
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARNAT: LEARNING NL2SQL WITH AST-GUIDED
TASK DECOMPOSITION FOR LARGE LANGUAGE MOD-
ELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Natural Language to SQL (NL2SQL) aims to translate natural language queries
into executable SQL statements, offering non-expert users intuitive access to
databases. While recent approaches leveraging large-scale private LLMs such
as GPT-4 have achieved state-of-the-art results, they face two critical challenges:
the lack of openness and reproducibility, and the prohibitive computational cost of
test-time scaling. To address these issues, we explore improving the model-level
performance of small-scale public LLMs in NL2SQL under resource-constrained
settings. Our exploratory experiments reveal the potential of task decomposition
for enhancing NL2SQL performance, but also highlight the difficulty of enabling
LLMs to decompose queries effectively. Motivated by these findings, we propose
LearNAT, a novel framework designed to enhance LLMs’ decomposition capa-
bilities. LearNAT introduces (1) a Decomposition Synthesis Procedure, which
leverages AST-guided search with pruning strategies to generate verifiable and ef-
ficient decompositions, and (2) Margin-Aware Reinforcement Learning, which
provides fine-grained preference optimization for multi-step reasoning beyond
standard DPO. Extensive experiments on benchmark datasets demonstrate that
LearNAT significantly improves the performance of small-scale LLMs, achiev-
ing results comparable to GPT-4 with only a 7B parameter model. These results
validate the effectiveness of verifiable decomposition and fine-grained preference
learning in advancing NL2SQL towards openness, transparency, and efficiency.
Our code is publicly available at https://anonymous.4open.science/
r/LearNAT.

1 INTRODUCTION

Natural Language to SQL (NL2SQL) (Kim et al., 2020) is a fundamental task that seeks to automat-
ically translate natural language queries into executable SQL statements (Zhang et al., 2024; Huang
et al., 2025). This task has garnered substantial research interest owing to its potential to democratize
database access, thereby enabling users without SQL expertise to query and interact with databases
through natural language. In recent years, large language models (LLMs) (Lin et al., 2025), such as
OpenAI’s GPT-4, have achieved state-of-the-art performance on widely adopted NL2SQL bench-
marks, including Spider (Yu et al., 2018) and BIRD (Li et al., 2023b). These approaches predom-
inantly rely on large-scale proprietary LLMs, such as GPT-4 (Talaei et al., 2024; Lee et al., 2025;
Wang et al., 2025) and Gemini (Pourreza et al., 2024), and often employ sophisticated prompt en-
gineering techniques (Wei et al., 2022). Moreover, they leverage the test-time scaling law of LLMs
to generate system-level outputs (as defined in Appendix G.1). Despite their effectiveness, this line
of research encounters two critical challenges. First, the dependence on proprietary LLMs raises
pressing concerns regarding openness, reproducibility, and data privacy. Second, the application
of the test-time scaling law substantially increases computational overhead, which is particularly
prohibitive in the context of large-scale LLMs. Consequently, this study emphasizes enhancing the
model-level performance (as defined in Appendix G.1) of small-scale public LLMs, with the overar-
ching goal of fostering greater openness, transparency, and efficiency in NL2SQL under resource-
constrained deployment scenarios.

1

https://anonymous.4open.science/r/LearNAT
https://anonymous.4open.science/r/LearNAT

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Overview of LearNAT. To address the challenges in decomposition data synthesis,
LearNAT introduces a Decomposition Synthesis Procedure that enables AST-based verifiable de-
composition. Furthermore, to overcome the limitation of DPO in capturing differences among
subtask preferences during training, LearNAT proposes a Margin-Aware Reinforcement Learning,
which leverages subtask-level rewards generated during the decomposition process to facilitate fine-
grained and dynamic preference learning.

To improve the performance of small-scale public LLMs, prior research has explored strategies such
as pre-training (Li et al., 2024b) and post-training (Yang et al., 2024b) to equip LLMs with domain-
specific knowledge. However, NL2SQL tasks pose unique challenges. Natural language queries
frequently encompass multiple objectives, which may be explicit (directly corresponding to query
results) or implicit (e.g., conditions for filtering results), and these objectives are not always directly
aligned with the underlying database schema. Such characteristics render it particularly difficult
for LLMs to effectively address complex NL2SQL tasks in a single step. A promising direction,
therefore, lies in decomposing complex NL2SQL problems into a sequence of simpler subproblems,
thereby alleviating overall solution complexity.

To preliminarily validate this hypothesis, we conducted extensive exploratory experiments. These
experiments yielded two key observations: (1) When subtasks are manually provided to the LLM,
performance improves substantially (30.4%↑), underscoring the potential of task decomposition
in enhancing NL2SQL performance. In contrast, when the LLM is responsible for decomposing
complex queries on its own, the performance gains are marginal (3.4%↑), highlighting the need to
strengthen the task decomposition capabilities of LLMs for NL2SQL. (2) We further investigated
two feasible decomposition strategies: (i) AST-based decomposition with semantic verification and
(ii) search-based decomposition with AST verification. Experimental results reveal that while the
AST-based approach is computationally more efficient, it frequently introduces errors in the gen-
erated subtasks and fails to achieve precise semantic validation. Conversely, the search-based ap-
proach, though more complex, leverages AST-based verification to yield more stable and accurate
task decomposition and translation. Collectively, these findings highlight the critical importance
of verifiable decomposition.

Motivated by the above insights, we propose LearNAT (Learning NL2SQL with AST-guided Task
Decomposition), a framework designed to enhance the decomposition capability of LLMs for com-
plex NL2SQL tasks. It introduces two core components:

• Decomposition Synthesis Procedure: This verifiable decomposition component employs a search-
based strategy, such as Monte Carlo Tree Search (MCTS), to generate subtasks for NL2SQL de-
composition. Existing LLM-MCTS hybrid methods typically rely on heuristic evaluation, where
the LLM itself estimates node rewards to guide the search. However, even advanced models
such as GPT-4 achieve only 46.35% accuracy on benchmarks like BIRD, limiting the reliability
of such self-evaluation strategies. Moreover, the vast search space inherent in text-based MCTS
introduces inefficiencies and computational overhead. To mitigate these challenges, we leverage
abstract syntax trees (ASTs) to guide the search and implement pruning strategies, thereby sub-
stantially improving both efficiency and the success rate of generating valid decompositions.

• Margin-Aware Reinforcement Learning: This component enhances LLMs’ decomposition ca-
pabilities through reinforcement learning techniques, such as Direct Preference Optimization
(DPO) (Rafailov et al., 2023). Standard DPO algorithms struggle with fine-grained supervision in
multi-step reasoning tasks, as they treat all positive and negative steps equally. To overcome this

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

limitation, we propose an AST-based margin-aware DPO framework that differentiates between
varying levels of step correctness, enabling more precise optimization.

Our main contributions can be summarized as follows:

1. Conceptually, we tackle the critical challenge of enabling LLMs to comprehend users’ high-
level semantics and map them to database schemas for complex NL2SQL queries. To this end,
we propose LearNAT, the first framework to improve LLM performance on NL2SQL tasks by
explicitly leveraging task decomposition.

2. Methodologically, we introduce the Decomposition Synthesis Procedure, which provides a ver-
ifiable and efficient decomposition mechanism that assesses both subtask correctness and overall
task progress via ASTs, and Margin-Aware Reinforcement Learning, which enables fine-grained
preference learning tailored to multi-step reasoning.

3. Empirically, through extensive experiments on two NL2SQL benchmark datasets, we demon-
strate that LearNAT substantially outperforms existing approaches, achieving performance on
par with GPT-4 while using a 7B-parameter model. These results underscore the effectiveness of
task decomposition strategies in addressing the inherent challenges of complex NL2SQL tasks.

2 MOTIVATION FROM PRELIMINARY EXPERIMENTS

Motivation for Task Decomposition. In this empirical study, we conduct a detailed investigation
to examine whether task decomposition benefits LLMs in the NL2SQL task and further explore
the bottlenecks of decomposition-based NL2SQL approaches. Specifically, we randomly selected
500 examples from the BIRD-train (Li et al., 2023b) set and evaluated Qwen2.5-coder-32B (Yang
et al., 2024a) under three experimental settings: (1) directly prompting Qwen2.5-coder-32B to solve
the NL2SQL tasks without decomposition; (2) manually decomposing complex NL2SQL tasks into
simpler subtasks and then prompting Qwen2.5-coder-32B to solve them; (3) using a prompting-
based method to guide Qwen2.5-coder-32B to first decompose complex NL2SQL tasks into simpler
subtasks and then solve these subtasks sequentially. The experimental results are provided in Ap-
pendix Fig. 6.

The results reveal a striking contrast: when LLMs are guided with manually crafted subtask de-
compositions, their performance improves significantly—for instance, by 30.4%↑. However, when
relying on LLMs to autonomously decompose tasks, the improvement is modest, with gains of only
around 3.4%↑.

We posit the following: complex NL2SQL tasks can be effectively decoupled into two distinct sub-
problems: high-level task decomposition and low-level NL2SQL translation. The former involves
breaking down a complex user query into a sequence of simpler, manageable subtasks, a process
that often demands substantial reasoning capabilities. The latter focuses on directly translating these
simplified natural language inputs into their corresponding SQL queries. Owing to extensive pre-
training, LLMs generally excel at low-level NL2SQL translation. However, they are far less profi-
cient at complex task decomposition, as they often lack the deep reasoning and planning abilities
required to deconstruct intricate problems into logical steps.

Based on these findings, we derive our first key observation:

Observation I: Task decomposition holds substantial promise for enhancing the NL2SQL capabil-
ities of LLMs. Nevertheless, the limited ability of LLMs to perform effective task decomposition
autonomously constitutes a major bottleneck to the practical deployment of decomposition-based
NL2SQL techniques.

Motivation for Verifiable Decomposition. A critical challenge in leveraging task decomposition
to enhance NL2SQL performance in LLMs lies in how to derive a sequence of simpler subtasks
from a complex NL2SQL query. To address this issue, we explored a straightforward hypothetical
solution in our preliminary experiments. Specifically, as illustrated in Appendix Fig. 7 (a), we
decomposed the ground-truth SQL corresponding to a complex natural language query into several
simpler sub-SQL queries based on its abstract syntax tree (AST). We then employed an LLM to
translate these sub-SQLs into natural language subtasks, treating them as the subtask sequence for
the original query. However, this approach introduces a new challenge: owing to the hallucination

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Framework of the Decomposition Synthesis Procedure. (c) illustrates how the LLM,
combined with MCTS, performs next-step prediction to synthesize subtasks of complex NL2SQL
tasks. (b) presents the AST of the SQL statements corresponding to each synthesized subtask in
(c). (a) shows the AST of the Gold SQL for the complex NL2SQL task, which guides the MCTS in
(c) to perform more efficient search, including pruning and node reward estimation. (d) depicts the
data collected by LearNAT during the Decomposition Synthesis Procedure, comprising successful
trajectories data for supervised fine-tuning and step-wise contrastive node pairs data for preference
learning. Under the default settings of LearNAT, GLM-4-Plus is used to synthesize decomposition
data, and the Qwen2.5-Coder model is fine-tuned.

tendencies of LLMs, the translation process from sub-SQLs to subtasks may introduce latent errors.
This raises a crucial question—how can we verify the correctness of the generated subtasks?

We attempted to directly use language models, such as Sentence-Transformer and GLM-4, to de-
termine whether the generated subtasks were correct based on semantic similarity. However, these
approaches achieved only 46.8% and 36.0% accuracy, respectively (see Appendix Table 5), indicat-
ing that verifying the correctness of subtasks is far from straightforward. The language models fre-
quently misjudged cases involving subtle semantic differences. For example, if the gold SQL query
targeted a user’s name while the generated subtask query instead targeted the user’s ID, GLM-4
often incorrectly deemed the subtask to be correct. This motivates our second key observation:

Observation II: Subtasks generated by large language models are often unreliable, thereby necessi-
tating a verifiable task decomposition procedure.

Summary. Building on the above observations, our objective is to develop a verifiable task de-
composition framework and leverage reinforcement learning to strengthen the decomposition ca-
pabilities of LLMs in NL2SQL. To this end, we propose LearNAT, which consists of two key
components: (1) a Decomposition Synthesis Procedure that generates candidate subtask sequences
via search-based decomposition and evaluates their correctness using AST-based validation (see
Appendix Fig. 7 (b), addressing Observation II); and (2) a Margin-Aware Reinforcement Learning
framework that enhances LLMs’ task decomposition ability by incorporating step-level task aware-
ness, thereby improving overall NL2SQL performance (addressing Observation I).

3 METHODOLOGY

In this section, we present the methodology of LearNAT. First, LearNAT employs the Decom-
position Synthesis Procedure for generating training data in offline reinforcement learning. Then,
it utilizes Margin-aware Reinforcement Learning for model fine-tuning. For friendly reading, we
provide preliminary knowledge and relevant notation tables for NL2SQL, AST, MCTS, and DPO in
the Appendix. B.

3.1 DECOMPOSITION SYNTHESIS PROCEDURE

Problem Formulation. Let {q1, q2, · · · , qn} denote a sequence of subtask queries, where n rep-
resents the number of subtasks and each qi represents a natural language query that captures a

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

component of the original query Q. For each subtask query qi, Decomposition Synthesis Procedure
generates a corresponding SQL query yi. The objective is to find a sequence of subtask queries such
that their corresponding SQL queries collectively construct the target SQL query Y .

MCTS-based Decomposition. Decomposition Synthesis Procedure formulates the decomposition
process as a tree search problem, and performs next-step prediction as action a in each state s. In
the Monte Carlo Tree, the root node represents the original query Q, each non-root node represents
the state of executing the next subtask, and each path from root node to a leaf node represents a
decomposition sequence.

At each state in MCTS, the Decomposition Synthesis Procedure employs an LLM to generate the
next subtask qi and sub-SQL yi. Formally, each state si = {qi, yi,AT (yi),AT sum(yi),R(si)},
where AT (yi) is the AST of yi, AT sum(yi) is the merged AST summarizing all nodes from root
to node si in MCTS, and R(si) is the reward estimation of si. The AT sum(yi) is mathematically
defined as follows:

AT sum(yi) = (Nsum, Esum), (1)

Nsum =

i⋃
j=1

N (AT (yj)), Esum =

i⋃
j=1

E(AT (yj)). (2)

Node Classification. Decomposition Synthesis Procedure classify nodes into three categories based
on their AST properties for subsequent prune strategy:

• Progressive Nodes: Nodes where AT (yi) is a subtree of AT (Y) and AT (yi) is not a subtree of
AT sum(yparent(i)). These nodes contribute new information toward the target SQL. For two ASTs
AT 1 = (N1, E1) and AT 2 = (N2, E2), We define the subtree relationship as follows:

isSubtree(AT 1,AT 2) =

{
1, if N1 ⊆ N2 and E1 ⊆ E2
0, otherwise

. (3)

• Redundant Nodes: Nodes where AT (yi) is a subtree of AT (Y) but is also a subtree of
AT sum(yparent(i)). These nodes provide no additional reward to the decomposition.

• Invalid Nodes: Nodes where AT (yi) is not a subtree of AT (Y). These nodes represent incorrect
decompositions.

Prune Strategy. In traditional MCTS, since the typical scenario involves robotic task execution,
A(s) is generally defined as a finite action set, such as pick up, put down, etc. However, in
the application of LLMs, A(s) is usually an infinite action set. This is because LLMs generate ac-
tions in the form of text, meaning that even the same subSQL can be expressed as multiple different
subtask (action) variations. To reduce the search space of MCTS and improve search efficiency, De-
composition Synthesis Procedure adopts a pruning strategy. Specifically, since the subtask sequence
collected by the Decomposition Synthesis Procedure corresponds to the action sequence along the
path from the root node to a leaf node in MCTS, redundant actions and invalid actions along the
path do not need to be included in the subtask list. Therefore, for states containing redundant or in-
valid actions, the Decomposition Synthesis Procedure terminates further action searches to perform
pruning.

Reward Estimation. In MCTS, it is necessary to estimate Q(s, a) for each state to provide state
rewards, thereby guiding the direction of subsequent searches. In general mathematical domains,
existing works typically employ either LLM-based self-evaluation or an additional reward model
trained for state reward estimation. In this work, the Decomposition Synthesis Procedure further
leverages information from the AST and designs a rule-based approach to evaluate the state reward.

Since states with redundant actions and invalid actions are pruned, to improve efficiency, reward
estimation is only performed for states with progressive actions. Specifically, Decomposition Syn-
thesis Procedure estimates the reward of the current state based on the similarity between AT (Y)
and AT sum(yi) at the current state.

R(si) = sim(AT sum(yi),AT (Y)), (4)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where sim(·, ·) denotes the AST similarity measure.

Decomposition Synthesis Procedure defines two types of AST similarity, including node-level simi-
larity simnode and structural similarity simstruct:

R(si) = α · simnode(AT sum(yi),AT (Y)) + (1− α) · simstruct(AT sum(yi),AT (Y)), (5)

where α are adjustment factors for the two types of AST similarity. Node-level similarity is defined
by the degree of node overlap, while structural similarity is measured using the tree edit distance, a
detailed description is provided in Appendix. C.

Self-improvement Demonstration. To improve the success rate of decomposition, Decomposition
Synthesis Procedure employs few-shot learning and adopts adaptive demonstrations from the pre-
vious round. Specifically, it constructs a demonstration pool, which consists of samples that were
successfully decomposed in the previous i − 1 rounds. Given a new task decomposition query, the
procedure computes the AST similarity between the query and each query in the demonstration pool.
It then selects the top-3 most similar queries as demonstrations to be included in the prompt.

Data Collection. During the search process, Decomposition Synthesis Procedure collect two types
of data for subsequent offline reinforcement learning:

• Successful Trajectories: Sequences of {(q1, y1), · · · , (qn, yn)} that successfully decompose the
target SQL, used for supervised fine-tuning.

• Contrastive Node Pairs: Pairs of incorrect node (qli, y
l
i) and their corresponding correct node

(qwi , y
w
i), used for preference learning.

3.2 MARGIN-AWARE REINFORCEMENT LEARNING

LearNAT propose a Margin-aware Reinforcement Learning framework to train the LLM for de-
composing complex NL2SQL tasks into simpler subtasks. The framework consists of two phases.
First, Margin-aware Reinforcement Learning fine-tunes the LLM in a supervised manner based on
correct decomposition trajectories, enhancing the model’s ability to perform task decomposition
and generate the correct output format. Then, Margin-aware Reinforcement Learning conducts di-
rect preference optimization (DPO) with AST margin on the LLM using contrastive node pairs,
suppressing incorrect subtask outputs and achieving finer-grained preference alignment.

Warm-up Strategy for Foundational Skill Acquisition. Given the training data from
Decomposition Synthesis Procedure, Margin-aware Reinforcement Learning first performs
supervised fine-tuning on successful decomposition trajectories. In a training instance
(Q,DB,K, {(q1, y1), · · · , (qn, yn)}), Decomposition Synthesis Procedure treats [Q,DB,K] as the
prompt x and {(q1, y1), · · · , (qn, yn)} as the target response t, so the supervised fine-tuning objec-
tive is to minimize the log-likelihood loss:

LSFT = E(x,t)

[
I∑

i=1

log pθ (ti | t1:i−1,x)

]
, (6)

where θ represents the fine-tuned LLM parameters, and pθ(t | x) =
∏I

i=1 pθ (ti | t<i,x) is the
conditional probability distribution of target subtask & subSQL sequence t given prompt x. I is the
sequence length of t, and i is the auto-aggressive decoding step.

DPO with AST Margin. A phenomenon of pessimism suggests that the positive feedback pro-
vided by SFT alone cannot prevent LLMs from generating erroneous reasoning pathways. Existing
works Rafailov et al. (2023) indicates that, during the SFT phase, as the probability of preferred
outputs (correct responses) increases, the probability of dispreferred outputs (incorrect responses)
rises as well. Margin-aware Reinforcement Learning employs DPO to suppress incorrect subtask
outputs. Specifically, a training instance takes the form of (Q,DB,K, {(q1, y1), · · · , (qi−1, yi−1)},
(qwi , y

w
i), (q

l
i, y

l
i)), Margin-aware Reinforcement Learning treats [Q,DB,K, {(q1, y1), · · · , (qi−1,

yi−1)}] as the prompt x, (qwi , y
w
i) as the prefer response, (qli, y

l
i) as the disprefer response, and

optimizes θ using DPO loss (see Eq. 13).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Results of Decomposition Synthesis Procedure. The de-
composition success rate and token consumption on BIRD-train
are reported.

Methods Success Rate Token Cost
CoT 59.07% 16,735K

MCTS 71.55% 334,694K
+ AST Guide 78.01% 133,877K

+ Self-improvement Demonstration
(1 round) 79.33% 137,456K
(2 round) 79.73% 142,017K
(3 round) 80.00% 145,977K

25

14
3

8

Schema Linking

Float Computation

Unknow Rules

Error Answer

Figure 3: Error distributions of
Decomposition Synthesis Proce-
dure on randomly selected 50 er-
ror cases from the BIRD-train.

To enable finer-grained preference learning, Margin-aware Reinforcement Learning incorporates
an offset into the DPO loss to measure the reward margin between positive and negative samples.
The margin is directly computed using reward estimation based on AST similarity, eliminating the
need for training an additional reward model. Specifically, Margin-aware Reinforcement Learning
estimates the reward margin between two samples as follows:

margin((qwi , y
w
i), (q

l
i, y

l
i)) = R(swi)−R(sli). (7)

Finally, the loss of DPO with AST Margin is formulated as follows:

LMDPO(πθ;πref) = −E(x,yw,yl)∼D [log σ (r̂θ(x, yw)− r̂θ(x, yl)−△r)] , (8)

where △r = margin((qwi , y
w
i), (q

l
i, y

l
i)) is the offset, measuring the reward margin between positive

and negative samples. The AST margin effectively guides the model to learn not only which de-
composition steps are preferred, but also how much they are preferred, leading to more nuanced and
effective multi-step reasoning capabilities.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We use the BIRD-train dataset (Li et al., 2023b) to synthesize decomposition data for
complex NL2SQL tasks within the Decomposition Synthesis Procedure, which is subsequently em-
ployed for Margin-Aware Reinforcement Learning. Then, we utilize BIRD-dev (Li et al., 2023b)
(In-Domain) and Spider-dev (Yu et al., 2018) (Out-of-Domain) to evaluate the effectiveness and ro-
bustness of LearNAT. Notably, the databases and user questions in the training and test sets differ
completely. A detailed introduction to the datasets and their statistical information is provided in
Appendix. D.

Evaluation Metrics. Since the SQL expression styles generated by LLMs may differ from the
ground truth in NL2SQL benchmarks (Shin et al., 2021), traditional string-based evaluation metrics,
such as Exact Match Accuracy (Yu et al., 2018), are not suitable for our study. Therefore, following
prior works (Liu et al., 2023; Rajkumar et al., 2022; Fan et al., 2024a), we adopt the Execution
Accuracy (EX) metric, which evaluates the correctness of generated SQL queries by comparing their
execution results with those of the corresponding ground-truth queries retrieved from the database.
For additional experimental details, please refer to Appendix. F.1.

Baselines. In this experiment, we compare two types of baselines, including 8 system-level ap-
proaches and 7 model-level approaches. A detailed introduction to the baseline models and their
statistical information is provided in Appendix. E. We consider two complementary evaluation
strategies—Competition on the Public Leaderboard and Comparison under Identical Evaluation
Protocol—to comprehensively assess the superior performance of LearNAT.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison on Spider-dev and Bird-dev benchmarks. All baseline results are
taken directly from the performance reported on Leaderboard. Bold indicates the best result, while
underline denotes the second-best results achieved by LearNAT.

BIRD-dev (In-Domain) Spider-dev (Out-of-Domain)
Methods Venue LLMs Simple Moderate Challenging Total Easy Medium Hard Extra Hard Total

System-Level
C3-SQL GPT-4 58.9 38.5 31.9 50.2 92.7 85.2 77.6 62.0 82.0
DIN-SQL NeruIPS’23 GPT-4 50.7 91.1 79.8 64.9 43.4 74.2
MetaSQL ICDE’24 GPT-4 91.1 74.7 64.1 36.1 69.6
MAG-SQL GPT-4 65.9 46.2 41.0 57.6 85.3
SuperSQL VLDB’24 GPT-4 66.9 46.5 43.8 58.5 94.4 91.3 83.3 68.7 87.0
MAC-SQL COLING’25 GPT-4 65.7 52.7 40.3 59.4 86.7

Model-Level
ACT-SQL EMNLP’23 GPT-4 91.1 79.4 67.8 44.0 74.5
CatSQL VLDB’23 N/A 95.8 88.3 74.7 62.7 83.7
DAIL-SQL VLDB’24 GPT-4 62.5 43.2 37.5 54.3 90.3 81.8 66.1 50.6 76.2
SENSE ACL’24 CodeLLaMA-13B 55.5 95.2 88.6 75.9 60.3 83.5

CodeS-7B 64.6 46.9 40.3 57.0 94.8 91.0 75.3 66.9 85.4CodeS SIGMOD’24 CodeS-15B 65.8 48.8 42.4 58.5 95.6 90.4 78.2 61.4 84.9

Ours
Qwen2.5-Coder-7B 65.4 48.4 42.4 58.1 95.2 92.4 76.4 67.5 86.4

Qwen2.5-Coder-14B 68.5 51.4 45.8 61.2 95.6 91.5 80.5 68.7 86.9LearNAT
Qwen2.5-Coder-32B 70.7 55.5 59.0 65.0 96.4 92.4 85.1 69.3 88.4

4.2 EXPERIMENTAL RESULTS

Results of Decomposition Synthesis Procedure. We evaluated the decomposition performance of
the Decomposition Synthesis Procedure on BIRD-train and compared it with several baseline de-
composition algorithms, including CoT and naive MCTS. The experimental results are shown in Ta-
ble. 1. The results indicate that the Decomposition Synthesis Procedure achieved an 80.00% decom-
position success rate, outperforming CoT and naive MCTS by 20.93%↑ and 8.45%↑, respectively.
Additionally, it is noteworthy that MCTS generated a large number of invalid searches, leading to
excessive token consumption. In contrast, our proposed Decomposition Synthesis Procedure uti-
lizes AST-guided pruning, enabling high-performance and low-cost (56.38%↓) decomposition syn-
thesis. We further tested the performance of self-improving demonstrations over multiple rounds.
The results show that adaptive demonstrations significantly improve model performance (1.99%↑).
However, this strategy also has inherent limitations. Table. 1 reveals that self-improving demon-
strations achieved notable performance gains in the first round (1.32%↑), but in the subsequent two
rounds, the decomposition performance began to diminish (only 0.4%↑ and 0.27%↑). Therefore, to
minimize token consumption, we did not proceed with a fourth round of decomposition.

To further investigate the reasons for the failure of the Decomposition Synthesis Procedure in certain
cases, we randomly selected 50 unsuccessful cases for error analysis. The error distribution is shown
in Fig. 3. We analyze these errors one by one by presenting typical cases for each of the four error
attributions in Appendix. F.2.

Competition on the Public Leaderboard. We evaluate LearNAT on Spider-dev1 and BIRD-dev2

benchmarks. To further assess LearNAT’s robustness, we fine-tune Qwen2.5-Coder models with
7B, 14B, and 32B parameters. Additionally, we compare LearNAT against recent competitive
baselines from the past two years on leaderboard. The results are presented in Table. 2.

Compared with system-level methods, LearNAT—even with only a 7B model—already outper-
forms most approaches, although these approaches leverage larger-scale models such as GPT-3.5
or GPT-4 as backbone LLMs. For example, on the Spider-dev dataset, LearNAT (7B) achieves an
overall accuracy of 86.4%, outperforming eight baseline methods and ranking just behind MAC-
SQL and SuperSQL. The larger variant, LearNAT (32B), reaches 88.4% overall accuracy, surpass-
ing all listed system-level approaches and outperforming the second-best method, SuperSQL, by
1.4%↑. Similar trends are observed on the BIRD-Dev dataset. It is worth noting that although
LearNAT (7B) performs slightly worse than MAC-SQL and SuperSQL, both of these belong to the
system-level category. They involve more complex NL2SQL pipelines, including generating multi-
ple candidates, SQL refinement, and consistency checks, which typically incur high token overhead.
In contrast, LearNAT (7B), as a model-level method, generates the final SQL in a single forward

1https://yale-lily.github.io/spider
2https://bird-bench.github.io/

8

https://yale-lily.github.io/spider
https://bird-bench.github.io/

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Performance comparison of LearNAT and competitive literature under identical evaluation
protocol. Bold indicates the better result.

Methods Evaluation Protocol LLMs BIRD-dev (In-Domain) Spider-dev (Out-of-Domain) Total
Simple Moderate Challenging Total Easy Medium Hard Extra Hard Total

SynCoT SynCoT Qwen2.5-7B-Instruct 59.2 78.9 67.1
LearNAT SynCoT Qwen2.5-Coder-7B 67.6 48.0 45.8 59.6 91.9 91.0 71.3 63.9 83.6 69.2
OmniSQL OmniSQL Qwen2.5-7B-Instruct 63.9 81.2 70.9
LearNAT OmniSQL Qwen2.5-7B-Instruct 68.2 50.3 50.7 61.1 96.0 91.5 77.6 65.1 86.0 71.1
SQL-o1 SQL-o1 Llama3-8B 71.8 52.3 45.2 63.4 94.4 93.0 81.0 68.7 87.4 73.1
LearNAT SQL-o1 Qwen2.5-Coder-7B 72.5 54.2 49.3 64.8 96.4 94.8 78.2 74.1 89.1 74.6
Alpha-SQL Alpha-SQL Qwen2.5-Coder-7B 72.6 59.3 53.1 66.8 94.0 89.2 76.4 63.3 84.0 73.7
LearNAT Alpha-SQL Qwen2.5-Coder-7B 74.4 61.5 52.8 68.4 97.2 96.0 80.5 77.1 90.6 77.4

pass without requiring additional token consumption. While maintaining the efficiency of model-
level generation, it not only outperforms all other model-level baselines but also exceeds several
system-level methods. This highlights LearNAT’s superior trade-off between performance and to-
ken cost.

Compared to model-level methods, LearNAT demonstrates a more significant performance advan-
tage. Among the fine-tuning-based approaches mentioned, the most competitive is CodeS, therefore
we evaluate both the 7B and 15B versions of CodeS. Experimental results show that LearNAT (7B)
achieves a 1.0%↑ on Spider-dev and a 1.1%↑ on BIRD-dev over CodeS (7B). Similarly, LearNAT
(14B) outperforms CodeS (15B) by a 2.0%↑ on Spider-dev and a 2.7%↑ on Spider-dev. This indi-
cates that LearNAT maintains a performance advantage across different model sizes.

Comparison under Identical Evaluation Protocol. We further compare the performance of
LearNAT with a wider range of competitive prior works, including SynCoT (Liu et al., 2025),
SQL-o1 (Lyu et al., 2025), Alpha-SQL (Li et al., 2025a), and OmniSQL (Li et al., 2025b). Because
these baselines employ different evaluation protocols. For example, SynCoT triggers multi-step rea-
soning during inference, while SQL-o1 and Alpha-SQL perform MCTS-based search at inference
time to generate additional candidate SQLs. We adopt the checkpoints of LearNAT and evaluate it
under the same protocols as these baselines to ensure a fairer comparison. The experimental results
are presented in Table. 3. The results show that LearNAT consistently surpasses SynCoT, SQL-o1,
and Alpha-SQL, and although its performance on the BIRD dataset is slightly lower than OmniSQL,
LearNAT achieves superior overall performance across both Spider and BIRD.

Notably, the overall performance of LearNAT can be further improved if additional search is intro-
duced during inference. For example, when applying the inference-time search strategy of Alpha-
SQL, LearNAT’s performance on the BIRD dataset increases from 58.1% to 68.4%. However, we
also note a significant concern: the token consumption during inference rises sharply, from 1.8K
tokens per query to 204.5k3 tokens per query.

Both LearNAT and OmniSQL optimize NL2SQL performance by constructing synthetic datasets.
However, OmniSQL focuses on synthesizing a much larger training dataset with 2.5M queries,
whereas LearNAT emphasizes constructing training data with verifiable intermediate subtasks,
improving data quality without increasing data quantity. Specifically, since LearNAT generates
subtask data based on BIRD-Train, the resulting training set contains only 7.2k queries.

Ablation Study. We evaluate the necessity of each component in LearNAT by systematically
removing individual components and assessing the model’s performance. We use Qwen2.5-Coder-
7B as the backbone LLM and conduct evaluations on Spider-dev and BIRD-dev. The results are
summarized in Table. 4. Experimental results show that removing or replacing any single component
leads to a decline in model performance. A detailed analysis of these experiments can be found in
Appendix. F.3.

5 LIMITATIONS, FUTURE WORK, AND CONCLUSION

Rooted in Model-Level Research. Frankly speaking, LearNAT does not achieve the best perfor-
mance on BIRD. For instance, CHASE-SQL (Pourreza et al., 2024), which leverages Gemini (But-
terly, 2017), attains 74.9% accuracy on BIRD-dev, outperforming LearNAT (30B), which achieves

3https://openreview.net/forum?id=kGg1ndttmI

9

https://openreview.net/forum?id=kGg1ndttmI

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 4: Ablation study analysis of LearNAT using Qwen2.5-Coder-7B as backbone LLM. The
green font indicates the performance loss incurred after the removal of the respective module.

Methods BIRD-dev (In-Domain) Spider-dev (Out-of-Domain)
Simple Moderate Challenging Total Easy Medium Hard Extra Hard Total

LearNAT 65.4 48.4 42.4 58.1 95.2 92.4 76.4 67.5 86.4

LearNAT

w/o LearNAT 56.1 (9.3↓) 34.5 (13.9↓) 33.8 (8.6↓) 47.5 (10.6↓) 82.7 (12.5↓) 84.1 (8.3↓) 71.8 (4.6↓) 54.8 (12.7↓) 77.0 (9.4↓)

LearNAT→DPO 61.7 (3.7↓) 40.6 (7.7↓) 34.7 (7.6↓) 52.8 (5.3↓) 84.7 (10.5↓) 86.1 (6.3↓) 74.1 (2.3↓) 56.6 (10.8↓) 79.0 (7.4↓)

LearNAT→CoT 57.3 (8.1↓) 37.6 (10.8↓) 36.1 (6.3↓) 49.3 (8.7↓) 87.1 (8.1↓) 85.2 (7.2↓) 75.3 (1.1↓) 56.6 (10.8↓) 79.4 (7.0↓)

Decomposition Synthesis Procedure
w/o AST Guide 62.6 (2.8↓) 41.5 (6.9↓) 29.2 (13.2↓) 53.1 (5.0↓) 85.9 (9.3↓) 87.9 (4.5↓) 69.5 (6.9↓) 60.2 (7.2↓) 79.9 (6.5↓)

Margin-Aware Reinforcement Learning
w/o SFT 63.4 (2.1↓) 43.2 (5.2↓) 34.0 (8.3↓) 54.5 (3.6↓) 87.9 (7.3↓) 88.8 (3.6↓) 69.0 (7.5↓) 62.7 (4.8↓) 81.0 (5.3↓)

w/o MDPO 62.8 (2.6↓) 42.4 (6.0↓) 31.9 (10.4↓) 53.7 (4.4↓) 87.1 (8.1↓) 88.6 (3.8↓) 70.1 (6.3↓) 62.7 (4.8↓) 80.9 (5.4↓)

MDPO→DPO 64.6 (0.8↓) 46.7 (1.7↓) 37.5 (4.9↓) 56.6 (1.4↓) 93.5 (1.6↓) 91.7 (0.7↓) 74.1 (2.3↓) 66.3 (1.2↓) 85.1 (1.3↓)

MDPO→KTO 63.1 (2.3↓) 43.9 (4.5↓) 34.7 (7.6↓) 54.6 (3.5↓) 89.1 (6.0↓) 90.6 (1.8↓) 68.4 (8.0↓) 63.9 (3.6↓) 82.2 (4.2↓)

MDPO→IPO 62.5 (2.9↓) 42.6 (5.8↓) 32.6 (9.7↓) 53.7 (4.4↓) 86.3 (8.9↓) 91.0 (1.3↓) 65.5 (10.9↓) 64.5 (3.0↓) 81.3 (5.0↓)

65.0% (9.9%↓). Nonetheless, it is important to clarify that CHASE-SQL reflects a system-level
solution, whereas the reported performance of LearNAT is evaluated strictly under a model-level
setting. Although most studies do not disclose their token costs, useful comparisons can still be
drawn from the limited information available. For example, CHASE-SQL reports an average token
consumption of 160K4 tokens per query, whereas LearNAT requires only 1.8K tokens per query.
This stark contrast demonstrates that LearNAT is more aligned with the objectives of this study,
which emphasize openness, democratization, and low-resource deployment.

Toward System-Level Exploration. At present, LearNAT has primarily focused on model-level
development. In future work, we aim to further investigate the test-time scaling law of LearNAT
to improve its performance. Appendix Fig. 10 provides a preliminary exploration of this direction,
showcasing the potential of LearNAT at the system level. Moving forward, we plan to integrate
more advanced techniques to enhance performance while minimizing token overhead, thereby sys-
tematically exploring the trade-off between accuracy and computational cost.

Conclusion. In this work, we propose LearNAT, a novel framework designed to improve the per-
formance of LLMs on NL2SQL tasks by leveraging task decomposition and reinforcement learning.
Our design is motivated by extensive preliminary experiments, through which we propose a verifi-
able task decomposition procedure and introduce a margin-aware DPO algorithm to optimize LLMs.
The effectiveness of our approach is validated on two public NL2SQL benchmarks. Although the
present study is limited to model-level improvements, our preliminary explorations demonstrate the
potential of LearNAT at the system level. We contend that LearNAT represents an important step
toward achieving openness, transparency, and efficiency in NL2SQL.

6 ETHICS STATEMENT

All datasets used for training and evaluation in this study are publicly available versions. The
datasets have been curated, cleaned, and de-identified by their respective data providers prior to
release. No patient personal information or identifiable medical data is present. Consequently, the
research does not involve human subjects, and there are no related concerns regarding privacy, con-
fidentiality, or legal liability.

We strictly adhered to the usage and redistribution licenses provided by the original dataset authors
and hosting platforms. Our research poses no risk of harm to individuals or groups and does not
contain any potentially harmful insights, models, or applications. Additionally, there are no conflicts
of interest or sponsorship concerns associated with this work. We are committed to research integrity
and ethical standards consistent with the ICLR Code of Ethics.

4https://openreview.net/forum?id=CvGqMD5OtX

10

https://openreview.net/forum?id=CvGqMD5OtX

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

We actively support the spirit of openness and reproducibility advocated by ICLR. To ensure the
reproducibility of our research, we have taken the following measures:

1. Disclosure of Base Models: All base models used in our experiments are explicitly identified
and described in the main manuscript. This allows readers to directly reference and obtain these
models.

2. Datasets and Experimental Details: All experiments are conducted on publicly available datasets.
In Appendix. D, we provide a comprehensive description of our experimental datasets. We also
detail the experimental setup in Appendix. F.1. These details facilitate transparent verification
and replication of our results.

3. Open-Source Code Release: To further support reproducibility, we release all training and
evaluation code in an anonymous repository (https://anonymous.4open.science/r/
LearNAT). The repository contains clear instructions on installation, data downloading, pre-
processing, and experimentation, allowing interested researchers to replicate our results with
minimal effort.

We believe that these actions align with the open science principles championed by the ICLR com-
munity, and we are committed to supporting the reproducibility and transparency of our work.

8 USE OF LLM

In the preparation of this manuscript, we utilized large language models (LLM) solely for writing
assistance purposes. Specifically, we employed the GPT-4.1-0414 model to polish language expres-
sions, condense sentences, and improve the overall clarity and readability of the text. The model
was used exclusively for editing and refining manuscript language and did not participate in any
conceptual or technical aspects of this work.

All research ideas, theoretical proof methods, experimental designs, and visualizations were con-
ceived, executed, and finalized by the authors without the involvement of any LLM tools. The
development of new concepts, formulation and validation of proofs, experimental setups, analysis
of results, and the creation of figures were performed independently by the research team. At no
point was the LLM model used to generate, modify, or validate the scientific content, methodology,
or results presented in this article.

We emphasize that the role of GPT-4.1-0414 in this research was strictly limited to linguistic en-
hancement at the writing stage, and that all substantive intellectual and scientific contributions orig-
inate solely from the authors.

REFERENCES

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Con-
crete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Adam Butterly. Gemini: Technical Report. PhD thesis, Dublin, National College of Ireland, 2017.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Alphamath almost zero: process supervi-
sion without process. CoRR, abs/2405.03553, 2024. doi: 10.48550/ARXIV.2405.03553. URL
https://doi.org/10.48550/arXiv.2405.03553.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in Neural Information Processing
Systems, 30, 2017.

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao, Yunjun Gao, Lu Chen, Jinshu Lin, and Dong-
fang Lou. C3: zero-shot text-to-sql with chatgpt. CoRR, abs/2307.07306, 2023. doi: 10.48550/
ARXIV.2307.07306. URL https://doi.org/10.48550/arXiv.2307.07306.

11

https://anonymous.4open.science/r/LearNAT
https://anonymous.4open.science/r/LearNAT
https://doi.org/10.48550/arXiv.2405.03553
https://doi.org/10.48550/arXiv.2307.07306

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sabit Ekin. Prompt engineering for chatgpt: a quick guide to techniques, tips, and best practices.
Authorea Preprints, 2023.

Ju Fan, Zihui Gu, Songyue Zhang, Yuxin Zhang, Zui Chen, Lei Cao, Guoliang Li, Samuel Madden,
Xiaoyong Du, and Nan Tang. Combining small language models and large language models for
zero-shot NL2SQL. Proc. VLDB Endow., 17(11):2750–2763, 2024a. doi: 10.14778/3681954.
3681960. URL https://www.vldb.org/pvldb/vol17/p2750-fan.pdf.

Yuankai Fan, Zhenying He, Tonghui Ren, Can Huang, Yinan Jing, Kai Zhang, and X Sean Wang.
Metasql: A generate-then-rank framework for natural language to sql translation. In 2024 IEEE
40th International Conference on Data Engineering (ICDE), pp. 1765–1778. IEEE, 2024b.

Xidong Feng, Ziyu Wan, Muning Wen, Ying Wen, Weinan Zhang, and Jun Wang. Alphazero-
like tree-search can guide large language model decoding and training. arXiv preprint
arXiv:2309.17179, 2023.

Han Fu, Chang Liu, Bin Wu, Feifei Li, Jian Tan, and Jianling Sun. Catsql: Towards real world
natural language to sql applications. Proceedings of the VLDB Endowment, 16(6):1534–1547,
2023.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou.
Text-to-sql empowered by large language models: A benchmark evaluation. Proc. VLDB Endow.,
17(5):1132–1145, 2024. doi: 10.14778/3641204.3641221. URL https://www.vldb.org/
pvldb/vol17/p1132-gao.pdf.

Xu Huang, Jianxun Lian, Yuxuan Lei, Jing Yao, Defu Lian, and Xing Xie. Recommender ai agent:
Integrating large language models for interactive recommendations. ACM Transactions on Infor-
mation Systems, 43(4):1–33, 2025.

Hyeonbin Hwang, Doyoung Kim, Seungone Kim, Seonghyeon Ye, and Minjoon Seo. Self-explore
to avoid the pit: Improving the reasoning capabilities of language models with fine-grained re-
wards, 2024. URL https://arxiv.org/abs/2404.10346.

Hyeonji Kim, Byeong-Hoon So, Wook-Shin Han, and Hongrae Lee. Natural language to sql: Where
are we today? Proceedings of the VLDB Endowment, 13(10):1737–1750, 2020.

Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xiangru Peng, and Jiaya Jia. Step-dpo: Step-
wise preference optimization for long-chain reasoning of llms. arXiv:2406.18629, 2024.

Dongjun Lee, Choongwon Park, Jaehyuk Kim, and Heesoo Park. MCS-SQL: leveraging multiple
prompts and multiple-choice selection for text-to-sql generation. In Owen Rambow, Leo Wan-
ner, Marianna Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, and Steven Schockaert (eds.),
Proceedings of the 31st International Conference on Computational Linguistics, COLING 2025,
Abu Dhabi, UAE, January 19-24, 2025, pp. 337–353. Association for Computational Linguistics,
2025. URL https://aclanthology.org/2025.coling-main.24/.

Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li, and Nan Tang. The dawn of natural language
to sql: Are we fully ready? Proceedings of the VLDB Endowment, 17(11):3318–3331, 2024a.

Boyan Li, Jiayi Zhang, Ju Fan, Yanwei Xu, Chong Chen, Nan Tang, and Yuyu Luo. Alpha-sql:
Zero-shot text-to-sql using monte carlo tree search. In Forty-second International Conference on
Machine Learning, 2025a.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen. RESDSQL: decoupling schema linking and
skeleton parsing for text-to-sql. In Brian Williams, Yiling Chen, and Jennifer Neville (eds.),
Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference
on Innovative Applications of Artificial Intelligence, IAAI 2023, Thirteenth Symposium on Ed-
ucational Advances in Artificial Intelligence, EAAI 2023, Washington, DC, USA, February 7-
14, 2023, pp. 13067–13075. AAAI Press, 2023a. doi: 10.1609/AAAI.V37I11.26535. URL
https://doi.org/10.1609/aaai.v37i11.26535.

12

https://www.vldb.org/pvldb/vol17/p2750-fan.pdf
https://www.vldb.org/pvldb/vol17/p1132-gao.pdf
https://www.vldb.org/pvldb/vol17/p1132-gao.pdf
https://arxiv.org/abs/2404.10346
https://aclanthology.org/2025.coling-main.24/
https://doi.org/10.1609/aaai.v37i11.26535

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xiaokang Zhang, Jun Zhu, Renjie Wei, Hongyan
Pan, Cuiping Li, and Hong Chen. Codes: Towards building open-source language models for
text-to-sql. Proc. ACM Manag. Data, 2(3):127, 2024b. doi: 10.1145/3654930. URL https:
//doi.org/10.1145/3654930.

Haoyang Li, Shang Wu, Xiaokang Zhang, Xinmei Huang, Jing Zhang, Fuxin Jiang, Shuai Wang,
Tieying Zhang, Jianjun Chen, Rui Shi, et al. Omnisql: Synthesizing high-quality text-to-sql data
at scale. arXiv preprint arXiv:2503.02240, 2025b.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen
Qin, Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin Chen-
Chuan Chang, Fei Huang, Reynold Cheng, and Yongbin Li. Can LLM already serve as A
database interface? A big bench for large-scale database grounded text-to-sqls. In Alice Oh,
Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
Advances in Neural Information Processing Systems 36: Annual Conference on Neural In-
formation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023, 2023b. URL http://papers.nips.cc/paper_files/paper/2023/
hash/83fc8fab1710363050bbd1d4b8cc0021-Abstract-Datasets_and_
Benchmarks.html.

Weibin Liao, Xu Chu, and Yasha Wang. Tpo: Aligning large language models with multi-branch &
multi-step preference trees. arXiv preprint arXiv:2410.12854, 2024.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2024.

Jianghao Lin, Xinyi Dai, Yunjia Xi, Weiwen Liu, Bo Chen, Hao Zhang, Yong Liu, Chuhan Wu,
Xiangyang Li, Chenxu Zhu, et al. How can recommender systems benefit from large language
models: A survey. ACM Transactions on Information Systems, 43(2):1–47, 2025.

Aiwei Liu, Xuming Hu, Lijie Wen, and Philip S Yu. A comprehensive evaluation of chatgpt’s
zero-shot text-to-sql capability. arXiv preprint arXiv:2303.13547, 2023.

Hanbing Liu, Haoyang Li, Xiaokang Zhang, Ruotong Chen, Haiyong Xu, Tian Tian, Qi Qi, and Jing
Zhang. Uncovering the impact of chain-of-thought reasoning for direct preference optimization:
Lessons from text-to-sql. arXiv preprint arXiv:2502.11656, 2025.

Shuai Lyu, Haoran Luo, Ripeng Li, Zhonghong Ou, Jiangfeng Sun, Yang Qin, Xiaoran Shang,
Meina Song, and Yifan Zhu. Sql-o1: A self-reward heuristic dynamic search method for text-to-
sql. arXiv preprint arXiv:2502.11741, 2025.

Wenxin Mao, Ruiqi Wang, Jiyu Guo, Jichuan Zeng, Cuiyun Gao, Peiyi Han, and Chuanyi Liu.
Enhancing text-to-sql parsing through question rewriting and execution-guided refinement. In
Findings of the Association for Computational Linguistics ACL 2024, pp. 2009–2024, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Mohammadreza Pourreza and Davood Rafiei. DIN-SQL: decomposed in-context learn-
ing of text-to-sql with self-correction. In Alice Oh, Tristan Naumann, Amir Glober-
son, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural In-
formation Processing Systems 36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
72223cc66f63ca1aa59edaec1b3670e6-Abstract-Conference.html.

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun, Yeounoh Chung, Shayan Talaei, Gaurav Tarlok
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and Sercan Ö. Arik. CHASE-SQL: multi-path
reasoning and preference optimized candidate selection in text-to-sql. CoRR, abs/2410.01943,
2024. doi: 10.48550/ARXIV.2410.01943. URL https://doi.org/10.48550/arXiv.
2410.01943.

13

https://doi.org/10.1145/3654930
https://doi.org/10.1145/3654930
http://papers.nips.cc/paper_files/paper/2023/hash/83fc8fab1710363050bbd1d4b8cc0021-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/83fc8fab1710363050bbd1d4b8cc0021-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/83fc8fab1710363050bbd1d4b8cc0021-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/72223cc66f63ca1aa59edaec1b3670e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/72223cc66f63ca1aa59edaec1b3670e6-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2410.01943
https://doi.org/10.48550/arXiv.2410.01943

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Mohammadreza Pourreza, Shayan Talaei, Ruoxi Sun, Xingchen Wan, Hailong Li, Azalia Mirho-
seini, Amin Saberi, Sercan Arik, et al. Reasoning-sql: Reinforcement learning with sql tailored
partial rewards for reasoning-enhanced text-to-sql. arXiv preprint arXiv:2503.23157, 2025.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2023.

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bahdanau. Evaluating the text-to-sql capabilities of
large language models. arXiv preprint arXiv:2204.00498, 2022.

Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar. Rl
on incorrect synthetic data scales the efficiency of llm math reasoning by eight-fold, 2024. URL
https://arxiv.org/abs/2406.14532.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hug-
ginggpt: Solving AI tasks with chatgpt and its friends in hugging face. In Alice Oh, Tris-
tan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
77c33e6a367922d003ff102ffb92b658-Abstract-Conference.html.

Richard Shin, Christopher Lin, Sam Thomson, Charles Chen Jr, Subhro Roy, Emmanouil Antonios
Platanios, Adam Pauls, Dan Klein, Jason Eisner, and Benjamin Van Durme. Constrained language
models yield few-shot semantic parsers. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pp. 7699–7715, 2021.

Josefa Lia Stoisser, Marc Boubnovski Martell, Lawrence Phillips, Casper Hansen, and Julien
Fauqueur. Struct-llm: Unifying tabular and graph reasoning with reinforcement learning for se-
mantic parsing. arXiv preprint arXiv:2506.21575, 2025.

Ruoxi Sun, Sercan Ö. Arik, Hootan Nakhost, Hanjun Dai, Rajarishi Sinha, Pengcheng Yin, and
Tomas Pfister. Sql-palm: Improved large language model adaptation for text-to-sql. CoRR,
abs/2306.00739, 2023. doi: 10.48550/ARXIV.2306.00739. URL https://doi.org/10.
48550/arXiv.2306.00739.

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen Chang, Azalia Mirhoseini, and Amin Saberi.
CHESS: contextual harnessing for efficient SQL synthesis. CoRR, abs/2405.16755, 2024. doi: 10.
48550/ARXIV.2405.16755. URL https://doi.org/10.48550/arXiv.2405.16755.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Jiaqi Bai, Linzheng Chai, Zhao Yan, Qian-
Wen Zhang, Di Yin, Xing Sun, and Zhoujun Li. MAC-SQL: A multi-agent collaborative
framework for text-to-sql. In Owen Rambow, Leo Wanner, Marianna Apidianaki, Hend Al-
Khalifa, Barbara Di Eugenio, and Steven Schockaert (eds.), Proceedings of the 31st Interna-
tional Conference on Computational Linguistics, COLING 2025, Abu Dhabi, UAE, January
19-24, 2025, pp. 540–557. Association for Computational Linguistics, 2025. URL https:
//aclanthology.org/2025.coling-main.36/.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 9426–9439, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

14

https://arxiv.org/abs/2406.14532
http://papers.nips.cc/paper_files/paper/2023/hash/77c33e6a367922d003ff102ffb92b658-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/77c33e6a367922d003ff102ffb92b658-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2306.00739
https://doi.org/10.48550/arXiv.2306.00739
https://doi.org/10.48550/arXiv.2405.16755
https://aclanthology.org/2025.coling-main.36/
https://aclanthology.org/2025.coling-main.36/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Lixia Wu, Peng Li, Junhong Lou, and Lei Fu. Datagpt-sql-7b: An open-source language model for
text-to-sql. CoRR, abs/2409.15985, 2024. doi: 10.48550/ARXIV.2409.15985. URL https:
//doi.org/10.48550/arXiv.2409.15985.

Wenxuan Xie, Gaochen Wu, and Bowen Zhou. Mag-sql: Multi-agent generative approach with soft
schema linking and iterative sub-sql refinement for text-to-sql. arXiv preprint arXiv:2408.07930,
2024a.

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P Lillicrap, Kenji Kawaguchi,
and Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning.
arXiv preprint arXiv:2405.00451, 2024b.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jingren
Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang,
Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong
Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing Liu,
Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru
Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report. CoRR, abs/2407.10671, 2024a.
doi: 10.48550/ARXIV.2407.10671. URL https://doi.org/10.48550/arXiv.2407.
10671.

Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Junyang Lin, and Chang Zhou. Synthesizing text-
to-sql data from weak and strong llms. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024, pp. 7864–7875.
Association for Computational Linguistics, 2024b. doi: 10.18653/V1/2024.ACL-LONG.425.
URL https://doi.org/10.18653/v1/2024.acl-long.425.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir R. Radev. Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing and text-to-sql task. In
Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, October
31 - November 4, 2018, pp. 3911–3921. Association for Computational Linguistics, 2018. doi:
10.18653/V1/D18-1425. URL https://doi.org/10.18653/v1/d18-1425.

Hanchong Zhang, Ruisheng Cao, Lu Chen, Hongshen Xu, and Kai Yu. Act-sql: In-context learning
for text-to-sql with automatically-generated chain-of-thought. In Findings of the Association for
Computational Linguistics: EMNLP 2023, pp. 3501–3532, 2023a.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi
Hu, Tianwei Zhang, Fei Wu, et al. Instruction tuning for large language models: A survey. arXiv
preprint arXiv:2308.10792, 2023b.

Zeyu Zhang, Quanyu Dai, Xiaohe Bo, Chen Ma, Rui Li, Xu Chen, Jieming Zhu, Zhenhua Dong,
and Ji-Rong Wen. A survey on the memory mechanism of large language model based agents.
ACM Transactions on Information Systems, 2024.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. arXiv
preprint arXiv:2403.13372, 2024.

15

https://doi.org/10.48550/arXiv.2409.15985
https://doi.org/10.48550/arXiv.2409.15985
https://doi.org/10.48550/arXiv.2407.10671
https://doi.org/10.48550/arXiv.2407.10671
https://doi.org/10.18653/v1/2024.acl-long.425
https://doi.org/10.18653/v1/d18-1425

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A PRELIMINARY EXPERIMENTS

(a) LLM on complex NL2SQL task.

(b) LLM on multiple simple NL2SQL subtasks.

Figure 4: (a) illustrates the LLM directly solving a complex NL2SQL task, resulting in an incorrect
output. (b) shows the LLM solving multiple decomposed simple NL2SQL subtasks from the same
task in (a), resulting in a correct output. This motivates our approach to enhancing the LLM’s ability
to decompose complex tasks, thereby improving its performance on challenging NL2SQL queries.

Figure 5: The abstract syntax tree (AST) of the given case in Fig. 4. Each simple NL2SQL subtask
in Fig. 4 corresponds to a subtree within the AST. Clause nodes, operator nodes and operand nodes
were defined in Sec. B.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 6: A preliminary experiment was conducted. We randomly selected 500 cases from the
BIRD Train dataset and employed QWen-2.5-Coder to perform the NL2SQL task. The experimental
results indicate that enhancing the LLM’s task decomposition ability is crucial for improving its
performance on NL2SQL tasks.

Figure 7: AST-based Decomposition vs. Search-based Decomposition

Table 5: Experimental results on evaluating subtask correctness using language models.

Models
Accuracy

Correct (227) Error (273) Total (500)

sentence-transformer 92.1 9.2 46.8
GLM-4 45.4 20.5 36.0

B TECHNICAL FOUNDATIONS

Natural Language to SQL (NL2SQL). The goal of the NL2SQL task is to translate a natural
language (NL) question Q into corresponding SQL query Y , based on a database schema DB.
In more complex scenarios, such as those presented by BIRD (Li et al., 2023b), interpreting NL
questions or understanding database values may require incorporating external knowledge, denoted
by K. The prevailing approach to the NL2SQL task adopts a cross-domain framework to assess a
model’s generalization ability by keeping the training, development, and test sets distinct.

Abstract Syntax Trees (AST). An Abstract Syntax Tree (AST) is a structured, hierarchical rep-
resentation of an SQL query, where each element of the query is captured as a node and the relation-
ships between these elements are encoded as edges. This tree-based structure abstracts away from
the linear textual representation of SQL, focusing instead on its grammatical structure and logical
organization. Formally, the AST of an SQL query Y can be defined as a directed acyclic graph
(DAG) AT (Y) = (N , E), where N is the set of nodes, each representing a syntactic component of
the SQL query. Specifically, every node n ∈ N corresponds to a clause, operator, or operand. We
categorize the nodes as follows:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 6: Notations of Basic Symbols and Their Descriptions Used in This Manuscripts.

Symbol Description
Natural Language to SQL (NL2SQL)

Q Natural language (NL) question
Y Corresponding SQL query
DB Database schema
K External knowledge

Abstract Syntax Trees (AST)

AT (Y) = (N , E) Abstract Syntax Tree, a directed acyclic graph
of SQL query Y

N Set of nodes in AST
E ⊆ N ×N Set of edges in AST
nc ∈ Nc Clause Nodes
no ∈ No Operator Nodes
nv ∈ Nv Operand Nodes

Monte Carlo Tree Search (MCTS)
T = (S,A,M) MCTS search tree

S Set of states or nodes in the search space
A(s) Set of actions available at state s

M ⊆ S × S Set of edges
Q(s, a) Estimated reward for taking action a from state s
N(s) Visit count of node s

c
Constant that controls the exploration-exploitation
trade-off

Direct Preference Optimization (DPO)
x Prompt
yw Preferred response
yl Dispreferred response
p∗D Probability of preference
πθ Policy model
πref Reference model
β Parameter that regulates the KL divergence

• Clause Nodes (nc ∈ Nc): Represent core SQL clauses, such as SELECT, FROM, WHERE, GROUP
BY, and ORDER BY.

• Operator Nodes (no ∈ No): Represent logical or arithmetic operations, such as AND, OR, =, >,
and <.

• Operand Nodes (nv ∈ Nv): Represent terminal elements like table names, column names, liter-
als, or values from the database schema.

E ⊆ N × N is the set of edges, where each directed edge e = (ni, nj) ∈ E captures a syntactic
dependency from a parent node ni to a child node nj . These edges reflect the hierarchical structure
of the query, where high-level clauses dominate subcomponents or conditions.

The root node of AT (Y) corresponds to the main clause of the query, typically the SELECT clause.
From the root, child nodes represent subsequent clauses or expressions, forming a hierarchical de-
composition of the SQL query. For example, a WHERE clause node may have child nodes corre-
sponding to individual conditions, which in turn may contain operators and operands as descen-
dants. This formal representation enables a structured understanding of SQL queries, facilitating
decomposition, syntactic validation, and step-wise reasoning. In text-to-SQL tasks, leveraging the
AST structure allows efficient navigation of complex queries by guiding models through the logical
and hierarchical relationships in SQL syntax.

Monte Carlo Tree Search (MCTS). Monte Carlo Tree Search (MCTS) is a heuristic search algo-
rithm used for decision-making in large and complex search spaces. It combines tree-based search
with stochastic sampling to balance exploration and exploitation, making it particularly effective for
problems with vast or unknown state spaces. In the context of reasoning and sequential decision-

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

making, MCTS provides an efficient framework for discovering optimal strategies by incrementally
building a search tree guided by simulation-based evaluations. Formally, MCTS operates on a search
tree T = (S,A,M), where:

• S is the set of states or nodes in the search space. Each node s ∈ S represents a specific con-
figuration of the environment, such as a partially completed plan or a subproblem in a reasoning
task.

• A(s) denotes the set of actions available at state s. Each action leads to a child state s′, expanding
the search tree.

• M ⊆ S × S represents the set of edges, where each edge corresponds to a transition between
states through an action.

The MCTS algorithm proceeds iteratively through four phases:

1. Selection: Starting from the root node s0, the algorithm recursively selects child nodes based on
a selection policy, typically using the Upper Confidence Bound for Trees (UCT) criterion:

a∗ = arg max
a∈A(s)

(
Q(s, a) + c ·

√
logN(s)

N(s, a)

)
, (9)

where Q(s, a) is the estimated reward for taking action a from state s, N(s) is the visit count
of node s, N(s, a) is the visit count of action a from s, and c is a constant that controls the
exploration-exploitation trade-off.

2. Expansion: If the selected node is not terminal and has unvisited child nodes, the algorithm
expands the tree by adding a new child node corresponding to a valid action from the current
state.

3. Simulation (Rollout): From the newly expanded node, a simulation is conducted by selecting
actions—often at random or based on a heuristic policy—until reaching a terminal state. The
outcome of this simulation provides a reward signal, used to estimate the reward of the node.

4. Backpropagation: The reward obtained from the simulation is propagated back through the
visited nodes, updating the reward estimations Q(s, a) and visit counts N(s, a) along the path
from the expanded node to the root.

The output of MCTS is a policy that selects the action with the highest visit count from the root
node.

π(s0) = arg max
a∈A(s0)

N(s0, a). (10)

Direct Preference Optimization (DPO). Reinforcement Learning from Human Feedback
(RLHF) (Christiano et al., 2017) is an effective strategy for aligning LLMs with human prefer-
ence (Ouyang et al., 2022). It relies on the Bradley-Terry (BT) model (Bradley & Terry, 1952)
to define preference probability based on some reward function. Given a prompt x and two
responses—yw (preferred) and yl (dispreferred)—the probability of preference can be expressed
as:

p∗D (yw ≻ yl | x) = σ (r∗(x, yw)− r∗(x, yl)) , (11)

where σ(x) = 1
1+exp(−x) is the sigmoid function and r∗ represents a latent reward model. RLHF

optimizes the policy model πθ with a Kullback-Leibler (KL) constraint to limit deviation from a
reference model πref :

maxEx∼D,y∼πθ(y|x)[r
∗(x, y)]− βDKL[πθ(y | x)∥πref (y | x)]. (12)

Here, β regulates the KL divergence to prevent reward hacking (Amodei et al., 2016). While ef-
fective, RLHF requires careful hyperparameter tuning and involves complex reward modeling and
policy training.

To simplify this process, Direct Preference Optimization (DPO) (Rafailov et al., 2023) was intro-
duced, eliminating the need for an explicit reward model. Instead, DPO directly optimizes the policy

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

using paired preference data. Given a prompt x with responses (yw, yl), the DPO objective maxi-
mizes the likelihood of the preferred response while minimizing that of the dispreferred one:

LDPO(πθ;πref) = −E(x,yw,yl)∼D [log σ (r̂θ(x, yw)− r̂θ(x, yl))]

r̂θ(x, y) = β log
πθ(y | x)
πref(y | x)

. (13)

This formulation treats r̂θ(x, y) as an “implicit reward” (Rafailov et al., 2023), allowing for di-
rect alignment with human preference while bypassing the need for complex reward modeling and
simplifying the overall training process.

C AST SIMILARITY

Node-level Similarity (simnode) The node-level similarity considers different types of nodes sep-
arately:

simnode(AT 1,AT 2) =
∑

t∈{c,o,v}

wt · simt(AT 1,AT 2), (14)

where wt are weights for each node type with
∑

t wt = 1 and t ∈ {c, o, v} represents clause nodes,
operator nodes, and operand nodes, respectively.

For each node type:

simt(AT 1,AT 2) =
|Nt(AT 1) ∩Nt(AT 2)|
|Nt(AT 1) ∪Nt(AT 2)|

, (15)

where Nt(AT i) is the set of nodes of type t in AST AT i.

Structural Similarity (simstruct) Decomposition Synthesis Procedure define structural similarity
using the Tree Edit Distance (TED):

simstruct(AT 1,AT 2) = 1− TED(AT 1,AT 2)

max(|AT 1|, |AT 2|)
, (16)

where TED(AT 1,AT 2) is the minimum number of node operations (insertion, deletion, modifica-
tion) required to transform AT 1 into AT 2, and |AT i| is the number of nodes in AST AT i.

D DATASET STATISTICS

The BIRD and Spider datasets are introduced as follows.

• BIRD: BIRD (Li et al., 2023b) (Big Bench for Large-scale Database Grounded Text-to-SQL Eval-
uation) is a pioneering cross-domain dataset designed to assess the impact of large-scale database
contents on text-to-SQL parsing. It comprises over 12,751 unique question-SQL pairs and 95
large databases with a total size of 33.4 GB, covering more than 37 professional domains, includ-
ing blockchain, hockey, healthcare, and education.

• Spider: Spider (Yu et al., 2018) is a large-scale, cross-domain dataset for complex semantic pars-
ing and text-to-SQL tasks, annotated by 11 Yale students. The Spider challenge aims to develop
natural language interfaces for querying cross-domain databases. The dataset includes 10,181
questions paired with 5,693 unique complex SQL queries across 200 databases, spanning 138
diverse domains.

The statistics of BIRD-train, BIRD-dev, and Spider-dev used in this study are shown in Table. 7.
Notably, BIRD-train does not categorize queries based on difficulty levels. Additionally, although

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

BIRD-train provides 9,428 data samples, the gold SQL statements for 425 of them cannot be exe-
cuted by the SQL executor. Therefore, we filter out these samples considering BIRD-train to contain
only 9,003 data samples in our subsequent analysis.

Table 7: Statistics for NL2SQL benchmarks.

Benchmarks #Queries
BIRD-train 9,428 9,003

Simple Moderate Challenging TotalBIRD-dev 925 465 144 1,534

Easy Medium Hard Extra Hard TotalSpider-dev 248 446 174 166 1,034

E BASELINE SOLUTIONS

We briefly describe these competitive literature used in this manuscript as follows.

System-level solutions. We compare LearNAT with 8 system-level methods:

• C3-SQL (Dong et al., 2023) introduces a ChatGPT-based zero-shot Text-to-SQL framework
that enhances model input, mitigates model bias, and ensures output consistency through Clear
Prompting, Calibration with Hints, and Consistent Output, respectively.

• DIN-SQL (Pourreza & Rafiei, 2023) introduces a task decomposition approach that improves
LLMs’ text-to-SQL performance by breaking query generation into sub-problems and iteratively
incorporating their solutions.

• MetaSQL (Fan et al., 2024b) introduces a unified generate-then-rank framework for NLIDBs that
incorporates query metadata to guide SQL generation and uses learning-to-rank algorithms to
select the most accurate SQL query, improving translation accuracy across multiple benchmarks.

• MAG-SQL (Xie et al., 2024a) introduces a multi-agent generative approach with soft schema
linking and iterative Sub-SQL refinement, incorporating external oversight at each generation
step.

• MAC-SQL (Wang et al., 2025) introduces a multi-agent collaborative framework that combines a
core decomposer agent with auxiliary agents utilizing external tools for sub-database acquisition
and SQL refinement.

• SuperSQL (Li et al., 2024a) combines schema linking from RESDSQL (Li et al., 2023a), few-
shot prompting and self-consistency post-processing from DAIL-SQL (Gao et al., 2024), greedy-
decoding strategy from OpenAI for SQL generation, with GPT-4 as the backbone model for en-
hanced performance.

• SynCoT (Liu et al., 2025) is a novel framework that enhances DPO for NL2SQL by automatically
generating synthetic CoT reasoning traces to bridge the gap between preference-based learning
and structured query generation, thereby unlocking DPO’s full potential in this domain.

• OmniSQL (Li et al., 2025b) is trained on SynSQL-2.5M, a novel million-scale synthetic dataset
featuring diverse database schemas, natural language questions, SQL queries, and chain-of-
thought annotations, and it achieves state-of-the-art performance across multiple benchmarks.

Model-level solutions. We compare LearNAT with 7 model-level methods:

• ACT-SQL (Zhang et al., 2023a) proposes an automatic chain-of-thought prompting method that
enhances LLMs’ reasoning ability in text-to-SQL tasks by leveraging schema-linking-inspired
exemplars without requiring manual labeling.

• DAIL-SQL (Gao et al., 2024) proposes an integrated solution that optimizes prompt engineering
methods and enhances open-source LLMs with supervised fine-tuning.

• CatSQL (Fu et al., 2023) integrates a template-based sketch with a deep learning model to improve
both accuracy and runtime for NL2SQL tasks, while also proposing a Semantics Correction tech-
nique that leverages database domain knowledge to enhance the accuracy of generated queries.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

• SENSE (Yang et al., 2024b) introduces a synthetic data approach that combines strong and weak
model outputs for instruction tuning on open-source LLMs.

• CodeS (Li et al., 2024b) introduces a series of open-source pre-trained models, ranging from 1B
to 15B parameters, specifically optimized for text-to-SQL tasks through incremental pre-training,
strategic prompt construction, and bi-directional data augmentation.

• SQL-o1 (Lyu et al., 2025) is a self-reward-driven, agent-based heuristic search framework for
NL2SQL that employs MCTS with dynamic pruning to enable structured multi-step reasoning,
significantly improving execution accuracy.

• Alpha-SQL (Li et al., 2025a) is a NL2SQL framework that leverages MCTS with an LLM-as-
Action-Model to iteratively generate and refine SQL construction actions based on partial reason-
ing states, guided by a self-supervised reward function.

MCTS-based Evaluation Protocol Explanation.

Here, we provide a detailed description of the MCTS-based evaluation protocols used in our com-
parative experiments.

• Evaluation protocols of SQL-o1: SQL-o1 employs MCTS during inference. Specifically, at each
node of the MCTS tree, SQL-o1 generates a subtask along with its corresponding SQL statement,
a mechanism closely resembling that of LearNAT. The complete task chain relevant to the user
query is defined by the trajectory from the root node to a leaf node, based on which the final
SQL query is constructed. Furthermore, SQL-o1 defines a reward for each node by evaluating the
model’s confidence—i.e., the probability assigned by the LLM to the output at that node—and
selects the node with the highest confidence. Nodes whose confidence falls below a predefined
threshold are pruned and not further expanded.

• Evaluation protocols of Alpha-SQL: Alpha-SQL also integrates MCTS during inference. How-
ever, unlike SQL-o1, Alpha-SQL does not decompose the problem into explicit subtasks; instead,
each node directly corresponds to the user query and an associated SQL statement. Consequently,
while SQL-o1 defines its action space as the generation of the next planning step and its corre-
sponding SQL, Alpha-SQL adopts a richer set of atomic actions: Rephrase Question, Schema
Selection, Column Value Identification, Column Function Identification, SQL Generation, SQL
Revision, and Termination. Through sequential selection of these actions, Alpha-SQL iteratively
refines both the natural language query representation and the corresponding SQL.Alpha-SQL also
defines node rewards based on the consistency frequency of paths obtained via high-temperature
sampling over action sequences. Upon completion of the MCTS search, Alpha-SQL aggregates
all SQL queries generated across trajectories and selects the final output based on self-consistency,
i.e., agreement among execution results of candidate SQL queries.

F ADDITIONAL EXPERIMENTS

F.1 IMPLEMENTATION DETAILS.

We employ GLM-4-Plus5 as the primary model for synthesizing decomposition data and fine-tune
the model on Qwen2.5-Coder (Yang et al., 2024a), including its 7B, 14B, and 32B versions. We
used the PyTorch library to implement all the algorithms based on the open-source HuggingFace
transformers (Wolf et al., 2019) and LLaMA-Factory (Zheng et al., 2024). The experiments are
conducted on 8×A100 GPUs. During the SFT stage, we utilize the AdamW optimizer with a learn-
ing rate of 2e-5 and a cosine warmup scheduler over three epochs. For DPO training, the Adam
optimizer is used with a learning rate of 2e-6, and the β parameter is set to 0.2, in accordance
with the original DPO configuration. In Eq. 14, we assign equal weights to all three nodes, i.e.,
wc = wo = wv = 0.33. Based on our experimental observations F.12, we set α = 0.75 in Eq. 5.
During inference, we strictly follow the evaluation protocol provided by DAIL-SQL (Gao et al.,
2024) (the Without Voting setting). The protocol provides a complete set of prompts to better struc-
ture the instructions, user queries, and database schema information, enabling the LLM to generate
a single response from which the SQL statement is extracted as the final answer.

5https://bigmodel.cn/dev/api/normal-model/glm-4

22

https://bigmodel.cn/dev/api/normal-model/glm-4

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

We adopt the following strategy to adapt LearNAT to MCTS-based evaluation protocols.

• Adapt LearNAT to SQL-o1: When adapting LearNAT to the SQL-o1 framework, we leverage
LearNAT to generate both subtasks and subSQLs at each MCTS node. The tree traversal and
pruning decisions are guided by the same reward mechanism used in SQL-o1, and the path with
the highest cumulative confidence is ultimately selected as the final SQL query.

• Adapt LearNAT to Alpha-SQL: In migrating LearNAT to the Alpha-SQL setting, we adopt a
straightforward strategy: every LLM invocation within Alpha-SQL is replaced with LearNAT’s
model parameters. Notably, for the *SQL Generation* action, we retain LearNAT’s original
prompting scheme to ensure that SQL is still produced in a subtask-by-subtask manner. For all
other actions, we follow Alpha-SQL’s original prompting design.

F.2 ERROR CASE ANALYSIS

To further investigate the reasons for the failure of the Decomposition Synthesis Procedure in certain
cases, we randomly selected 50 unsuccessful cases for error analysis. The error distribution is shown
in Fig. 3. The results indicate that the decomposition failures can be attributed to four distinct types
of errors, including schema linking, float computation, unknown rules, and error answer.

We analyze these errors one by one by presenting typical cases for each of the four error attributions.

Case for Schema Linking.

[#Question:] What is the user avatar url for user 41579158? What is the latest movie rated by him
/ her?

[#Evidence:] user avatar url refers to user avatar image url; latest movie rated refers to
latest rating date;

[#Gold SQL]

SELECT T3 . u s e r a v a t a r i m a g e u r l , T3.rating date utc
FROM movies AS T1
INNER JOIN r a t i n g s AS T2 ON T1 . m o v i e i d = T2 . m o v i e i d
INNER JOIN r a t i n g s u s e r s AS T3 ON T3 . u s e r i d = T2 . u s e r i d
WHERE T3 . u s e r i d = 41579158
ORDER BY T3 . r a t i n g d a t e u t c DESC
LIMIT 1

[#Predict SQL]

SELECT u s e r a v a t a r i m a g e u r l , movie id FROM (
SELECT T3 . u s e r a v a t a r i m a g e u r l , T3 . r a t i n g d a t e u t c FROM (
SELECT T2 . u s e r i d , T2 . m o v i e i d FROM r a t i n g s AS T2
WHERE T2 . u s e r i d = 41579158
) AS Sub1
INNER JOIN r a t i n g s u s e r s AS T3
ON Sub1 . u s e r i d = T3 . u s e r i d
WHERE T3 . u s e r i d = 41579158
) AS Sub2
ORDER BY r a t i n g d a t e u t c DESC
LIMIT 1 ;

In this case, the LLM misidentified the column, mapping “the latest movie rated by him/her” to the
movie id column instead of the rating date utc column. However, the evidence provided
relevant information (although it did not explicitly specify the corresponding column).

Case for Float Computation.

[#Question:] What is the percentage of the ratings were rated by user who was a subcriber?

[#Evidence:] user is a subscriber refers to user subscriber = 1; percentage of ratings =
DIVIDE(SUM(user subscriber = 1), SUM(rating score)) as percent;

[#Gold SQL]

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

SELECT (CAST(SUM(
CASE WHEN u s e r s u b s c r i b e r = 1 THEN 1 ELSE 0 END
) AS REAL) * 100 / COUNT(*)
) FROM r a t i n g s

[#Predict SQL]

SELECT (CAST(SUM(
CASE WHEN u s e r s u b s c r i b e r = 1 THEN 1 ELSE 0 END
) AS REAL) / COUNT(*) * 100
) FROM r a t i n g s

In this case, the LLM did not strictly follow the Gold SQL in executing multiplication before divi-
sion but instead generated SQL that performed the operations in the reverse order. Although mathe-
matically equivalent, floating-point arithmetic in SQL can introduce numerical precision variations.
Since our evaluation metric is Execution Accuracy, this discrepancy led to an inconsistency in the
results. Specifically, the Gold SQL produced an execution result of 21.648420738414252, whereas
the Predicted SQL yielded 21.64842073841425.

Case for Unknown Rules.

[#Question:] List all movies with the best rating score. State the movie title and number of Mubi
user who loves the movie.

[#Evidence:] best rating score refers to rating score = 5; number of Mubi user who loves the
movie refers to movie popularity

[#Gold SQL]

SELECT DISTINCT T2 . m o v i e t i t l e , T2 . m o v i e p o p u l a r i t y
FROM r a t i n g s AS T1 INNER JOIN movies AS T2
ON T1 . m o v i e i d = T2 . m o v i e i d
WHERE T1 . r a t i n g s c o r e = 5

[#Predict SQL]

SELECT T2 . m o v i e t i t l e , T2 . m o v i e p o p u l a r i t y
FROM r a t i n g s AS T1 INNER JOIN movies AS T2
ON T1 . m o v i e i d = T2 . m o v i e i d
WHERE T1 . r a t i n g s c o r e = 5

In this case, the Gold SQL performed an additional deduplication step (DISTINCT) on the query
results, whereas the Predicted SQL did not. This deduplication is a default user-friendly operation,
but it was not explicitly stated in the query. As a result, the execution results of the Predicted SQL
and Gold SQL differed.

Case for Error Answer.

[#Question:] What is the name of the longest movie title? When was it released?

[#Evidence:] longest movie title refers to MAX(LENGTH(movie title)); when it was released
refers to movie release year

[#Gold SQL]

SELECT m o v i e t i t l e , m o v i e r e l e a s e y e a r FROM movies
ORDER BY LENGTH(movie popularity) DESC
LIMIT 1

[#Predict SQL]

SELECT m o v i e t i t l e , m o v i e r e l e a s e y e a r FROM movies
WHERE LENGTH(movie title) = (

SELECT MAX(LENGTH(movie title)) FROM movies
)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Some cases in BIRD-train contain incorrect Gold SQL. For example, in this case, the query requires
computing the longest movie, and the evidence explicitly states that the correct computation should
be MAX(LENGTH(movie title)). However, the Gold SQL incorrectly calculates this by using
LENGTH(movie popularity), which is clearly incorrect. In contrast, the Predicted SQL cor-
rectly implements the intended computation. Therefore, the decomposition failure in this case is a
false negative, caused by an error in the Gold SQL.

F.3 ABLATION STUDIES

Effectiveness of LearNAT. First, we present the most naive baseline (w/o LearNAT), which repre-
sents the basic performance of Qwen2.5-Coder-7B. This experiment demonstrates the strong perfor-
mance of LearNAT, which significantly boosts a vanilla Qwen2.5-Coder-7B model. For instance, it
yields a remarkable 9.4%↑ on the Spider-dev set and a 10.6%↑ on the BIRD dataset. To validate the
effectiveness of task decomposition, we replace LearNATwith a naive DPO algorithm—i.e., apply-
ing a simple reinforcement learning strategy without incorporating any decomposition mechanisms.
Experimental results show that this baseline performs significantly worse than LearNAT, achieving
only 79.0% (7.4↓) accuracy on Spider-dev and 52.8% (5.3↓) on BIRD-dev. This substantial per-
formance gap highlights the critical role of task decomposition in solving complex NL2SQL tasks.
In addition, we conduct a simple experiment using naive Qwen2.5-Coder-7B with CoT-based de-
composition, where the LLM directly decomposes the NL2SQL task and generates SQL. While this
setup improves performance (e.g., 1.8%↑ on BIRD-dev), it is far less effective than LearNAT, high-
lighting the importance of AST-guide decomposition, reinforcement learning and adaptive demon-
strations.

Effectiveness of Decomposition Synthesis Procedure. We remove the AST-guide, replacing
it with naive MCTS for decomposition and using vanilla DPO in reinforcement learning. The
results show an improvement over w/o LearNAT (e.g., 5.6%↑ on BIRD-dev), indicating that
decomposition-based RL enhances LLM performance in complex NL2SQL tasks. However, com-
pared to LearNAT, the model’s performance drops significantly (e.g., 5.0%↓ on BIRD-dev), sug-
gesting that without an appropriate reward evaluation, performance improvements are limited.
LearNAT tightly integrates reward modeling with AST, designing a rule-based reward model that
significantly enhances LLM performance.

Effectiveness of Margin-Aware Reinforcement Learning. We remove the SFT stage, leading to
a performance drop (e.g., 3.6%↓ on BIRD-dev), indicating that SFT is necessary for initializing
the LLM before applying MDPO, aligning with findings from prior work (Yang et al., 2024b).
Similarly, removing MDPO results in a performance decline (e.g., 4.4%↓ on BIRD-dev), showing
that SFT alone teaches the LLM to generate correct outputs but fails to suppress incorrect ones (Liao
et al., 2024), which degrades overall model performance. Replacing MDPO with naive DPO further
reduces performance, as the lack of margin awareness prevents the LLM from distinguishing critical
steps during preference learning, leading to coarse-grained reward estimation and thus suboptimal
performance.

F.4 INFERENCE TIME COMPARISON BETWEEN LEARNAT AND SYSTEM-LEVEL METHODS

We summarize the inference-time overhead of LearNAT and System-Level Methods in the Table. 8.
The experimental results demonstrate that, while achieving comparable performance, LearNAT
achieves a substantially lower inference-time cost.

Table 8: Inference Time Comparison Between LearNAT and System-Level Methods. The inference
time of LearNAT is normalized to 1.

Methods C3-SQL DIN-SQL MetaSQL Mag-SQL SuperSQL MAC-SQL SQL-o1 Alpha-SQL LearNAT
Inference Time 11.8 5.4 5.6 6.3 5.1 3.6 5.3 111.2 1.0

F.5 ANALYSIS OF SQL DIVERSITY

We note that, during the MCTS-based subtask search process, some potentially correct subtasks
are indeed generated. However, because the ASTs of these subtasks do not exist as subtrees in the

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

AST of the ground-truth SQL, they are mistakenly judged as incorrect trajectories. To address this,
we designed the following experiment: specifically, we use GLM-4-Plus to rewrite the SQL for
each query in the training data. The rewriting is constrained such that the AST structures of the
original and rewritten SQL are different, but their execution results are identical, thereby enhancing
the diversity of the synthesized data. We denote this method as LearNAT+. Our experimental
results, as shown in Table. 9, indicate that increasing data diversity in this way can further improve
the performance of LearNAT.

Table 9: Performance comparison of LearNAT and LearNAT+ with enhanced SQL diversity. Bold
indicates the better result.

Methods BIRD-dev (In-Domain) Spider-dev (Out-of-Domain)
Simple Moderate Challenging Total Easy Medium Hard Extra Hard Total

Qwen2.5-Coder-7B

LearNAT 65.4 48.4 42.4 58.1 95.2 92.4 76.4 67.5 86.4
LearNAT+ 66.6 49.5 46.5 59.5 96.8 93.3 83.3 68.7 88.5

We think that the strict AST-based evaluation in LearNAT does indeed reduce the diversity of the
model’s outputs. However, while enhancing the diversity of model outputs is certainly a desirable
goal, we believe it is not the most critical one. Our primary motivation behind LearNAT is to teach
the model to reason correctly subtask by subtask in this work. The strict AST-based supervision
guarantees that the synthesized decompositions form a valid sequence of subtasks. This guarantee
of correctness is the key driver of LearNAT’s performance gains.

F.6 ANALYSIS OF LEARNAT IN SEMI-SUPERVISED SETTINGS

We believe LearNAT is also suitable for semi-supervised scenarios. As a concrete example, we
assume the following semi-supervised scenario: we have a labeled dataset BIRD-train-part1 and
an unlabeled dataset BIRD-train-part2, each comprising half of the full BIRD-train dataset. We
perform the following semi-supervised learning procedure:

1. We use LearNAT to construct task-decomposition data on BIRD-train-part1, where the correct-
ness of each subtask is verified using the ground-truth AST.

2. Using the synthesized data from Step 1, we fine-tune the Qwen2.5-Coder-7B model (denoted as
LearNAT1).

3. We then apply the fine-tuned model from Step 2 to construct task-decomposition data on BIRD-
train-part2, without verifying subtask correctness using a ground-truth AST.

4. We combine the synthetic data from Steps 1 and 3, and use this merged dataset to fine-tune the
original Qwen2.5-Coder-7B model, yielding LearNAT2.

The performance of these models is shown in Table. 10:

Table 10: Performance of LearNAT in semi-supervised settings.

Methods BIRD Spider
Simple Moderate Challenging Total Easy Medium Hard Extra Hard Total

Qwen2.5-Coder-7B 56.1 34.5 33.8 47.5 82.7 84.1 71.8 54.8 77.0
LearNAT1 61.4 42.2 38.9 53.5 90.3 88.8 73.6 62.0 82.3
LearNAT2 62.1 45.2 38.9 54.8 92.3 89.9 74.1 62.0 83.4

The above experiment demonstrates the effectiveness of LearNAT in a semi-supervised setting.
LearNAT can rely entirely on a small labeled dataset with ground-truth SQL to initialize the model,
and then use the capabilities acquired from this small dataset to annotate the unlabeled portion,
thereby reducing dependence on labeled data. However, it is important to note that LearNAT2

achieves only 54.8% on the BIRD dataset, whereas LearNAT trained with the fully labeled dataset
reaches 58.1%. Thus, although LearNAT proves its feasibility in semi-supervised scenarios, the
supervised setting remains the more suitable and effective regime for LearNAT.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

F.7 COMPARISON OF TOKEN COST

We follow SuperSQL (Li et al., 2024a) and report the Avg. Tokens (k) / Query and EX / Avg. Tokens
(k) metrics for LearNAT and baseline methods. The experimental results are presented in Table. 11.

Table 11: Toke Cost Comparison of LearNAT and baseline methods. Bold indicates the best result,
while underline denotes the second-best results.

Methods LLMs BIRD Spider Total Avg. Tokens (k) / Query EX / Avg. Tokens (k)
System-Level

C3-SQL GPT-4 50.2 82.0 63.0 21.2 3.0
DIN-SQL GPT-4 50.7 74.2 60.2 9.7 6.2
MetaSQL GPT-4 47.6 69.6 56.5 10.1 5.6
MAG-SQL GPT-4 57.6 85.3 68.8 11.4 6.0
SuperSQL GPT-4 58.5 87.0 70.0 9.1 7.7
MAC-SQL GPT-4 59.4 86.7 70.4 6.5 10.8

Model-Level

ACT-SQL GPT-4 52.4 74.5 61.3 1.6 38.3
DAIL-SQL GPT-4 54.3 76.2 63.1 1.3 48.6

CodeS CodeS-7B 57.0 85.4 68.4 1.1 62.2
CodeS-15B 58.5 84.9 69.1 1.1 62.8

Ours

LearNAT
Qwen2.5-Coder-7B 58.1 86.4 69.5 1.8 38.6

Qwen2.5-Coder-14B 61.2 86.9 71.6 1.7 42.1
Qwen2.5-Coder-32B 65.0 88.4 74.4 1.8 41.3

The experimental results show that, compared with system-level methods, LearNAT achieves sub-
stantial advantages in terms of performance, token consumption, and performance per token. When
compared with model-level methods, although LearNAT attains higher performance, it consumes
more tokens. This is because LearNAT output both the intermediate subtasks and their correspond-
ing SQL statements, which leads to increased token usage.

F.8 ROBUSTNESS ANALYSIS OF LEARNAT

In Table. 12, we provide the mean and standard deviation of three versions of the LearNAT model
over five experimental runs, to ensure the reliability and robustness of LearNAT’s performance.

Table 12: Robustness analysis of LearNAT, the mean and standard deviation are reported.

LLMs BIRD-dev (In-Domain) Spider-dev (Out-of-Domain)
Simple Moderate Challenging Total Easy Medium Hard Extra Hard Total

Qwen2.5-Coder-7B 65.1±1.2 47.9±1.4 41.4±3.1 57.6±0.7 94.5±2.1 92.6±0.9 76.6±2.2 66.6±1.0 86.2±0.4
Qwen2.5-Coder-14B 68.3±0.8 51.4±0.9 44.6±1.0 61.0±0.3 95.8±2.4 91.6±1.2 80.6±3.7 68.0±1.4 86.9±0.3
Qwen2.5-Coder-32B 70.6±0.7 55.4±1.0 58.3±1.4 64.8±0.3 96.0±2.1 92.5±1.0 84.6±2.2 69.3±1.5 88.3±0.2

F.9 CASE ANALYSIS BETWEEN DPO AND MARGIN-AWARE DPO

In this subsection, we further discuss the insights behind our margin-aware DPO design and believe
that clarifying the idea will strengthen the manuscript. Concretely, consider the following case:

[#Question:] Consider the average difference between K-12 enrollment and 15-17 enrollment of
schools that are locally funded, list the names and DOC type of schools which has a difference
above this average.

[#Gold SQL]

SELECT T2 . School , T2 .DOC
FROM frpm AS T1 INNER JOIN s c h o o l s AS T2
ON T1 . CDSCode = T2 . CDSCode
WHERE T2 . FundingType = ’ L o c a l l y funded ’

AND (T1 . ‘ E n r o l l m e n t (K−12) ‘ − T1 . ‘ E n r o l l m e n t (Ages 5 −17) ‘) > (

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

SELECT AVG(T3 . ‘ E n r o l l m e n t (K−12) ‘ − T3 . ‘ E n r o l l m e n t (Ages 5 −17) ‘)
FROM frpm AS T3 INNER JOIN s c h o o l s AS T4
ON T3 . CDSCode = T4 . CDSCode
WHERE T4 . FundingType = ’ L o c a l l y funded ’

)

In the NL2SQL task decomposition for this example, we obtain the following correct subtask and
sub-SQL (denoted Response #1):

[#Subtask:] Compute the average difference between K–12 enrollment and 15–17 enrollment for
locally funded schools.

[#SubSQL]
SELECT AVG(T1 . ‘ E n r o l l m e n t (K−12) ‘ − T1 . ‘ E n r o l l m e n t (Ages 5 −17) ‘) AS a v g d i f f
FROM frpm AS T1
INNER JOIN s c h o o l s AS T2

ON T1 . CDSCode = T2 . CDSCode
WHERE T2 . FundingType = ’ L o c a l l y funded ’ ;

We also collected two erroneous responses. The first erroneous response (Response #2) is:

[#Subtask:] Compute the average difference between K–12 enrollment and 15–17 enrollment.

[#SubSQL]
SELECT AVG(T1 . ‘ E n r o l l m e n t (K−12) ‘ − T1 . ‘ E n r o l l m e n t (Ages 5 −17) ‘) AS a v g d i f f
FROM frpm AS T1
INNER JOIN s c h o o l s AS T2

ON T1 . CDSCode = T2 . CDSCode ;

The second erroneous response (Response #3) is:

[#Subtask:] Compute the average difference between K–12 enrollment and 15–17 enrollment for
locally funded schools.

[#SubSQL]
SELECT AVG(T1 . ‘ E n r o l l m e n t (K−12) ‘ − T1 . ‘ E n r o l l m e n t (Ages 5 −17) ‘) AS a v g d i f f
FROM frpm AS T1
INNER JOIN s c h o o l s AS T2

ON T1 . CDSCode = T2 . CDSCode
WHERE T2 . FundingType = ’ L o c a l l y ’ ;

We observe that Response #2 is a more severe error than Response #3: Response #3 only uses an
incorrect FundingType value (a string-level mistake), whereas Response #2 omits the funding filter
entirely and thus computes the average across all funding types, yielding a fundamentally incorrect
statistic.

However, in standard DPO optimization, Response #2 and Response #3 are treated as equivalent
rejected samples, despite exhibiting clearly different degrees of error. We argue that such differences
should be explicitly distinguished. Therefore, we introduce Margin-aware DPO, which incorporates
an AST-based metric as an offset term in the DPO loss to differentiate rejected samples according
to their error severity.

Under this offset mechanism, the reward margin between Response #1 and Response #2 becomes
larger than that between Response #1 and Response #3. We believe that dynamically adjusting the
reward margin between the chosen sample and rejected samples of varying error levels enables the
model to better distinguish among incorrect responses, thereby allowing it to perform more fine-
grained preference optimization.

F.10 TRAINING ANALYSIS OF MDPO

In Fig. 8, we present the training loss curves of both DPO and MDPO. Based on the comparison of
training losses, we observe that MDPO exhibits a faster and more pronounced training loss reduc-
tion compared with DPO. This observation indicates that the reward margin introduced in MDPO

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 13: Performance of LearNAT on various Backbone LLMs. The red font indicates the perfor-
mance improvement caused by using LearNAT.

Methods BIRD-dev (In-Domain) Spider-dev (Out-of-Domain)
Simple Moderate Challenging Total Easy Medium Hard Extra Hard Total

Qwen2.5-Coder-7B

56.1 34.5 33.8 47.5 82.7 84.1 71.8 54.8 77.0
LearNAT 65.4 (9.3↑) 48.4 (13.9↑) 42.4 (8.6↑) 58.1 (10.6↑) 95.2 (12.5↑) 92.4 (8.3↑) 76.4 (4.6↑) 67.5 (12.7↑) 86.4 (9.4↑)

Qwen2.5-Coder-14B

59.5 42.6 38.4 52.4 86.6 86.4 72.9 55.6 79.2
LearNAT 68.5 (9.0↑) 51.4 (8.8↑) 45.8 (7.4↑) 61.2 (8.8↑) 95.6 (9.0↑) 91.5 (5.1↑) 80.5 (7.6↑) 68.7 (13.1↑) 86.9 (7.7↑)

Qwen2.5-Coder-32B

64.8 47.8 41.4 57.4 93.5 87.7 75.9 58.4 82.4
LearNAT 70.7 (5.9↑) 55.5 (7.7↑) 59.0 (17.6↑) 65.0 (7.6↑) 96.4 (2.9↑) 92.4 (4.7↑) 85.1 (9.2↑) 69.3 (10.9↑) 88.4 (6.0↑)

GLM4-9B

55.5 36.3 25.0 46.8 82.3 85.9 62.6 59.6 76.9
LearNAT 64.0 (8.5↑) 41.9 (5.6↑) 31.3 (6.3↑) 54.2 (7.4↑) 89.1 (6.8↑) 90.1 (4.2↑) 71.8 (9.2↑) 65.1 (5.5↑) 82.8 (5.9↑)

Meta-Llama-3-8B-Instruct

56.5 37.0 25.0 47.7 83.9 85.4 64.4 56.6 76.9
LearNAT 64.9 (8.4↑) 42.6 (5.6↑) 40.3 (15.3↑) 55.8 (8.1↑) 90.7 (6.8↑) 91.7 (6.3↑) 71.3 (6.9↑) 63.9 (7.3↑) 83.6 (6.7↑)

provides larger and more meaningful gradients for model optimization, which can be attributed to
MDPO’s ability to exploit the reward differences among negative samples.

Figure 8: Comparison of the trend of training loss between DPO and MDPO.

F.11 ANALYSIS ON VARIOUS BACKBONE LLMS

Table. 13 presents the performance of LearNAT across backbone LLMs of varying sizes. The
results reveal several key observations: (1) LearNAT consistently improves performance across
different model sizes. (2) As the number of parameters in the backbone LLM increases—for in-
stance, from 7B to 14B to 32B—the inherent NL2SQL capability of the model improves accord-
ingly, and this trend is also reflected in the performance gains achieved by LearNAT. (3) Notably,
LearNAT enables smaller models to outperform significantly larger ones, effectively mitigating the
limitations imposed by model scale. For example, after training with LearNAT, Qwen2.5-Coder-
7B achieves 86.4% on Spider-dev, surpassing the naive Qwen2.5-Coder-32B, which achieves only
82.4% (4.0%↓). A similar trend is observed on the BIRD-dev dataset.

To further demonstrate the generality and robustness of LearNAT, we incorporate LLMs with dif-
ferent architectures, such as GLM4-9B and Meta-Llama-3-8B-Instruct, as backbones. The results
show that LearNAT consistently yields substantial gains across architectures—for instance, im-
proving GLM4-9B by 7.4%↑ and Meta-Llama-3-8B-Instruct by 8.1%↑ on BIRD-dev. These results
confirm that LearNAT is both architecture-agnostic and highly effective across a wide range of
LLM configurations.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

F.12 ANALYSIS OF AST SIMILARITY

We evaluate the importance of node similarity and structural similarity in LearNAT by adjusting
the weight parameter α in Eq. 5. Specifically, we vary α between 0, 0.25, 0.5, 0.75.

Experimental results (illustrated in Fig. 9) show that using only node similarity or only structural
similarity leads to performance degradation, indicating that both types of similarity contribute to
evaluation quality. A balanced setting (α = 0.5) does not achieve optimal performance. LearNAT
achieves the best performance when 0.5 < α < 1, suggesting that node similarity is more effective
than structural similarity in AST-based similarity assessment. This highlights that while both node
and structural similarity are necessary, node similarity plays a slightly more critical role in guiding
AST-based decomposition and reward estimation.

Figure 9: Execution accuracy on BIRD-dev and Spider-dev using various α in AST similarity esti-
mation.

F.13 SYSTEM LEVEL POTENTIAL OF LEARNAT

We have conducted new experiments to explore the performance of LearNAT under a system-
level setting. The results are presented in Fig. 10. In this setup, we invoke LearNAT multiple
times for the same query to generate a set of candidate SQL, and then apply the most basic form
of self-consistency to select the final SQL output. Results demonstrate that LearNAT can indeed
benefit from multi-call to improve performance; however, this improvement comes at the cost of
significantly increased token consumption.

Figure 10: Performance and Token Cost of LearNAT with Qwen2.5-Coder-7B as backbone LLM
using generating multiple candidate SQL and selecting SQL via self-consistency.

G RELATED WORK

G.1 NL2SQL PARSING BASED ON LLMS

Model-level Solution. Model-level solutions refer to approaches where a single large language
model, given a natural language query, database schema, and optionally additional instructions, gen-
erates a single SQL statement in an end-to-end manner. This SQL is directly used as the final output.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Model level solutions are typically based on model fine-tuning methods. Model fine-tuning (Zhang
et al., 2023b) adapts pre-trained LLMs to specific tasks by adjusting model parameters through ad-
ditional training. While promising for NL2SQL, this approach is limited to public models with
accessible parameters. Due to the performance gap between large-scale private and small-scale pub-
lic models, existing research has primarily focused on system-level solution, with relatively few
studies (Yang et al., 2024b; Wu et al., 2024; Li et al., 2024b; Sun et al., 2023; Li et al., 2023a)
dedicated to fine-tuning open-source models. Despite their empirical success, these studies focus
solely on learning the target SQL queries while neglecting the reasoning process involved in parsing
complex SQL structures. This results in mere memorization of outcomes rather than fostering a deep
understanding of the underlying problems.

The works most closely related to ours are Reasoning-SQL (Pourreza et al., 2025), SynCoT (Liu
et al., 2025), and Struct-LLM (Stoisser et al., 2025). These approaches similarly incorporate reason-
ing during the inference stage and employ reinforcement learning algorithms to enhance the model’s
reasoning capabilities. Both Reasoning-SQL (Pourreza et al., 2025) and Struct-LLM (Stoisser et al.,
2025) optimize LLM performance on NL2SQL by replacing naı̈ve binary rewards with continuous
reward signals. However, although they design various reward mechanisms, all of these rewards
are applied only to the final generated SQL. In contrast, the rewards designed in LearNAT are
primarily used to evaluate intermediate subtasks. In other words, LearNAT introduces a process
reward (Wang et al., 2024; Lightman et al., 2024) model that explicitly regulates the correctness
of intermediate reasoning steps, whereas Reasoning-SQL and Struct-LLM focuses on outcome re-
wards (Wang et al., 2024; Lightman et al., 2024).

System-level Solution. System-level methods go beyond the end-to-end generation by the LLM.
These approaches typically incorporate additional components such as schema linking, candidate
SQL generation, result selection or consistency verification, and SQL refinement, aiming to improve
overall robustness and accuracy. System-level solutions are typically based on Prompt engineering.
Prompt engineering (Ekin, 2023) aims to guide model outputs towards desired results through care-
fully designed input prompts and can be applied to both open-source and proprietary models. In the
NL2SQL domain, prompt engineering serves as a crucial technique for enhancing the performance
of LLMs (Kim et al., 2020; Li et al., 2024a). Several studies (Gao et al., 2024; Mao et al., 2024;
Dong et al., 2023; Lee et al., 2025; Talaei et al., 2024; Pourreza et al., 2024) have explored differ-
ent prompt engineering strategies to enhance NL2SQL performance. The most relevant works are
DIN-SQL (Pourreza & Rafiei, 2023) and MAC-SQL (Wang et al., 2025), which employ zero-shot
prompting (Let’s think step by step) or few-shot prompting (e.g., using a small set of demonstrations)
to help LLMs decompose complex NL2SQL tasks. While these methods have achieved significant
success on publicly available NL2SQL benchmarks, open-source models, constrained by smaller
parameter sizes and limited pretraining knowledge, exhibit substantially weaker performance in
task decomposition compared to closed-source models (Shen et al., 2023).

G.2 ENHANCING REASONING WITH RL

Search-Guided Reasoning in LLMs. Recent research efforts (Feng et al., 2023; Chen et al., 2024;
Xie et al., 2024b) aiming at advancing the reasoning capabilities of LLMs have increasingly incor-
porated Monte Carlo Tree Search to generate trajectories for model training, yielding significant
improvements in reasoning performance. Despite these successes, MCTS-driven methods still face
several challenges, such as the vast search space inherent to language models and the difficulty of
quantifying node rewards. Existing research in the mathematical domain primarily relies on self-
evaluation or training external evaluation models based on labeled data. In the NL2SQL domain, we
introduce a novel approach that leverages abstract syntax trees to quantify node rewards, effectively
guiding the model to prioritize the exploration of the most valuable nodes.

Direct Preference Optimization (DPO) Algorithms. Among various reinforcement learning al-
gorithms, Direct Preference Optimization (DPO) (Rafailov et al., 2023) has gained popularity due
to its simplicity. DPO relies on instance-level preference signals for model optimization. However,
it faces challenges in handling multi-step reasoning tasks, as it struggles to rectify specific errors that
arise during the reasoning process (Hwang et al., 2024; Liao et al., 2024). Additionally, relying on
model-generated positive samples can reinforce misleading correlations that stem from flawed inter-
mediate steps, thereby weakening generalization (Setlur et al., 2024). To address these challenges,

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

recent research has introduced step-level DPO (Setlur et al., 2024; Lai et al., 2024), which offers
more granular error identification and thus improves reasoning accuracy. However, the naive DPO
algorithm struggles to capture fine-grained, step-level supervisory signals in multi-step preference
learning. This uniform treatment of all correct and incorrect steps significantly limits the model’s
potential for optimization.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

GUIDELINE FOR REVIEWERS

In the revised manuscript, we use different font colors to highlight the modifications made in re-
sponse to each reviewer’s comments, as detailed below.

• Reviewer kPT4: •, • and •
• Reviewer RUNy: • and •
• Reviewer HybD: •, • and •

33

	Introduction
	Motivation from Preliminary Experiments
	Methodology
	Decomposition Synthesis Procedure
	Margin-Aware Reinforcement Learning

	Experiments
	Experimental Setup
	Experimental Results

	Limitations, Future Work, and Conclusion
	Ethics Statement
	Reproducibility Statement
	Use of LLM
	Preliminary Experiments
	Technical Foundations
	AST Similarity
	Dataset Statistics
	Baseline Solutions
	Additional experiments
	Implementation Details.
	Error Case Analysis
	Ablation Studies
	Inference Time Comparison Between LearNAT and System-Level Methods
	Analysis of SQL Diversity
	Analysis of LearNAT in Semi-Supervised Settings
	Comparison of Token Cost
	Robustness Analysis of LearNAT
	Case Analysis between DPO and Margin-aware DPO
	Training Analysis of MDPO
	Analysis on Various Backbone LLMs
	Analysis of AST Similarity
	System Level Potential of LearNAT

	Related Work
	NL2SQL Parsing Based on LLMs
	Enhancing Reasoning with RL

