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Abstract

Machine learning models excel with abundant annotated data, but annotation is often costly
and time-intensive. Active learning (AL) aims to improve the performance-to-annotation
ratio by using query methods (QMs) to iteratively select the most informative samples.
While AL research focuses mainly on QM development, the evaluation of this iterative pro-
cess lacks appropriate performance metrics. This work reviews eight years of AL evaluation
literature and formally introduces the speed-up factor, a quantitative multi-iteration QM
performance metric that indicates the fraction of samples needed to match random sam-
pling performance. Using four datasets from diverse domains and seven QMs of various
types, we empirically evaluate the speed-up factor and compare it with state-of-the-art AL
performance metrics. The results confirm the assumptions underlying the speed-up factor,
demonstrate its accuracy in capturing the described fraction, and reveal its superior stability
across iterations.

1 Introduction

Machine learning focuses on developing and training models that can identify general patterns from given
data. These models perform exceptionally well when trained on large amounts of annotated data, earning
them the term data hungry Van Der Ploeg et al. (2014). While data collection is straightforward in many
applications, data annotation tends to be time-consuming and costly. Current research aims to maximize
model performance while minimizing human annotation effort.

A leading approach to reducing annotation costs is AL. Instead of randomly selecting unlabelled data samples
for annotation, AL query methods (QMs) choose samples that optimize model performance, improving the
informativeness of the labelled dataset and enabling faster convergence with fewer annotations Settles (2009).
Figure 1 illustrates the AL process from the data perspective. The dataset D is initially divided into the
representative evaluation set DE and the AL set DAL. At iteration t, Dt−1

U and Dt−1
L denote the previous

unlabelled and labelled dataset. (1) A query method QM
(
Dt−1

U ,Dt−1
L , t

)
selects n
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Figure 1: Active learning (AL): The dataset D is split into the evaluation set DE and the AL set DAL.
(1) A query method uses the current unlabelled dataset Dt−1

U and labelled dataset Dt−1
L to query samples

(Qt
U ) from Dt−1

U . (2) Qt
U is labelled (Qt

L) by a human expert. (3) Update datasets: Dt
U = Dt−1

U \ Qt
U and

Dt
L = Dt−1

L ∪Qt
L.
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Table 1: Results of the literature review on active learning evaluation, showing the total number of papers
identified through the selection criteria, those empirically evaluating a query method (QM), introducing a
new QM, evaluating specific criteria, using particular baselines for comparison, and presenting evaluations
in defined formats.

Evaluation Presentation
Evaluation Criteria Baselines On Stopping Criterion On Each Iteration Other

Venue Total Eval
QM

New
QM

Perfor-
mance

Process
Time

Positive
Samples

Random
Sampling

Other
QM(s)

Budget Performance Performance
over Budget

Performance
over Time

Location
Samples

Ablation
Study

AAAI 104 68 62 68 13 2 47 65 35 4 58 2 5 20
CVPR 55 49 44 49 8 3 44 47 35 8 45 0 9 30
ICLR 48 35 33 35 9 0 32 33 21 2 31 0 9 14
ICML 76 44 38 44 4 0 36 42 25 3 40 0 2 2
IJCAI 46 35 34 35 8 0 22 34 15 3 30 0 3 5
NeurIPS 113 70 67 70 14 2 55 63 36 5 62 1 9 23
Other 7 5 2 5 1 0 5 5 2 1 5 0 0 0
Σ 449 306 280 306 57 7 241 289 169 26 271 3 37 94

labelled by human experts and becomesQt
L. (3) Datasets are updated: Dt

U = Dt−1
U \Qt

U and Dt
L = Dt−1

L ∪Qt
L.

The model Φt(Dt
U ,Dt

L) is trained and the performance P t(Φt,DE) on DE is assessed. The next iteration
begins unless a predefined stopping criterion is met. Common stopping criteria include the labelling budget
|Dt

L|, the performance level P t, or the allocated annotation time.

QMs can be categorized into three types of methods: Prediction-based methods utilize model performance to
select the next query, e.g., uncertainty sampling prioritizes samples near the decision boundary. Data-based
methods choose samples based on the internal data structure, e.g., diversity sampling selects queries that
represent the entire input space. Model-based methods focus on changes in the model, e.g., prioritizing
samples with high model influence, irrespective of their labels Tharwat & Schenck (2023). While research
on AL primarily focuses on developing more efficient QMs, relatively little attention has been paid to their
empirical evaluation. QM evaluation is typically conducted by emulating AL: a labelled dataset is used,
with all labels concealed from the model and revealed only when the respective samples are selected by
the QM for annotation. In contrast to most machine learning tasks evaluated on final performance, AL
requires evaluation across multiple iterations. Yet, the literature lacks a quantitative metric that evaluates
QM performance across multiple iterations.

This work introduces the speed-up factor, a quantitative multi-iteration QM performance metric that quan-
tifies the fraction of samples a QM needs to reach random sampling performance. Section 2 provides a
literature review of the past eight years on AL evaluation. Section 3 formally introduces the proposed meth-
ods for AL evaluation. Section 4 outlines the experimental setup for our empirical evaluation. Section 5
describes the experimental results. Section 6 analyzes the results. Section 7 concludes the study.

2 Related Work

We provide a comprehensive overview of empirical query method (QM) evaluation through structured and
unstructured literature reviews, focusing on evaluation criteria, comparison baselines, and result presentation.

The structured literature review covers proceedings from six major artificial intelligence conferences: the
Association for the Advancement of Artificial Intelligence (AAAI), the Conference on Computer Vision
and Pattern Recognition (CVPR), the International Conference on Learning Representations (ICLR), the
International Conference on Machine Learning (ICML), the International Joint Conference on Artificial
Intelligence (IJCAI), and the Conference on Neural Information Processing Systems (NeurIPS). The search
criteria include publications from 2017 to 2024, with the term ‘active learning’ appearing in the title, abstract,
or keywords.

Table 1 summarizes the quantitative findings. The selection includes 449 papers. Excluded papers are those:
focusing on AL-related tasks (49); applying AL without evaluation (37); evaluating AL aspects other than
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QMs (25), e.g., model, complexity, or social factors; evaluating QMs only theoretically (22); not about AL
(8), e.g., mentioning ‘interactive learning’; or surveys of AL (3). A total of 306 papers empirically evaluate
QMs, with 280 introducing a new QM.

2.1 Active Learning Evaluation Trends

Evaluation Criteria. All 306 papers empirically evaluating QMs include performance as an evaluation
criterion, highlighting its central importance in AL. The performance of a single iteration is primarily mea-
sured using accuracy (170), F1 score (44) and mean average precision (30). Additionally, 57 papers evaluate
computational requirements using QM processing time, and 7 papers use the number of positive samples
selected by the QM.

Baselines. The performance of a QM is primarily evaluated by emulating AL and comparing it to baselines,
most frequently random sampling (241).

Evaluation Presentation. Presenting the evaluation results of QM performance is not trivial. QMs aim
to maximize the performance-to-budget ratio. The simplest approach is using either budget or performance as
the stopping criterion and comparing the numerical result for the other variable against baselines in the final
iteration, when the criterion is met. In our literature review, 169 papers compare the final performance using
budget as the stopping criterion, while 26 papers compare the final budget using performance as the stopping
criterion. While it is straightforward to present evaluations for the final iteration, there are significant caveats
to this approach: The stopping criterion varies by setup, making QM results highly dependent on when AL
is stopped. Performance differences between QMs change over iterations and generally decrease in later
iterations as all QMs converge to the same performance level. Thus, focusing solely on results from a single
iteration fails to adequately represent the overall process. A more comprehensive approach is to present
the performance for each iteration. The most common method, used in 271 papers, is to present a learning
curve that plots performance or loss against the size of the labelled dataset. Learning curve evaluation
is performed qualitatively through visual inspection. While effective for a few clearly separated curves,
visual inspection lacks quantitative, comprehensible results and poses challenges when comparing multiple
QMs across different datasets Pupo et al. (2018a). Another qualitative method, used in 37 papers, involves
visualizing the locations of selected samples from a QMs in latent space, using dimensionality reduction
techniques such as t-SNE or UMAP. Another quantitative method, used in 94 papers, involves evaluating
specific components of a QM in isolated environments through ablation studies.

2.2 Active Learning Evaluation Methods

Single-Iteration Evaluation. Research on enhancing empirical QM evaluation primarily focuses on
single-iteration assessments, presented either quantitatively for a single, typically the final, iteration or
qualitatively as a learning curve. This research can be categorized into the development of new metrics,
methods, or frameworks for improving empirical QM evaluation. Metric development aims to design metrics
that more effectively capture QM performance than traditional measures such as accuracy or F1 score. Day-
oub et al. (2017) introduce the efficiency score, defined as the ratio of test accuracy to budget size, to identify
the most efficient budget size for annotation. Shi et al. (2021) introduce the label-wise average precision
improvement, defined as the difference between the average precision of the QM and the baseline, divided
by the average precision of the baseline. Rather than introducing a new performance metric, five papers
in our literature review (e.g., Hartford et al. (2020); Kim et al. (2021)) present the percentage performance
improvements of QMs over random sampling, instead of presenting metric values as learning curves. Method
development aims to enhance the validity of the evaluation process. Kong et al. (2022) argue that due to the
abundance of large unlabelled datasets in AL scenarios, evaluation should be compared to semi-supervised
learning, which incorporates both labelled and unlabelled data, rather than to supervised learning. Other
papers use statistical significance tests, such as the t-test Hu & Zhang (2018); Mohamadi et al. (2022) or
the Mann-Whitney U-test Bullard et al. (2019) to evaluate the significance of performance differences be-
tween QMs. Framework development aims to provide clear guidelines for the comprehensive, quantitative,
and reproducible derivation of results. By reimplementing AL experiments, Munjal et al. (2022) find that
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reliable empirical QM evaluation requires repeating experiments under varying training settings (e.g., model
architecture, budget size), incorporating regularization techniques, and tuning hyper-parameters at each
iteration. Building on this, Lüth et al. (2023) propose an evaluation framework that suggests assessing
QMs across various datasets, including imbalanced ones, with different initial budgets and query sizes. The
framework suggests tuning hyper-parameters on the starting budget and keeping them fixed, since grid-search
fine-tuning at each iteration, as proposed by Munjal et al. (2022), is impractical due to high computational
requirements. The framework additionally evaluates QMs against self-supervised learning, semi-supervised
learning, and their combinations with QMs.

Multi-Iteration Evaluation. Riis et al. (2022) highlight the lack of a metric to assess QM performance
across iterations, without offering a solution. Simple approaches for quantitative metrics that cover multiple
iterations include averaging the learning curve Tang & Huang (2022); Gao et al. (2018) and calculating
the area under the learning curve Cawley (2011); Pupo et al. (2018b); Pupo & Ventura (2018). Pupo et al.
(2018a) observe that these metrics neglect crucial information about intermediate results and proposes a more
sophisticated evaluation method. Based on the assumption that the performance difference between two QMs
ideally increases over successive iterations, this difference is calculated for each iteration (termed cut-point),
and the iterations are ranked according to the magnitude of this difference. A QM is considered superior if
a statistically significant correlation exists between the obtained ranking and the ideal descending ranking.
While these metrics quantify results across multiple iterations, Kath et al. (2024b) highlight their high
sensitivity to the number of evaluated iterations. Once the saturation point is reached, performance tends to
stabilize. Subsequent iterations continuously equalize and increase both the mean value and the area under
the learning curve for different QMs, and also randomize the ranking of performance differences, resulting in
low stability of the metrics when evaluated across different iteration numbers. Without presenting theoretical
or empirical validation, Kath et al. (2024b) use a metric similar to the speed-up factor to evaluate AL
performance on bioacoustic data. Using the approximation function p̂(x) = a

(
1− e− x

b

)
, where p̂ represents

the performance, a the ceiling performance (computed using all samples for training), and x the number of
labelled training samples, the scaling parameter b is fitted to the scatter points of the experimental results
using least squares. After fitting the results of a QM and of the random sampling baseline, bqm

brand
denotes the

fraction of samples the QM requires to match the performance of random sampling.

2.3 Motivation for a new Active Learning Metric

Summarizing the trends in our literature review, the empirical evaluation of QMs primarily focuses on
the performance criterion, presented either through quantitative results of a single iteration, which fail to
reliably represent the overall process, or through qualitative visual inspections of learning curves across
iterations, which lack quantitative and comprehensible results. While metrics such as accuracy, F1 score,
and mean average precision effectively capture a model’s performance for a single iteration, the field of
active learning lacks a comprehensive metric for quantitatively comparing results across multiple iterations.
Empirical evaluation of a QM typically involves comparing its performance against baselines, predominantly
using random sampling. The speed-up factor is a quantitative performance metric for evaluating QMs over
multiple iterations, indicating the fraction of samples required to match random sampling performance. It
generalizes the metric used by Kath et al. (2024b) to various types of learning curves by employing a pool
of approximation functions and provides comprehensive theoretical and empirical evidence supporting its
suitability as an AL performance metric.

3 Methods

The performance of a machine learning model trained on a labelled dataset of a given size can be effectively
represented by various performance metrics, e.g. accuracy. During the AL process, the size of the labelled
dataset increases iteratively, resulting in a performance value for each iteration. QM performance is typically
visualized by plotting the performance values against the labelling budget for each iteration, as shown in
figure 2. Although the data points are discrete, they are commonly visualized as a continuous graph by
approximating them through direct point connection—referred to here as the learning curve (connected)—as
seen in, e.g., Dayoub et al. (2017); Gao et al. (2018); Hartford et al. (2020); Hu & Zhang (2018); Bullard
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Figure 2: Learning curve schematic for random sampling and active learning (AL) showing scatter points,
approximation by direct connection, and approximation by using p̂qm(x) = a∞

(
1− e

a0− x
bqm

)
with a∞ = 0.9,

a0 = −0.2, brand = 600 and bAL = 150.

et al. (2019); Cawley (2011). This paper introduces a novel method to approximate the learning curve,
enabling the derivation of quantitative results. Our method is grounded on four assumptions:

A1: t = 0 =⇒ pqm(x(t)) = c1, ∀qm ∈ QM, c1 ∈ [0, 1]

A2: Dt
U = ∅ =⇒ pqm(x(t)) = c2, ∀qm ∈ QM, c2 ∈ [0, 1]

A3: pqm(x(t)) > pqm(x(t− 1)),∀qm ∈ QM, t ∈ {1, 2, ..., tmax}

A4: xqm(p)
xrand(p) ≈ c3,qm, ∀qm ∈ QM, ∀p ∈ P

A1 states that the performance of the initial iteration is the same for all QMs. A2 states that the performance
is the same for all QMs if the unlabelled dataset is empty. Before starting the AL process (t = 0) and when
DAL is completely labelled (Dt

U = ∅), the composition of Dt
L is independent of the QM. This results in

identical trained models and, consequently, the same performance. A3 states that the learning curve is
strictly monotonically increasing. While several factors may cause deviations from this strict monotonicity,
the error introduced by this assumption is minimal, as model performance generally improves with the
addition of training data. A4 states that the ratio of samples required to achieve a certain performance with
a QM, compared to random sampling, is approximately constant across performance levels. This is based on
the intuition that the information content of queries selected by a QM remains constant. While this trend
is observable in the literature, e.g., Kath et al. (2024c); Rakesh & Jain (2021); Cai et al. (2021), it is not
explicitly discussed. Sections 4 to 6 empirically evaluate A1–A4.

Instead of connecting the data points to create the learning curve, we propose to approximate it using a
function p̂qm(x) = p̂( x

bqm
), where x is the number of training samples added to D0

L, bqm is a QM-specific
parameter controlling the curve shape, p̂ is an approximation function and p̂qm(x) is the approximated
performance value (see figure 2). To satisfy A1–A4, p̂ must be independent of bqm and in the range [0, 1]
for x = 0 (A1), have a constant asymptote for limx→∞ in range [0, 1] (A2), and be strictly monotonically
increasing (A3). Since x is always divided by bqm, A4 is inherently satisfied. This follows directly from the
definition of the speed-up factor S, which represents the fraction of samples required by a QM to achieve
the same model performance as when using random sampling (p̂qm = p̂rand).

S = xqm

xrand
= p̂−1(p̂qm) · bqm

p̂−1(p̂rand) · brand
= bqm

brand
= const. (1)

Considering these restrictions, p̂ can be freely selected based on the experimental setup. The following
experiments use a pool of the two most frequently used performance approximation functions Viering &
Loog (2023):

p̂1 = a∞

(
1− e

a0− x
bqm

)
and p̂2 = a∞

1

1 + e
a0−

(
x

bqm

) .
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Given 1 experimental setup and the results of nQM QMs, a∞ is set to the average model performance across
QMs when all samples are used for training, and a0,p̂1 and a0,p̂2 are derived from the results of the initial
iteration (x = 0). Since the learning curve reflects QM performance and D0

L consists of samples selected
randomly or from prior annotation sessions, equal across QMs, the x-axis of the learning curve presents the
number of added training samples with x = |Dt

L|−|D0
L|. Using least squares, bqm,p̂1 and bqm,p̂2 are estimated

for all QMs. The root mean square error (RMSE) between each QM result and the approximations p̂1
qm and

p̂2
qm is computed and averaged across QMs. The approximation function p̂ that minimizes the RMSE is then

selected to approximate AL performance.

4 Experiments

The experiments have three objectives: (1) validate the four assumptions A1–A4 underlying the speed-up
factor (see section 3); (2) identify which properties must be fixed and which may vary for valid use of
the speed-up factor, based on whether A1–A4 are agnostic to them. We extend the framework of Lüth
et al. (2023) (see section 2.2), varying dataset, AL setup, model, and training properties—detailed in the
remainder of this section; and (3) evaluate the stability and robustness of the speed-up factor across diverse
settings. All results are averaged over multiple random seeds.

4.1 Datasets

Relevant dataset properties are label type, domain, number of classes, class balance, and size of DAL. As
label type we choose multi-label datasets, since they are standard in real-world scenarios and generalize
multi-class datasets, which in turn extend single-class datasets. Additional results on multi-class datasets
are provided in appendix A. Table 2 lists selected datasets varying in domain, number of classes, class
balance, and size of DAL.

• CARInA Kath et al. (2022) is an audio dataset derived from read German Wikipedia articles. We
use the Complete subset, treat phonemes as classes, segment files into 1-second snippets, and ensure
no speaker overlap between DAL and DE .

• MS COCO Lin et al. (2014) is an image dataset with common objects.

• Reuters-21578 Lewis (1997) is a text dataset of news titles and articles. We treat topics as classes,
and concatenate each title with its article.

• Scene Boutell et al. (2004) is a tabular dataset of image attributes with landscapes as classes.

We emulate AL on the complete datasets with a stop budget of 1 400 samples and additionally create a rep-
resentative 2 000-sample subset (2k), annotating all samples to observe the effect when Dt

U = ∅. Evaluation
is performed on DE , identical for both 2k and complete datasets and excluded from training. The macro F1
score is used as the performance metric per iteration to ensure equal class importance.

Table 2: Multi-label datasets, including name, domain, number of classes (#C), class presence statistics,
and the sizes of the active learning and the evaluation set.

Class pres. [%]
Dataset Domain #C min max mean |DAL| |DE|
CARInA Audio 37 5.3 73.1 26.6 78 931 19 732
MS COCO Image 80 0.2 54.2 3.6 94 504 23 783
Reuters Text 31 0.3 22.2 2.2 37 896 15 675
Scene Tabular 6 15.1 22.1 17.9 1 927 480
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4.2 Active Learning Setup

Relevant AL properties are initial budget |D0
L|, query size |Qt

U |, stop budget, QM type, QM performance,
and QM computational requirements. We set |D0

L| and |Qt
U | to equal values (2, 20, or 200), ensuring all

classes are represented in |D0
L| when feasible, to avoid initial class selection by chance. We compare different

stop budgets by treating intermediate iterations as final iteration. We choose basic, state-of-the-art, and
multi-label-specific QMs, selecting 5 % of the samples randomly to ensure all samples remain eligible for
selection.

• Random sampling as baseline selects samples arbitrarily.

• Ratio max Monarch (2021) is a basic uncertainty sampling QM that computes an uncertainty score
per class. We select the maximum score per sample, following Kath et al. (2024c).

• K-means Clustering Monarch (2021) is a basic diversity sampling QM. Following Kath
et al. (2024a), we reduce embeddings to five dimensions using principal component analysis for
improved performance, set the number of clusters equal to the query size, and select samples closest
to each cluster centroid.

• BADGE Ash et al. (2020) is a state-of-the-art QM that combines uncertainty and diversity sam-
pling. Using hypothetical labels, it leverages the gradient embedding of the model as the sampling
space, selecting a query of samples likely to produce high gradients across diverse neurons.

• BALD Gal et al. (2017) is a state-of-the-art QM that combines uncertainty sampling and mutual
information, balancing prediction entropy and expected entropy across Monte Carlo samples to select
the most informative samples.

• CRW Esuli & Sebastiani (2009) is a basic multi-label-specific QM that weights class performances
to sample in a round-robin manner, selecting more samples based on the uncertainty score of classes
with low performance.

• BEAL Wang et al. (2024) is a state-of-the-art multi-label-specific QM that uses Bayesian deep
learning to derive the model’s posterior predictive distribution, and an expected confidence-based
acquisition function to select uncertain samples.

4.3 Models

Relevant model properties are architecture, complexity, and weight initialization. Selected models include
both basic and state-of-the-art variants with varying architectures and complexity:

• wav2vec 2.0 Baevski et al. (2020) for audio,

• ResNet-50 He et al. (2016) with ImageNet weights for images,

• BERT Devlin et al. (2019) for text, and

• a single fully connected layer for tabular data.

We compare three weight initialization strategies: random initialization, self-supervised learning using rota-
tion prediction on DAL Gidaris et al. (2018), and transfer learning.

4.4 Training

Relevant training properties are training paradigms, layer status and hyper-parameters. Selected training
paradigms include supervised learning (SL), SL with data augmentation (tripling |Dt−1

L |), and semi-SL with
pseudo-labelling Lee (2013). Initializing transfer learning weights, we compare fine-tuning the last nl layers
(1, 2, 5, or all). Hyper-parameters include binary cross-entropy loss with logistic activation for multi-label
classification, treating each output node as an independent indicator of class presence. Training proceeds for
up to 500 epochs with early stopping triggered from epoch 300 onward, using a minimum delta of 0.1 and a
patience of 10 epochs, with the best weights restored.
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5 Results

Due to the large number of relevant properties, testing all possible combinations is infeasible. Therefore,
we adopt a two-step evaluation strategy. In the first step (figure 3A–B), we fix the dataset to MS COCO2k
and the QM to ratio max, and evaluate the effects of |D0

L|, |Qt
U |, training paradigm, weight initialization,

and fine-tuning depth. Each property is varied independently, using the following default configuration:
|D0

L| = |Qt
U | = 20, supervised learning, transfer learning weights for initialization, and fine-tuning of the last

layer only. In the second step, we fix these properties to their default values and evaluate across datasets,
models, QMs, and stop budgets (figure 3C–I).

Figure 3A shows the learning curves (connected), as commonly used in the literature, by varying |D0
L|

and |Qt
U |, training paradigm, weight initialization, and fine-tuning depth. At iterations where the training

set is independent of the QM—i.e., at t = 0 and when Dt
U = ∅—performance remains consistent across

|D0
L| and |Qt

U |, but varies with changes to model or training parameters. Performance generally increases
over iterations. Figure 3B shows the fraction of samples required by a QM to match random sampling
performance, derived by inverting the learning curves (connected) in figure 3A and computing xqm(p)

xrand(p) ,
called the speed-up factor (connected). It remains stable except when performance is consistently low, such
as when fine-tuning all layers. Figure 3C shows the learning curves (connected) of all QMs on all 2k datasets.
While some QMs, like BEAL on MS COCO2k, clearly outperform others, most QMs’s performance is not
visually distinguishable. Performance is consistent across QMs when the training set is independent of the
QM and increases monotonically. Figure 3D shows the speed-up factor (connected) derived from figure 3C,
exhibiting low volatility across QMs and datasets. While the speed-up factor (connected) provides detailed
QM performance insights, it requires both the QM and random sampling to reach all performance levels to
compute xqm(p)

xrand(p)∀p. As shown in table 1, most experiments use budget as the stopping criterion. Figure 3G
shows learning curves (connected) on complete datasets with a stop budget of 1400, where Dt

U ̸= ∅ and not
all QMs reach maximum performance—e.g., BALD on MS COCO. The speed-up factor (connected) requires
annotating the entire dataset with both QM and random sampling, making it impractical; therefore, we aim
to approximate its mean value. Figure 3E shows the model performance for one QM and random sampling
using Dt

L∀t, termed the learning curve (scatter), and the approximated learning curve p̂ as described in
section 3. The speed-up factor S, computed as in eq. (1), is shown in the top left of figure 3E and as a
dashed line in figure 3D, where its close approximation to S (connected) is visible.

Figure 3H shows the learning curves (scatter) and p̂ for all complete datasets treated as single-class (with
all but one class discarded), illustrating the impact of varying QM performance on metric stability, shown
in figure 3I. Figure 3F and I show the performance metric changes when varying the stop budget for the
QM and dataset used in figure 3E and H, comparing S with the mean of the learning curve (LC mean), area
under the learning curve (AULC) normalized by random sampling, the cut-point method Pupo et al. (2018a),
and the fixed version of the speed-up factor Kath et al. (2024b). LC mean shows a high volatility across
experiments. AULC (normalized) is stable when QM performance resembles random sampling performance
(e.g., Reuters-215782k), but shows high volatility otherwise (e.g., MS COCO). Cut-points either accept or
reject the hypothesis that the QM significantly outperforms random sampling. This is stable before the
learning curve saturates (e.g., CARInA2k), but it becomes volatile afterwards (e.g., Scene). Both S (fix) and
S show high stability across datasets, with S consistently exhibiting improved stability.

6 Discussion

We present findings on the three objectives outlined in section 4: testing assumptions A1–A4, identifying
fixed versus variable properties, and assessing speed-up factor stability.

Results confirm the intuitive claim that performance matches at t = 0 and when Dt
U = ∅ across QMs

(figure 3C), as the utilized training set remains unchanged—supporting A1 and A2. Our results consistently
show increasing learning curves, supporting A3. Figure 3B and D show that xqm(p)

xrand(p) remains approximately
constant across all p, and figure 3D and E demonstrate that its mean is well approximated by the speed-up
factor, supporting A4. The only exception occurs in figure 3B, col. 3, where performance remains low across
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Figure 3: Empirical active learning (AL) results. ‘Performance’ refers to macro F1 score. Using multiple
random seeds, µ denotes the mean, σ the standard deviation and SEM the standart error of the mean.
A–B: Results on MS COCO2k, all classes, QM: ratio max, 5 random seeds. A) Learning curve (connected),
µ ± SEM. B) Speed-up factor (connected), µ. C–F: Results on 2k datasets, all classes, 30 random seeds.
C) Learning curve (connected), all QMs, µ± σ. D) Speed-up factor (connected), all QMs, µ. E) Learning
curve (scatter + p̂ fit), single QM, µ ± σ. F) AL Performance metric stability, single QM, µ. G–I: Results
on complete datasets, 5 random seeds. G) Learning curve (connected), all classes, all QMs, µ ± SEM. H)
Learning curve (scatter + p̂ fit), single class, single QM, µ±SEM. I) AL Performance metric stability, single
class (same as in H), single QM, µ. 9
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Variation-Agnostic
Dimension Property Experiment A1 A2 A3 A4
Dataset Label Type Figs. 3 and 4 ✗ ✗ ✓ ✗

Domain Fig. 3C–I ✗ ✗ ✓ ✗
# Classes Fig. 3C–I ✗ ✗ ✓ ✗
Class Balance Fig. 3C–I ✗ ✗ ✓ ✗
Sample Size Fig. 3C–I ✗ ✗ ✓ ✗

Active Initial Budget Fig. 3A–B ✓ ✓ ✓ ✓
Learning Query Size Fig. 3A–B ✓ ✓ ✓ ✓
Setup Stop Budget Fig. 3F&I ✓ ✓ ✓ ✓

QM Type Fig. 3C–I ✓ ✓ ✓ ✓
QM Performance Fig. 3C–I ✓ ✓ ✓ ✓
QM Comp. Req. Fig. 5 ✓ ✓ ✓ ✓

Model Architecture Fig. 3C–I ✗ ✗ ✓ ✗
Complexity Fig. 3C–I ✗ ✗ ✓ ✗
Weight Initialisation Fig. 3A–B ✗ ✗ ✓ ✗

Training Training Paradigm Fig. 3A–B ✗ ✗ ✓ ✗
Layer Status Fig. 3A–B ✗ ✗ ✓ ✗

Table 3: Assumption dependence on relevant properties. Check-marks indicate assumptions (A1–A4) hold
despite property variation. Experiment indicate supporting figures.

monitored iterations; figure 3A, col. 4 indicates this low performance likely results from feature distortion and
over-fitting caused by fine-tuning multiple pre-trained layers on small, distant datasets, whereas updating
only the last one or two layers preserves general representations Kornblith et al. (2019); Kumar et al. (2022).

Our results show that A3 generally holds, while A1, A2, and A4 require fixing dataset, model, and training
properties, as summarized in table 3.

Comparing metric stability under varying stop budgets (see figure 3F and I) reveals that both the mean
and area under the learning curve are sensitive to performance improvements. The cut-points metric is
stable before learning curve saturation but becomes volatile afterward, as it assumes increasing performance
gaps between QMs, contradicting the theoretically and empirically supported assumption A2. The fixed
and proposed speed-up factors exhibit the highest stability, with the proposed method demonstrating overall
superior stability.

7 Conclusion and Limitations

This work introduces a quantitative multi-iteration AL performance metric, termed the speed-up factor. A
comprehensive literature review shows that most existing AL evaluation methods are either quantitative but
limited to a single iteration, or qualitative across iterations. The speed-up factor, derived from a learning
curve approximation based on four assumptions, quantifies the fraction of samples a QM requires to match
random sampling performance. Experiments validate these assumptions, demonstrate their agnosticism to all
relevant AL setup properties, and show that the speed-up factor offers superior stability compared to existing
metrics. Conclusively, the speed-up factor provides a robust, interpretable, and practically meaningful metric
that enables quantitative multi-iteration evaluation of QM performance.

Limitations of this work include restricting approximation functions to the two most common forms, though
others can be incorporated if they meet the criteria in section 3. Furthermore, the speed-up factor cannot
be reliably computed when performance remains consistently low across iterations. Moreover, it does not
consider computational requirements; an approach to address this is detailed in appendix B.

10
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A Experiments on Multi-Class Datasets

To align with common practice in the literature, we additionally conducted experiments on multi-class
datasets.

A.1 Datasets

Table 4 lists selected multi-class datasets varying in domain, number of classes, class balance and size of
DAL.

• UrbanSound8k Salamon et al. (2014) is an audio dataset of urban sound categories. We segment
files into 1-second snippets.

• CIFAR-10 Krizhevsky (2009) is an image dataset with common objects.

• AG News Zhang et al. (2015) is a text dataset of news titles and articles. We treat topics as classes,
and concatenate each title with its article.

• Letter Recognition Slate (1991) is a tabular dataset of image attributes with letters (A–Z) as
classes.

Table 4: Multi-class datasets, including name, domain, number of classes (#C), class presence statistics,
and the sizes of the active learning and the evaluation set.

Class pres. [%]
Dataset Domain #C min max mean |DAL| |DE|
UrbanSound8k Audio 10 4.3 11.5 10.0 6 971 1 761
CIFAR-10 Image 10 10.0 10.0 10.0 50 000 10 000
AG News Text 4 25.0 25.0 25.0 120 000 7 600
Letter Recognition Tabular 26 3.7 4.1 3.9 15 857 4 143

A.2 Experiments

Compared to the multi-label experiments, the multi-class experiments use the same active learning setup
configuration. However, the model configuration differs by employing a softmax activation in the final layer
instead of sigmoid, and training uses categorical cross-entropy loss in place of binary cross-entropy loss.

A.3 Results

Figure 4 shows experimental results on multi-class datasets, applying the two-step evaluation strategy out-
lined in section 5.

Results and implications align with those for multi-label datasets discussed in sections 5 and 6, with the
difference that multi-class classification is generally easier, as each instance belongs to a single class, simpli-
fying decision boundaries. This leads to faster convergence of the learning curves, as shown in figure 4A,
C, E, G, and H. Even for curves with extended saturation periods, such as CIFAR-102k in figure 4C, the
required sample fraction for a QM to match random sampling remains approximately constant (figure 4D),
and the proposed speed-up factor remains stable (figure 4F).
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Figure 4: Empirical active learning (AL) results. ‘Performance’ refers to macro F1 score. Using multiple
random seeds, µ denotes the mean, σ the standard deviation and SEM the standart error of the mean.
A–B: Results on CIFAR-102k, all classes, QM: ratio max, 5 random seeds. A) Learning curve (connected),
µ ± SEM. B) Speed-up factor (connected), µ. C–F: Results on 2k datasets, all classes, 30 random seeds.
C) Learning curve (connected), all QMs, µ± σ. D) Speed-up factor (connected), all QMs, µ. E) Learning
curve (scatter + p̂ fit), single QM, µ ± σ. F) AL Performance metric stability, single QM, µ. G–I: Results
on complete datasets, all classes, 5 random seeds. G) Learning curve (connected), all QMs, µ ± SEM. H)
Learning curve (scatter + p̂ fit), single QM, µ± SEM. I) AL Performance metric stability, single QM, µ.
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B Evaluation of Computational Requirements

Computational requirements of a query method (QM) are critical in active learning, as they directly impact
the feasibility and efficiency of iterative sample selection in real-world applications. However, Table 1 shows
that these requirements are often overlooked, with only 57 of 306 papers evaluating the processing time of
QMs. Since computational requirements are orthogonal to performance, they are not reflected in the speed-
up factor. Instead, we propose a combined theoretical and empirical evaluation by reporting the complexity
of each QM as a function of relevant factors (table 5) and presenting normalized processing times (figure 5).

The processing time of a QM depends on factors such as |Dt
U |, |Dt

L|, model complexity, number of classes,
data dimensionality, and query size. We propose expressing theoretical complexity based on these depen-
dencies to enable informed, application-specific assessments, as summarized in table 5. Complementing the
theoretical view, we propose reporting empirical processing times to capture practical efficiency. Figure 5
shows normalized processing times for the 2k subset and complete datasets used in this study.

As an example, table 5 identifies BADGE as the most computationally expensive method, which is confirmed
empirically in figure 5. The strong dependency on |Dt

U | and nclasses is evident, as processing time decreases
with smaller |Dt

U | (figure 3A, C; later iterations) and fewer classes (e.g., Scene2k and Scene).

Table 5: Complexity of query methods (QMs) in dependence of |Dt
U |, |Dt

L|, model complexity (Φ), number
of classes, data dimensions, and query size. Degree of dependence: – (none), o(n) (sublinear), O(n) (linear),
and ω(n) (superlinear).

QM |Dt
U | |Dt

L| Φ nclasses ndim_data nquery

random o(n) – – – – o(n)
ratio max o(n) O(n) O(n) O(n) O(n) o(n)
k-means O(n) – – – O(n) O(n)
BADGE ω(n) O(n) ω(n) ω(n) O(n) O(n)
BALD O(n) O(n) O(n) O(n) O(n) o(n)
CRW o(n) O(n) O(n) O(n) O(n) o(n)
BEAL O(n) O(n) O(n) O(n) O(n) o(n)
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Figure 5: Normalized processing time of the active learning experiments, averaged over multiple random
seeds. A) Multi-label 2k datasets, 30 random seeds. B) Multi-label complete datasets, 5 random seeds. C)
Multi-class 2k datasets, 30 random seeds. D) Multi-class complete datasets, 5 random seeds.
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