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ABSTRACT

Text-Centric Visual Question Answering (TEC-VQA) in its proper format not only
facilitates human-machine interaction in text-centric visual environments but also
serves as a de facto gold proxy to evaluate AI models in the domain of text-centric
scene understanding. Nonetheless, most existing TEC-VQA benchmarks focus
on high-resource languages like English and Chinese. Despite pioneering works
expanding multilingual QA pairs in non-text-centric VQA datasets through transla-
tion engines, the translation-based protocol encounters a substantial “visual-textual
misalignment” problem when applied to TEC-VQA. Specifically, it prioritizes the
text in question-answer pairs while disregarding the visual text present in images.
Moreover, it fails to address complexities related to nuanced meaning, contextual
distortion, language bias, and question-type diversity. In this work, we tackle
multilingual TEC-VQA by introducing MTVQA, the first benchmark featuring
high-quality human expert annotations across 9 diverse languages, consisting of
6,778 question-answer pairs across 2,116 images. Further, by comprehensively eval-
uating numerous state-of-the-art Multimodal Large Language Models (MLLMs),
including GPT-4o, GPT-4V, Claude3, and Gemini, on the MTVQA dataset, it is
evident that there is still a large room for performance improvement, underscoring
the value of MTVQA. Additionally, we supply multilingual training data within
the MTVQA dataset, demonstrating that straightforward fine-tuning with this data
can substantially enhance multilingual TEC-VQA performance. We aspire that
MTVQA will offer the research community fresh insights and stimulate further
exploration in multilingual visual text comprehension.

1 INTRODUCTION

In the era of burgeoning AI, especially in MLLMs (OpenAI, 2024; Achiam et al., 2023; Yang
et al., 2023; Team et al., 2023; Anthropic, 2024; Reid et al., 2024; Bai et al., 2023; Lu et al., 2024;
Young et al., 2024; Feng et al., 2023a;b; Hu et al., 2024; Liu et al., 2024c; Tang et al., 2024; Chen
et al., 2024; Dong et al., 2024; Li et al., 2024; Liu et al., 2024a), Text-Centric Visual Question
Answering (TEC-VQA) (Biten et al., 2019; Singh et al., 2019; Feng et al., 2023b;a; Tang et al., 2024;
Liu et al., 2024c; Hu et al., 2024) has served as a de facto gold proxy to evaluate AI models in the
domain of text-centric scene understanding. Compared with general VQA (Biten et al., 2019; Mathew
et al., 2021; Pham et al., 2024; Singh et al., 2019; Mishra et al., 2019; Mathew et al., 2022; Masry
et al., 2022; Zhu et al., 2016; Krishna et al., 2017; Antol et al., 2015; Marino et al., 2019; Sheng
et al., 2021; Liu et al., 2024b; Gao et al., 2015; Gan et al., 2020; Liu et al., 2021), TEC-VQA places
greater emphasis on answering questions that require understanding visual textual information within
images. It enables individuals without specialized expertise to access applications in text-centric
visual environments. However, most advancements in TEC-VQA have predominantly concentrated
on high-resource languages, e.g., English (Biten et al., 2019; Singh et al., 2019; Mathew et al., 2021;
2022), Chinese (Qi et al., 2022; Gao et al., 2015), Japanese (Shimizu et al., 2018; Nguyen et al.,
2023) and etc., thus restricting the applicability of AI models to the global community, particularly
populations speaking low-resource languages.

To tackle the problem of language diversity, several seminal studies (Raj Khan et al., 2021; Pfeiffer
et al., 2022; Changpinyo et al., 2023) in the general VQA field simply leverage translation engines
to expand question-answer pairs from high-resource to low-resource languages. However, this
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Q: "ตวัตุ่นอาศยัอยูที่.ไหน"
A: "ใตดิ้น"

(Q : "Where do hedgehogs live?"
A: "Underground. ”)

Q: "Món nào có giá 10k?"
A: "Lòng gà thêm"
(Q : "Which dish costs 10k?"
A : "Extra chicken intestines")

Q: " ؟باتكلا عون ام "
A: " ةیاور ”
(Q: " What is the type of the book? " 
A : "Novel”)

Q: "Как зовут поэта?"
A: "Мацуо Басё"
(Q : "What is the poet's name? "
A : " Matsuo Basho")

Figure 1: Multilingual text-centric VQA visualization selected from four languages. From left to
right: Arabic (AR), Russian (RU), Thai (TH), Vietnamese (VI). The corresponding translations in
English are in brackets. More examples see Figure 7.

translation-based approach is not feasible for TEC-VQA, as it merely processes text in question-
answer pairs, neglecting the critical visual text needed for answering based on images. Although the
visual text can be recognized by an OCR (Optical Character Recognition) engine and then translated
into the target language, this indirect process could lead to a “visual-textual misalignment” problem,
due to nuanced meaning, contextual distortion, language bias, and question type diversity. Taking the
second case in Fig. 1 as an example, if either the visual text or the question in Russian is recognized
or translated problematically, then the question would never be answered correctly. The status quo
begs for a question: “Can we directly leverage visual text in source language per se for multilingual
TEC-VQA and what we stand in the MLLM era?”
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Figure 2: Left: overview of various categories of text-rich images. Right: image and QA pairs
distribution over the 9 languages in MTVQA benchmark.

In this work, to answer the question above, we establish MTVQA, a novel and high-quality mul-
tilingual TEC-VQA benchmark, where all images are collected from real-world and meticulously
annotated by human experts in nine languages: Arabic (AR), Korean (KO), Japanese (JA), Thai (TH),
Vietnamese (VI), Russian (RU), French (FR), German (DE), and Italian (IT). More concretely, to
ensure the visual-textual alignment at most, the annotation process follows the raise-then-correct
paradigm, where a group of human annotators raises several distinct questions, ranging from simple
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Figure 3: Left: comparison of the overall performance of various MLLMs in the MTVQA benchmark.
Right: comparison of the performance exhibited by MLLMs in the 9 languages of the MTVQA.

content extraction to text-related reasoning, and subsequently provides answers. Another group then
double-checks these QA pairs to ensure accuracy and consistency. Consequently, as illustrated in
Fig. 2, 6,678 training images and 21,829 question-answer pairs, as well as 2,116 test images and
6,778 question-answer pairs are obtained, covering more than 20 fine-grained scenarios from both
documents and natural scenes, such as menus, logos, maps, bills, PPTs, research papers, and etc.
To our knowledge, MTVQA is the first TEC-VQA dataset to provide native human annotations for
multilingual text-rich scenarios, especially for low-source languages.

We further investigate recent representative MLLMs in Fig. 3, including GPT-4o, GPT-4V, Gemini,
Qwen2-VL, etc., and their performance on our proposed MTVQA. As vividly revealed in Fig. 3 (a),
the general MLLM Qwen2-VL is the top performer, followed by closed-source GPT-4o and Claude3
Opus. Other general MLLMs like QwenVL Max and QwenVL Plus show mid-tier performance, while
text-centric MLLMs lag behind. Fig. 3(b) shows closed-source MLLMs consistently outperforming
others, especially in French (FR) and German (DE), while languages like Arabic (AR) and Thai (TH)
witness lower scores across all categories. The results unequivocally demonstrate that opportunities
for improvement persist within existing MLLMs when applied in multilingual text-rich scenarios. In
summary, the main contributions of this paper can be categorized into three points:

• We coin the MTVQA dataset, which, to the best of our knowledge, is the first multilingual TEC-
VQA benchmark providing human expert annotations to solve the “visual-textual misalignment”
problem in multilingual text-centric scenarios.

• We benchmark the state-of-the-art MLLMs on our new dataset and show that there are still
opportunities for improvement on even the most advanced MLLMs in multilingual text-rich
scenarios.

• We establish a set of new multilingual TEC-VQA baselines for closed-source and general-purpose,
text-centric MLLMs.

2 RELATED WORK

Table 1: Comprehensive comparison on the benchmarks related to MTVQA.

Benchmark Scene Manual QA QA Language Visual Text Language GPT4V Performance
OCRBench Multiple Text-rich ✓ English English 64.5%
TextVQA Scene Text ✓ English English 78.0%
DocVQA Document ✓ English English 88.4%
EST-VQA Scene Text ✓ English, Chinese English, Chinese 72.3%
xGQA General 7 Languages - 67.7%
MaXM General 7 Languages - 62.8%
MTVQA Multiple Text-rich ✓ 9 Languages 10 languages 22.0%
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2.1 MLLMS FOR TEXT-CENTRIC VQA

Recent advancements in MLLMs (Achiam et al., 2023; Yang et al., 2023; Team et al., 2023; Anthropic,
2024; Reid et al., 2024; Bai et al., 2023; Lu et al., 2024; Young et al., 2024; Feng et al., 2023a;b;
Hu et al., 2024; Liu et al., 2024c; Tang et al., 2024; Chen et al., 2024; Dong et al., 2024; Li et al.,
2024; Liu et al., 2024a; Zhao et al., 2024) have revolutionized VQA tasks, as demonstrated by the
remarkable zero-shot performance of these models. Notably, the high generalizability of MLLMs,
when explicitly trained on visual text understanding datasets and fine-tuned with instructions, has
significantly enhanced their application in text-centric VQA scenarios (Feng et al., 2023b;a; Tang
et al., 2024; Liu et al., 2024c; Hu et al., 2024). For example, LLaVAR (Zhang et al., 2023),
UniDoc (Feng et al., 2023b), which extend LLaVA (Liu et al., 2024b) into the realm of document
understanding, pioneering the text-centric VQA of MLLMs by training them to predict texts and
coordinates from document images. Furthermore, DocPedia (Feng et al., 2023a) operates visual
input in the frequency domain rather than in space, which enables higher input resolution without
increasing the input sequence. Lately, mPLUG-DocOwl (Ye et al., 2023), Qwen-VL (Bai et al., 2023),
and TextMonkey (Liu et al., 2024c) leverage publicly available document-related VQA datasets to
further enhance the text-centric VQA capabilities. Despite the promising results achieved by existing
MLLMs in text-centric VQA tasks, their focus on high-resource languages such as English and
Chinese has posed challenges in achieving reasonable performance for low-resource languages. This
is primarily due to the lack of data or benchmarks for these low-resource languages.

2.2 MULTILINGUAL TEXT-CENTRIC VQA BENCHMARKS

VQA has garnered significant attention in recent years, with numerous studies, datasets, and bench-
marks being proposed to advance the field (Biten et al., 2019; Mathew et al., 2021; Pham et al.,
2024; Singh et al., 2019; Mishra et al., 2019; Mathew et al., 2022; Masry et al., 2022; Zhu et al.,
2016; Krishna et al., 2017; Antol et al., 2015; Marino et al., 2019; Sheng et al., 2021; Liu et al.,
2024b; Gao et al., 2015; Gan et al., 2020; Liu et al., 2021). Many datasets have been created that
encompass scene text of various domains, including natural images (Biten et al., 2019; Singh et al.,
2019), scanned documents (Mathew et al., 2021; 2022), book and movie covers (Mishra et al., 2019).
One notable limitation of these datasets is their predominant focus on English (Biten et al., 2019;
Singh et al., 2019; Mathew et al., 2021; 2022) or other high-resource languages such as Chinese (Qi
et al., 2022; Gao et al., 2015) and Japanese (Shimizu et al., 2018; Nguyen et al., 2023), which restricts
the applicability of VQA systems for low-resource languages such as Thai and Vietnamese.

There are some recent efforts toward extending VQA tasks to a broader range of languages (Gupta
et al., 2020; Pfeiffer et al., 2022; Vivoli et al., 2022; Changpinyo et al., 2023; Li et al., 2023; Raj Khan
et al., 2021) by providing a multilingual VQA datasets. For example, Gao et al. (2015) created a free-
form bilingual VQA dataset (FM-IQA) containing over 150,000 images and 310,000 freestyle Chinese
question-answer pairs and English translations. Raj Khan et al. (2021) developed a large-scale multi-
lingual and code-mixed VQA dataset (MuCo-VQA) supporting five languages. Of more relevance
are the works xGQA (7 languages) (Pfeiffer et al., 2022) and MaXM (7 languages) (Changpinyo
et al., 2023), which apply translation-based protocols to expand VQA data beyond English. However,
the translation-based multilingual VQA datasets inherently face issues, such as the “visual-textual
misalignment” problem, where only the textual information in question-answer pairs is considered,
while the visual text in images is overlooked. Additionally, the nuanced meaning and context are
often distorted; language bias is introduced by machine translation models, and the coverage of
certain question types is limited, as highlighted by Changpinyo et al. (2023). Moreover, none of
the previous multilingual datasets focus on text-centric scenarios where multilingual text frequently
occurs.

Our benchmark, MTVQA, distinguishes itself by focusing on multilingual text-centric VQA scenarios
using human expert annotations. It covers 9 languages, facilitating the training and evaluation of
multilingual models in diverse linguistic contexts. Additionally, our dataset can gauge the VQA
system’s ability for not only high-resource languages but also those that are typically underrepresented
in current datasets (Biten et al., 2019; Singh et al., 2019; Mathew et al., 2021; 2022; Gao et al., 2015).
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Image Information Extraction Raising the Questions Answering the Questions

Annotation Information Extraction Annotation Evaluation Annotation Correction

Two Rounds Human Expert AnnotationAnnotator Training Quality Auditing

Second Round Evaluation and Correction

First Round Questioning and Answering

Figure 4: A brief diagram of the annotation process.

3 MTVQA BENCHMARK

The MTVQA benchmark is meticulously established to evaluate the multilingual text comprehension
performance of Multimodal Large Language Models (MLLMs). MTVQA covers nine languages:
Arabic (AR), Korean (KO), Japanese (JA), Thai (TH), Vietnamese (VI), Russian (RU), French
(FR), German (DE), and Italian (IT). The data construction involves a comprehensive collection
of text-rich images and a two-round human expert annotation process. In terms of data volume,
an initial dataset of 8,980 images is compiled. Following a data cleaning phase, 8,895 images are
retained for annotation. The first round of annotation yielded 8,895 images, corresponding to 28,906
question-answer (QA) pairs. After the second round of annotation and final quality control measures,
the final dataset comprises 8,794 images and 28,607 QA pairs. The benchmark construction cost is
divided into two parts: image acquisition and annotation. Image acquisition costs about two months
and 30,000 dollars. VQA annotation costs about three months and 60,000 dollars. Hourly wages
vary from country to country, with senior language specialists costing between 20 and 40 per hour
and local annotators costing between 8 and 20 per hour. The average time spent by each labeler was
roughly 60 days.

3.1 DATA COLLECTION

The raw data collection aims to gather text-rich images from various scene text and document
scenarios, ensuring diversity and quality. This includes images from publicly available datasets (e.g.,
ICDAR MLT19 (Gao et al., 2019)) and those sourced from the internet (i.e., Laion-OCR, which is
filtered from Common Crawl (Crawl, 2024)), such as menus, logos, maps, bills, PowerPoint slides
(PPTs), research papers, etc, as shown in Fig. 2. The image collection process consists of two steps:
extracting multilingual text using a multilingual OCR engine and selecting by language types and the
amount of text contained in the image. Approximately 30% of the overall image data is obtained
from public datasets, with 20% sourced from the web and 50% from manual collection, respectively.
A total of 1,220 images from document scenarios and 876 images from natural scenarios are collected
for the test set of the MTVQA benchmark. To ensure data content meets regulatory requirements,
we subject them to a standardized data cleaning process. The image-cleaning processing pipeline
involves a preliminary round of algorithm-driven review to identify and filter out unusable images. It
includes detecting and removing images with politically sensitive, pornographic, violent, or other
undesirable features. Subsequently, a multilingual OCR tool is employed to extract the textual content
from the remaining images. Images devoid of textual information are discarded, and the surviving
images are categorized based on their language. Afterward, we organize all the text-rich images
we have obtained into language-specific groups, preparing them for the subsequent stage of data
annotation.
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3.2 HUMAN EXPERT ANNOTATION

To obtain informative and accurate text-related QA pairs for images grouped by specific languages,
a specialized group of annotators with expertise in the local regions of each language is recruited.
The annotators must be native speakers of the corresponding language and have actively utilized
it for a minimum duration of 10 years. Additionally, they must possess at least a university-level
degree or higher academic qualification, guaranteeing a profound understanding and skillfulness in
the linguistic subtleties and cultural contexts required for precise annotations. Given the subjective
nature of understanding text within images, the annotation team is divided into two independent
groups. One group is tasked with generating questions and providing answers based on the images,
while the other group is responsible for evaluating and correcting the QA pairs. This division, known
as the raise-then-correct paradigm, ensures a thorough and trustworthy evaluation of the text-rich
image comprehension process. Moreover, the annotation results for each language underwent a 10%
sampling inspection by a quality inspector to ensure adherence to standards. QA pairs that do not
meet the criteria are returned for re-annotation. Prior to the formal annotation process, all annotators
will be provided with a detailed explanation of the annotation guidelines, including a dedicated
question-and-answer session to clarify any ambiguities and uncertainties. A pilot annotation task
will be conducted on a limited dataset to ensure a shared understanding of the annotation rules. The
two-round annotation process is briefly illustrated in Fig. 4, further details of which are elaborated in
the subsequent sections.

Top Answer Word Cloud(AR) Top Answer Word Cloud(DE) Top Answer Word Cloud(FR)

Top Answer Word Cloud(IT) Top Answer Word Cloud(JA) Top Answer Word Cloud(KO)

Top Answer Word Cloud(RU) Top Answer Word Cloud(TH) Top Answer Word Cloud(VI)

Figure 5: Word clouds showcasing top answers in various languages, tokenized via NLTK with
removing stop words, punctuation, and digits.
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Figure 6: Statistics of question and answer lengths of different languages aggregating training and
test set, using GPT-4o tokenizer.

First Round Questioning and Answering. In the first round, we allocate three annotators per
language to generate initial QA results. The annotators are tasked with thoroughly examining the
textual and visual elements within a text-rich image in our collection. They are to examine the
textual and visual elements within the image to formulate five meaningful and distinct questions and
provide corresponding answers. All annotators should adhere to the following criteria: (1) the first
three questions should satisfy that answering these questions requires direct reading of the textual
information in the image, (2) the fourth and fifth questions require reasoning about the text in the
image to answer, (3) the questions and answers must be reasonably correct and consistent with the
content of the image, and (4) the answer should be as concise as possible and free of nonsense (e.g.,
when the question is “When is the volunteer recruitment period”, the answer should be “9:00-16:00”
rather than “The volunteer recruitment period is 9:00-16:00”). This requirement for brevity aims to
make the evaluation process user-friendly and reliable, avoiding the influence of extraneous content
on the evaluation metrics.

Second Round Evaluation and Correction. To reduce the effect of human subjective cognitive
bias on our MTVQA benchmark and get high-quality question-answer pairs, we assign two annotators
for each language to carry out the annotation evaluation and correction process independently. These
annotators follow a specific evaluation and correction protocol to ensure consistency and accuracy
based on the first round results: (1) Assess the question’s relevance to the text in the image. Irrelevant
QA pairs are discarded; (2) Verify the correctness of the answer and make necessary modifications;
(3) Check for redundancy in the answer. If the answer repeats the question’s information, the repeated
content is removed for conciseness. (4) Ethical Assessment. Review the image content or the
question-answer pair for any unethical content, including but not limited to politics, personal privacy
issues, etc. Such content is removed to uphold ethical standards in the dataset.
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3.3 DATA STATISTICS

The MTVQA benchmark consists of 8,794 images and 28,607 question-answer pairs across the nine
languages, divided into a training set with 6,678 images and 21,829 question-answer pairs and a test
set with 2,116 images and 6,778 question-answer pairs. Detailed data distribution is illustrated in Fig.
2. Additionally, the benchmark showcases the vocabulary richness for each language through word
clouds, as depicted in Fig. 5, and the lengths of questions and answers are statistically analyzed using
the GPT-4o tokenizer, as shown in Fig. 6.

4 EXPERIMENTS

4.1 BASELINE MODELS

To comprehensively assess MLLMs’ multilingual perception and comprehension capabilities, We
select state-of-the-art MLLMs from three categories: open-source general MLLMs, open-source
text-centric MLLMs, and closed-source MLLMs. Each category contains the following models: (1)
General MLLMs: Qwen2-VL Wang et al. (2024), InternVL-V1.5 (Chen et al., 2023), InternLM-
Xcomposer2-4KHD (Dong et al., 2024), Mini-Gemini-HD-34B (Li et al., 2024), Llava-Next-34B (Liu
et al., 2024a), DeepSeek-VL (Lu et al., 2024), YI-VL-34B (Young et al., 2024); (2) Text-centric
MLLMs: TextSquare (Tang et al., 2024), TextMonkey (Liu et al., 2024c), mPLUG-DocOwl 1.5 (Hu
et al., 2024), MiniCPM-V 2.0 (Hu et al., 2023); (3) Closed-source MLLMs: GPT-4o (OpenAI,
2024), GPT-4V (Achiam et al., 2023), Gemini Ultra (Team et al., 2023), QwenVL Max (Bai et al.,
2023), QwenVL Plus (Bai et al., 2023), Claude3 Opus (Anthropic, 2024), Claude3 Sonnet (Anthropic,
2024), and GLM-4V (AI, 2024). For the closed-source MLLMs, we use the chat version through
official APIs, while for the open-source MLLMs, we utilize the instruct versions available on the
HuggingFace Model Hub. The open-source MLLMs’ model size varies from 7b to 76b.

4.2 IMPLEMENTATION DETAILS

We conduct the evaluation experiments over the baseline MLLMs with their default settings, ignoring
the effect of generation configuration on the results. To make the output of MLLMs more evaluation-
friendly, we design the following prompt format to limit the output length: “Answer the question using
a word or phrase in the language of the question. + <Question>”, where “<Question>” represents the
actual question from the MTVQA test set. This approach aims to make the answers as concise as
possible. Besides, InternLM-Xcomposer2-4KHD (Dong et al., 2024) is chosen as the base model for
an instruction tuning experiment on the MTVQA training set. The instruction tuning process adheres
to the default training settings specified by the source, with “HD-16” and completes one epoch of
training on 8 NVIDIA-A100 GPUs within 2 hours.

4.3 EVALUATION RESULTS

Evaluation metric. To accurately assess whether the visual text that occurs in the answer is correct,
we adopt Accuracy as the metric. The Accuracy metric measures the percentage of questions for
which the predicted answer matches exactly with any of the target answers for the question. The
accuracy metric awards a zero score even when the prediction differs slightly from the target answer.

Zero-shot evaluation. We perform a zero-shot evaluation of various types of MLLMs on the MTVQA
benchmark with a consistent prompt. The evaluation results are shown in Table 2, where Qwen2VL
72B (Wang et al., 2024) achieves the highest average accuracy of 30.9% and GPT-4o (OpenAI, 2024)
achieves the second highest average accuracy of 27.8% across the 9 languages. This result suggests
that while MLLMs have some capability in comprehending multilingual text, the performance is still
not robust, and multilingual text-centric visual question answering (VQA) tasks remain a significant
challenge, even for state-of-the-art closed-source MLLMs. The evaluation also reveals that both
open-source and closed-source models performed better on Indo-European languages that use the
Latin alphabet, such as German (DE), French (FR), and Italian (IT). This is likely due to the more
extensive training data available for English and their visual and linguistic similarities. In addition,
most closed-source models outperform the open-source models except for Qwen2VL across the
nine languages, potentially benefiting from pre-training on diverse, multilingual data. Interestingly,
the text-centric MLLMs, like TextSquare (Tang et al., 2024), TextMonkey (Liu et al., 2024c) and
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Table 2: Performance of the leading closed- and open-source MLLMs on the MTVQA benchmark.
The best results of each language are bolded. The second best results are underlined. “Xcomposer-
SFT” denotes instruction tuning to Xcomposer2-4KHD with MTVQA’s training set.

AR DE FR IT JA KO RU TH VI Avg.
Closed-Source MLLMs
GPT-4V (Achiam et al., 2023) 11.5 31.5 40.4 32.3 11.5 16.7 10.3 15.0 28.9 22.0
GPT-4o (OpenAI, 2024) 20.2 34.2 41.2 32.7 20.0 33.9 11.5 22.5 34.2 27.8
Gemini Ultra (Team et al., 2023) 14.7 32.3 40.0 31.8 12.3 17.2 11.8 20.3 28.6 23.2
QwenVL Max (Bai et al., 2023) 7.7 31.4 37.6 30.2 18.6 25.4 10.4 4.8 23.5 21.1
QwenVL Plus (Bai et al., 2023) 4.8 28.8 33.7 27.1 12.8 19.9 9.4 5.6 18.1 17.8
Claude3 Opus (Anthropic, 2024) 15.1 33.4 40.6 34.4 19.4 27.2 13.0 19.5 29.1 25.7
Claude3 Sonnet (Anthropic, 2024) 10.5 28.9 35.6 31.8 13.9 22.2 11.0 15.2 20.8 21.1
GLM-4V (AI, 2024) 0.3 30.0 34.1 30.1 3.4 5.7 3.0 3.5 12.3 13.6
Open-Source MLLMs
Qwen2-VL 72B (Wang et al., 2024) 20.7 36.5 44.1 42.8 21.6 37.4 15.6 17.7 41.6 30.9
InternVL2 76B (Achiam et al., 2023) 9.5 31.3 35.7 35.2 11.1 14.3 11.9 10.0 26.9 22.0
InternVL-V1.5 (Chen et al., 2023) 3.4 27.1 31.4 27.1 9.9 9.0 4.9 8.7 12.4 14.9
Mini-Gemini-HD-34B (Li et al., 2024) 2.2 25.0 29.2 25.5 6.1 8.6 4.1 4.3 11.8 13.0
Llava-Next-34B (Liu et al., 2024a) 3.3 24.0 28.0 22.3 3.6 6.1 2.6 0.4 9.8 11.1
DeepSeek-VL (Lu et al., 2024) 0.6 14.2 15.3 15.2 2.9 3.8 1.6 0.9 5.2 6.6
YI-VL-34B (Young et al., 2024) 1.7 13.5 15.7 12.1 4.8 5.2 0.8 3.5 4.1 6.8
MiniCPM-V 2.0 (Hu et al., 2023) 1.3 12.7 14.9 17.0 3.7 5.6 2.2 2.2 6.8 7.4
MiniCPM-V 2.5 (Hu et al., 2023) 6.1 29.6 35.7 26.0 12.1 13.1 5.3 12.6 15.3 17.3
TextSquare (Tang et al., 2024) 3.7 27.0 30.8 26.7 3.2 7.2 6.7 5.2 12.4 13.6
TextMonkey (Liu et al., 2024c) 2.0 18.1 19.9 22.1 4.6 7.2 3.2 0.9 11.1 9.9
mPLUG-DocOwl 1.5 (Hu et al., 2024) 1.0 13.9 14.9 18.2 2.9 5.0 2.0 0.9 6.4 7.2
Xcomposer2-4KHD (Dong et al., 2024) 2.0 20.6 23.2 21.6 5.6 7.7 4.1 6.1 10.1 11.2
Xcomposer-SFT 11.8 31.7 37.4 29.3 14.5 12.9 5.8 13.9 20.2 19.7

Table 3: Few-shot performance of GPT-4V on the MTVQA benchmark. In-context examples are
randomly selected from the training set of MTVQA in the respective languages. “n-shot” represents
the number of the selected in-context examples.

AR DE FR IT JA KO RU TH VI Avg.
zero-shot 11.5 31.5 40.4 32.3 11.5 16.7 10.3 15.0 28.9 22.0
two-shot 11.6 35.3 42.2 33.1 13.2 17.0 11.4 19.0 31.0 23.7
five-shot 13.5 34.8 43.0 35.7 13.4 18.8 11.6 19.2 33.0 24.8
eight-shot 15.5 34.8 42.1 35.6 13.4 17.5 12.1 18.2 32.8 24.7

mPLUG-DocOwl 1.5 (Hu et al., 2024), do not show a significant performance advantage over other
open-source models for the languages tested, suggesting a focus on high-resource languages (mainly
English and Chinese) and a lack of attention to other languages.

Instruction tuning. As shown in Table 2, the instruction tuning experiment on MTVQA benchmark
brings a 8.5% improvement. Concerning specific languages, French sees the largest improvement of
14.2% in accuracy, while Russian has the smallest improvement of 1.7%. The results demonstrate
that MLLMs vary in their ability to understand and learn from text-centric data in different languages,
leaving great potential for future research of multilingual text-centric MLLMs pre-training.

Few-shot evaluation of GPT-4V. Here, we compare the performance of GPT-4V on MTVQA
under the few-shot settings. Specifically, we perform zero-shot, two-shot, five-shot, and eight-shot
evaluations. We randomly select in-context examples from the train set in the respective languages and
evaluate GPT-4V on the remaining instances. As shown in Tab. 3, compared to the zero-shot setting,
GPT-4V’s performance has improved considerably under few-shot, highlighting its exceptional in-
context learning ability in multilingual text comprehension contexts. Moreover, comparisons based
on varying numbers of in-context samples reveal that augmenting the in-context samples can aid in
further enhancement; however, after reaching a certain volume, the improvement becomes saturated.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Comparison on applying OCR to GPT-4 and GPT-4V

AR DE FR IT JA KO RU TH VI Avg.
OCR+GPT-4 18.9 21.2 29.8 27.3 15.8 24 10.6 19 28.2 21.6
OCR+GPT-4V 22.3 35.1 42.6 36.7 19.2 32.1 12.1 20.9 34.1 28.3
GPT-4V 11.5 31.5 40.4 32.3 11.5 16.7 10.3 15 28.9 22.0

Experiments on Text-Based LLMs and MLLMs with OCR results. To compare text-based
LLMs and MLLMs performance on the MTVQA bench with OCR results, we adopt the Bytedance
multilingual OCR API tool to extract multilingual text from images. For text-based LLMs, we choose
GPT-4, and for MLLMs, we choose GPT-4V. As shown in Table 4, GPT-4V and OCR+GPT-4 have
similar performance, but both are much lower than OCR+GPT-4V. We analyze the cases in detail and
find differences in the challenges encountered by OCR+GPT-4 and GPT-4V. Since the performance
of Latin languages is weaker than that of GPT4V(strong Latin text perception and comprehension
abilities), OCR+GPT4 issues lie more in the lack of perception of visual elements and position. Many
questions are dependent on visual elements and positional relationships in the image, resulting in
that cannot be answered. GPT-4V issues lie more in the weakness of perception and comprehension
of visual text, especially non-Latin text (AR/JA/KO/TH in Table 4), but GPT-4V can capture visual
elements and positional relationships in images. More importantly, all three settings perform poorly
and the comprehension of multilingual visual text remains a challenging case.

5 LIMITATION

The current version of the MTVQA dataset, while dialectically diverse, exhibits limitations in its
language coverage. Despite encompassing a range of languages, it falls short of inclusivity, omitting
numerous lesser-spoken languages. This prompts our future continual endeavor to ensure comprehen-
sive representation across the linguistic spectrum. Additionally, the dataset currently provides a single
canonical response per question, which may not fully capture the range of answers corresponding to
different expressions of the same underlying semantics. Recognizing the multifaceted nature of the
inquiries, future versions will aim to include a spectrum of plausible answers to reflect the varied
perspectives inherent to each question.

6 CONCLUSION

To attack the visual-textual misalignment issue in multilingual TEC-VQA, we introduce MTVQA, a
new benchmark featuring high-quality human expert annotations in 9 diverse languages. We believe
that MTVQA is the first benchmark to provide fully manual annotations tailored to text-centric
scenarios. The results obtained from closed-source, general-purpose, and text-centric MLLMs on our
MTVQA dataset indicate that there is still room for improving their performance in multilingual text-
centric scenarios. Although the MTVQA dataset has limitations, such as the underrepresentation of
several lesser-spoken languages and single canonical answers, future updates will address these issues
by expanding the multilingual scope and including a range of plausible answers. We are confident
that this dataset can inspire researchers within the TEC-VQA community with new perspectives and
ideas.
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A MORE VISUALIZATIONS

Q: "Wer ist Nicole Geipel?"

A: "Eine glückliche Single und studiert 

Human Resources."

(Q: "Who is Nicole Geipel?" 

A : "A happy single who is studying 

Human Resources.")

(a) German (DE) example

Q: "Qual è il prezzo della lavatrice 

pubblicizzata?"

A: "299 euro"

(Q: "What is the price of the advertised 

washing machine?" 

A : "299 euros")

(b) Italian (IT) example

Q: "Qui est responsable ?"

A: "Être homme, c’est être 

responsable."

(Q: "Who is responsible?" 

A : "To be human is to be 

responsible.")

(c) French (FR) example

Q: "この写真の商品は何ですか？"

A: "黒はんぺん"

(Q: "What is the product in this 

picture?" 

A : "Black hanpen")

(d) Japanese (JA) example

Q: "238-1에쓰여있는내용은?"

A: "교수연구실손영아"

(Q: "What is written on 238-1?" 

A : "Professor's office, Son Young-

ah.")

(e) Korean (KO) example

Figure 7: Multilingual VQA examples selected from five languages. The corresponding translations
in English are in brackets.
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Table 5: Mean lengths of question-answer pairs in different languages of the training set and test set,
using GPT-4o tokenizer.

AR DE FR IT JA KO RU TH VI
Training Set
Question 8.29 8.72 9.73 12.05 12.43 11.74 11.56 11.35 11.21
Answer 9.66 6.96 7.34 11.24 12.70 13.56 12.00 11.26 13.31
Test Set
Question 8.08 8.29 9.76 11.93 12.48 12.2 11.65 10.98 10.99
Answer 7.95 6.67 6.61 11.04 12.55 13.61 14.42 12.08 13.00

Top Question Word Cloud(AR) Top Question Word Cloud(DE) Top Question Word Cloud(FR)

Top Question Word Cloud(IT) Top Question Word Cloud(JA) Top Question Word Cloud(KO)

Top Question Word Cloud(RU) Top Question Word Cloud(TH) Top Question Word Cloud(VI)

Figure 8: Word clouds showcasing top questions in various languages, tokenized via NLTK with the
removal of stop words, punctuation, and digits.
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B MORE EXPERIMENTS

B.1 MLLM PERFORMANCE CHANGES WHEN THE QUESTION IS ASKED IN ENGLISH.

We translate the questions into English using GPT-4 and then perform a test on GPT4V. The result is
shown in Table 6. The GPT4V performance is robust when the question is asked in English and the
original languages.

Table 6: GPT4V performance changes when the question asked in English

AR DE FR IT JA KO RU TH VI Average
English Questions 11.9 31.8 39.0 32.1 12.0 15.8 10.1 18.1 28.5 22.1
Original Questions 11.5 31.5 40.4 32.3 11.5 16.7 10.3 15.0 28.9 22.0
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