

000 LEARNAT: LEARNING NL2SQL WITH AST-GUIDED 001 TASK DECOMPOSITION FOR LARGE LANGUAGE MOD- 002 ELS 003

004 **Anonymous authors**
 005 Paper under double-blind review
 006

010 ABSTRACT 011

012 Natural Language to SQL (NL2SQL) aims to translate natural language queries
 013 into executable SQL statements, offering non-expert users intuitive access to
 014 databases. While recent approaches leveraging large-scale private LLMs such
 015 as GPT-4 have achieved state-of-the-art results, they face two critical challenges:
 016 the lack of openness and reproducibility, and the prohibitive computational cost of
 017 test-time scaling. To address these issues, we explore improving the model-level
 018 performance of small-scale public LLMs in NL2SQL under resource-constrained
 019 settings. Our exploratory experiments reveal the potential of task decomposition
 020 for enhancing NL2SQL performance, but also highlight the difficulty of enabling
 021 LLMs to decompose queries effectively. Motivated by these findings, we propose
 022 LearNAT, a novel framework designed to enhance LLMs' decomposition capa-
 023 bilities. LearNAT introduces (1) a Decomposition Synthesis Procedure, which
 024 leverages AST-guided search with pruning strategies to generate verifiable and ef-
 025 ficient decompositions, and (2) Margin-Aware Reinforcement Learning, which
 026 provides fine-grained preference optimization for multi-step reasoning beyond
 027 standard DPO. Extensive experiments on benchmark datasets demonstrate that
 028 LearNAT significantly improves the performance of small-scale LLMs, achiev-
 029 ing results comparable to GPT-4 with only a 7B parameter model. These results
 030 validate the effectiveness of verifiable decomposition and fine-grained preference
 031 learning in advancing NL2SQL towards openness, transparency, and efficiency.
 032 Our code is publicly available at <https://anonymous.4open.science/r/LearNAT>.
 033

034 1 INTRODUCTION 035

036 Natural Language to SQL (NL2SQL) (Kim et al., 2020) is a fundamental task that seeks to automati-
 037 cally translate natural language queries into executable SQL statements (Zhang et al., 2024; Huang
 038 et al., 2025). This task has garnered substantial research interest owing to its potential to democratize
 039 database access, thereby enabling users without SQL expertise to query and interact with databases
 040 through natural language. In recent years, large language models (LLMs) (Lin et al., 2025), such as
 041 OpenAI's GPT-4, have achieved state-of-the-art performance on widely adopted NL2SQL bench-
 042 marks, including Spider (Yu et al., 2018) and BIRD (Li et al., 2023b). These approaches predom-
 043 inantly rely on large-scale proprietary LLMs, such as GPT-4 (Talaei et al., 2024; Lee et al., 2025;
 044 Wang et al., 2025) and Gemini (Pourreza et al., 2024), and often employ sophisticated prompt
 045 engineering techniques (Wei et al., 2022). Moreover, they leverage the test-time scaling law of LLMs
 046 to generate **system-level** outputs (as defined in Appendix G.1). Despite their effectiveness, this line
 047 of research encounters two critical challenges. First, the dependence on proprietary LLMs raises
 048 pressing concerns regarding openness, reproducibility, and data privacy. Second, the application
 049 of the test-time scaling law substantially increases computational overhead, which is particularly
 050 prohibitive in the context of large-scale LLMs. Consequently, this study emphasizes *enhancing the*
 051 *model-level performance* (as defined in Appendix G.1) *of small-scale public LLMs, with the over-*
 052 *arching goal of fostering greater openness, transparency, and efficiency in NL2SQL under resource-*
 053 *constrained deployment scenarios.*

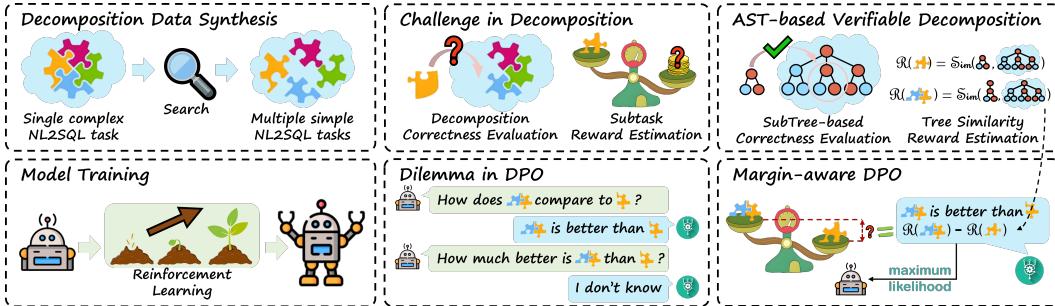


Figure 1: Overview of LearNAT. To address the challenges in decomposition data synthesis, LearNAT introduces a *Decomposition Synthesis Procedure* that enables AST-based verifiable decomposition. Furthermore, to overcome the limitation of DPO in capturing differences among subtask preferences during training, LearNAT proposes a *Margin-Aware Reinforcement Learning*, which leverages subtask-level rewards generated during the decomposition process to facilitate fine-grained and dynamic preference learning.

To improve the performance of small-scale public LLMs, prior research has explored strategies such as pre-training (Li et al., 2024b) and post-training (Yang et al., 2024b) to equip LLMs with domain-specific knowledge. However, NL2SQL tasks pose unique challenges. Natural language queries frequently encompass multiple objectives, which may be explicit (directly corresponding to query results) or implicit (e.g., conditions for filtering results), and these objectives are not always directly aligned with the underlying database schema. Such characteristics render it particularly **difficult for LLMs to effectively address complex NL2SQL tasks in a single step**. A promising direction, therefore, lies in decomposing complex NL2SQL problems into a sequence of simpler subproblems, thereby alleviating overall solution complexity.

To preliminarily validate this hypothesis, we conducted extensive exploratory experiments. These experiments yielded two key observations: (1) When subtasks are manually provided to the LLM, performance improves substantially (30.4%↑), underscoring the **potential of task decomposition** in enhancing NL2SQL performance. In contrast, when the LLM is responsible for decomposing complex queries on its own, the performance gains are marginal (3.4%↑), highlighting the need to **strengthen the task decomposition capabilities** of LLMs for NL2SQL. (2) We further investigated two feasible decomposition strategies: (i) AST-based decomposition with semantic verification and (ii) search-based decomposition with AST verification. Experimental results reveal that while the AST-based approach is computationally more efficient, it frequently introduces errors in the generated subtasks and fails to achieve precise semantic validation. Conversely, the search-based approach, though more complex, leverages AST-based verification to yield more stable and accurate task decomposition and translation. Collectively, these findings highlight the **critical importance of verifiable decomposition**.

Motivated by the above insights, we propose LearNAT (Learning NL2SQL with AST-guided Task Decomposition), a framework designed to enhance the decomposition capability of LLMs for complex NL2SQL tasks. It introduces two core components:

- **Decomposition Synthesis Procedure:** This verifiable decomposition component employs a search-based strategy, such as Monte Carlo Tree Search (MCTS), to generate subtasks for NL2SQL decomposition. Existing LLM-MCTS hybrid methods typically rely on heuristic evaluation, where the LLM itself estimates node rewards to guide the search. However, even advanced models such as GPT-4 achieve only 46.35% accuracy on benchmarks like BIRD, limiting the reliability of such self-evaluation strategies. Moreover, the vast search space inherent in text-based MCTS introduces inefficiencies and computational overhead. To mitigate these challenges, we leverage abstract syntax trees (ASTs) to guide the search and implement pruning strategies, thereby substantially improving both efficiency and the success rate of generating valid decompositions.
- **Margin-Aware Reinforcement Learning:** This component enhances LLMs' decomposition capabilities through reinforcement learning techniques, such as Direct Preference Optimization (DPO) (Rafailov et al., 2023). Standard DPO algorithms struggle with fine-grained supervision in multi-step reasoning tasks, as they treat all positive and negative steps equally. To overcome this

108 limitation, we propose an AST-based margin-aware DPO framework that differentiates between
 109 varying levels of step correctness, enabling more precise optimization.
 110

111 Our main contributions can be summarized as follows:

112 1. **Conceptually**, we tackle the critical challenge of enabling LLMs to comprehend users’ high-
 113 level semantics and map them to database schemas for complex NL2SQL queries. To this end,
 114 we propose LearNAT, the first framework to improve LLM performance on NL2SQL tasks by
 115 explicitly leveraging task decomposition.

116 2. **Methodologically**, we introduce the *Decomposition Synthesis Procedure*, which provides a ver-
 117 ifiable and efficient decomposition mechanism that assesses both subtask correctness and overall
 118 task progress via ASTs, and *Margin-Aware Reinforcement Learning*, which enables fine-grained
 119 preference learning tailored to multi-step reasoning.

120 3. **Empirically**, through extensive experiments on two NL2SQL benchmark datasets, we demon-
 121 strate that LearNAT substantially outperforms existing approaches, achieving performance on
 122 par with GPT-4 while using a 7B-parameter model. These results underscore the effectiveness of
 123 task decomposition strategies in addressing the inherent challenges of complex NL2SQL tasks.

125 2 MOTIVATION FROM PRELIMINARY EXPERIMENTS

126 **Motivation for Task Decomposition.** In this empirical study, we conduct a detailed investigation
 127 to examine whether task decomposition benefits LLMs in the NL2SQL task and further explore
 128 the bottlenecks of decomposition-based NL2SQL approaches. Specifically, we randomly selected
 129 500 examples from the BIRD-train (Li et al., 2023b) set and evaluated Qwen2.5-coder-32B (Yang
 130 et al., 2024a) under three experimental settings: (1) directly prompting Qwen2.5-coder-32B to solve
 131 the NL2SQL tasks without decomposition; (2) manually decomposing complex NL2SQL tasks into
 132 simpler subtasks and then prompting Qwen2.5-coder-32B to solve them; (3) using a prompting-
 133 based method to guide Qwen2.5-coder-32B to first decompose complex NL2SQL tasks into simpler
 134 subtasks and then solve these subtasks sequentially. The experimental results are provided in Ap-
 135 pendix Fig. 6.

136 The results reveal a striking contrast: when LLMs are guided with manually crafted subtask de-
 137 compositions, their performance improves significantly—for instance, by 30.4%↑. However, when
 138 relying on LLMs to autonomously decompose tasks, the improvement is modest, with gains of only
 139 around 3.4%↑.

140 We posit the following: complex NL2SQL tasks can be effectively decoupled into two distinct sub-
 141 problems: **high-level task decomposition** and **low-level NL2SQL translation**. The former involves
 142 breaking down a complex user query into a sequence of simpler, manageable subtasks, a process
 143 that often demands substantial reasoning capabilities. The latter focuses on directly translating these
 144 simplified natural language inputs into their corresponding SQL queries. Owing to extensive pre-
 145 training, LLMs generally excel at low-level NL2SQL translation. However, they are far less profi-
 146 cient at complex task decomposition, as they often lack the deep reasoning and planning abilities
 147 required to deconstruct intricate problems into logical steps.

148 Based on these findings, we derive our first key observation:

149 **Observation I:** *Task decomposition holds substantial promise for enhancing the NL2SQL capabili-
 150 ties of LLMs. Nevertheless, the limited ability of LLMs to perform effective task decomposi-
 151 tion autonomously constitutes a major bottleneck to the practical deployment of decomposition-based
 152 NL2SQL techniques.*

153 **Motivation for Verifiable Decomposition.** A critical challenge in leveraging task decomposition
 154 to enhance NL2SQL performance in LLMs lies in **how to derive a sequence of simpler subtasks
 155 from a complex NL2SQL query**. To address this issue, we explored a straightforward hypothetical
 156 solution in our preliminary experiments. Specifically, as illustrated in Appendix Fig. 7 (a), we
 157 decomposed the ground-truth SQL corresponding to a complex natural language query into several
 158 simpler sub-SQL queries based on its abstract syntax tree (AST). We then employed an LLM to
 159 translate these sub-SQLs into natural language subtasks, treating them as the subtask sequence for
 160 the original query. However, this approach introduces a new challenge: owing to the hallucination
 161

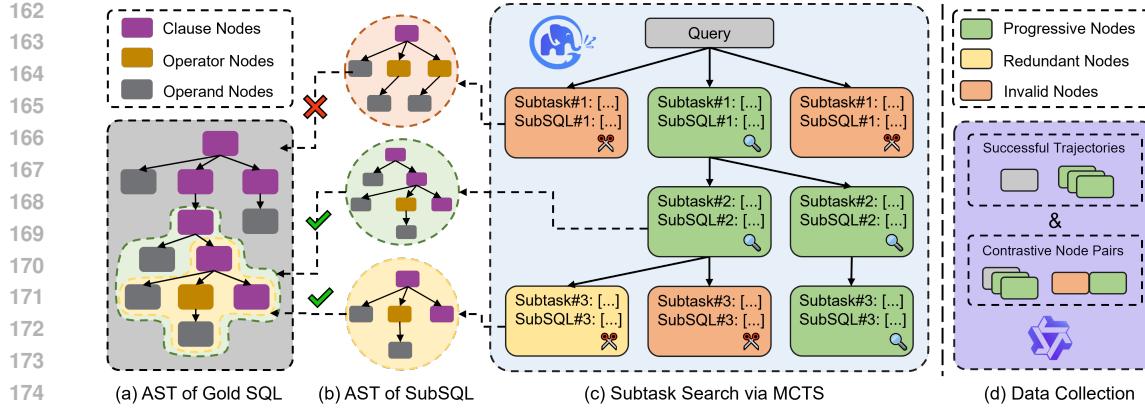


Figure 2: Framework of the *Decomposition Synthesis Procedure*. (c) illustrates how the LLM, combined with MCTS, performs next-step prediction to synthesize subtasks of complex NL2SQL tasks. (b) presents the AST of the SQL statements corresponding to each synthesized subtask in (c). (a) shows the AST of the Gold SQL for the complex NL2SQL task, which guides the MCTS in (c) to perform more efficient search, including pruning and node reward estimation. (d) depicts the data collected by LearNAT during the *Decomposition Synthesis Procedure*, comprising successful trajectories data for supervised fine-tuning and step-wise contrastive node pairs data for preference learning. Under the default settings of LearNAT, GLM-4-Plus is used to synthesize decomposition data, and the Qwen2.5-Coder model is fine-tuned.

tendencies of LLMs, the translation process from sub-SQLs to subtasks may introduce latent errors. This raises a crucial question—**how can we verify the correctness of the generated subtasks?**

We attempted to directly use language models, such as Sentence-Transformer and GLM-4, to determine whether the generated subtasks were correct based on semantic similarity. However, these approaches achieved only 46.8% and 36.0% accuracy, respectively (see Appendix Table 5), indicating that verifying the correctness of subtasks is far from straightforward. The language models frequently misjudged cases involving subtle semantic differences. For example, if the gold SQL query targeted a user’s name while the generated subtask query instead targeted the user’s ID, GLM-4 often incorrectly deemed the subtask to be correct. This motivates our second key observation:

Observation II: Subtasks generated by large language models are often unreliable, thereby necessitating a verifiable task decomposition procedure.

Summary. Building on the above observations, our objective is to develop a verifiable task decomposition framework and leverage reinforcement learning to strengthen the decomposition capabilities of LLMs in NL2SQL. To this end, we propose LearNAT, which consists of two key components: (1) a *Decomposition Synthesis Procedure* that generates candidate subtask sequences via search-based decomposition and evaluates their correctness using AST-based validation (see Appendix Fig. 7 (b), addressing **Observation II**); and (2) a *Margin-Aware Reinforcement Learning* framework that enhances LLMs’ task decomposition ability by incorporating step-level task awareness, thereby improving overall NL2SQL performance (addressing **Observation I**).

3 METHODOLOGY

In this section, we present the methodology of LearNAT. First, LearNAT employs the *Decomposition Synthesis Procedure* for generating training data in offline reinforcement learning. Then, it utilizes *Margin-aware Reinforcement Learning* for model fine-tuning. For friendly reading, we provide preliminary knowledge and relevant notation tables for NL2SQL, AST, MCTS, and DPO in the Appendix. B.

3.1 DECOMPOSITION SYNTHESIS PROCEDURE

Problem Formulation. Let $\{q_1, q_2, \dots, q_n\}$ denote a sequence of subtask queries, where n represents the number of subtasks and each q_i represents a natural language query that captures a

component of the original query Q . For each subtask query q_i , *Decomposition Synthesis Procedure* generates a corresponding SQL query y_i . The objective is to find a sequence of subtask queries such that their corresponding SQL queries collectively construct the target SQL query Y .

MCTS-based Decomposition. *Decomposition Synthesis Procedure* formulates the decomposition process as a tree search problem, and performs next-step prediction as action a in each state s . In the Monte Carlo Tree, the root node represents the original query Q , each non-root node represents the state of executing the next subtask, and each path from root node to a leaf node represents a decomposition sequence.

At each state in MCTS, the *Decomposition Synthesis Procedure* employs an LLM to generate the next subtask q_i and sub-SQL y_i . Formally, each state $s_i = \{q_i, y_i, \mathcal{AT}(y_i), \mathcal{AT}_{\text{sum}}(y_i), \mathcal{R}(s_i)\}$, where $\mathcal{AT}(y_i)$ is the AST of y_i , $\mathcal{AT}_{\text{sum}}(y_i)$ is the merged AST summarizing all nodes from root to node s_i in MCTS, and $\mathcal{R}(s_i)$ is the reward estimation of s_i . The $\mathcal{AT}_{\text{sum}}(y_i)$ is mathematically defined as follows:

$$\mathcal{AT}_{\text{sum}}(y_i) = (\mathcal{N}_{\text{sum}}, \mathcal{E}_{\text{sum}}), \quad (1)$$

$$\mathcal{N}_{\text{sum}} = \bigcup_{j=1}^i \mathcal{N}(\mathcal{AT}(y_j)), \mathcal{E}_{\text{sum}} = \bigcup_{j=1}^i \mathcal{E}(\mathcal{AT}(y_j)). \quad (2)$$

Node Classification. *Decomposition Synthesis Procedure* classify nodes into three categories based on their AST properties for subsequent prune strategy:

- **Progressive Nodes:** Nodes where $\mathcal{AT}(y_i)$ is a subtree of $\mathcal{AT}(Y)$ and $\mathcal{AT}(y_i)$ is not a subtree of $\mathcal{AT}_{\text{sum}}(y_{\text{parent}(i)})$. These nodes contribute new information toward the target SQL. For two ASTs $\mathcal{AT}_1 = (\mathcal{N}_1, \mathcal{E}_1)$ and $\mathcal{AT}_2 = (\mathcal{N}_2, \mathcal{E}_2)$, We define the subtree relationship as follows:

$$\text{isSubtree}(\mathcal{AT}_1, \mathcal{AT}_2) = \begin{cases} 1, & \text{if } \mathcal{N}_1 \subseteq \mathcal{N}_2 \text{ and } \mathcal{E}_1 \subseteq \mathcal{E}_2 \\ 0, & \text{otherwise} \end{cases}. \quad (3)$$

- **Redundant Nodes:** Nodes where $\mathcal{AT}(y_i)$ is a subtree of $\mathcal{AT}(Y)$ but is also a subtree of $\mathcal{AT}_{\text{sum}}(y_{\text{parent}(i)})$. These nodes provide no additional reward to the decomposition.
- **Invalid Nodes:** Nodes where $\mathcal{AT}(y_i)$ is not a subtree of $\mathcal{AT}(Y)$. These nodes represent incorrect decompositions.

Prune Strategy. In traditional MCTS, since the typical scenario involves robotic task execution, $\mathcal{A}(s)$ is generally defined as a finite action set, such as pick up, put down, etc. However, in the application of LLMs, $\mathcal{A}(s)$ is usually an infinite action set. This is because LLMs generate actions in the form of text, meaning that even the same subSQL can be expressed as multiple different subtask (action) variations. To reduce the search space of MCTS and improve search efficiency, *Decomposition Synthesis Procedure* adopts a pruning strategy. Specifically, since the subtask sequence collected by the *Decomposition Synthesis Procedure* corresponds to the action sequence along the path from the root node to a leaf node in MCTS, redundant actions and invalid actions along the path do not need to be included in the subtask list. Therefore, for states containing redundant or invalid actions, the *Decomposition Synthesis Procedure* terminates further action searches to perform pruning.

Reward Estimation. In MCTS, it is necessary to estimate $Q(s, a)$ for each state to provide state rewards, thereby guiding the direction of subsequent searches. In general mathematical domains, existing works typically employ either LLM-based self-evaluation or an additional reward model trained for state reward estimation. In this work, the *Decomposition Synthesis Procedure* further leverages information from the AST and designs a rule-based approach to evaluate the state reward.

Since states with redundant actions and invalid actions are pruned, to improve efficiency, reward estimation is only performed for states with progressive actions. Specifically, *Decomposition Synthesis Procedure* estimates the reward of the current state based on the similarity between $\mathcal{AT}(Y)$ and $\mathcal{AT}_{\text{sum}}(y_i)$ at the current state.

$$\mathcal{R}(s_i) = \text{sim}(\mathcal{AT}_{\text{sum}}(y_i), \mathcal{AT}(Y)), \quad (4)$$

270 where $\text{sim}(\cdot, \cdot)$ denotes the AST similarity measure.
 271

272 *Decomposition Synthesis Procedure* defines two types of AST similarity, including node-level simi-
 273 larity sim_{node} and structural similarity $\text{sim}_{\text{struct}}$:

275
$$\mathcal{R}(s_i) = \alpha \cdot \text{sim}_{\text{node}}(\mathcal{AT}_{\text{sum}}(y_i), \mathcal{AT}(Y)) + (1 - \alpha) \cdot \text{sim}_{\text{struct}}(\mathcal{AT}_{\text{sum}}(y_i), \mathcal{AT}(Y)), \quad (5)$$

 276

277 where α are adjustment factors for the two types of AST similarity. Node-level similarity is defined
 278 by the degree of node overlap, while structural similarity is measured using the tree edit distance, a
 279 detailed description is provided in Appendix. C.

280 **Self-improvement Demonstration.** To improve the success rate of decomposition, *Decomposition*
 281 *Synthesis Procedure* employs few-shot learning and adopts adaptive demonstrations from the pre-
 282 vious round. Specifically, it constructs a demonstration pool, which consists of samples that were
 283 successfully decomposed in the previous $i - 1$ rounds. Given a new task decomposition query, the
 284 procedure computes the AST similarity between the query and each query in the demonstration pool.
 285 It then selects the top-3 most similar queries as demonstrations to be included in the prompt.

286 **Data Collection.** During the search process, *Decomposition Synthesis Procedure* collect two types
 287 of data for subsequent offline reinforcement learning:

- 288 • **Successful Trajectories:** Sequences of $\{(q_1, y_1), \dots, (q_n, y_n)\}$ that successfully decompose the
 289 target SQL, used for supervised fine-tuning.
- 290 • **Contrastive Node Pairs:** Pairs of incorrect node (q_i^l, y_i^l) and their corresponding correct node
 291 (q_i^w, y_i^w) , used for preference learning.

293 3.2 MARGIN-AWARE REINFORCEMENT LEARNING

295 LearNAT propose a *Margin-aware Reinforcement Learning* framework to train the LLM for de-
 296 composing complex NL2SQL tasks into simpler subtasks. The framework consists of two phases.
 297 First, *Margin-aware Reinforcement Learning* fine-tunes the LLM in a supervised manner based on
 298 correct decomposition trajectories, enhancing the model’s ability to perform task decomposition
 299 and generate the correct output format. Then, *Margin-aware Reinforcement Learning* conducts di-
 300 rect preference optimization (DPO) with AST margin on the LLM using contrastive node pairs,
 301 suppressing incorrect subtask outputs and achieving finer-grained preference alignment.

302 **Warm-up Strategy for Foundational Skill Acquisition.** Given the training data from
 303 *Decomposition Synthesis Procedure*, *Margin-aware Reinforcement Learning* first performs
 304 supervised fine-tuning on successful decomposition trajectories. In a training instance
 305 $(Q, \mathcal{DB}, \mathcal{K}, \{(q_1, y_1), \dots, (q_n, y_n)\})$, *Decomposition Synthesis Procedure* treats $[Q, \mathcal{DB}, \mathcal{K}]$ as the
 306 prompt x and $\{(q_1, y_1), \dots, (q_n, y_n)\}$ as the target response t , so the supervised fine-tuning objec-
 307 tive is to minimize the log-likelihood loss:

308
$$\mathcal{L}_{\text{SFT}} = \mathbb{E}_{(\mathbf{x}, \mathbf{t})} \left[\sum_{i=1}^I \log p_{\theta}(t_i \mid \mathbf{t}_{1:i-1}, \mathbf{x}) \right], \quad (6)$$

 309

310 where θ represents the fine-tuned LLM parameters, and $p_{\theta}(\mathbf{t} \mid \mathbf{x}) = \prod_{i=1}^I p_{\theta}(t_i \mid \mathbf{t}_{<i}, \mathbf{x})$ is the
 311 conditional probability distribution of target subtask & subSQL sequence t given prompt x . I is the
 312 sequence length of t , and i is the auto-aggressive decoding step.

313 **DPO with AST Margin.** A phenomenon of pessimism suggests that the positive feedback pro-
 314 vided by SFT alone cannot prevent LLMs from generating erroneous reasoning pathways. Existing
 315 works Rafailov et al. (2023) indicates that, during the SFT phase, as the probability of preferred
 316 outputs (correct responses) increases, the probability of dispreferred outputs (incorrect responses)
 317 rises as well. *Margin-aware Reinforcement Learning* employs DPO to suppress incorrect subtask
 318 outputs. Specifically, a training instance takes the form of $(Q, \mathcal{DB}, \mathcal{K}, \{(q_1, y_1), \dots, (q_{i-1}, y_{i-1})\},$
 319 $(q_i^w, y_i^w), (q_i^l, y_i^l))$, *Margin-aware Reinforcement Learning* treats $[Q, \mathcal{DB}, \mathcal{K}, \{(q_1, y_1), \dots, (q_{i-1},$
 320 $y_{i-1})\}]$ as the prompt x , (q_i^w, y_i^w) as the prefer response, (q_i^l, y_i^l) as the disprefer response, and
 321 optimizes θ using DPO loss (see Eq. 13).

324
 325 Table 1: Results of *Decomposition Synthesis Procedure*. The de-
 326 composition success rate and token consumption on BIRD-train
 327 are reported.

328 Methods	329 Success Rate	330 Token Cost
331 CoT	332 59.07%	333 16,735K
334 MCTS	335 71.55%	336 334,694K
337 + AST Guide	338 78.01%	339 133,877K
340 + Self-improvement Demonstration	341 (1 round)	342 79.33%
		343 137,456K
	(2 round)	344 79.73%
		345 142,017K
	(3 round)	346 80.00%
		347 145,977K

348 To enable finer-grained preference learning, *Margin-aware Reinforcement Learning* incorporates
 349 an offset into the DPO loss to measure the reward margin between positive and negative samples.
 350 The margin is directly computed using reward estimation based on AST similarity, eliminating the
 351 need for training an additional reward model. Specifically, *Margin-aware Reinforcement Learning*
 352 estimates the reward margin between two samples as follows:

$$353 \text{margin}((q_i^w, y_i^w), (q_i^l, y_i^l)) = \mathcal{R}(s_i^w) - \mathcal{R}(s_i^l). \quad (7)$$

354 Finally, the loss of DPO with AST Margin is formulated as follows:

$$355 \mathcal{L}_{\text{MDPO}}(\pi_\theta; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} [\log \sigma(\hat{r}_\theta(x, y_w) - \hat{r}_\theta(x, y_l) - \Delta_r)], \quad (8)$$

356 where $\Delta_r = \text{margin}((q_i^w, y_i^w), (q_i^l, y_i^l))$ is the offset, measuring the reward margin between positive
 357 and negative samples. The AST margin effectively guides the model to learn not only which de-
 358 composition steps are preferred, but also how much they are preferred, leading to more nuanced and
 359 effective multi-step reasoning capabilities.

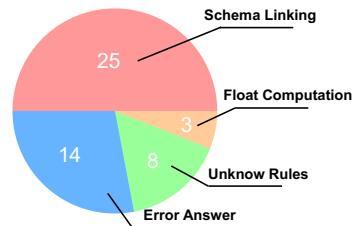
360 4 EXPERIMENTS

361 4.1 EXPERIMENTAL SETUP

362 **Datasets.** We use the BIRD-train dataset (Li et al., 2023b) to synthesize decomposition data for
 363 complex NL2SQL tasks within the *Decomposition Synthesis Procedure*, which is subsequently em-
 364 ployed for *Margin-Aware Reinforcement Learning*. Then, we utilize BIRD-dev (Li et al., 2023b)
 365 (In-Domain) and Spider-dev (Yu et al., 2018) (Out-of-Domain) to evaluate the effectiveness and ro-
 366 bustness of LearNAT. Notably, the databases and user questions in the training and test sets differ
 367 completely. A detailed introduction to the datasets and their statistical information is provided in
 368 Appendix D.

369 **Evaluation Metrics.** Since the SQL expression styles generated by LLMs may differ from the
 370 ground truth in NL2SQL benchmarks (Shin et al., 2021), traditional string-based evaluation metrics,
 371 such as Exact Match Accuracy (Yu et al., 2018), are not suitable for our study. Therefore, following
 372 prior works (Liu et al., 2023; Rajkumar et al., 2022; Fan et al., 2024a), we adopt the Execution
 373 Accuracy (EX) metric, which evaluates the correctness of generated SQL queries by comparing their
 374 execution results with those of the corresponding ground-truth queries retrieved from the database.
 375 For additional experimental details, please refer to Appendix F.1.

376 **Baselines.** In this experiment, we compare two types of baselines, including 8 system-level ap-
 377 proaches and 7 model-level approaches. A detailed introduction to the baseline models and their
 378 statistical information is provided in Appendix E. We consider two complementary evaluation
 379 strategies—*Competition on the Public Leaderboard* and *Comparison under Identical Evaluation
 380 Protocol*—to comprehensively assess the superior performance of LearNAT.



381 Figure 3: Error distributions of
 382 *Decomposition Synthesis Proce-
 383 dure* on randomly selected 50 er-
 384 ror cases from the BIRD-train.

378 **Table 2:** Performance comparison on Spider-dev and Bird-dev benchmarks. All baseline results are
 379 taken directly from the performance reported on Leaderboard. **Bold** indicates the best result, while
 380 underline denotes the second-best results achieved by LearNAT.

382 <i>Methods</i>	383 <i>Venue</i>	384 <i>LLMs</i>	385 <i>BIRD-dev (In-Domain)</i>				386 <i>Spider-dev (Out-of-Domain)</i>					
			387 <i>Simple</i>	388 <i>Moderate</i>	389 <i>Challenging</i>	390 <i>Total</i>	391 <i>Easy</i>	392 <i>Medium</i>	393 <i>Hard</i>	394 <i>Extra Hard</i>	395 <i>Total</i>	
<i>System-Level</i>												
C3-SQL		GPT-4	58.9	38.5	31.9	50.2	92.7	85.2	77.6	62.0	82.0	
DIN-SQL	NeruIPS'23	GPT-4				50.7	91.1	79.8	64.9	43.4	74.2	
MetaSQL	ICDE'24	GPT-4					91.1	74.7	64.1	36.1	69.6	
MAG-SQL		GPT-4				57.6					85.3	
SuperSQL	VLDB'24	GPT-4	65.9	46.2	41.0							
MAC-SQL	COLING'25	GPT-4	66.9	46.5	43.8	58.5	94.4	91.3	83.3	68.7	87.0	
			65.7	52.7	40.3	59.4					86.7	
<i>Model-Level</i>												
ACT-SQL	EMNLP'23	GPT-4					91.1	79.4	67.8	44.0	74.5	
CatSQL	VLDB'23	N/A					95.8	88.3	74.7	62.7	83.7	
DAIL-SQL	VLDB'24	GPT-4	62.5	43.2	37.5	54.3	90.3	81.8	66.1	50.6	76.2	
SENSE	ACL'24	CodeLLaMA-13B					55.5	95.2	88.6	75.9	60.3	83.5
Codes	SIGMOD'24	CodeS-7B	64.6	46.9	40.3	57.0	94.8	91.0	75.3	66.9	85.4	
		CodeS-15B	65.8	48.8	42.4	58.5	95.6	90.4	78.2	61.4	84.9	
<i>Ours</i>												
LearNAT			Qwen2.5-Coder-7B	65.4	48.4	42.4	58.1	95.2	92.4	76.4	67.5	86.4
			Qwen2.5-Coder-14B	68.5	51.4	45.8	61.2	95.6	<u>91.5</u>	80.5	<u>68.7</u>	86.9
			Qwen2.5-Coder-32B	70.7	55.5	59.0	65.0	96.4	92.4	85.1	69.3	88.4

396 4.2 EXPERIMENTAL RESULTS

397 **Results of Decomposition Synthesis Procedure.** We evaluated the decomposition performance of
 398 the *Decomposition Synthesis Procedure* on BIRD-train and compared it with several baseline de-
 399 composition algorithms, including CoT and naive MCTS. The experimental results are shown in Ta-
 400 ble. 1. The results indicate that the *Decomposition Synthesis Procedure* achieved an 80.00% decom-
 401 position success rate, outperforming CoT and naive MCTS by $20.93\% \uparrow$ and $8.45\% \uparrow$, respectively.
 402 Additionally, it is noteworthy that MCTS generated a large number of invalid searches, leading to
 403 excessive token consumption. In contrast, our proposed *Decomposition Synthesis Procedure* uti-
 404 lizes AST-guided pruning, enabling high-performance and low-cost ($56.38\% \downarrow$) decomposition syn-
 405 thesis. We further tested the performance of self-improving demonstrations over multiple rounds.
 406 The results show that adaptive demonstrations significantly improve model performance ($1.99\% \uparrow$).
 407 However, this strategy also has inherent limitations. Table. 1 reveals that self-improving demon-
 408 strations achieved notable performance gains in the first round ($1.32\% \uparrow$), but in the subsequent two
 409 rounds, the decomposition performance began to diminish (only $0.4\% \uparrow$ and $0.27\% \uparrow$). Therefore, to
 410 minimize token consumption, we did not proceed with a fourth round of decomposition.

411 To further investigate the reasons for the failure of the *Decomposition Synthesis Procedure* in certain
 412 cases, we randomly selected 50 unsuccessful cases for error analysis. The error distribution is shown
 413 in Fig. 3. We analyze these errors one by one by presenting typical cases for each of the four error
 414 attributions in Appendix. F.2.

415 **Competition on the Public Leaderboard.** We evaluate LearNAT on Spider-dev¹ and BIRD-dev²
 416 benchmarks. To further assess LearNAT’s robustness, we fine-tune Qwen2.5-Coder models with
 417 7B, 14B, and 32B parameters. Additionally, we compare LearNAT against recent competitive
 418 baselines from the past two years on leaderboard. The results are presented in Table. 2.

419 Compared with system-level methods, LearNAT—even with only a 7B model—already outper-
 420 forms most approaches, although these approaches leverage larger-scale models such as GPT-3.5
 421 or GPT-4 as backbone LLMs. For example, on the Spider-dev dataset, LearNAT (7B) achieves an
 422 overall accuracy of 86.4%, outperforming eight baseline methods and ranking just behind MAC-
 423 SQL and SuperSQL. The larger variant, LearNAT (32B), reaches 88.4% overall accuracy, surpass-
 424 ing all listed system-level approaches and outperforming the second-best method, SuperSQL, by
 425 $1.4\% \uparrow$. Similar trends are observed on the BIRD-Dev dataset. It is worth noting that although
 426 LearNAT (7B) performs slightly worse than MAC-SQL and SuperSQL, both of these belong to the
 427 system-level category. They involve more complex NL2SQL pipelines, including generating multi-
 428 ple candidates, SQL refinement, and consistency checks, which typically incur high token overhead.
 429 In contrast, LearNAT (7B), as a model-level method, generates the final SQL in a single forward

430 ¹<https://yale-lily.github.io/spider>

²<https://bird-bench.github.io/>

432 Table 3: Performance comparison of LearNAT and competitive literature under identical evaluation
 433 protocol. **Bold** indicates the better result.

435 <i>Methods</i>	436 <i>Evaluation Protocol</i>	437 <i>LLMs</i>	438 <i>BIRD-dev (In-Domain)</i>				439 <i>Spider-dev (Out-of-Domain)</i>				440 <i>Total</i>		
			<i>Simple</i>	<i>Moderate</i>	<i>Challenging</i>	<i>Total</i>	<i>Easy</i>	<i>Medium</i>	<i>Hard</i>	<i>Extra Hard</i>			
441 <i>SynCoT</i> 442 <i>LearNAT</i>	443 <i>SynCoT</i>	444 <i>Qwen2.5-7B-Instruct</i>	445 67.6	446 48.0	447 45.8	448 59.6	449 91.9	450 91.0	451 71.3	452 63.9	453 78.9	454 67.1	
		455 <i>Qwen2.5-Coder-7B</i>	456	457	458	459	460	461	462	463	464		
465 <i>OmniSQL</i> 466 <i>LearNAT</i>	467 <i>OmniSQL</i>	468 <i>Qwen2.5-7B-Instruct</i>	469 68.2	470 50.3	471 50.7	472 63.9	473 61.1	474 96.0	475 91.5	476 77.6	477 65.1	478 81.2	479 70.9
		480 <i>Qwen2.5-7B-Instruct</i>	481	482	483	484	485	486	487	488	489	490 86.0	491 71.1
492 <i>SQL-o1</i> 493 <i>LearNAT</i>	494 <i>SQL-o1</i>	495 <i>Llama3-8B</i>	496 71.8	497 52.3	498 45.2	499 63.4	500 94.4	501 93.0	502 81.0	503 68.7	504 87.4	505 73.1	
		506 <i>Qwen2.5-Coder-7B</i>	507 72.5	508 54.2	509 49.3	510 64.8	511 96.4	512 94.8	513 78.2	514 74.1	515 89.1	516 74.6	
517 <i>Alpha-SQL</i> 518 <i>LearNAT</i>	519 <i>Alpha-SQL</i>	520 <i>Qwen2.5-Coder-7B</i>	521 72.6	522 59.3	523 53.1	524 66.8	525 94.0	526 89.2	527 76.4	528 63.3	529 84.0	530 73.7	
		531 <i>Qwen2.5-Coder-7B</i>	532 74.4	533 61.5	534 52.8	535 68.4	536 97.2	537 96.0	538 80.5	539 77.1	540 90.6	541 77.4	

442
 443 pass without requiring additional token consumption. While maintaining the efficiency of model-
 444 level generation, it not only outperforms all other model-level baselines but also exceeds several
 445 system-level methods. This highlights LearNAT’s superior trade-off between performance and to-
 446 ken cost.

447 Compared to model-level methods, LearNAT demonstrates a more significant performance advan-
 448 tage. Among the fine-tuning-based approaches mentioned, the most competitive is CodeS, therefore
 449 we evaluate both the 7B and 15B versions of CodeS. Experimental results show that LearNAT (7B)
 450 achieves a 1.0%↑ on Spider-dev and a 1.1%↑ on BIRD-dev over CodeS (7B). Similarly, LearNAT
 451 (14B) outperforms CodeS (15B) by a 2.0%↑ on Spider-dev and a 2.7%↑ on Spider-dev. This indi-
 452 cates that LearNAT maintains a performance advantage across different model sizes.

453 **Comparison under Identical Evaluation Protocol.** We further compare the performance of
 454 LearNAT with a wider range of competitive prior works, including SynCoT (Liu et al., 2025),
 455 SQL-o1 (Lyu et al., 2025), Alpha-SQL (Li et al., 2025a), and OmniSQL (Li et al., 2025b). Because
 456 these baselines employ different evaluation protocols. For example, SynCoT triggers multi-step rea-
 457 soning during inference, while SQL-o1 and Alpha-SQL perform MCTS-based search at inference
 458 time to generate additional candidate SQLs. We adopt the checkpoints of LearNAT and evaluate it
 459 under the same protocols as these baselines to ensure a fairer comparison. The experimental results
 460 are presented in Table. 3. The results show that LearNAT consistently surpasses SynCoT, SQL-o1,
 461 and Alpha-SQL, and although its performance on the BIRD dataset is slightly lower than OmniSQL,
 462 LearNAT achieves superior overall performance across both Spider and BIRD.

463 Notably, the overall performance of LearNAT can be further improved if additional search is intro-
 464 duced during inference. For example, when applying the inference-time search strategy of Alpha-
 465 SQL, LearNAT’s performance on the BIRD dataset increases from 58.1% to 68.4%. However, we
 466 also note a significant concern: the token consumption during inference rises sharply, from 1.8K
 467 tokens per query to 204.5k³ tokens per query.

468 Both LearNAT and OmniSQL optimize NL2SQL performance by constructing synthetic datasets.
 469 However, OmniSQL focuses on synthesizing a much larger training dataset with 2.5M queries,
 470 whereas LearNAT emphasizes constructing training data with verifiable intermediate subtasks,
 471 improving data quality without increasing data quantity. Specifically, since LearNAT generates
 472 subtask data based on BIRD-Train, the resulting training set contains only 7.2k queries.

473 **Ablation Study.** We evaluate the necessity of each component in LearNAT by systematically
 474 removing individual components and assessing the model’s performance. We use Qwen2.5-Coder-
 475 7B as the backbone LLM and conduct evaluations on Spider-dev and BIRD-dev. The results are
 476 summarized in Table. 4. Experimental results show that removing or replacing any single component
 477 leads to a decline in model performance. A detailed analysis of these experiments can be found in
 478 Appendix. F.3.

480 5 LIMITATIONS, FUTURE WORK, AND CONCLUSION

481
 482 **Rooted in Model-Level Research.** Frankly speaking, LearNAT does not achieve the best perfor-
 483 mance on BIRD. For instance, CHASE-SQL (Pourreza et al., 2024), which leverages Gemini (But-
 484 terly, 2017), attains 74.9% accuracy on BIRD-dev, outperforming LearNAT (30B), which achieves

485 ³<https://openreview.net/forum?id=kGg1ndttmI>

486 Table 4: Ablation study analysis of LearNAT using Qwen2.5-Coder-7B as backbone LLM. The
 487 green font indicates the performance loss incurred after the removal of the respective module.
 488

489 490 491 492 493 494 495 496 497 498 499 500	490 <i>BIRD-dev (In-Domain)</i>				491 <i>Spider-dev (Out-of-Domain)</i>				
	<i>Simple</i>	<i>Moderate</i>	<i>Challenging</i>	<i>Total</i>	<i>Easy</i>	<i>Medium</i>	<i>Hard</i>	<i>Extra Hard</i>	<i>Total</i>
LearNAT	65.4	48.4	42.4	58.1	95.2	92.4	76.4	67.5	86.4
LearNAT									
w/o LearNAT	56.1 (9.3↓)	34.5 (13.9↓)	33.8 (8.6↓)	47.5 (10.6↓)	82.7 (12.5↓)	84.1 (8.3↓)	71.8 (4.6↓)	54.8 (12.7↓)	77.0 (9.4↓)
LearNAT→DPO	61.7 (3.7↓)	40.6 (7.7↓)	34.7 (7.6↓)	52.8 (5.3↓)	84.7 (10.5↓)	86.1 (6.3↓)	74.1 (2.3↓)	56.6 (10.8↓)	79.0 (7.4↓)
LearNAT→CoT	57.3 (8.1↓)	37.6 (10.8↓)	36.1 (6.3↓)	49.3 (8.7↓)	87.1 (8.1↓)	85.2 (7.2↓)	75.3 (1.1↓)	56.6 (10.8↓)	79.4 (7.0↓)
Decomposition Synthesis Procedure									
w/o AST Guide	62.6 (2.8↓)	41.5 (6.9↓)	29.2 (13.2↓)	53.1 (5.0↓)	85.9 (9.3↓)	87.9 (4.5↓)	69.5 (6.9↓)	60.2 (7.2↓)	79.9 (6.5↓)
Margin-Aware Reinforcement Learning									
w/o SFT	63.4 (2.1↓)	43.2 (5.2↓)	34.0 (8.3↓)	54.5 (3.6↓)	87.9 (7.3↓)	88.8 (3.6↓)	69.0 (7.5↓)	62.7 (4.8↓)	81.0 (5.3↓)
w/o MDPO	62.8 (2.6↓)	42.4 (6.0↓)	31.9 (10.4↓)	53.7 (4.4↓)	87.1 (8.1↓)	88.6 (3.8↓)	70.1 (6.3↓)	62.7 (4.8↓)	80.9 (5.4↓)
MDPO→DPO	64.6 (0.8↓)	46.7 (1.7↓)	37.5 (4.9↓)	56.6 (1.4↓)	93.5 (1.6↓)	91.7 (0.7↓)	74.1 (2.3↓)	66.3 (1.2↓)	85.1 (1.3↓)
MDPO→KTO	63.1 (2.3↓)	43.9 (4.5↓)	34.7 (7.6↓)	54.6 (3.5↓)	89.1 (6.0↓)	90.6 (1.8↓)	68.4 (8.0↓)	63.9 (3.6↓)	82.2 (4.2↓)
MDPO→IPO	62.5 (2.9↓)	42.6 (5.8↓)	32.6 (9.7↓)	53.7 (4.4↓)	86.3 (8.9↓)	91.0 (1.3↓)	65.5 (10.9↓)	64.5 (3.0↓)	81.3 (5.0↓)

501
 502
 503 65.0% (9.9%↓). Nonetheless, it is important to clarify that CHASE-SQL reflects a system-level
 504 solution, whereas the reported performance of LearNAT is evaluated strictly under a model-level
 505 setting. Although most studies do not disclose their token costs, useful comparisons can still be
 506 drawn from the limited information available. For example, CHASE-SQL reports an average token
 507 consumption of 160K⁴ tokens per query, whereas LearNAT requires only 1.8K tokens per query.
 508 This stark contrast demonstrates that LearNAT is more aligned with the objectives of this study,
 509 which emphasize openness, democratization, and low-resource deployment.

510
 511 **Toward System-Level Exploration.** At present, LearNAT has primarily focused on model-level
 512 development. In future work, we aim to further investigate the test-time scaling law of LearNAT
 513 to improve its performance. Appendix Fig. 10 provides a preliminary exploration of this direction,
 514 showcasing the potential of LearNAT at the system level. Moving forward, we plan to integrate
 515 more advanced techniques to enhance performance while minimizing token overhead, thereby sys-
 516 tematically exploring the trade-off between accuracy and computational cost.

517 **Conclusion.** In this work, we propose LearNAT, a novel framework designed to improve the per-
 518 formance of LLMs on NL2SQL tasks by leveraging task decomposition and reinforcement learning.
 519 Our design is motivated by extensive preliminary experiments, through which we propose a veri-
 520 fiable task decomposition procedure and introduce a margin-aware DPO algorithm to optimize LLMs.
 521 The effectiveness of our approach is validated on two public NL2SQL benchmarks. Although the
 522 present study is limited to model-level improvements, our preliminary explorations demonstrate the
 523 potential of LearNAT at the system level. We contend that LearNAT represents an important step
 524 toward achieving openness, transparency, and efficiency in NL2SQL.

525 6 ETHICS STATEMENT

526 All datasets used for training and evaluation in this study are publicly available versions. The
 527 datasets have been curated, cleaned, and de-identified by their respective data providers prior to
 528 release. No patient personal information or identifiable medical data is present. Consequently, the
 529 research does not involve human subjects, and there are no related concerns regarding privacy,
 530 confidentiality, or legal liability.

531 We strictly adhered to the usage and redistribution licenses provided by the original dataset authors
 532 and hosting platforms. Our research poses no risk of harm to individuals or groups and does not
 533 contain any potentially harmful insights, models, or applications. Additionally, there are no conflicts
 534 of interest or sponsorship concerns associated with this work. We are committed to research integrity
 535 and ethical standards consistent with the ICLR Code of Ethics.

536
 537
 538
 539 ⁴<https://openreview.net/forum?id=CvGqMD50Tx>

540 **7 REPRODUCIBILITY STATEMENT**

541
542 We actively support the spirit of openness and reproducibility advocated by ICLR. To ensure the
543 reproducibility of our research, we have taken the following measures:

544
545 1. Disclosure of Base Models: All base models used in our experiments are explicitly identified
546 and described in the main manuscript. This allows readers to directly reference and obtain these
547 models.

548 2. Datasets and Experimental Details: All experiments are conducted on publicly available datasets.
549 In Appendix. D, we provide a comprehensive description of our experimental datasets. We also
550 detail the experimental setup in Appendix. F.1. These details facilitate transparent verification
551 and replication of our results.

552 3. Open-Source Code Release: To further support reproducibility, we release all training and
553 evaluation code in an anonymous repository ([https://anonymous.4open.science/r/
554 LearNAT](https://anonymous.4open.science/r/LearNAT)). The repository contains clear instructions on installation, data downloading, pre-
555 processing, and experimentation, allowing interested researchers to replicate our results with
556 minimal effort.

557 We believe that these actions align with the open science principles championed by the ICLR com-
558 munity, and we are committed to supporting the reproducibility and transparency of our work.
559

560 **8 USE OF LLM**

561 In the preparation of this manuscript, we utilized large language models (LLM) solely for writing
562 assistance purposes. Specifically, we employed the GPT-4.1-0414 model to polish language expres-
563 sions, condense sentences, and improve the overall clarity and readability of the text. The model
564 was used exclusively for editing and refining manuscript language and did not participate in any
565 conceptual or technical aspects of this work.

566 All research ideas, theoretical proof methods, experimental designs, and visualizations were con-
567 ceived, executed, and finalized by the authors without the involvement of any LLM tools. The
568 development of new concepts, formulation and validation of proofs, experimental setups, analysis
569 of results, and the creation of figures were performed independently by the research team. At no
570 point was the LLM model used to generate, modify, or validate the scientific content, methodology,
571 or results presented in this article.

572 We emphasize that the role of GPT-4.1-0414 in this research was strictly limited to linguistic en-
573 hancement at the writing stage, and that all substantive intellectual and scientific contributions orig-
574 inate solely from the authors.

575 **REFERENCES**

576 Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Con-
577 crete problems in ai safety. *arXiv preprint arXiv:1606.06565*, 2016.

578 Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
579 of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.

580 Adam Butterly. *Gemini: Technical Report*. PhD thesis, Dublin, National College of Ireland, 2017.

581 Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Alphamath almost zero: process supervi-
582 sion without process. *CoRR*, abs/2405.03553, 2024. doi: 10.48550/ARXIV.2405.03553. URL
583 <https://doi.org/10.48550/arXiv.2405.03553>.

584 Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
585 reinforcement learning from human preferences. *Advances in Neural Information Processing
586 Systems*, 30, 2017.

587 Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao, Yunjun Gao, Lu Chen, Jinshu Lin, and Dong-
588 fang Lou. C3: zero-shot text-to-sql with chatgpt. *CoRR*, abs/2307.07306, 2023. doi: 10.48550/
589 ARXIV.2307.07306. URL <https://doi.org/10.48550/arXiv.2307.07306>.

594 Sabit Ekin. Prompt engineering for chatgpt: a quick guide to techniques, tips, and best practices.
 595 *Authorea Preprints*, 2023.
 596

597 Ju Fan, Zihui Gu, Songyue Zhang, Yuxin Zhang, Zui Chen, Lei Cao, Guoliang Li, Samuel Madden,
 598 Xiaoyong Du, and Nan Tang. Combining small language models and large language models for
 599 zero-shot NL2SQL. *Proc. VLDB Endow.*, 17(11):2750–2763, 2024a. doi: 10.14778/3681954.
 600 3681960. URL <https://www.vldb.org/pvldb/vol17/p2750-fan.pdf>.

601 Yuankai Fan, Zhenying He, Tonghui Ren, Can Huang, Yinan Jing, Kai Zhang, and X Sean Wang.
 602 Metasql: A generate-then-rank framework for natural language to sql translation. In *2024 IEEE*
 603 *40th International Conference on Data Engineering (ICDE)*, pp. 1765–1778. IEEE, 2024b.
 604

605 Xidong Feng, Ziyu Wan, Muning Wen, Ying Wen, Weinan Zhang, and Jun Wang. Alphazero-
 606 like tree-search can guide large language model decoding and training. *arXiv preprint*
 607 *arXiv:2309.17179*, 2023.

608 Han Fu, Chang Liu, Bin Wu, Feifei Li, Jian Tan, and Jianling Sun. Catsql: Towards real world
 609 natural language to sql applications. *Proceedings of the VLDB Endowment*, 16(6):1534–1547,
 610 2023.

612 Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou.
 613 Text-to-sql empowered by large language models: A benchmark evaluation. *Proc. VLDB Endow.*,
 614 17(5):1132–1145, 2024. doi: 10.14778/3641204.3641221. URL <https://www.vldb.org/pvldb/vol17/p1132-gao.pdf>.

616 Xu Huang, Jianxun Lian, Yuxuan Lei, Jing Yao, Defu Lian, and Xing Xie. Recommender ai agent:
 617 Integrating large language models for interactive recommendations. *ACM Transactions on Information Systems*, 43(4):1–33, 2025.

620 Hyeonbin Hwang, Doyoung Kim, Seungone Kim, Seonghyeon Ye, and Minjoon Seo. Self-explore
 621 to avoid the pit: Improving the reasoning capabilities of language models with fine-grained re-
 622 wards, 2024. URL <https://arxiv.org/abs/2404.10346>.

624 Hyeonji Kim, Byeong-Hoon So, Wook-Shin Han, and Hongrae Lee. Natural language to sql: Where
 625 are we today? *Proceedings of the VLDB Endowment*, 13(10):1737–1750, 2020.

627 Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xiangru Peng, and Jiaya Jia. Step-dpo: Step-
 628 wise preference optimization for long-chain reasoning of llms. *arXiv:2406.18629*, 2024.

630 Dongjun Lee, Choongwon Park, Jaehyuk Kim, and Heesoo Park. MCS-SQL: leveraging multiple
 631 prompts and multiple-choice selection for text-to-sql generation. In Owen Rambow, Leo Wan-
 632 ner, Marianna Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, and Steven Schockaert (eds.),
 633 *Proceedings of the 31st International Conference on Computational Linguistics, COLING 2025,*
 634 *Abu Dhabi, UAE, January 19-24, 2025*, pp. 337–353. Association for Computational Linguistics,
 2025. URL <https://aclanthology.org/2025.coling-main.24/>.

636 Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li, and Nan Tang. The dawn of natural language
 637 to sql: Are we fully ready? *Proceedings of the VLDB Endowment*, 17(11):3318–3331, 2024a.

638 Boyan Li, Jiayi Zhang, Ju Fan, Yanwei Xu, Chong Chen, Nan Tang, and Yuyu Luo. Alpha-sql:
 639 Zero-shot text-to-sql using monte carlo tree search. In *Forty-second International Conference on*
 640 *Machine Learning*, 2025a.

642 Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen. RESDSQL: decoupling schema linking and
 643 skeleton parsing for text-to-sql. In Brian Williams, Yiling Chen, and Jennifer Neville (eds.),
 644 *Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference*
 645 *on Innovative Applications of Artificial Intelligence, IAAI 2023, Thirteenth Symposium on Edu-
 646 *cational Advances in Artificial Intelligence, EAAI 2023, Washington, DC, USA, February 7-14,* 2023, pp. 13067–13075. AAAI Press, 2023a. doi: 10.1609/AAAI.V37I11.26535. URL
<https://doi.org/10.1609/aaai.v37i11.26535>.*

648 Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xiaokang Zhang, Jun Zhu, Renjie Wei, Hongyan
 649 Pan, Cuiping Li, and Hong Chen. Codes: Towards building open-source language models for
 650 text-to-sql. *Proc. ACM Manag. Data*, 2(3):127, 2024b. doi: 10.1145/3654930. URL <https://doi.org/10.1145/3654930>.

652 Haoyang Li, Shang Wu, Xiaokang Zhang, Xinmei Huang, Jing Zhang, Fuxin Jiang, Shuai Wang,
 653 Tieying Zhang, Jianjun Chen, Rui Shi, et al. Omnisql: Synthesizing high-quality text-to-sql data
 654 at scale. *arXiv preprint arXiv:2503.02240*, 2025b.

656 Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen
 657 Qin, Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin Chen-
 658 Chuan Chang, Fei Huang, Reynold Cheng, and Yongbin Li. Can LLM already serve as A
 659 database interface? A big bench for large-scale database grounded text-to-sqls. In Alice Oh,
 660 Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
 661 *Advances in Neural Information Processing Systems 36: Annual Conference on Neural In-*
 662 *formation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10*
 663 *- 16, 2023*, 2023b. URL http://papers.nips.cc/paper_files/paper/2023/hash/83fc8fab1710363050bbd1d4b8cc0021-Abstract-Datasets_and_Benchmarks.html.

665 Weibin Liao, Xu Chu, and Yasha Wang. Tpo: Aligning large language models with multi-branch &
 666 multi-step preference trees. *arXiv preprint arXiv:2410.12854*, 2024.

667 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 668 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *The Twelfth*
 669 *International Conference on Learning Representations*, 2024.

671 Jianghao Lin, Xinyi Dai, Yunjia Xi, Weiwen Liu, Bo Chen, Hao Zhang, Yong Liu, Chuhan Wu,
 672 Xiangyang Li, Chenxu Zhu, et al. How can recommender systems benefit from large language
 673 models: A survey. *ACM Transactions on Information Systems*, 43(2):1–47, 2025.

674 Aiwei Liu, Xuming Hu, Lijie Wen, and Philip S Yu. A comprehensive evaluation of chatgpt's
 675 zero-shot text-to-sql capability. *arXiv preprint arXiv:2303.13547*, 2023.

677 Hanbing Liu, Haoyang Li, Xiaokang Zhang, Ruotong Chen, Haiyong Xu, Tian Tian, Qi Qi, and Jing
 678 Zhang. Uncovering the impact of chain-of-thought reasoning for direct preference optimization:
 679 Lessons from text-to-sql. *arXiv preprint arXiv:2502.11656*, 2025.

680 Shuai Lyu, Haoran Luo, Ripeng Li, Zhonghong Ou, Jiangfeng Sun, Yang Qin, Xiaoran Shang,
 681 Meina Song, and Yifan Zhu. Sql-o1: A self-reward heuristic dynamic search method for text-to-
 682 sql. *arXiv preprint arXiv:2502.11741*, 2025.

684 Wenxin Mao, Ruiqi Wang, Jiyu Guo, Jichuan Zeng, Cuiyun Gao, Peiyi Han, and Chuanyi Liu.
 685 Enhancing text-to-sql parsing through question rewriting and execution-guided refinement. In
 686 *Findings of the Association for Computational Linguistics ACL 2024*, pp. 2009–2024, 2024.

687 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 688 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 689 instructions with human feedback. *Advances in Neural Information Processing Systems*, 35:
 690 27730–27744, 2022.

691 Mohammadreza Pourreza and Davood Rafiei. DIN-SQL: decomposed in-context learn-
 692 ing of text-to-sql with self-correction. In Alice Oh, Tristan Naumann, Amir Glober-
 693 son, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), *Advances in Neural In-*
 694 *formation Processing Systems 36: Annual Conference on Neural Information Pro-*
 695 *cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16*,
 696 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/72223cc66f63ca1aa59edaec1b3670e6-Abstract-Conference.html.

698 Mohammadreza Pourreza, Hailong Li, Ruoxi Sun, Yeounoh Chung, Shayan Talaei, Gaurav Tarlok
 699 Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and Sercan Ö. Arik. CHASE-SQL: multi-path
 700 reasoning and preference optimized candidate selection in text-to-sql. *CoRR*, abs/2410.01943,
 701 2024. doi: 10.48550/ARXIV.2410.01943. URL <https://doi.org/10.48550/arXiv.2410.01943>.

702 Mohammadreza Pourreza, Shayan Talaei, Ruoxi Sun, Xingchen Wan, Hailong Li, Azalia Mirhoseini,
 703 Amin Saberi, Sercan Arik, et al. Reasoning-sql: Reinforcement learning with sql tailored
 704 partial rewards for reasoning-enhanced text-to-sql. *arXiv preprint arXiv:2503.23157*, 2025.

705

706 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 707 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 708 in Neural Information Processing Systems*, 36, 2023.

709

710 Nitashan Rajkumar, Raymond Li, and Dzmitry Bahdanau. Evaluating the text-to-sql capabilities of
 711 large language models. *arXiv preprint arXiv:2204.00498*, 2022.

712

713 Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar. RL
 714 on incorrect synthetic data scales the efficiency of llm math reasoning by eight-fold, 2024. URL
<https://arxiv.org/abs/2406.14532>.

715

716 Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hug-
 717 gningpt: Solving AI tasks with chatgpt and its friends in hugging face. In Alice Oh, Tris-
 718 tan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), *Ad-
 719 vances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
 720 mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
 721 2023*. URL http://papers.nips.cc/paper_files/paper/2023/hash/77c33e6a367922d003ff102ffb92b658-Abstract-Conference.html.

722

723 Richard Shin, Christopher Lin, Sam Thomson, Charles Chen Jr, Subhro Roy, Emmanouil Antonios
 724 Platanios, Adam Pauls, Dan Klein, Jason Eisner, and Benjamin Van Durme. Constrained language
 725 models yield few-shot semantic parsers. In *Proceedings of the 2021 Conference on Empirical
 726 Methods in Natural Language Processing*, pp. 7699–7715, 2021.

727

728 Josefa Lia Stoisser, Marc Boubnovski Martell, Lawrence Phillips, Casper Hansen, and Julien
 729 Fauqueur. Struct-llm: Unifying tabular and graph reasoning with reinforcement learning for se-
 730 mantic parsing. *arXiv preprint arXiv:2506.21575*, 2025.

731

732 Ruoxi Sun, Sercan Ö. Arik, Hootan Nakhost, Hanjun Dai, Rajarishi Sinha, Pengcheng Yin, and
 733 Tomas Pfister. Sql-palm: Improved large language model adaptation for text-to-sql. *CoRR*,
[abs/2306.00739](https://doi.org/10.48550/arXiv.2306.00739), 2023. doi: 10.48550/ARXIV.2306.00739. URL <https://doi.org/10.48550/arXiv.2306.00739>.

734

735 Shayan Talaei, Mohammadreza Pourreza, Yu-Chen Chang, Azalia Mirhoseini, and Amin Saberi.
 736 CHESS: contextual harnessing for efficient SQL synthesis. *CoRR*, [abs/2405.16755](https://doi.org/10.48550/arXiv.2405.16755), 2024. doi: 10.
 737 48550/ARXIV.2405.16755. URL <https://doi.org/10.48550/arXiv.2405.16755>.

738

739 Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Jiaqi Bai, Linzheng Chai, Zhao Yan, Qian-
 740 Wen Zhang, Di Yin, Xing Sun, and Zhoujun Li. MAC-SQL: A multi-agent collaborative
 741 framework for text-to-sql. In Owen Rambow, Leo Wanner, Marianna Apidianaki, Hend Al-
 742 Khalifa, Barbara Di Eugenio, and Steven Schockaert (eds.), *Proceedings of the 31st Interna-
 743 tional Conference on Computational Linguistics, COLING 2025, Abu Dhabi, UAE, January
 744 19-24, 2025*, pp. 540–557. Association for Computational Linguistics, 2025. URL <https://aclanthology.org/2025.coling-main.36/>.

745

746 Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
 747 Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In *Pro-
 748 ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
 749 1: Long Papers)*, pp. 9426–9439, 2024.

750

751 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 752 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 753 neural information processing systems*, 35:24824–24837, 2022.

754

755 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 756 Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
 757 State-of-the-art natural language processing. *arXiv preprint arXiv:1910.03771*, 2019.

756 Lixia Wu, Peng Li, Junhong Lou, and Lei Fu. Datagpt-sql-7b: An open-source language model for
 757 text-to-sql. *CoRR*, abs/2409.15985, 2024. doi: 10.48550/ARXIV.2409.15985. URL <https://doi.org/10.48550/arXiv.2409.15985>.

759

760 Wenzuan Xie, Gaochen Wu, and Bowen Zhou. Mag-sql: Multi-agent generative approach with soft
 761 schema linking and iterative sub-sql refinement for text-to-sql. *arXiv preprint arXiv:2408.07930*,
 762 2024a.

763 Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P Lillicrap, Kenji Kawaguchi,
 764 and Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning.
 765 *arXiv preprint arXiv:2405.00451*, 2024b.

766

767 An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
 768 Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
 769 Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jingren
 770 Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang,
 771 Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
 772 Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong
 773 Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing Liu,
 774 Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru
 775 Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report. *CoRR*, abs/2407.10671, 2024a.
 776 doi: 10.48550/ARXIV.2407.10671. URL <https://doi.org/10.48550/arXiv.2407.10671>.

777

778 Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Junyang Lin, and Chang Zhou. Synthesizing text-
 779 to-sql data from weak and strong llms. In Lun-Wei Ku, Andre Martins, and Vivek Srikanth
 780 (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
 781 (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024*, pp. 7864–7875.
 782 Association for Computational Linguistics, 2024b. doi: 10.18653/V1/2024.ACL-LONG.425.
 783 URL <https://doi.org/10.18653/v1/2024.acl-long.425>.

784

785 Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
 786 Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir R. Radev. Spider: A large-scale
 787 human-labeled dataset for complex and cross-domain semantic parsing and text-to-sql task. In
 788 Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), *Proceedings of the 2018
 789 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, October
 31 - November 4, 2018*, pp. 3911–3921. Association for Computational Linguistics, 2018. doi:
 10.18653/V1/D18-1425. URL <https://doi.org/10.18653/v1/d18-1425>.

790

791 Hanchong Zhang, Ruisheng Cao, Lu Chen, Hongshen Xu, and Kai Yu. Act-sql: In-context learning
 792 for text-to-sql with automatically-generated chain-of-thought. In *Findings of the Association for
 793 Computational Linguistics: EMNLP 2023*, pp. 3501–3532, 2023a.

794

795 Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi
 796 Hu, Tianwei Zhang, Fei Wu, et al. Instruction tuning for large language models: A survey. *arXiv
 797 preprint arXiv:2308.10792*, 2023b.

798

799 Zeyu Zhang, Quanyu Dai, Xiaohe Bo, Chen Ma, Rui Li, Xu Chen, Jieming Zhu, Zhenhua Dong,
 800 and Ji-Rong Wen. A survey on the memory mechanism of large language model based agents.
 801 *ACM Transactions on Information Systems*, 2024.

802

803 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and
 804 Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. *arXiv
 805 preprint arXiv:2403.13372*, 2024.

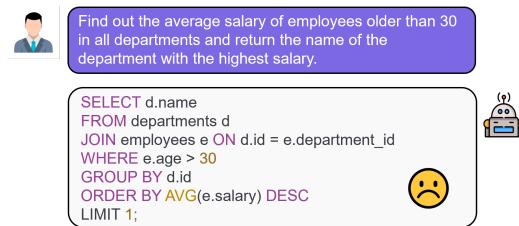
806

807

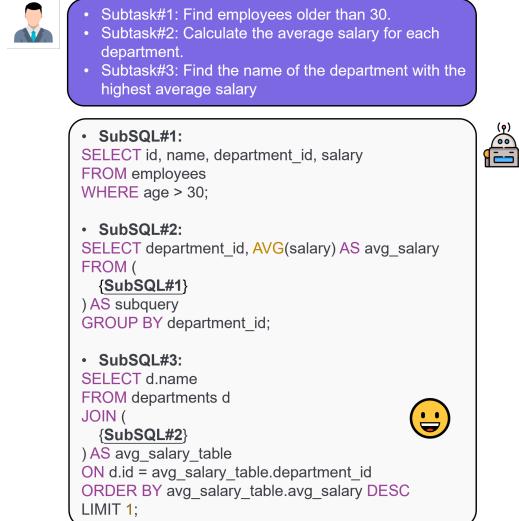
808

809

A PRELIMINARY EXPERIMENTS



(a) LLM on complex NL2SQL task.



(b) LLM on multiple simple NL2SQL subtasks.

Figure 4: (a) illustrates the LLM directly solving a complex NL2SQL task, resulting in an incorrect output. (b) shows the LLM solving multiple decomposed simple NL2SQL subtasks from the same task in (a), resulting in a correct output. This motivates our approach to *enhancing the LLM’s ability to decompose complex tasks*, thereby improving its performance on challenging NL2SQL queries.

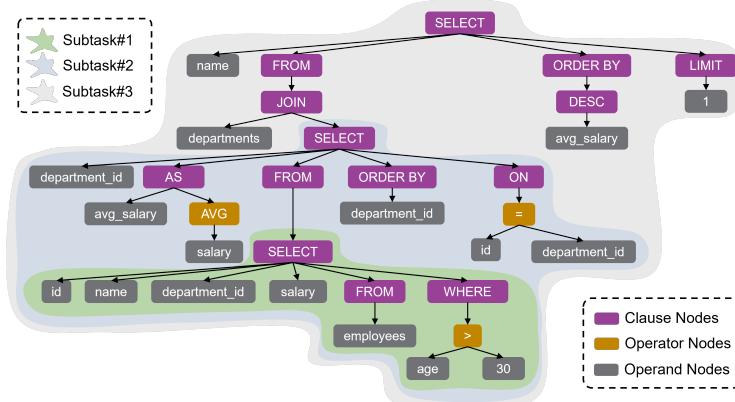


Figure 5: The abstract syntax tree (AST) of the given case in Fig. 4. Each simple NL2SQL subtask in Fig. 4 corresponds to a subtree within the AST. Clause nodes, operator nodes and operand nodes were defined in Sec. B.

Score of Qwen2.5 Coder 32B	
Methods	Scores
Query → SQL	54.0%
Query → Subtasks → SubSQLs → SQL	84.4%
Query → Subtasks → SubSQLs → SQL	57.4%

Figure 6: A preliminary experiment was conducted. We randomly selected 500 cases from the BIRD Train dataset and employed QWen-2.5-Coder to perform the NL2SQL task. The experimental results indicate that *enhancing the LLM’s task decomposition ability is crucial for improving its performance on NL2SQL tasks.*

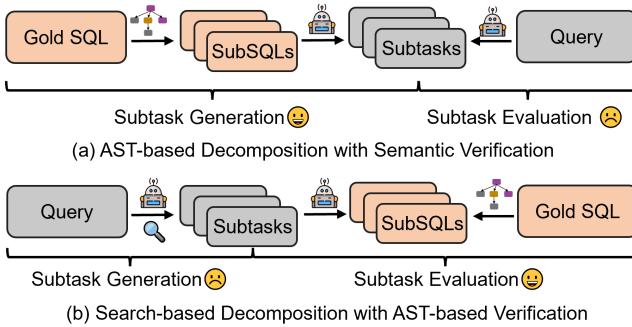


Figure 7: AST-based Decomposition vs. Search-based Decomposition

Table 5: Experimental results on evaluating subtask correctness using language models.

Models	Accuracy		
	Correct (227)	Error (273)	Total (500)
sentence-transformer	92.1	9.2	46.8
GLM-4	45.4	20.5	36.0

B TECHNICAL FOUNDATIONS

Natural Language to SQL (NL2SQL). The goal of the NL2SQL task is to translate a natural language (NL) question Q into corresponding SQL query Y , based on a database schema \mathcal{DB} . In more complex scenarios, such as those presented by BIRD (Li et al., 2023b), interpreting NL questions or understanding database values may require incorporating external knowledge, denoted by \mathcal{K} . The prevailing approach to the NL2SQL task adopts a cross-domain framework to assess a model’s generalization ability by keeping the training, development, and test sets distinct.

Abstract Syntax Trees (AST). An Abstract Syntax Tree (AST) is a structured, hierarchical representation of an SQL query, where each element of the query is captured as a node and the relationships between these elements are encoded as edges. This tree-based structure abstracts away from the linear textual representation of SQL, focusing instead on its grammatical structure and logical organization. Formally, the AST of an SQL query Y can be defined as a directed acyclic graph (DAG) $\mathcal{AT}(Y) = (\mathcal{N}, \mathcal{E})$, where \mathcal{N} is the set of nodes, each representing a syntactic component of the SQL query. Specifically, every node $n \in \mathcal{N}$ corresponds to a clause, operator, or operand. We categorize the nodes as follows:

918 Table 6: Notations of **Basic Symbols** and Their Descriptions Used in This Manuscripts.
919

Symbol	Description
Natural Language to SQL (NL2SQL)	
Q	Natural language (NL) question
Y	Corresponding SQL query
\mathcal{DB}	Database schema
\mathcal{K}	External knowledge
Abstract Syntax Trees (AST)	
$\mathcal{AT}(Y) = (\mathcal{N}, \mathcal{E})$	Abstract Syntax Tree, a directed acyclic graph of SQL query Y
\mathcal{N}	Set of nodes in AST
$\mathcal{E} \subseteq \mathcal{N} \times \mathcal{N}$	Set of edges in AST
$n_c \in \mathcal{N}_c$	Clause Nodes
$n_o \in \mathcal{N}_o$	Operator Nodes
$n_v \in \mathcal{N}_v$	Operand Nodes
Monte Carlo Tree Search (MCTS)	
$\mathcal{T} = (\mathcal{S}, \mathcal{A}, \mathcal{M})$	MCTS search tree
\mathcal{S}	Set of states or nodes in the search space
$\mathcal{A}(s)$	Set of actions available at state s
$\mathcal{M} \subseteq \mathcal{S} \times \mathcal{S}$	Set of edges
$Q(s, a)$	Estimated reward for taking action a from state s
$N(s)$	Visit count of node s
c	Constant that controls the exploration-exploitation trade-off
Direct Preference Optimization (DPO)	
x	Prompt
y_w	Preferred response
y_l	Dispreferred response
p_D^*	Probability of preference
π_θ	Policy model
π_{ref}	Reference model
β	Parameter that regulates the KL divergence

950 • **Clause Nodes** ($n_c \in \mathcal{N}_c$): Represent core SQL clauses, such as SELECT, FROM, WHERE, GROUP
951 BY, and ORDER BY.
952 • **Operator Nodes** ($n_o \in \mathcal{N}_o$): Represent logical or arithmetic operations, such as AND, OR, =, >,
953 and <.
954 • **Operand Nodes** ($n_v \in \mathcal{N}_v$): Represent terminal elements like table names, column names, literals,
955 or values from the database schema.

956 $\mathcal{E} \subseteq \mathcal{N} \times \mathcal{N}$ is the set of edges, where each directed edge $e = (n_i, n_j) \in \mathcal{E}$ captures a syntactic
957 dependency from a parent node n_i to a child node n_j . These edges reflect the hierarchical structure
958 of the query, where high-level clauses dominate subcomponents or conditions.

959 The root node of $\mathcal{AT}(Y)$ corresponds to the main clause of the query, typically the SELECT clause.
960 From the root, child nodes represent subsequent clauses or expressions, forming a hierarchical de-
961 composition of the SQL query. For example, a WHERE clause node may have child nodes corre-
962 sponding to individual conditions, which in turn may contain operators and operands as descen-
963 dants. This formal representation enables a structured understanding of SQL queries, facilitating
964 decomposition, syntactic validation, and step-wise reasoning. In text-to-SQL tasks, leveraging the
965 AST structure allows efficient navigation of complex queries by guiding models through the logical
966 and hierarchical relationships in SQL syntax.

967 **Monte Carlo Tree Search (MCTS).** Monte Carlo Tree Search (MCTS) is a heuristic search algo-
968 rithm used for decision-making in large and complex search spaces. It combines tree-based search
969 with stochastic sampling to balance exploration and exploitation, making it particularly effective for
970 problems with vast or unknown state spaces. In the context of reasoning and sequential decision-
971

making, MCTS provides an efficient framework for discovering optimal strategies by incrementally building a search tree guided by simulation-based evaluations. Formally, MCTS operates on a search tree $\mathcal{T} = (\mathcal{S}, \mathcal{A}, \mathcal{M})$, where:

- \mathcal{S} is the set of states or nodes in the search space. Each node $s \in \mathcal{S}$ represents a specific configuration of the environment, such as a partially completed plan or a subproblem in a reasoning task.
- $\mathcal{A}(s)$ denotes the set of actions available at state s . Each action leads to a child state s' , expanding the search tree.
- $\mathcal{M} \subseteq \mathcal{S} \times \mathcal{S}$ represents the set of edges, where each edge corresponds to a transition between states through an action.

The MCTS algorithm proceeds iteratively through four phases:

1. **Selection:** Starting from the root node s_0 , the algorithm recursively selects child nodes based on a selection policy, typically using the Upper Confidence Bound for Trees (UCT) criterion:

$$a^* = \arg \max_{a \in \mathcal{A}(s)} \left(Q(s, a) + c \cdot \sqrt{\frac{\log N(s)}{N(s, a)}} \right), \quad (9)$$

where $Q(s, a)$ is the estimated reward for taking action a from state s , $N(s)$ is the visit count of node s , $N(s, a)$ is the visit count of action a from s , and c is a constant that controls the exploration-exploitation trade-off.

2. **Expansion:** If the selected node is not terminal and has unvisited child nodes, the algorithm expands the tree by adding a new child node corresponding to a valid action from the current state.
3. **Simulation (Rollout):** From the newly expanded node, a simulation is conducted by selecting actions—often at random or based on a heuristic policy—until reaching a terminal state. The outcome of this simulation provides a reward signal, used to estimate the reward of the node.
4. **Backpropagation:** The reward obtained from the simulation is propagated back through the visited nodes, updating the reward estimations $Q(s, a)$ and visit counts $N(s, a)$ along the path from the expanded node to the root.

The output of MCTS is a policy that selects the action with the highest visit count from the root node.

$$\pi(s_0) = \arg \max_{a \in \mathcal{A}(s_0)} N(s_0, a). \quad (10)$$

Direct Preference Optimization (DPO). Reinforcement Learning from Human Feedback (RLHF) (Christiano et al., 2017) is an effective strategy for aligning LLMs with human preference (Ouyang et al., 2022). It relies on the Bradley-Terry (BT) model (Bradley & Terry, 1952) to define preference probability based on some reward function. Given a prompt x and two responses— y_w (preferred) and y_l (dispreferred)—the probability of preference can be expressed as:

$$p_{\mathcal{D}}^*(y_w \succ y_l \mid x) = \sigma(r^*(x, y_w) - r^*(x, y_l)), \quad (11)$$

where $\sigma(x) = \frac{1}{1+\exp(-x)}$ is the sigmoid function and r^* represents a latent reward model. RLHF optimizes the policy model π_{θ} with a Kullback-Leibler (KL) constraint to limit deviation from a reference model π_{ref} :

$$\max \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_{\theta}(y \mid x)} [r^*(x, y)] - \beta \mathbb{D}_{KL}[\pi_{\theta}(y \mid x) \parallel \pi_{ref}(y \mid x)]. \quad (12)$$

Here, β regulates the KL divergence to prevent reward hacking (Amodei et al., 2016). While effective, RLHF requires careful hyperparameter tuning and involves complex reward modeling and policy training.

To simplify this process, Direct Preference Optimization (DPO) (Rafailov et al., 2023) was introduced, eliminating the need for an explicit reward model. Instead, DPO directly optimizes the policy

1026 using paired preference data. Given a prompt x with responses (y_w, y_l) , the DPO objective maximizes the likelihood of the preferred response while minimizing that of the dispreferred one:
 1027
 1028

$$1030 \quad \mathcal{L}_{\text{DPO}}(\pi_\theta; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} [\log \sigma(\hat{r}_\theta(x, y_w) - \hat{r}_\theta(x, y_l))] \\ 1031 \quad \hat{r}_\theta(x, y) = \beta \log \frac{\pi_\theta(y | x)}{\pi_{\text{ref}}(y | x)}. \quad (13)$$

1032
 1033

1034 This formulation treats $\hat{r}_\theta(x, y)$ as an “implicit reward” (Rafailov et al., 2023), allowing for di-
 1035 rect alignment with human preference while bypassing the need for complex reward modeling and
 1036 simplifying the overall training process.
 1037

1038 C AST SIMILARITY

1040 **Node-level Similarity (sim_{node})** The node-level similarity considers different types of nodes sep-
 1041 arately:
 1042

$$1044 \quad \text{sim}_{\text{node}}(\mathcal{AT}_1, \mathcal{AT}_2) = \sum_{t \in \{c, o, v\}} w_t \cdot \text{sim}_t(\mathcal{AT}_1, \mathcal{AT}_2), \quad (14)$$

1045

1046 where w_t are weights for each node type with $\sum_t w_t = 1$ and $t \in \{c, o, v\}$ represents clause nodes,
 1047 operator nodes, and operand nodes, respectively.
 1048

1049 For each node type:
 1050

$$1051 \quad \text{sim}_t(\mathcal{AT}_1, \mathcal{AT}_2) = \frac{|\mathcal{N}_t(\mathcal{AT}_1) \cap \mathcal{N}_t(\mathcal{AT}_2)|}{|\mathcal{N}_t(\mathcal{AT}_1) \cup \mathcal{N}_t(\mathcal{AT}_2)|}, \quad (15)$$

1052
 1053

1054 where $\mathcal{N}_t(\mathcal{AT}_i)$ is the set of nodes of type t in AST \mathcal{AT}_i .
 1055

1056 **Structural Similarity ($\text{sim}_{\text{struct}}$)** *Decomposition Synthesis Procedure* define structural similarity
 1057 using the Tree Edit Distance (TED):
 1058

$$1059 \quad \text{sim}_{\text{struct}}(\mathcal{AT}_1, \mathcal{AT}_2) = 1 - \frac{\text{TED}(\mathcal{AT}_1, \mathcal{AT}_2)}{\max(|\mathcal{AT}_1|, |\mathcal{AT}_2|)}, \quad (16)$$

1060
 1061

1062 where $\text{TED}(\mathcal{AT}_1, \mathcal{AT}_2)$ is the minimum number of node operations (insertion, deletion, modifica-
 1063 tion) required to transform \mathcal{AT}_1 into \mathcal{AT}_2 , and $|\mathcal{AT}_i|$ is the number of nodes in AST \mathcal{AT}_i .
 1064

1065 D DATASET STATISTICS

1066 The BIRD and Spider datasets are introduced as follows.
 1067

- 1069 • **BIRD:** BIRD (Li et al., 2023b) (Big Bench for Large-scale Database Grounded Text-to-SQL Evaluation)
 1070 is a pioneering cross-domain dataset designed to assess the impact of large-scale database
 1071 contents on text-to-SQL parsing. It comprises over 12,751 unique question-SQL pairs and 95
 1072 large databases with a total size of 33.4 GB, covering more than 37 professional domains, includ-
 1073 ing blockchain, hockey, healthcare, and education.
- 1074 • **Spider:** Spider (Yu et al., 2018) is a large-scale, cross-domain dataset for complex semantic pars-
 1075 ing and text-to-SQL tasks, annotated by 11 Yale students. The Spider challenge aims to develop
 1076 natural language interfaces for querying cross-domain databases. The dataset includes 10,181
 1077 questions paired with 5,693 unique complex SQL queries across 200 databases, spanning 138
 1078 diverse domains.

1079 The statistics of BIRD-train, BIRD-dev, and Spider-dev used in this study are shown in Table 7.
 Notably, BIRD-train does not categorize queries based on difficulty levels. Additionally, although

1080 BIRD-train provides 9,428 data samples, the gold SQL statements for 425 of them cannot be ex-
 1081 ecuted by the SQL executor. Therefore, we filter out these samples considering BIRD-train to contain
 1082 only 9,003 data samples in our subsequent analysis.
 1083

1084 Table 7: Statistics for NL2SQL benchmarks.
 1085

Benchmarks	#Queries				
BIRD-train	9,428 9,003				
BIRD-dev	Simple 925	Moderate 465	Challenging 144	Total 1,534	
Spider-dev	Easy 248	Medium 446	Hard 174	Extra Hard 166	Total 1,034

1093
 1094

E BASELINE SOLUTIONS

 10951096 We briefly describe these competitive literature used in this manuscript as follows.
 10971098 System-level solutions. We compare LearNAT with 8 system-level methods:
 1099

- 1100 • C3-SQL (Dong et al., 2023) introduces a ChatGPT-based zero-shot Text-to-SQL framework
 1101 that enhances model input, mitigates model bias, and ensures output consistency through Clear
 1102 Prompting, Calibration with Hints, and Consistent Output, respectively.
- 1103 • DIN-SQL (Pourreza & Rafiei, 2023) introduces a task decomposition approach that improves
 1104 LLMs’ text-to-SQL performance by breaking query generation into sub-problems and iteratively
 1105 incorporating their solutions.
- 1106 • MetaSQL (Fan et al., 2024b) introduces a unified generate-then-rank framework for NLIDBs that
 1107 incorporates query metadata to guide SQL generation and uses learning-to-rank algorithms to
 1108 select the most accurate SQL query, improving translation accuracy across multiple benchmarks.
- 1109 • MAG-SQL (Xie et al., 2024a) introduces a multi-agent generative approach with soft schema
 1110 linking and iterative Sub-SQL refinement, incorporating external oversight at each generation
 1111 step.
- 1112 • MAC-SQL (Wang et al., 2025) introduces a multi-agent collaborative framework that combines a
 1113 core decomposer agent with auxiliary agents utilizing external tools for sub-database acquisition
 1114 and SQL refinement.
- 1115 • SuperSQL (Li et al., 2024a) combines schema linking from RESDSL (Li et al., 2023a), few-
 1116 shot prompting and self-consistency post-processing from DAIL-SQL (Gao et al., 2024), greedy-
 1117 decoding strategy from OpenAI for SQL generation, with GPT-4 as the backbone model for en-
 1118 hanced performance.
- 1119 • SynCoT (Liu et al., 2025) is a novel framework that enhances DPO for NL2SQL by automatically
 1120 generating synthetic CoT reasoning traces to bridge the gap between preference-based learning
 1121 and structured query generation, thereby unlocking DPO’s full potential in this domain.
- 1122 • OmniSQL (Li et al., 2025b) is trained on SynSQL-2.5M, a novel million-scale synthetic dataset
 1123 featuring diverse database schemas, natural language questions, SQL queries, and chain-of-
 1124 thought annotations, and it achieves state-of-the-art performance across multiple benchmarks.

1125 Model-level solutions. We compare LearNAT with 7 model-level methods:
 1126

- 1127 • ACT-SQL (Zhang et al., 2023a) proposes an automatic chain-of-thought prompting method that
 1128 enhances LLMs’ reasoning ability in text-to-SQL tasks by leveraging schema-linking-inspired
 1129 exemplars without requiring manual labeling.
- 1130 • DAIL-SQL (Gao et al., 2024) proposes an integrated solution that optimizes prompt engineering
 1131 methods and enhances open-source LLMs with supervised fine-tuning.
- 1132 • CatSQL (Fu et al., 2023) integrates a template-based sketch with a deep learning model to improve
 1133 both accuracy and runtime for NL2SQL tasks, while also proposing a Semantics Correction tech-
 nique that leverages database domain knowledge to enhance the accuracy of generated queries.

- SENSE (Yang et al., 2024b) introduces a synthetic data approach that combines strong and weak model outputs for instruction tuning on open-source LLMs.
- CodeS (Li et al., 2024b) introduces a series of open-source pre-trained models, ranging from 1B to 15B parameters, specifically optimized for text-to-SQL tasks through incremental pre-training, strategic prompt construction, and bi-directional data augmentation.
- SQL-o1 (Lyu et al., 2025) is a self-reward-driven, agent-based heuristic search framework for NL2SQL that employs MCTS with dynamic pruning to enable structured multi-step reasoning, significantly improving execution accuracy.
- Alpha-SQL (Li et al., 2025a) is a NL2SQL framework that leverages MCTS with an LLM-as-Action-Model to iteratively generate and refine SQL construction actions based on partial reasoning states, guided by a self-supervised reward function.

MCTS-based Evaluation Protocol Explanation.

Here, we provide a detailed description of the MCTS-based evaluation protocols used in our comparative experiments.

- **Evaluation protocols of SQL-o1:** SQL-o1 employs MCTS during inference. Specifically, at each node of the MCTS tree, SQL-o1 generates a subtask along with its corresponding SQL statement, a mechanism closely resembling that of LearNAT. The complete task chain relevant to the user query is defined by the trajectory from the root node to a leaf node, based on which the final SQL query is constructed. Furthermore, SQL-o1 defines a reward for each node by evaluating the model’s confidence—i.e., the probability assigned by the LLM to the output at that node—and selects the node with the highest confidence. Nodes whose confidence falls below a predefined threshold are pruned and not further expanded.
- **Evaluation protocols of Alpha-SQL:** Alpha-SQL also integrates MCTS during inference. However, unlike SQL-o1, Alpha-SQL does not decompose the problem into explicit subtasks; instead, each node directly corresponds to the user query and an associated SQL statement. Consequently, while SQL-o1 defines its action space as the generation of the next planning step and its corresponding SQL, Alpha-SQL adopts a richer set of atomic actions: *Rephrase Question, Schema Selection, Column Value Identification, Column Function Identification, SQL Generation, SQL Revision, and Termination*. Through sequential selection of these actions, Alpha-SQL iteratively refines both the natural language query representation and the corresponding SQL. Alpha-SQL also defines node rewards based on the consistency frequency of paths obtained via high-temperature sampling over action sequences. Upon completion of the MCTS search, Alpha-SQL aggregates all SQL queries generated across trajectories and selects the final output based on self-consistency, i.e., agreement among execution results of candidate SQL queries.

F ADDITIONAL EXPERIMENTS

F.1 IMPLEMENTATION DETAILS.

We employ GLM-4-Plus⁵ as the primary model for synthesizing decomposition data and fine-tune the model on Qwen2.5-Coder (Yang et al., 2024a), including its 7B, 14B, and 32B versions. We used the PyTorch library to implement all the algorithms based on the open-source HuggingFace transformers (Wolf et al., 2019) and LLaMA-Factory (Zheng et al., 2024). The experiments are conducted on 8×A100 GPUs. During the SFT stage, we utilize the AdamW optimizer with a learning rate of 2e-5 and a cosine warmup scheduler over three epochs. For DPO training, the Adam optimizer is used with a learning rate of 2e-6, and the β parameter is set to 0.2, in accordance with the original DPO configuration. In Eq. 14, we assign equal weights to all three nodes, i.e., $w_c = w_o = w_v = 0.33$. Based on our experimental observations F.12, we set $\alpha = 0.75$ in Eq. 5. During inference, we strictly follow the evaluation protocol provided by DAIL-SQL (Gao et al., 2024) (the Without Voting setting). The protocol provides a complete set of prompts to better structure the instructions, user queries, and database schema information, enabling the LLM to generate a single response from which the SQL statement is extracted as the final answer.

⁵<https://bigmodel.cn/dev/api/normal-model/qlm-4>

1188 We adopt the following strategy to adapt LearNAT to MCTS-based evaluation protocols.
 1189

- **Adapt LearNAT to SQL-o1:** When adapting LearNAT to the SQL-o1 framework, we leverage LearNAT to generate both subtasks and subSQLs at each MCTS node. The tree traversal and pruning decisions are guided by the same reward mechanism used in SQL-o1, and the path with the highest cumulative confidence is ultimately selected as the final SQL query.
- **Adapt LearNAT to Alpha-SQL:** In migrating LearNAT to the Alpha-SQL setting, we adopt a straightforward strategy: every LLM invocation within Alpha-SQL is replaced with LearNAT’s model parameters. Notably, for the *SQL Generation* action, we retain LearNAT’s original prompting scheme to ensure that SQL is still produced in a subtask-by-subtask manner. For all other actions, we follow Alpha-SQL’s original prompting design.

1200 **F.2 ERROR CASE ANALYSIS**

1202 To further investigate the reasons for the failure of the *Decomposition Synthesis Procedure* in certain
 1203 cases, we randomly selected 50 unsuccessful cases for error analysis. The error distribution is shown
 1204 in Fig. 3. The results indicate that the decomposition failures can be attributed to four distinct types
 1205 of errors, including schema linking, float computation, unknown rules, and error answer.

1206 We analyze these errors one by one by presenting typical cases for each of the four error attributions.

1207 **Case for Schema Linking.**

1209 [#Question:] *What is the user avatar url for user 41579158? What is the latest movie rated by him*
 1210 */her?*

1211 [#Evidence:] *user avatar url refers to user_avatar_image_url; latest movie rated refers to*
 1212 *latest rating_date;*

1213 [#Gold SQL]

1215 `SELECT T3.user_avatar_image_url, T3.rating_date_utc`
 1216 `FROM movies AS T1`
`INNER JOIN ratings AS T2 ON T1.movie_id = T2.movie_id`
`INNER JOIN ratings_users AS T3 ON T3.user_id = T2.user_id`
`WHERE T3.user_id = 41579158`
`ORDER BY T3.rating_date_utc DESC`
 1220 `LIMIT 1`

1221 [#Predict SQL]

1223 `SELECT user_avatar_image_url, movie_id FROM (`
 1224 `SELECT T3.user_avatar_image_url, T3.rating_date_utc FROM (`
`SELECT T2.user_id, T2.movie_id FROM ratings AS T2`
`WHERE T2.user_id = 41579158`
`) AS Sub1`
`INNER JOIN ratings_users AS T3`
`ON Sub1.user_id = T3.user_id`
`WHERE T3.user_id = 41579158`
`) AS Sub2`
`ORDER BY rating_date_utc DESC`
 1231 `LIMIT 1;`

1233 In this case, the LLM misidentified the column, mapping “*the latest movie rated by him/her*” to the
 1234 *movie_id* column instead of the *rating_date_utc* column. However, the evidence provided
 1235 relevant information (although it did not explicitly specify the corresponding column).

1236 **Case for Float Computation.**

1238 [#Question:] *What is the percentage of the ratings were rated by user who was a subscriber?*

1239 [#Evidence:] *user is a subscriber refers to user_subscriber = 1; percentage of ratings =*
`DIVIDE(SUM(user_subscriber = 1), SUM(rating_score)) as percent;`

1241 [#Gold SQL]

```

1242 SELECT (CAST(SUM(
1243 CASE WHEN user_subscriber = 1 THEN 1 ELSE 0 END
1244 ) AS REAL) * 100 / COUNT(*)
1245 ) FROM ratings
1246
1247 [#Predict SQL]
1248 SELECT (CAST(SUM(
1249 CASE WHEN user_subscriber = 1 THEN 1 ELSE 0 END
1250 ) AS REAL) / COUNT(*) * 100
1251 ) FROM ratings

```

1252 In this case, the LLM did not strictly follow the Gold SQL in executing multiplication before division but instead generated SQL that performed the operations in the reverse order. Although mathematically equivalent, floating-point arithmetic in SQL can introduce numerical precision variations. Since our evaluation metric is Execution Accuracy, this discrepancy led to an inconsistency in the results. Specifically, the Gold SQL produced an execution result of 21.648420738414252, whereas the Predicted SQL yielded 21.64842073841425.

1258 Case for Unknown Rules.

1260 [#Question:] List all movies with the best rating score. State the movie title and number of Mubi
1261 user who loves the movie.

1262 [#Evidence:] best rating score refers to rating_score = 5; number of Mubi user who loves the
1263 movie refers to movie_popularity

1265 [#Gold SQL]

```

1266 SELECT DISTINCT T2.movie_title, T2.movie_popularity
1267 FROM ratings AS T1 INNER JOIN movies AS T2
1268 ON T1.movie_id = T2.movie_id
1269 WHERE T1.rating_score = 5

```

1270 [#Predict SQL]

```

1272 SELECT T2.movie_title, T2.movie_popularity
1273 FROM ratings AS T1 INNER JOIN movies AS T2
1274 ON T1.movie_id = T2.movie_id
1275 WHERE T1.rating_score = 5

```

1276 In this case, the Gold SQL performed an additional deduplication step (DISTINCT) on the query
1277 results, whereas the Predicted SQL did not. This deduplication is a default user-friendly operation,
1278 but it was not explicitly stated in the query. As a result, the execution results of the Predicted SQL
1279 and Gold SQL differed.

1280 Case for Error Answer.

1282 [#Question:] What is the name of the longest movie title? When was it released?

1283 [#Evidence:] longest movie title refers to MAX(LENGTH(movie_title)); when it was released
1284 refers to movie_release_year

1286 [#Gold SQL]

```

1287 SELECT movie_title, movie_release_year FROM movies
1288 ORDER BY LENGTH(movie_popularity) DESC
1289 LIMIT 1

```

1291 [#Predict SQL]

```

1292 SELECT movie_title, movie_release_year FROM movies
1293 WHERE LENGTH(movie.title) =
1294     SELECT MAX(LENGTH(movie.title)) FROM movies
1295 )

```

1296 Some cases in BIRD-train contain incorrect Gold SQL. For example, in this case, the query requires
 1297 computing the longest movie, and the evidence explicitly states that the correct computation should
 1298 be $\text{MAX}(\text{LENGTH}(\text{movie_title}))$. However, the Gold SQL incorrectly calculates this by using
 1299 $\text{LENGTH}(\text{movie_popularity})$, which is clearly incorrect. In contrast, the Predicted SQL cor-
 1300 rectly implements the intended computation. Therefore, the decomposition failure in this case is a
 1301 false negative, caused by an error in the Gold SQL.

1302

1303 F.3 ABLATION STUDIES

1304

1305 **Effectiveness of LearNAT.** First, we present the most naive baseline (w/o LearNAT), which repre-
 1306 sents the basic performance of Qwen2.5-Coder-7B. This experiment demonstrates the strong per-
 1307 formance of LearNAT, which significantly boosts a vanilla Qwen2.5-Coder-7B model. For instance, it
 1308 yields a remarkable $9.4\% \uparrow$ on the Spider-dev set and a $10.6\% \uparrow$ on the BIRD dataset. To validate the
 1309 effectiveness of task decomposition, we replace LearNAT with a naive DPO algorithm—i.e., apply-
 1310 ing a simple reinforcement learning strategy without incorporating any decomposition mechanisms.
 1311 Experimental results show that this baseline performs significantly worse than LearNAT, achieving
 1312 only $79.0\% (7.4\downarrow)$ accuracy on Spider-dev and $52.8\% (5.3\downarrow)$ on BIRD-dev. This substantial per-
 1313 formance gap highlights the critical role of task decomposition in solving complex NL2SQL tasks.
 1314 In addition, we conduct a simple experiment using naive Qwen2.5-Coder-7B with CoT-based de-
 1315 composition, where the LLM directly decomposes the NL2SQL task and generates SQL. While this
 1316 setup improves performance (e.g., $1.8\% \uparrow$ on BIRD-dev), it is far less effective than LearNAT, high-
 1317 lighting the importance of AST-guide decomposition, reinforcement learning and adaptive demon-
 1318 strations.

1318

1319 **Effectiveness of Decomposition Synthesis Procedure.** We remove the AST-guide, replacing
 1320 it with naive MCTS for decomposition and using vanilla DPO in reinforcement learning. The
 1321 results show an improvement over w/o LearNAT (e.g., $5.6\% \uparrow$ on BIRD-dev), indicating that
 1322 decomposition-based RL enhances LLM performance in complex NL2SQL tasks. However, com-
 1323 pared to LearNAT, the model’s performance drops significantly (e.g., $5.0\% \downarrow$ on BIRD-dev), sug-
 1324 gesting that without an appropriate reward evaluation, performance improvements are limited.
 1325 LearNAT tightly integrates reward modeling with AST, designing a rule-based reward model that
 1326 significantly enhances LLM performance.

1326

1327 **Effectiveness of Margin-Aware Reinforcement Learning.** We remove the SFT stage, leading to
 1328 a performance drop (e.g., $3.6\% \downarrow$ on BIRD-dev), indicating that SFT is necessary for initializing
 1329 the LLM before applying MDPO, aligning with findings from prior work (Yang et al., 2024b).
 1330 Similarly, removing MDPO results in a performance decline (e.g., $4.4\% \downarrow$ on BIRD-dev), showing
 1331 that SFT alone teaches the LLM to generate correct outputs but fails to suppress incorrect ones (Liao
 1332 et al., 2024), which degrades overall model performance. Replacing MDPO with naive DPO further
 1333 reduces performance, as the lack of margin awareness prevents the LLM from distinguishing critical
 1334 steps during preference learning, leading to coarse-grained reward estimation and thus suboptimal
 1335 performance.

1336

1337 F.4 INFERENCE TIME COMPARISON BETWEEN LEARNAT AND SYSTEM-LEVEL METHODS

1338

1339 We summarize the inference-time overhead of LearNAT and System-Level Methods in the Table. 8.
 1340 The experimental results demonstrate that, while achieving comparable performance, LearNAT
 1341 achieves a substantially lower inference-time cost.

1342

1343 Table 8: Inference Time Comparison Between LearNAT and System-Level Methods. The inference
 1344 time of LearNAT is normalized to 1.

1345

Methods	C3-SQL	DIN-SQL	MetaSQL	Mag-SQL	SuperSQL	MAC-SQL	SQL-o1	Alpha-SQL	LearNAT
Inference Time	11.8	5.4	5.6	6.3	5.1	3.6	5.3	111.2	1.0

1346

1347 F.5 ANALYSIS OF SQL DIVERSITY

1348

1349 We note that, during the MCTS-based subtask search process, some potentially correct subtasks
 1350 are indeed generated. However, because the ASTs of these subtasks do not exist as subtrees in the

1350
 1351 AST of the ground-truth SQL, they are mistakenly judged as incorrect trajectories. To address this,
 1352 we designed the following experiment: specifically, we use GLM-4-Plus to rewrite the SQL for
 1353 each query in the training data. The rewriting is constrained such that the AST structures of the
 1354 original and rewritten SQL are different, but their execution results are identical, thereby enhancing
 1355 the diversity of the synthesized data. We denote this method as `LearNAT+`. Our experimental
 1356 results, as shown in Table 9, indicate that increasing data diversity in this way can further improve
 1357 the performance of `LearNAT`.

1358 Table 9: Performance comparison of `LearNAT` and `LearNAT+` with enhanced SQL diversity. **Bold**
 1359 indicates the better result.

Methods	BIRD-dev (In-Domain)				Spider-dev (Out-of-Domain)				
	Simple	Moderate	Challenging	Total	Easy	Medium	Hard	Extra Hard	Total
Qwen2.5-Coder-7B									
LearNAT	65.4	48.4	42.4	58.1	95.2	92.4	76.4	67.5	86.4
LearNAT⁺	66.6	49.5	46.5	59.5	96.8	93.3	83.3	68.7	88.5

1366
 1367 We think that the strict AST-based evaluation in `LearNAT` does indeed reduce the diversity of the
 1368 model’s outputs. However, while enhancing the diversity of model outputs is certainly a desirable
 1369 goal, we believe it is not the most critical one. Our primary motivation behind `LearNAT` is to teach
 1370 the model to reason correctly subtask by subtask in this work. The strict AST-based supervision
 1371 guarantees that the synthesized decompositions form a valid sequence of subtasks. This guarantee
 1372 of correctness is the key driver of `LearNAT`’s performance gains.

1373 F.6 ANALYSIS OF LEARNAT IN SEMI-SUPERVISED SETTINGS

1374 We believe `LearNAT` is also suitable for semi-supervised scenarios. As a concrete example, we
 1375 assume the following semi-supervised scenario: we have a labeled dataset BIRD-train-part1 and
 1376 an unlabeled dataset BIRD-train-part2, each comprising half of the full BIRD-train dataset. We
 1377 perform the following semi-supervised learning procedure:

- 1378 1. We use `LearNAT` to construct task-decomposition data on BIRD-train-part1, where the correct-
 1379 ness of each subtask is verified using the ground-truth AST.
- 1380 2. Using the synthesized data from Step 1, we fine-tune the Qwen2.5-Coder-7B model (denoted as
 1381 `LearNAT1`).
- 1382 3. We then apply the fine-tuned model from Step 2 to construct task-decomposition data on BIRD-
 1383 train-part2, without verifying subtask correctness using a ground-truth AST.
- 1384 4. We combine the synthetic data from Steps 1 and 3, and use this merged dataset to fine-tune the
 1385 original Qwen2.5-Coder-7B model, yielding `LearNAT2`.

1386 The performance of these models is shown in Table 10:

1387 Table 10: Performance of `LearNAT` in semi-supervised settings.

Methods	BIRD				Spider				
	Simple	Moderate	Challenging	Total	Easy	Medium	Hard	Extra Hard	Total
Qwen2.5-Coder-7B	56.1	34.5	33.8	47.5	82.7	84.1	71.8	54.8	77.0
<code>LearNAT¹</code>	61.4	42.2	38.9	53.5	90.3	88.8	73.6	62.0	82.3
<code>LearNAT²</code>	62.1	45.2	38.9	54.8	92.3	89.9	74.1	62.0	83.4

1398 The above experiment demonstrates the effectiveness of `LearNAT` in a semi-supervised setting.
 1399 `LearNAT` can rely entirely on a small labeled dataset with ground-truth SQL to initialize the model,
 1400 and then use the capabilities acquired from this small dataset to annotate the unlabeled portion,
 1401 thereby reducing dependence on labeled data. However, it is important to note that `LearNAT2`
 1402 achieves only 54.8% on the BIRD dataset, whereas `LearNAT` trained with the fully labeled dataset
 1403 reaches 58.1%. Thus, although `LearNAT` proves its feasibility in semi-supervised scenarios, the
 1404 supervised setting remains the more suitable and effective regime for `LearNAT`.

1404
1405 F.7 COMPARISON OF TOKEN COST1406 We follow SuperSQL (Li et al., 2024a) and report the *Avg. Tokens (k) / Query* and *EX / Avg. Tokens (k)* metrics for LearNAT and baseline methods. The experimental results are presented in Table. 11.1407
1408 Table 11: Toke Cost Comparison of LearNAT and baseline methods. **Bold** indicates the best result,
1409 while underline denotes the second-best results.
1410

Methods	LLMs	BIRD	Spider	Total	Avg. Tokens (k) / Query	EX / Avg. Tokens (k)
System-Level						
C3-SQL	GPT-4	50.2	82.0	63.0	21.2	3.0
DIN-SQL	GPT-4	50.7	74.2	60.2	9.7	6.2
MetaSQL	GPT-4	47.6	69.6	56.5	10.1	5.6
MAG-SQL	GPT-4	57.6	85.3	68.8	11.4	6.0
SuperSQL	GPT-4	58.5	87.0	70.0	9.1	7.7
MAC-SQL	GPT-4	59.4	86.7	70.4	6.5	10.8
Model-Level						
ACT-SQL	GPT-4	52.4	74.5	61.3	1.6	38.3
DAIL-SQL	GPT-4	54.3	76.2	63.1	<u>1.3</u>	48.6
CodeS	CodeS-7B	57.0	85.4	68.4	1.1	<u>62.2</u>
	CodeS-15B	58.5	84.9	69.1	1.1	62.8
Ours						
LearNAT	Qwen2.5-Coder-7B	58.1	86.4	69.5	1.8	38.6
	Qwen2.5-Coder-14B	<u>61.2</u>	86.9	<u>71.6</u>	1.7	42.1
	Qwen2.5-Coder-32B	65.0	88.4	74.4	1.8	41.3

1428 The experimental results show that, compared with system-level methods, LearNAT achieves sub-
1429 substantial advantages in terms of performance, token consumption, and performance per token. When
1430 compared with model-level methods, although LearNAT attains higher performance, it consumes
1431 more tokens. This is because LearNAT output both the intermediate subtasks and their correspond-
1432 ing SQL statements, which leads to increased token usage.1433
1434 F.8 ROBUSTNESS ANALYSIS OF LEARNAT1435 In Table. 12, we provide the mean and standard deviation of three versions of the LearNAT model
1436 over five experimental runs, to ensure the reliability and robustness of LearNAT’s performance.
14371438 Table 12: Robustness analysis of LearNAT, the mean and standard deviation are reported.
1439

LLMs	BIRD-dev (In-Domain)				Spider-dev (Out-of-Domain)				
	Simple	Moderate	Challenging	Total	Easy	Medium	Hard	Extra Hard	Total
Qwen2.5-Coder-7B	65.1±1.2	47.9±1.4	41.4±3.1	57.6±0.7	94.5±2.1	92.6±0.9	76.6±2.2	66.6±1.0	86.2±0.4
Qwen2.5-Coder-14B	68.3±0.8	51.4±0.9	44.6±1.0	61.0±0.3	95.8±2.4	91.6±1.2	80.6±3.7	68.0±1.4	86.9±0.3
Qwen2.5-Coder-32B	70.6±0.7	55.4±1.0	58.3±1.4	64.8±0.3	96.0±2.1	92.5±1.0	84.6±2.2	69.3±1.5	88.3±0.2

1445
1446 F.9 CASE ANALYSIS BETWEEN DPO AND MARGIN-AWARE DPO1447 In this subsection, we further discuss the insights behind our margin-aware DPO design and believe
1448 that clarifying the idea will strengthen the manuscript. Concretely, consider the following case:
14491450 *[#Question:] Consider the average difference between K-12 enrollment and 15-17 enrollment of
1451 schools that are locally funded, list the names and DOC type of schools which has a difference
1452 above this average.*1453 *[#Gold SQL]*1454 SELECT T2.School, T2.DOC
1455 FROM frpm AS T1 INNER JOIN schools AS T2
1456 ON T1.CDSCode = T2.CDSCode
1457 WHERE T2.FundingType = 'Locally_funded'
1458 AND (T1.'Enrollment (K-12)' - T1.'Enrollment (Ages 5-17)') > (

```

1458     SELECT AVG(T3.‘Enrollment (K-12)‘ - T3.‘Enrollment (Ages 5-17)‘)
1459     FROM frpm AS T3 INNER JOIN schools AS T4
1460     ON T3.CDSCode = T4.CDSCode
1461     WHERE T4.FundingType = ‘Locally_funded‘
1462 )

```

1463 In the NL2SQL task decomposition for this example, we obtain the following correct subtask and
 1464 sub-SQL (denoted Response #1):
 1465

1466 *[#Subtask:] Compute the average difference between K-12 enrollment and 15-17 enrollment for
 1467 locally funded schools.*

1468 *[#SubSQL]*

```

1469     SELECT AVG(T1.‘Enrollment (K-12)‘ - T1.‘Enrollment (Ages 5-17)‘) AS avg_diff
1470     FROM frpm AS T1
1471     INNER JOIN schools AS T2
1472     ON T1.CDSCode = T2.CDSCode
1473     WHERE T2.FundingType = ‘Locally_funded‘;

```

1474 We also collected two erroneous responses. The first erroneous response (Response #2) is:
 1475

1476 *[#Subtask:] Compute the average difference between K-12 enrollment and 15-17 enrollment.*

1477 *[#SubSQL]*

```

1478     SELECT AVG(T1.‘Enrollment (K-12)‘ - T1.‘Enrollment (Ages 5-17)‘) AS avg_diff
1479     FROM frpm AS T1
1480     INNER JOIN schools AS T2
1481     ON T1.CDSCode = T2.CDSCode;

```

1482 The second erroneous response (Response #3) is:
 1483

1484 *[#Subtask:] Compute the average difference between K-12 enrollment and 15-17 enrollment for
 1485 locally funded schools.*

1486 *[#SubSQL]*

```

1487     SELECT AVG(T1.‘Enrollment (K-12)‘ - T1.‘Enrollment (Ages 5-17)‘) AS avg_diff
1488     FROM frpm AS T1
1489     INNER JOIN schools AS T2
1490     ON T1.CDSCode = T2.CDSCode
1491     WHERE T2.FundingType = ‘Locally‘;

```

1492 We observe that Response #2 is a more severe error than Response #3: Response #3 only uses an
 1493 incorrect *FundingType* value (a string-level mistake), whereas Response #2 omits the funding filter
 1494 entirely and thus computes the average across all funding types, yielding a fundamentally incorrect
 1495 statistic.

1496 However, in standard DPO optimization, Response #2 and Response #3 are treated as equivalent
 1497 rejected samples, despite exhibiting clearly different degrees of error. We argue that such differences
 1498 should be explicitly distinguished. Therefore, we introduce Margin-aware DPO, which incorporates
 1499 an AST-based metric as an offset term in the DPO loss to differentiate rejected samples according
 1500 to their error severity.

1501 Under this offset mechanism, the reward margin between Response #1 and Response #2 becomes
 1502 larger than that between Response #1 and Response #3. We believe that dynamically adjusting the
 1503 reward margin between the chosen sample and rejected samples of varying error levels enables the
 1504 model to better distinguish among incorrect responses, thereby allowing it to perform more fine-
 1505 grained preference optimization.

1506

1507 F.10 TRAINING ANALYSIS OF MDPO

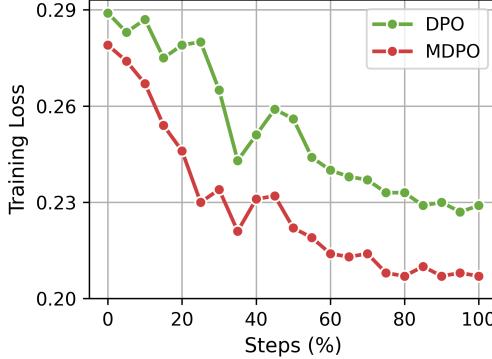
1508

1509 In Fig. 8, we present the training loss curves of both DPO and MDPO. Based on the comparison of
 1510 training losses, we observe that MDPO exhibits a faster and more pronounced training loss reduc-
 1511 tion compared with DPO. This observation indicates that the reward margin introduced in MDPO

1512 Table 13: Performance of LearNAT on various Backbone LLMs. The **red** font indicates the performance
 1513 improvement caused by using LearNAT.

Methods	BIRD-dev (In-Domain)				Spider-dev (Out-of-Domain)				
	Simple	Moderate	Challenging	Total	Easy	Medium	Hard	Extra Hard	Total
<i>Qwen2.5-Coder-7B</i>									
LearNAT	56.1	34.5	33.8	47.5	82.7	84.1	71.8	54.8	77.0
<i>Qwen2.5-Coder-14B</i>									
LearNAT	68.5 (9.0↑)	51.4 (8.8↑)	45.8 (7.4↑)	61.2 (8.8↑)	95.6 (9.0↑)	91.5 (5.1↑)	80.5 (7.6↑)	68.7 (13.1↑)	86.9 (7.7↑)
<i>Qwen2.5-Coder-32B</i>									
LearNAT	64.8	47.8	41.4	57.4	93.5	87.7	75.9	58.4	82.4
<i>GLM4-9B</i>									
LearNAT	55.5	36.3	25.0	46.8	82.3	85.9	62.6	59.6	76.9
<i>Meta-Llama-3-8B-Instruct</i>									
LearNAT	56.5	37.0	25.0	47.7	83.9	85.4	64.4	56.6	76.9
LearNAT	64.9 (8.4↑)	42.6 (5.6↑)	40.3 (15.3↑)	55.8 (8.1↑)	90.7 (6.8↑)	91.7 (6.3↑)	71.3 (6.9↑)	63.9 (7.3↑)	83.6 (6.7↑)

1532 provides larger and more meaningful gradients for model optimization, which can be attributed to
 1533 MDPO’s ability to exploit the reward differences among negative samples.



1548 Figure 8: Comparison of the trend of training loss between DPO and MDPO.
 1549

1550 F.11 ANALYSIS ON VARIOUS BACKBONE LLMs

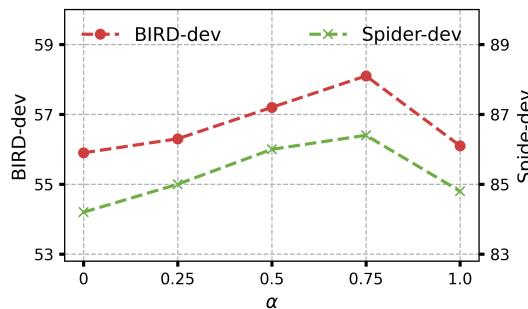
1552 Table. 13 presents the performance of LearNAT across backbone LLMs of varying sizes. The
 1553 results reveal several key observations: (1) LearNAT consistently improves performance across
 1554 different model sizes. (2) As the number of parameters in the backbone LLM increases—for in-
 1555 stance, from 7B to 14B to 32B—the inherent NL2SQL capability of the model improves accord-
 1556 ingly, and this trend is also reflected in the performance gains achieved by LearNAT. (3) Notably,
 1557 LearNAT enables smaller models to outperform significantly larger ones, effectively mitigating the
 1558 limitations imposed by model scale. For example, after training with LearNAT, Qwen2.5-Coder-
 1559 7B achieves 86.4% on Spider-dev, surpassing the naive Qwen2.5-Coder-32B, which achieves only
 1560 82.4% (4.0%↓). A similar trend is observed on the BIRD-dev dataset.

1561 To further demonstrate the generality and robustness of LearNAT, we incorporate LLMs with dif-
 1562 ferent architectures, such as GLM4-9B and Meta-Llama-3-8B-Instruct, as backbones. The results
 1563 show that LearNAT consistently yields substantial gains across architectures—for instance, im-
 1564 proving GLM4-9B by 7.4%↑ and Meta-Llama-3-8B-Instruct by 8.1%↑ on BIRD-dev. These results
 1565 confirm that LearNAT is both architecture-agnostic and highly effective across a wide range of
 LLM configurations.

1566 F.12 ANALYSIS OF AST SIMILARITY
1567

1568 We evaluate the importance of node similarity and structural similarity in LearNAT by adjusting
1569 the weight parameter α in Eq. 5. Specifically, we vary α between 0, 0.25, 0.5, 0.75.

1570 Experimental results (illustrated in Fig. 9) show that using only node similarity or only structural
1571 similarity leads to performance degradation, indicating that both types of similarity contribute to
1572 evaluation quality. A balanced setting ($\alpha = 0.5$) does not achieve optimal performance. LearNAT
1573 achieves the best performance when $0.5 < \alpha < 1$, suggesting that node similarity is more effective
1574 than structural similarity in AST-based similarity assessment. This highlights that while both node
1575 and structural similarity are necessary, node similarity plays a slightly more critical role in guiding
1576 AST-based decomposition and reward estimation.



1577
1578 Figure 9: Execution accuracy on BIRD-dev and Spider-dev using various α in AST similarity esti-
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

F.13 SYSTEM LEVEL POTENTIAL OF LEARNAT

We have conducted new experiments to explore the performance of LearNAT under a system-level setting. The results are presented in Fig. 10. In this setup, we invoke LearNAT multiple times for the same query to generate a set of candidate SQL, and then apply the most basic form of self-consistency to select the final SQL output. Results demonstrate that LearNAT can indeed benefit from multi-call to improve performance; however, this improvement comes at the cost of significantly increased token consumption.

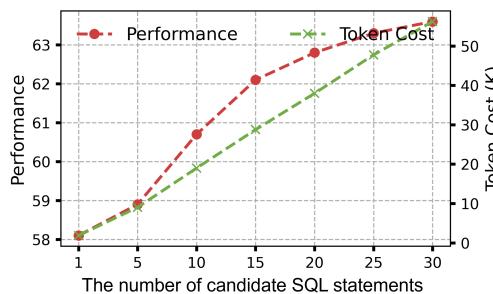


Figure 10: Performance and Token Cost of LearNAT with Qwen2.5-Coder-7B as backbone LLM using generating multiple candidate SQL and selecting SQL via self-consistency.

G RELATED WORK

G.1 NL2SQL PARSING BASED ON LLMs

Model-level Solution. Model-level solutions refer to approaches where a single large language model, given a natural language query, database schema, and optionally additional instructions, generates a single SQL statement in an end-to-end manner. This SQL is directly used as the final output.

1620 Model level solutions are typically based on model fine-tuning methods. Model fine-tuning (Zhang
 1621 et al., 2023b) adapts pre-trained LLMs to specific tasks by adjusting model parameters through ad-
 1622 ditional training. While promising for NL2SQL, this approach is limited to public models with
 1623 accessible parameters. Due to the performance gap between large-scale private and small-scale pub-
 1624 lic models, existing research has primarily focused on system-level solution, with relatively few
 1625 studies (Yang et al., 2024b; Wu et al., 2024; Li et al., 2024b; Sun et al., 2023; Li et al., 2023a)
 1626 dedicated to fine-tuning open-source models. *Despite their empirical success, these studies focus*
 1627 *solely on learning the target SQL queries while neglecting the reasoning process involved in parsing*
 1628 *complex SQL structures. This results in mere memorization of outcomes rather than fostering a deep*
 1629 *understanding of the underlying problems.*

1630 The works most closely related to ours are Reasoning-SQL (Pourreza et al., 2025), SynCoT (Liu
 1631 et al., 2025), and Struct-LLM (Stoisser et al., 2025). These approaches similarly incorporate reason-
 1632 ing during the inference stage and employ reinforcement learning algorithms to enhance the model’s
 1633 reasoning capabilities. Both Reasoning-SQL (Pourreza et al., 2025) and Struct-LLM (Stoisser et al.,
 1634 2025) optimize LLM performance on NL2SQL by replacing naïve binary rewards with continuous
 1635 reward signals. However, although they design various reward mechanisms, all of these rewards
 1636 are applied only to the final generated SQL. In contrast, the rewards designed in LearNAT are
 1637 primarily used to evaluate intermediate subtasks. In other words, *LearNAT introduces a process*
 1638 *reward (Wang et al., 2024; Lightman et al., 2024) model that explicitly regulates the correctness*
 1639 *of intermediate reasoning steps, whereas Reasoning-SQL and Struct-LLM focuses on outcome re-*
 1640 *wards (Wang et al., 2024; Lightman et al., 2024).*

1641 **System-level Solution.** System-level methods go beyond the end-to-end generation by the LLM.
 1642 These approaches typically incorporate additional components such as schema linking, candidate
 1643 SQL generation, result selection or consistency verification, and SQL refinement, aiming to improve
 1644 overall robustness and accuracy. System-level solutions are typically based on Prompt engineering.
 1645 Prompt engineering (Ekin, 2023) aims to guide model outputs towards desired results through care-
 1646 fully designed input prompts and can be applied to both open-source and proprietary models. In the
 1647 NL2SQL domain, prompt engineering serves as a crucial technique for enhancing the performance
 1648 of LLMs (Kim et al., 2020; Li et al., 2024a). Several studies (Gao et al., 2024; Mao et al., 2024;
 1649 Dong et al., 2023; Lee et al., 2025; Talaei et al., 2024; Pourreza et al., 2024) have explored differ-
 1650 ent prompt engineering strategies to enhance NL2SQL performance. The most relevant works are
 1651 DIN-SQL (Pourreza & Rafiee, 2023) and MAC-SQL (Wang et al., 2025), which employ zero-shot
 1652 prompting (*Let’s think step by step*) or few-shot prompting (e.g., using a small set of demonstra-
 1653 tions) to help LLMs decompose complex NL2SQL tasks. While these methods have achieved significant
 1654 success on publicly available NL2SQL benchmarks, *open-source models, constrained by smaller*
 1655 *parameter sizes and limited pretraining knowledge, exhibit substantially weaker performance in*
 1656 *task decomposition compared to closed-source models (Shen et al., 2023).*

1657 G.2 ENHANCING REASONING WITH RL

1659 **Search-Guided Reasoning in LLMs.** Recent research efforts (Feng et al., 2023; Chen et al., 2024;
 1660 Xie et al., 2024b) aiming at advancing the reasoning capabilities of LLMs have increasingly incor-
 1661 porated Monte Carlo Tree Search to generate trajectories for model training, yielding significant
 1662 improvements in reasoning performance. Despite these successes, MCTS-driven methods still face
 1663 several challenges, such as the *vast search space* inherent to language models and the *difficulty of*
 1664 *quantifying node rewards*. Existing research in the mathematical domain primarily relies on self-
 1665 evaluation or training external evaluation models based on labeled data. In the NL2SQL domain, *we*
 1666 *introduce a novel approach that leverages abstract syntax trees to quantify node rewards, effectively*
 1667 *guiding the model to prioritize the exploration of the most valuable nodes.*

1668 **Direct Preference Optimization (DPO) Algorithms.** Among various reinforcement learning al-
 1669 gorithms, Direct Preference Optimization (DPO) (Rafailov et al., 2023) has gained popularity due
 1670 to its simplicity. DPO relies on instance-level preference signals for model optimization. However,
 1671 it faces challenges in handling multi-step reasoning tasks, as it struggles to rectify specific errors that
 1672 arise during the reasoning process (Hwang et al., 2024; Liao et al., 2024). Additionally, relying on
 1673 model-generated positive samples can reinforce misleading correlations that stem from flawed inter-
 1674 mediate steps, thereby weakening generalization (Setlur et al., 2024). To address these challenges,

1674 recent research has introduced step-level DPO (Setlur et al., 2024; Lai et al., 2024), which offers
1675 more granular error identification and thus improves reasoning accuracy. *However, the naive DPO*
1676 *algorithm struggles to capture fine-grained, step-level supervisory signals in multi-step preference*
1677 *learning. This uniform treatment of all correct and incorrect steps significantly limits the model's*
1678 *potential for optimization.*

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728 **GUIDELINE FOR REVIEWERS**
17291730 In the revised manuscript, we use different font colors to highlight the modifications made in re-
1731 sponse to each reviewer's comments, as detailed below.
17321733

- 1734 • Reviewer kPT4: ●, ● and ●
- 1735 • Reviewer RUNy: ● and ●
- 1736 • Reviewer HybD: ●, ● and ●

1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781