the same

rate as γ. Besides, the proof for Rand-MCM is substantially modified, as E[∇F (ŵk−1)] is an unbiased
estimator of∇F (wk−1). (2) Moreover, the randomization in Rand-MCM (resp. Rand-MCM-G) further
reduces by a factor N (resp. G) this term. Depending on the relative sizes of ωup and N , this can lead
to a significant improvement up to a factor of N . In practice the impact of Rand-MCM is noticeable,
as illustrated in the following experiments.

5 Experiments
In this section, we illustrate the validity of the theoretical results given in the previous section on both
synthetic and real datasets, on (1) least-squares linear regression (LSR), (2) logistic regression (LR),
and (3) non-convex deep learning. We compare MCM with classical algorithms used in distributed
settings: Diana, Artemis, Dore and of course the simplest setting - SGD, which is the baseline.
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Figure 2: Convergence on neural networks.

In these experiments, we provide results on the log of the excess loss F (wk)− F∗, averaged on 5
runs (resp. 2) in convex settings (resp. deep learning), with errors bars displayed on each figure
(but not in the “zoom square”), corresponding to the standard deviation of log10(F (wk)− F∗). On
Figure 3, the X-axis is respectively the number of iterations and the number of bits exchanged.

Each experiment has been run with N = 20 workers using stochastic scalar quantization [3], w.r.t.
2-norm. To maximize compression, we always quantize on a single level (s = 20), unless for PP
(s = 21) and neural network (the value of s depends on the dataset).

We used 9 different datasets.

• One toy dataset devoted to linear regression in an homogeneous setting. This toy dataset allows to
illustrate MCM properties in a simple framework, and in particular to ilustrate that when σ2 = 0, we
recover a linear convergence2, see Figure 2b.

• Five datasets commonly used in convex optimization (a9a, quantum, phishing, superconduct and
w8a); see Table S1 for more details. Experiments were conducted with heterogeneous workers
obtained by clustering (using TSNE [20]) the input points.

• Four dataset in a non-convex settings (CIFAR10, Fashion-MNIST, FE-MNIST, MNIST); see
Table S2 for more details.

All experiments are performed without any tuning of the algorithms, (e.g., with the same learning
rate for all algorithms and without reducing it after a certain number of epochs). Indeed, our goal is
to show that our method achieves a performance close to the unidirectional-compression framework
(Diana), while performing an important downlink compression. More details about experiments can
be found in Appendix B.

On Figure 3, we display the excess loss for quantum and a9a w.r.t. the number of iteration and number
of communicated bits. The plots of phising, superconduct and w8a are not provided but can be found
on our github repository. We only report their excess loss after 450 iterations in Table 3.

Table 3: MCM- convex experiments, b is the batch size

.

Excess loss after 450 epochs SGD Diana MCM Dore Ref
a9a (b = 50) −3.5 −2.7 −2.7 −1.8 [8]
quantum (b = 400) −3.4 −3.2 −3.2 −2.6 [7]
phishing (b = 50) −3.7 −3.5 −3.4 −2.7 [8]
superconduct (b = 50) −1.6 −1.6 −1.55 −1.45 [13]
w8a (b = 12) −3.5 −3.0 −2.5 −1.75 [8]
Compression no uni-dir bi-dir bi-dir

Saturation level. All experiments are performed with a constant learning rate γ to observe the
bias (initial reduction) and the variance (saturation level) independently. Stochastic gradient descent
results in a fast convergence during the first iterations, and then reaches a saturation at a given
level proportional to σ2. Theorem 2 states that the variance of MCM is proportional to ωup, this is
experimentally observed on Tables 3 and 4 and figs. 2 and 3: MCM meets Diana while Artemis and
Dore saturate at a higher level (scaling as ωup×ωdwn). These trade-offs are preserved with optimized
learning rates.

2Even stronger, we show in experiments that we recover a linear rate if we have σ∗ = 0 (the noise over
stochastic gradient computation at the optimum point w?).
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Figure 3: Experiments on real dataset with γ = 1/L, quantization with s = 1, LSR (a,b), LR (c,d).
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Linear convergence when σ2 = 0. The six algorithms present a linear
convergence when σ2 = 0. This is illustrated by Figure 2b: we ran
experiments with a full gradient descent. Note that in these settings
MCM has a slightly worse performance than other methods; however, this
slow-down is compensated by Rand-MCM.

Impact of randomization. The impact of randomization is noticeable on
Figures 2b and S5b. Randomization helps to stabilise convergence of it
reduces the variance of the runs and when σ2 = 0, it performs identically
to SGD. Figure 4 illustrates the impact of using a single memory, instead
of N , to alleviate the memory cost in the PP setting (Subsection 4.1),
with or without periodic reset. Without reset, performance are slightly
degraded, but with it, we recover previous results.

Deep learning. Table 4 and figs. 2c and 2d illustrate experiments with neural networks, details on
dataset settings and networks architecture are given in Appendix B.2. Again, MCM meets Diana rates
as stated by Theorem S11 (theorem in the non-convex case).

Table 4: Accuracy and train loss in non-convex experiments, detailed settings can be found in
Table S2.

Algorithm MNIST Fashion MNIST FE-MNIST CIFAR-10

Accuracy after SGD: 99.0% 92.4% 99.0% 69.1%
300 epochs Diana: 98.9% 92.4% 98.9% 64.0%

MCM: 98.8% 90.6% 98.9% 63.5%
Artemis: 97.9% 86.7% 98.3% 54.8%
Dore: 97.9% 87.9% 98.5% 56.3%

Train loss after SGD: 0.025 0.093 0.026 0.909
300 epochs Diana: 0.034 0.141 0.031 1.047

MCM: 0.033 0.209 0.030 1.096
Artemis: 0.075 0.332 0.052 1.342
Dore: 0.072 0.300 0.048 1.292

Overall, these experiments show the benefits of MCM and Rand-MCM, that reach the saturation level of
Diana while exchanging at 10x to 100x fewer bits. More experiments with partial participation for
Rand-MCM are given in Appendix B.1.1. All the code is provided on our github repository.

6 Conclusion

In this work, we propose a new algorithm to perform bidirectional compression while achieving the
convergence rate of algorithms using compression in a single direction. One of the main application
of this framework is Federated Learning. With MCM we stress the importance of not degrading the
global model. In addition, we add the concept of randomization which allows to reduce the variance
associated with the downlink compression. The analysis of MCM is challenging as the algorithm
involves perturbed iterates. Proposing such an analysis is the key to unlocking numerous challenges
in distributed learning, e.g., proposing practical algorithms for partial participation, incorporating
privacy-preserving schemes after the global update is performed, dealing with local steps, etc. This
approach could also be pivotal in non-smooth frameworks, as it can be considered as a weak form of
randomized smoothing.
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McMahan, Virginia Smith, and Ameet Talwalkar. LEAF: A Benchmark for Federated Settings.
arXiv:1812.01097 [cs, stat], December 2019. arXiv: 1812.01097.

[7] Rich Caruana, Thorsten Joachims, and Lars Backstrom. KDD-Cup 2004: results and analysis.
ACM SIGKDD Explorations Newsletter, 6(2):95–108, December 2004. ISSN 1931-0145. doi:
10.1145/1046456.1046470.

[8] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2(3):27:1–27:27, May 2011. ISSN 2157-
6904. doi: 10.1145/1961189.1961199.

[9] Igor Colin, Aurelien Bellet, Joseph Salmon, and Stéphan Clémençon. Gossip Dual Averaging
for Decentralized Optimization of Pairwise Functions. In International Conference on Machine
Learning, pages 1388–1396. PMLR, June 2016. ISSN: 1938-7228.

[10] Yann Fraboni, Richard Vidal, and Marco Lorenzi. Free-rider attacks on model aggregation in
federated learning. In International Conference on Artificial Intelligence and Statistics, pages
1846–1854. PMLR, 2021.

[11] Eduard Gorbunov, Dmitry Kovalev, Dmitry Makarenko, and Peter Richtarik. Linearly Con-
verging Error Compensated SGD. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,
and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages
20889–20900. Curran Associates, Inc., 2020.

11



[12] M. J. Grubb. Communication Energy efficiency and economic fallacies. Energy Policy, 18(8):
783–785, October 1990. ISSN 0301-4215. doi: 10.1016/0301-4215(90)90031-X.

[13] Kam Hamidieh. A data-driven statistical model for predicting the critical temperature of a
superconductor. Computational Materials Science, 154:346–354, November 2018. ISSN
0927-0256. doi: 10.1016/j.commatsci.2018.07.052.

[14] Samuel Horváth and Peter Richtárik. A Better Alternative to Error Feedback for Communication-
Efficient Distributed Learning. arXiv:2006.11077 [cs, stat], June 2020. arXiv: 2006.11077.

[15] Samuel Horváth, Dmitry Kovalev, Konstantin Mishchenko, Sebastian Stich, and Peter
Richtárik. Stochastic Distributed Learning with Gradient Quantization and Variance Reduction.
arXiv:1904.05115 [math], April 2019. arXiv: 1904.05115.

[16] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
jun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,
Rafael G. L. D’Oliveira, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett,
Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang
He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri
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