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Abstract

Machine learning models excel with abundant annotated data, but annotation is often costly
and time-intensive. Active learning (AL) aims to improve the performance-to-annotation
ratio by using query methods (QMs) to iteratively select the most informative samples.
While AL research focuses mainly on QM development, the evaluation of this iterative pro-
cess lacks appropriate performance metrics. This work reviews eight years of AL evaluation
literature and formally introduces the speed-up factor, a quantitative multi-iteration QM
performance metric that indicates the fraction of samples needed to match random sam-
pling performance. Using four datasets from diverse domains and seven QMs of various
types, we empirically evaluate the speed-up factor and compare it with state-of-the-art AL
performance metrics. The results confirm the assumptions underlying the speed-up factor,
demonstrate its accuracy in capturing the described fraction, and reveal its superior stability
across iterations.

1 Introduction

Machine learning focuses on developing and training models that can identify general patterns from given
data. These models perform exceptionally well when trained on large amounts of annotated data, earning
them the term data hungry (Van Der Ploeg et al., [2014). While data collection is straightforward in many
applications, data annotation tends to be time-consuming and costly. Current research aims to maximize
model performance while minimizing human annotation effort.

A leading approach to reducing annotation costs is [active learning (AL)| Instead of randomly selecting
unlabelled data samples for annotation, [query methods (QMs)| choose samples that optimize model
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Figure 1: |Active learning (AL); The dataset D is split into the evaluation set Dg and the set Dar.
(1) A [query method| uses the current unlabelled dataset D% ' and labelled dataset D% ' to query samples
(Q}) from D T, (2) QF is labelled (Q%) by a human expert. (3) Update datasets: D, = Dl !\ Qf and
DL =D U Q.

performance, improving the informativeness of the labelled dataset and enabling faster convergence with
fewer annotations (Settles, [2009). Figure [1| illustrates the process from the data perspective. The
dataset D is initially divided into the representative evaluation set Dg and the |K_E| set Dar,. At iteration ¢,
Df]_l and DtL_l denote the previous unlabelled and labelled dataset. (1) A query method QM (DtU_l, DtL_l, t)
selects n(DZ_l,DtL_l,t) samples from Dg_l to form the unlabelled query Qf;, where n is the query size,
also called batch size. (2) Q}; is labelled by human experts and becomes Q% . (3) Datasets are updated:
D, =Di 1\ QF and D = D' U Q. The model ®*(D;, DY) is trained and the performance P*(®!, Dg)
on Dp is assessed. The next iteration begins unless a predefined stopping criterion is met. Common stopping
criteria include the labelling budget |DY |, the performance level P!, or the allocated annotation time.

can be categorized into three types of methods: Prediction-based methods utilize model performance to
select the next query, e.g., uncertainty sampling prioritizes samples near the decision boundary. Data-based
methods choose samples based on the internal data structure, e.g., diversity sampling selects queries that
represent the entire input space. Model-based methods focus on changes in the model, e.g., prioritizing
samples with high model influence, irrespective of their labels (Tharwat & Schenck| [2023). While research
on [AT] primarily focuses on developing more efficient relatively little attention has been paid to their
empirical evaluation. evaluation is typically conducted by emulating [AT} a labelled dataset is used,
with all labels concealed from the model and revealed only when the respective samples are selected by
the for annotation. In contrast to most machine learning tasks evaluated on final performance, [AT]
requires evaluation across multiple iterations. Yet, the literature lacks a quantitative metric that evaluates
performance across multiple iterations.

This work introduces the speed-up factor, a quantitative multi-iteration performance metric that quan-
tifies the fraction of samples a needs to reach random sampling performance. Section [2] provides a
literature review of the past eight years on[AL]evaluation. Section [3] formally introduces the proposed meth-
ods for [AT] evaluation. Section [4] outlines the experimental setup for our empirical evaluation. Section
describes the experimental results. Section [6] analyzes the results. Section [7] concludes the study.

2 Related Work

We provide a comprehensive overview of empirical |query method (QM)| evaluation through structured and
unstructured literature reviews, focusing on evaluation criteria, comparison baselines, and result presentation.

The structured literature review covers proceedings from six major artificial intelligence conferences: the
Association for the Advancement of Artificial Intelligence (AAAI), the Conference on Computer Vision
and Pattern Recognition (CVPR), the International Conference on Learning Representations (ICLR), the
International Conference on Machine Learning (ICML), the International Joint Conference on Artificial
Intelligence (IJCAI), and the Conference on Neural Information Processing Systems (NeurIPS). The search
criteria include publications from 2017 to 2024, with the term ‘active learning’ appearing in the title, abstract,
or keywords.

Table [I] summarizes the quantitative findings. The selection includes 449 papers. Excluded papers are those:
focusing on [AL}related tasks (49); applying [AL| without evaluation (37); evaluating [AL] aspects other than
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Table 1: Results of the literature review on active learning evaluation, showing the total number of papers
identified through the selection criteria, those empirically evaluating a query method (QM), introducing a
new QM, evaluating specific criteria, using particular baselines for comparison, and presenting evaluations
in defined formats.

Evaluation Presentation

Evaluation Criteria Baselines  On Stopping Criterion On Each Iteration Other

Venue Total Eval New Perfor- Process Positive Random Other Budget Performance Performance Performance Location Ablation

QM QM mance Time Samples Sampling QM(s) over Budget over Time Samples Study
AAAI 104 68 62 68 13 2 47 65 35 4 58 2 5 20
CVPR 55 49 44 49 8 3 44 47 35 8 45 0 9 30
ICLR 48 35 33 35 9 0 32 33 21 2 31 0 9 14
ICML 76 44 38 44 4 0 36 42 25 3 40 0 2 2
IJCAI 46 35 34 35 8 0 22 34 15 3 30 0 3 5
NeuwrIPS 113 70 67 70 14 2 55 63 36 5 62 1 9 23
Other 7 5 2 5 1 0 5 5 2 1 5 0 0 0
by 449 306 280 306 57 7 241 289 169 26 271 3 37 94

(25), e.g., model, complexity, or social factors; evaluating only theoretically (22); not about
(8), e.g., mentioning ‘interactive learning’; or surveys of (3). A total of 306 papers empirically evaluate

[QMs| with 280 introducing a new

2.1 Active Learning Evaluation Trends

Evaluation Criteria. All 306 papers empirically evaluating include performance as an evaluation
criterion, highlighting its central importance in [AT] The performance of a single iteration is primarily mea-
sured using accuracy (170), F1 score (44) and mean average precision (30). Additionally, 57 papers evaluate
computational requirements using processing time, and 7 papers use the number of positive samples

selected by the

Baselines. The performance of a[QM]is primarily evaluated by emulating[AT]and comparing it to baselines,
most frequently random sampling (241).

Evaluation Presentation. Presenting the evaluation results of performance is not trivial. aim
to maximize the performance-to-budget ratio. The simplest approach is using either budget or performance as
the stopping criterion and comparing the numerical result for the other variable against baselines in the final
iteration, when the criterion is met. In our literature review, 169 papers compare the final performance using
budget as the stopping criterion, while 26 papers compare the final budget using performance as the stopping
criterion. While it is straightforward to present evaluations for the final iteration, there are significant caveats
to this approach: The stopping criterion varies by setup, making results highly dependent on when [AT]
is stopped. Performance differences between change over iterations and generally decrease in later
iterations as all converge to the same performance level. Thus, focusing solely on results from a single
iteration fails to adequately represent the overall process. A more comprehensive approach is to present
the performance for each iteration. The most common method, used in 271 papers, is to present a learning
curve that plots performance or loss against the size of the labelled dataset. Learning curve evaluation is
performed qualitatively through visual inspection. While effective for a few clearly separated curves, visual
inspection lacks quantitative, comprehensible results and poses challenges when comparing multiple [(QMs|
across different datasets (Pupo et al. 2018a)). Another qualitative method, used in 37 papers, involves
visualizing the locations of selected samples from a in latent space, using dimensionality reduction
techniques such as t-SNE or UMAP. Another quantitative method, used in 94 papers, involves evaluating
specific components of a in isolated environments through ablation studies.



Published in Transactions on Machine Learning Research (January/2026)

2.2 Active Learning Evaluation Methods

Single-Iteration Evaluation. Research on enhancing empirical evaluation primarily focuses on
single-iteration assessments, presented either quantitatively for a single, typically the final, iteration or
qualitatively as a learning curve. This research can be categorized into the development of new metrics,
methods, or frameworks for improving empirical evaluation. Metric development aims to design metrics
that more effectively capture performance than traditional measures such as accuracy or F1 score. [Day-
oub et al.| (2017)) introduce the efficiency score, defined as the ratio of test accuracy to budget size, to identify
the most efficient budget size for annotation. [Shi et al. (2021)) introduce the label-wise average precision
improvement, defined as the difference between the average precision of the and the baseline, divided
by the average precision of the baseline. Rather than introducing a new performance metric, five papers
in our literature review (e.g., (Hartford et al., 2020; Kim et al., 2021))) present the percentage performance
improvements of over random sampling, instead of presenting metric values as learning curves. Method
development aims to enhance the validity of the evaluation process. [Kong et al.| (2022)) argue that due to the
abundance of large unlabelled datasets in [AT] scenarios, evaluation should be compared to semi-supervised
learning, which incorporates both labelled and unlabelled data, rather than to supervised learning. Other
papers use statistical significance tests, such as the t-test (Hu & Zhang| |2018; [Mohamadi et al.l |2022)) or
the Mann-Whitney U-test (Bullard et al., 2019) to evaluate the significance of performance differences be-
tween Framework development aims to provide clear guidelines for the comprehensive, quantitative,
and reproducible derivation of results. By reimplementing experiments, [Munjal et al.| (2022) find that
reliable empirical evaluation requires repeating experiments under varying training settings (e.g., model
architecture, budget size), incorporating regularization techniques, and tuning hyper-parameters at each
iteration. Building on this, [Liith et al. (2023|) propose an evaluation framework that suggests assessing
IQMs| across various datasets, including imbalanced ones, with different initial budgets and query sizes. The
framework suggests tuning hyper-parameters on the starting budget and keeping them fixed, since grid-search
fine-tuning at each iteration, as proposed by Munjal et al.| (2022), is impractical due to high computational
requirements. The framework additionally evaluates against self-supervised learning, semi-supervised
learning, and their combinations with

Multi-Iteration Evaluation. [Riis et al|(2022) highlight the lack of a metric to assess performance
across iterations, without offering a solution. Simple approaches for quantitative metrics that cover multiple
iterations include averaging the learning curve (Tang & Huang, 2022 |Gao et al., |2018|) and calculating
the area under the learning curve (Cawley} [2011; [Pupo et al.l 2018b; [Pupo & Ventura, 2018). [Pupo et al.
(2018a)) observe that these metrics neglect crucial information about intermediate results and proposes a more
sophisticated evaluation method. Based on the assumption that the performance difference between two
ideally increases over successive iterations, this difference is calculated for each iteration (termed cut-point),
and the iterations are ranked according to the magnitude of this difference. A is considered superior if
a statistically significant correlation exists between the obtained ranking and the ideal descending ranking.
While these metrics quantify results across multiple iterations, Kath et al| (2024b) highlight their high
sensitivity to the number of evaluated iterations. Once the saturation point is reached, performance tends to
stabilize. Subsequent iterations continuously equalize and increase both the mean value and the area under
the learning curve for different and also randomize the ranking of performance differences, resulting in
low stability of the metrics when evaluated across different iteration numbers. Without presenting theoretical
or empirical validation, [Kath et al. (2024b)) use a metric similar to the speed-up factor to evaluate
performance on bioacoustic data. Using the approximation function p(x) = a (1 — e*%), where p represents
the performance, a the ceiling performance (computed using all samples for training), and = the number of
labelled training samples, the scaling parameter b is fitted to the scatter points of the experimental results
using least squares. After fitting the results of a and of the random sampling baseline, bi::]d denotes the
fraction of samples the requires to match the performance of random sampling.

2.3 Motivation for a new Active Learning Metric

Summarizing the trends in our literature review, the empirical evaluation of primarily focuses on
the performance criterion, presented either through quantitative results of a single iteration, which fail to
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Figure 2: Learning curve schematic for random sampling and active learning (AL) showing scatter points,
approximation by direct connection, and approximation by using pqm () = aeo (1 - ear%ﬁ) with a., = 0.9,
ap = —0.2, byang = 600 and bay, = 150.

reliably represent the overall process, or through qualitative visual inspections of learning curves across
iterations, which lack quantitative and comprehensible results. While metrics such as accuracy, F1 score,
and mean average precision effectively capture a model’s performance for a single iteration, the field of
active learning lacks a comprehensive metric for quantitatively comparing results across multiple iterations.
Empirical evaluation of a typically involves comparing its performance against baselines, predominantly
using random sampling. The speed-up factor is a quantitative performance metric for evaluating over
multiple iterations, indicating the fraction of samples required to match random sampling performance. It
generalizes the metric used by [Kath et al| (2024b) to various types of learning curves by employing a set
of approximation functions and provides comprehensive theoretical and empirical evidence supporting its
suitability as an [AT] performance metric.

3 Methods

The performance of a machine learning model trained on a labelled dataset of a given size can be effectively
represented by various performance metrics, e.g. accuracy. During the [AT] process, the size of the labelled
dataset increases iteratively, resulting in a performance value for each iteration. performance is typically
visualized by plotting the performance values against the labelling budget for each iteration, as shown in
Figure 2] Although the data points are discrete, they are commonly visualized as a continuous graph by
approximating them through direct point connection—referred to here as the learning curve (connected)—as
seen in, e.g., (Dayoub et al. 2017; |Gao et al., 2018} Hartford et al., 2020; [Hu & Zhang} 2018} Bullard et al.
2019; |Cawleyl, |2011)). This paper introduces a novel method to approximate the learning curve, enabling the
derivation of quantitative results. Our method is grounded on four assumptions:

Al: t=0 = pgm(x(t)) =c1, Yqm € QM, ¢; € [0,1]
A2: Df, =0 = pgm(x(t)) = ¢, Yqm € QM, ¢ € [0,1]
A3 pam(x(t)) > pam(z(t —1)),Vam € QM,t € {1,2, ..., tmax}

Ad: % A C3.qm, Yqm € QM, Vp € P
Al states that the performance of the initial iteration is the same for all[QMs| A2 states that the performance
is the same for all if the unlabelled dataset is empty. Before starting the [AL] process (t = 0) and when
Dyy, is completely labelled (D}, = 0), the composition of D% is independent of the This results in
identical trained models and, consequently, the same performance.

A3 states that the learning curve is strictly monotonically increasing. While several factors may cause
deviations from this strict monotonicity, the error introduced by this assumption is minimal, as model
performance generally improves with the addition of training data.
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Figure 3: Synthetic illustration of A4. Left: Two-dimensional dataset with 4000 samples and 90/10 class
imbalance. Center: Connected learning curves for random sampling and the query method ratio max using

logistic regression. Right: Ratio ;qmd(gz)

obtained by inverting the connected learning curves.

A4 states that the ratio of samples required by a to achieve a certain performance, compared to
random sampling, is approximately constant across performance levels. Here, c3 m represents this theoretical
fraction, which the proposed speed-up factor S estimates empirically. This assumption is based on the
hypothesis that the information content of queries selected by a [QM] remains roughly constant. While this
trend is qualitatively observable in prior work (e.g., (Kath et al., [2024c; Rakesh & Jain, 2021} |Cai et al.l
2021)), we are not aware of any quantitative examination of it. At most, this ratio’s constancy can be
inferred from tables reporting the number of samples required to reach a given performance (e.g., Table 1
in ) However, such data are rarely provided; as Table |1| shows, only 26 of 449 papers
use performance as a stopping criterion. To further illustrate A4, we generate a synthetic two-dimensional
dataset with 4000 samples and two classes in a 90/10 balance (Figure |3} left). Using a representative subset
of 2000 samples as the evaluation set, we emulate [AT] on the remaining 2000 samples with an initial budget
and query size of 20 using a logistic regression model. We then compute the connected learning curves for
random sampling and for the ratio max (Figure [3] center), which is described in section After

inverting these curves, we compute the ratio de((ZZ) (Figure , right). As the labelled set is independently

composed before begins (A1) and after all samples have been labelled (A42), the performance at these
endpoints is equal and the ratio therefore approaches 1. Figure (right) confirms this behaviour at the initial
point, whereas the curve does not reach 1 at the final point because variance in the learning curve (Figure
center) induces instability in the inversion near the endpoints. In the intermediate region, however, the ratio
remains approximately constant, supporting .A4.

Instead of connecting the data points to create the learning curve, we propose to approximate it using a
function Pgm(z) = ﬁ(bq%), where z is the number of training samples added to DY, by, is a speciﬁc
parameter controlling the curve shape, p is an approximation function and pgm(x) is the approximated
performance value (see Figure [2). To satisfy A1-A4, p must be independent of by, and in the range [0, 1]
for z = 0 (A1), have a constant asymptote for lim,_, in range [0,1] (A2), and be strictly monotonically
increasing (A3). Since x is always divided by bgm, A4 is inherently satisfied. This follows directly from the
definition of the speed-up factor S, which represents the fraction of samples required by a to achieve
the same model performance as when using random sampling (Pgm = Prand )-

p=L(p -b b
S = Tam _ Apl E;qu) = — 9% — const. (1)
Lrand P (prand) - brand brand

Considering these restrictions, p can be freely selected based on the experimental setup. The following
experiments use a set of the two most frequently used performance approximation functions (Viering &

Loog 2023):

x

1+ e (mm)
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Table 2: Multi-label datasets, including name, domain, number of classes (#C), class presence statistics,
and the sizes of the active learning and the evaluation set.
Class pres. [%]

Dataset Domain #C min max mean |Dar| |Dg|

CARInA  Audio 37 53 73.1 26.6 78931 19732
MS COCO Image 80 0.2 54.2 3.6 94504 23783
Reuters Text 31 0.3 22.2 2.2 37896 15675
Scene Tabular 6 15.1 22.1 179 1927 480

Given 1 experimental setup and the results of nqum (oo 18 set to the average model performance across
when all samples are used for training, and a1 and ag p> are derived from the results of the initial
iteration (x = 0). Since the learning curve reflects performance and DY consists of samples selected
randomly or from prior annotation sessions, equal across the z-axis of the learning curve presents the
number of added training samples with z = |D% | —|DY |. Using least squares, bym st and by, p2 are estimated
for all The root mean square error (RMSE) between each @l result and the approximations ﬁém and
ﬁzm is computed and averaged across The approximation function p that minimizes the RMSE is then
selected to approximate [AT] performance.

4 Experiments

The experiments have three objectives: (1) validate the four assumptions A1-A44 underlying the speed-up
factor (see section [3); (2) identify which properties must be fixed and which may vary for valid use of the
speed-up factor, based on whether A1-A44 are agnostic to them. We extend the framework of [Liith et al.
(2023)) (see section, varying dataset, setup, model, and training properties—detailed in the remainder
of this section; and (3) evaluate the stability and robustness of the speed-up factor across diverse settings.
All results are averaged over multiple random seeds.

4.1 Datasets

Relevant dataset properties are label type, domain, number of classes, class balance, and size of Day. As
label type we choose multi-label datasets, since they are standard in real-world scenarios and generalize
multi-class datasets, which in turn extend single-class datasets. Additional results on multi-class datasets
are provided in appendix [A] Table [ lists selected datasets varying in domain, number of classes, class
balance, and size of Dap.

o CARInA (Kath et all|2022)) is an audio dataset derived from read German Wikipedia articles. We
use the Complete subset, treat phonemes as classes, segment files into 1-second snippets, and ensure
no speaker overlap between D4y, and Dg.

e MS COCO (Lin et al.l |[2014])) is an image dataset with common objects.

o Reuters-21578 (Lewis, 1997 is a text dataset of news titles and articles. We treat topics as classes,
and concatenate each title with its article.

o Scene (Boutell et al., |2004) is a tabular dataset of image attributes with landscapes as classes.

We use two complementary experimental settings. First, we emulate [AT] on the complete datasets using a
stop budget of 1400 samples, which reflects a realistic annotation budget in large-scale scenarios. Second,
to analyse the behaviour of performance metrics when the unlabelled dataset is exhausted, we construct a
representative 2 000-sample subset (2k) for each dataset and annotate all samples to observe the effect when
D}, = (. Evaluation is performed on the identical held-out evaluation set Dg for both settings, using the
macro F1 score as the performance metric per iteration to ensure equal class importance.
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4.2 Active Learning Setup

Relevant properties are initial budget |D?|, query size |Q};|, stop budget, type, performance,
and computational requirements. We set |D?| and |Q%| to equal values (2, 20, or 200), ensuring all
classes are represented in |DY | when feasible, to avoid initial class selection by chance. We compare different
stop budgets by treating intermediate iterations as final iteration. We choose basic, state-of-the-art, and
multi-label-specific selecting 5% of the samples randomly to ensure all samples remain eligible for
selection.

« Random sampling as baseline selects samples arbitrarily.

o Ratio max (Monarch, [2021)) is a basic uncertainty sampling that computes an uncertainty
score per class. We select the maximum score per sample, following [Kath et al.| (2024c).

e K-means Clustering (Monarch) 2021) is a basic diversity sampling Following [Kath et al.
(2024al), we reduce embeddings to five dimensions using principal component analysis for improved
performance, set the number of clusters equal to the query size, and select samples closest to each
cluster centroid.

« BADGE (Ash et al., [2020)) is a state-of-the-art that combines uncertainty and diversity sam-
pling. Using hypothetical labels, it leverages the gradient embedding of the model as the sampling
space, selecting a query of samples likely to produce high gradients across diverse neurons.

« BALD (Gal et all 2017) is a state-of-the-art that combines uncertainty sampling and mutual
information, balancing prediction entropy and expected entropy across Monte Carlo samples to select
the most informative samples.

e CRW (Esuli & Sebastiani, [2009)) is a basic multi—label—speciﬁcthat weights class performances
to sample in a round-robin manner, selecting more samples based on the uncertainty score of classes
with low performance.

« BEAL (Wang et all 2024) is a state-of-the-art multi-label-specific that uses Bayesian deep
learning to derive the model’s posterior predictive distribution, and an expected confidence-based
acquisition function to select uncertain samples.

4.3 Models

Relevant model properties are architecture, complexity, and weight initialization. Selected models include
both basic and state-of-the-art variants with varying architectures and complexity:

o wav2vec 2.0 (Baevski et al., |2020) for audio,
o ResNet-50 (He et al., [2016) with ImageNet weights for images,
o« BERT (Devlin et al.l |2019)) for text, and

o a single fully connected layer for tabular data.

We compare three weight initialization strategies: random initialization, self-supervised learning using rota-
tion prediction on Dy, (Gidaris et al., 2018)), and transfer learning.

4.4 Training

Relevant training properties are training paradigms, layer status and hyper-parameters. Selected training
paradigms include supervised learning (SL), SL with data augmentation (tripling |D}~![), and semi-SL with
pseudo-labelling (Lee, [2013)). Initializing transfer learning weights, we compare fine-tuning the last n; layers
(1, 2, 5, or all). Hyper-parameters include binary cross-entropy loss with logistic activation for multi-label
classification, treating each output node as an independent indicator of class presence. Training proceeds for
up to 500 epochs with early stopping triggered from epoch 300 onward, using a minimum delta of 0.1 and a
patience of 10 epochs, with the best weights restored.
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5 Results

Due to the large number of relevant properties, testing all possible combinations is infeasible. Therefore, we
adopt a two-step evaluation strategy. In the first step (Figure 7B), we fix the dataset to MS COCOqy
and the to ratio max, and evaluate the effects of |DY|, |Q};|, training paradigm, weight initialization,
and fine-tuning depth. Each property is varied independently, using the following default configuration:
|DY| = |Q};| = 20, supervised learning, transfer learning weights for initialization, and fine-tuning of the last
layer only. In the second step, we fix these properties to their default values and evaluate across datasets,

models, and stop budgets (Figure 7I).

5.1 Effect of Budget and Training Settings

Figure shows the learning curves (connected), as commonly used in the literature, by varying |D | and
|Q%;|, training paradigm, weight initialization, and fine-tuning depth. At iterations where the training set
is independent of the i.e.7 at t = 0 and when D}, = (- performance remains consistent across |DY|
and |Q};|, but varies with changes to model or training parameters. Performance generally increases over
iterations.

Figure [AB shows the fraction of samples required by a[QM]to match random sampling performance, derived
2am(P) alled the speed-up factor

Trand (p) ’
(connected). It remains stable except when performance is consistently low, such as when fine-tuning all

layers. We note that, for this experimental setup, the speed-up factor exceeds 1, indicating that random
sampling outperforms the The metric remains fully interpretable: for example, a value of 1.1 means
that the requires 10 % more labelled samples to achieve the same performance as random sampling. As
these experiments focus on validating the speed-up factor rather than the superiority of specific such
cases do not compromise the metric’s validity or usefulness.

by inverting the learning curves (connected) in Figure ‘ and computing

5.2 Effect of Datasets, Models, Query Methods, and Stop Budgets

Figure 4IC shows the learning curves (connected) of all on all 2k datasets. While some like BEAL
on MS COCOgyy, clearly outperform others, most performance is not visually distinguishable. Perfor-
mance is consistent across when the training set is independent of the and increases monotonically.

Figure shows the speed-up factor (connected) derived from Figure , exhibiting low volatility across
QMs| and datasets. While the speed-up factor (connected) provides detailed performance insights, it

requires both the |[QM| and random sampling to reach all performance levels to compute %Vp. As
shown in Table [I} most experiments use budget as the stopping criterion. Figure [diG shows learning curves

(connected) on the complete datasets with a stop budget of 1400, where D}, # () and not all reach
maximum performance—e.g., BALD on MS COCO. The speed-up factor (connected) requires annotating the
entire dataset with both and random sampling, making it impractical; therefore, we aim to approximate
its mean value.

Figure shows the model performance for one and random sampling using D} V¢, termed the learning
curve (scatter), and the approximated learning curve p as described in section The speed-up factor S,
computed as in eq. , is shown in the top left of Figure and as a dashed line in Figure , where its
close approximation to S (connected) is visible.

Figure shows the learning curves (scatter) and p for all complete datasets treated as single-class (with
all but one class discarded), illustrating the impact of varying performance on metric stability, shown
in Figure (I

Figure [dF and I show the performance metric changes when varying the stop budget for the and dataset
used in Figure and H, comparing S with the mean of the learning curve (LC mean), area under the
learning curve (AULC) normalized by random sampling, the cut-point method (Pupo et all 2018a)), and
the fixed version of the speed-up factor (Kath et all |2024b). LC mean shows a high volatility across
experiments. AULC (normalized) is stable when performance resembles random sampling performance
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Figure 5: Metric stability comparing the stop budget method and the proposed speed-up factor. Left:
Learning curves for random sampling and k-means on the single-label subset of Reuters-21578 (also shown
in Figure ) Center: Performance decisions over the stop budget using the stop budget method. Right:
Performance decisions over the stop budget using the speed-up factor.

Table 3: Assumption dependence on relevant properties. Check-marks indicate assumptions (A1-.44) hold
despite property variation. Experiment indicate supporting figures.
Variation-Agnostic

Weight Initialisation Fig.
Training Training Paradigm Fig.
Layer Status Fig.

Dimension Property Experiment A1 42 A3 A4
Dataset Label Type Figs. X X v X
Domain Fig. X x Vv
# Classes Fig. X X v X
Class Balance Fig. X x v X
Sample Size Fig. X X v X
Active Initial Budget Fig. v v v Y
Learning Query Size Fig. v v v v
Setup Stop Budget Fig. v v v Y
QM| Type Fig. v v v Y
QM]| Performance Fig. v v v Y
QM| Comp. Req. Fig. v v v Y
Model Architecture Fig. X X v X
Complexity Fig. X x v X
X x v X
X Xx v X
X X v X

(e.g., Reuters-215785), but shows high volatility otherwise (e.g., MS COCOQ). Cut-points either accept or
reject the hypothesis that the significantly outperforms random sampling. This is stable before the
learning curve saturates (e.g., CARInAsy), but it becomes volatile afterwards (e.g., Scene). Both S (fix) and
S show high stability across datasets, with S consistently exhibiting improved stability.

Figure [f] extends the performance stability analysis of the multi-iteration metrics from Figure [@F and I to
the widely used stop budget method. Comparing the learning curves before and after saturation (Figure
left), the stop budget method shows instability after the learning curves saturate (Figure 5] center), whereas
the speed-up factor remains stable throughout the experiment (Figure [5| right).

6 Discussion

We present findings on the three objectives outlined in section [} testing assumptions A41-44, identifying
fixed versus variable properties, and assessing speed-up factor stability.

Results confirm the intuitive claim that performance matches at ¢ = 0 and when D}, = ) across
(Figure ), as the utilized training set remains unchanged—supporting A1 and A2. Our results consistently
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Lgm ((p))
Zrand (P
constant across all p, and Figure @D and E demonstrate that its mean is well approximated by the speed-up

factor, supporting A4. The only exception occurs in Figure[dB, col. 3, where performance remains low across
monitored iterations; Figure @A, col. 4 indicates this low performance likely results from feature distortion
and over-fitting caused by fine-tuning multiple pre-trained layers on small, distant datasets, whereas updating
only the last one or two layers preserves general representations (Kornblith et al., 2019 [Kumar et al., |2022)).

show increasing learning curves, supporting A3. Figure and D show that remains approximately

Our results show that A3 generally holds, whereas A1, A2, and A4 depend on fixing dataset, model, and
training properties, as summarized in Table [3] This implies that comparisons require identical dataset,
model, and training setups, since these factors influence both the initial (A1) and final (A2) performance,
as well as the number of samples each method needs to match random sampling performance (A4). This
dependency is expected, as performance inherently depends on the dataset, model, and training configuration,
and because do not perform equally well across models and tasks (Lowell et al., 2019).

Comparing metric stability under varying stop budgets (see Figure and I) reveals that both the mean
and area under the learning curve are sensitive to performance improvements. The cut-points metric is
stable before learning curve saturation but becomes volatile afterward, as it assumes increasing performance
gaps between contradicting the theoretically and empirically supported assumption 42. The fixed
and proposed speed-up factors exhibit the highest stability, with the proposed method demonstrating overall
superior stability. As expected, using only the final iteration as a performance measure is unstable after the
learning curve saturates (see Figure [5]).

We further evaluated the sensitivity of the speed-up factor to the chosen set of approximation functions
(see appendix [C| for details). Overall, we observe low sensitivity across datasets and Sensitivity
increases for strongly non-monotonic learning curves or when performance remains consistently low until
the final iteration. Based on qualitative analysis, we recommend computing the speed-up factor only when
the learning curve is approximately monotonic and the normalized performance gain m exceeds

approximately 20 %-30 %.

7 Conclusion and Limitations

7.1 Conclusion

This work introduces a quantitative multi-iteration [AT] performance metric, termed the speed-up factor. A
comprehensive literature review shows that most existing [AT] evaluation methods are either quantitative but
limited to a single iteration, or qualitative across iterations. The speed-up factor, derived from a learning
curve approximation based on four assumptions, quantifies the fraction of samples a requires to match
random sampling performance. Experiments validate these assumptions, demonstrate their agnosticism to all
relevant [AT]setup properties, and show that the speed-up factor offers superior stability compared to existing
metrics. Conclusively, the speed-up factor provides a robust, interpretable, and practically meaningful metric
that enables quantitative multi-iteration evaluation of performance.

7.2 Limitations

Limitations of this work include restricting the set of approximation functions to two commonly used func-
tions that cover key families of learning curves. Specifically, p! corresponds to a Weibull curve with shape
parameter k = 1, and p? corresponds to a generalized logistic curve with shape parameter v = 1. Together,
these provide a robust basis for computing the speed-up factor. While additional functions could be con-
sidered, they must satisfy the assumptions A1-.44, which excludes non-monotonic approximations such as
unconstrained polynomials, splines, or neural network regressors.

Another limitation stems from the dependence on A1-A44. While A1 generally holds, A2 may be violated in
online-learning scenarios without a fixed ceiling performance, and A3 or A4 can fail under unstable training,
resulting in non-monotonic or highly noisy learning curves. Because the speed-up factor relies on learning
curves that can be smoothly approximated and are sufficiently monotonic for reliable inversion, strong
fluctuations can cause the metric to become unstable or unreliable. Smoothing or averaging across runs
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can mitigate this issue, but if substantial non-monotonicity persists, we recommend not using the speed-up
factor.

Furthermore, the speed-up factor becomes unreliable when performance remains consistently low. This
occurs in two situations: (1) when the number of labelled samples is very small and performance remains
close to the initial value, making it largely independent of the as stated in A1 (see Figure 3 right); and
(2) when the final-iteration performance remains substantially below the ceiling performance, causing the
learning-curve approximation to be dominated by stochastic variance.

Moreover, this elaboration does not consider computational requirements; an approach to address this is
detailed in appendix [B]
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A Experiments on Multi-Class Datasets

To align with common practice in the literature, we additionally conducted experiments on multi-class
datasets.

A.1 Datasets

Table [ lists selected multi-class datasets varying in domain, number of classes, class balance and size of
Dar.

o UrbanSound8k (Salamon et al.,|2014) is an audio dataset of urban sound categories. We segment
files into 1-second snippets.

o CIFAR-10 (Krizhevskyl |2009)) is an image dataset with common objects.

e AG News (Zhang et all 2015) is a text dataset of news titles and articles. We treat topics as
classes, and concatenate each title with its article.

o Letter Recognition (Slate, [1991)) is a tabular dataset of image attributes with letters (A-Z) as
classes.

Table 4: Multi-class datasets, including name, domain, number of classes (#C), class presence statistics,
and the sizes of the active learning and the evaluation set.
Class pres. [%)]

Dataset Domain #C min max mean |Dar| |Dgl
UrbanSound8k Audio 10 4.3 11.5 100 6971 1761
CIFAR-10 Image 10 10.0 10.0 10.0 50000 10000
AG News Text 4 25.0 25.0 25.0 120000 7600

Letter Recognition Tabular 26 3.7 4.1 3.9 15857 4143

A.2 Experiments

Compared to the multi-label experiments, the multi-class experiments use the same active learning setup
configuration. However, the model configuration differs by employing a softmax activation in the final layer
instead of sigmoid, and training uses categorical cross-entropy loss in place of binary cross-entropy loss.

A.3 Results

Figure [6] shows experimental results on multi-class datasets, applying the two-step evaluation strategy out-
lined in section [l

Results and implications align with those for multi-label datasets discussed in sections [ and [6] with the
difference that multi-class classification is generally easier, as each instance belongs to a single class, simpli-
fying decision boundaries. This leads to faster convergence of the learning curves, as shown in Figure [0,
C, E, G, and H. Even for curves with extended saturation periods, such as CIFAR-10qx in Figure [6IC, the
required sample fraction for a to match random sampling remains approximately constant (Figure @D)7
and the proposed speed-up factor remains stable (Figure @F)
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B Evaluation of Computational Requirements

Computational requirements of a |query method (QM)|are critical in active learning, as they directly impact
the feasibility and efficiency of iterative sample selection in real-world applications. However, Table [I] shows
that these requirements are often overlooked, with only 57 of 306 papers evaluating the processing time
of Since computational requirements are orthogonal to performance, they are not reflected in the
speed-up factor.

B.1 Query Methods

We propose a combined theoretical and empirical evaluation by reporting the complexity of each as a
function of relevant factors (Table [5)) and presenting normalized processing times (Figure E[)

The processing time of a depends on factors such as |Df,|, | D% |, model complexity, number of classes,
data dimensionality, and query size. We propose expressing theoretical complexity based on these depen-
dencies to enable informed, application-specific assessments, as summarized in Table 5} Complementing the
theoretical view, we propose reporting empirical processing times to capture practical efficiency. Figure |Z|
shows normalized processing times for the 2k subset and complete datasets used in this study.

As an example, Table[5]identifies BADGE as the most computationally expensive method, which is confirmed
empirically in Figure |7} The strong dependency on |D};| and nciasses is evident, as processing time decreases
with smaller |D};| (Figure [4]A, C; later iterations) and fewer classes (e.g., Scenegy and Scene).

Table 5: Complexity of query methods (QMs) in dependence of |Df;|, | D} |, model complexity (@), number
of classes, data dimensions, and query size. Degree of dependence: — (none), o(n) (sublinear), O(n) (linear),
and w(n) (superlinear).

IQ_M| IID;] | |IDE | D Nelasses Ndim_data TNquery
random o(n) - - - - o(n)
ratio max o(n) O(n) O(n O(n) O(n) o(n)
k-means  O(n) - - - O(n) O(n)
BADGE w(n) O(n) w(n) w(n) O(n) O(n)
BALD O(n) O(n) O(n) O(n) O(n) o(n)
CRW o(n) O(m) O(n) O(n) O(n) o(n)
BEAL O(n) O(n) O(n) O(n) O(n) o(n)

B.2 Speed-Up Factor

Unlike the speed-up factor does not influence subsequent query selection and therefore only needs to be
computed after the final iteration, where it is used to assess the overall performance of a While it must
still be evaluated by fitting the parameter bqm to the scattered learning curve using nonlinear least squares
(e.g., scipy.optimize.curve_f itED, this computation does not introduce any per-iteration overhead within
the active learning workflow.

The computational complexity of this fitting step depends on the number of parameters 6 of the curve (here,
0 = bym and thus k = || = 1), the number of data points n, and the number of optimization iterations i.
Each iteration computes residuals r; = y; — f(z;,0) and processes the Jacobian matrix, resulting in a total
complexity of O(i - n -k + i - k%), which reduces to O(i - n) for k = 1.

%https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
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Figure 7: Normalized processing time of the active learning experiments, averaged over multiple random
seeds. A) Multi-label 2k datasets, 30 random seeds. B) Multi-label complete datasets, 5 random seeds. C)
Multi-class 2k datasets, 30 random seeds. D) Multi-class complete datasets, 5 random seeds.

C Sensitivity Analysis of the Approximation Functions

To assess the robustness of the speed-up factor S with respect to the choice of approximation function, we
compare the applied functions,

1

)

P = aoo (1 - eao_b%m) and P’ = Qoo =7
14 % (7)

across all datasets and query methods. We compute two sensitivity measures: the relative difference
Arel =2

and the logarithmic difference
Arog = [log(S(p")) — log(S(p%))].

Table |§| reports the quantitative results. Across all experiments on the 2k datasets, both A, and Ay,
remain below 5% (with the exception of BEAL on Scene at 5.97 %), indicating that the speed-up factor is
largely insensitive to the choice of approximation function when the full dataset is annotated. Experiments
on the complete datasets generally show both A.e and Ajyg below 5 %. However, comparing the sensitivity
results with the learning curves shown in Figure G reveals that with pronounced deviations from
monotonic learning curves (e.g., BALD on CARInA) or low final-iteration performance (e.g., BALD on MS
COCO) exhibit increased sensitivity to the choice of approximation function.
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Table 6: Relative (A1) and logarithmic (Ajeg) differences of the speed-up factor S computed using the two
approximation functions p! and p2.

Dataset Dataset Type Query Method S(p*) S(p?) A [%]  Alog [%]
CARInA 2k BADGE 0.97 0.98 0.69 0.69
BALD 1.13 1.10 2.84 2.84

BEAL 1.16 1.13 3.19 3.19

k-means 0.90 0.92 2.59 2.59

CRW 0.91 0.92 1.27 1.27

ratio max 0.95 0.96 1.28 1.28

complete BADGE 0.95 0.96 1.02 1.02

BALD 2.42 2.13 12.44 12.45

BEAL 1.15 1.11 3.95 3.95

k-means 0.88 0.91 3.56 3.56

CRW 0.76 0.80 5.12 5.12

ratio max 0.84 0.87 4.35 4.36

MS COCO 2k BALD 1.26 1.26 0.30 0.30
BEAL 0.84 0.87 3.36 3.36

k-means 0.99 0.99 0.16 0.16

CRW 1.07 1.06 0.22 0.22

ratio max 1.10 1.11 0.84 0.84

complete BALD 2.62 1.78 38.14 38.61

BEAL 0.91 0.93 2.16 2.16

k-means 1.00 1.00 0.11 0.11

CRW 1.08 1.06 2.42 2.42

ratio max 1.17 1.12 4.84 4.84

Reuters-21578 2k BADGE 0.96 0.98 1.71 1.71
BALD 1.09 1.05 3.19 3.19

BEAL 0.93 0.93 0.04 0.04

k-means 0.95 0.95 0.03 0.03

CRW 0.95 0.97 2.77 2.77

ratio max 1.09 1.07 1.71 1.71

complete BADGE 1.00 1.00 0.11 0.11

BALD 1.80 1.23 37.66 38.12

BEAL 0.82 0.91 10.80 10.81

k-means 0.88 0.95 8.04 8.04

CRW 1.48 1.18 22.95 23.05

ratio max 1.58 1.21 26.52 26.68

Scene 2k BADGE 1.02 1.02 0.04 0.04
BALD 0.79 0.80 0.87 0.87

BEAL 0.76 0.81 5.97 5.97

k-means 0.95 0.97 1.57 1.57

CRW 1.09 1.09 0.68 0.68

ratio max 1.04 1.06 2.13 2.13

complete BADGE 1.04 1.03 0.97 0.97

BALD 0.65 0.72 10.80 10.81

BEAL 0.63 0.74 16.62 16.66

k-means 0.91 0.95 4.79 4.79

CRW 1.13 1.09 3.74 3.74

ratio max 0.98 1.02 3.40 3.40
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