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Abstract
Theory-of-Mind (ToM) tasks pose a unique chal-
lenge for small language models (SLMs) with
limited scale, which often lack the capacity to per-
form deep social reasoning. In this work, we pro-
pose DEL-ToM, a framework that improves ToM
reasoning through inference-time scaling rather
than architectural changes. Our approach decom-
poses ToM tasks into a sequence of belief updates
grounded in Dynamic Epistemic Logic (DEL), en-
abling structured and transparent reasoning. We
train a verifier, called the Process Belief Model
(PBM), to score each belief update step using la-
bels generated automatically via a DEL simulator.
During inference, candidate belief traces gener-
ated by a language model are evaluated by the
PBM, and the highest-scoring trace is selected.
This allows SLMs to emulate more deliberate rea-
soning by allocating additional compute at test
time. Experiments across multiple model scales
and benchmarks show that DEL-ToM consistently
improves performance, demonstrating that verifi-
able belief supervision can significantly enhance
ToM abilities of SLMs without retraining.

1. Introduction
The ability to attribute beliefs, desires, and intentions to oth-
ers, known as Theory-of-Mind (ToM) (Apperly & Butterfill,
2009; Premack & Woodruff, 1978; Rabinowitz et al., 2018),
is a fundamental component of social intelligence (Baron-
Cohen, 1991). Recent studies show that large language
models (LLMs) (Brown et al., 2020) often exhibit scaling
in ToM abilities (Strachan et al., 2024; Street et al., 2024;
Amirizaniani et al., 2024), with larger models performing

1Stanford University, USA 2Lambda Inc., USA
3Stevens Institude of Technology, USA. Correspondence
to: Denghui Zhang <dzhang42@stevens.edu>, Zhaozhuo Xu
<zxu79@stevens.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

better than smaller ones in ToM evaluation tasks. How to
equip small language models (SLMs) (Abdin et al., 2024;
Yang et al., 2025a; Grattafiori et al., 2024) with social rea-
soning abilities comparable to those of LLMs remains an
open question. This is particularly important for enabling
SLMs in resource-limited settings, where we want agents
powered by them to understand users’ intentions and act in
ways aligned with human expectations.

A common approach to enhance ToM reasoning of SLMs is
step-by-step prompting (Hou et al., 2024; Lin et al., 2024).
However, this approach treats the reasoning process as a
black box. Despite generating intermediate steps, we have
no way to assess whether the reasoning trace itself is correct.
With only final-answer supervision, the process is unverifi-
able, and thus unjustified. Therefore, this paper focuses on
the question: How can we enable SLMs to perform justified
Theory-of-Mind reasoning?

To achieve justified ToM reasoning, following process relia-
bilism (Goldman, 1979), we require the reasoning process
to be reliable. This means we must transparently generate
each intermediate belief update, and use an external method
to evaluate the reliability of each update.

In this paper, we introduce the Dynamic Epistemic Logic
(DEL) framework to generate intermediate belief states.
DEL (Van Benthem, 2001; Plaza, 2007; Van Ditmarsch
et al., 2007; Aucher & Schwarzentruber, 2013) is a for-
mal logic system that represents agents’ belief states with
epistemic models, actions with event models, and updates
beliefs via product updates. This provides a transparent
process for generating belief traces. We then evaluate the
quality of each belief trace using a Process Belief Model
(PBM). By generating multiple candidate traces and scoring
them with PBM, we select the one with higher score. This
constitutes inference-time scaling: spending more compu-
tation during inference to obtain more justified reasoning
traces.

To train the PBM, we first generate ToM-related questions
and use DEL to produce belief process labels. We then
use an advanced LLM, typically GPT-4o-mini (Hurst et al.,
2024) to answer these questions. Finally, we construct the
PBM training dataset by pairing the DEL-generated labels

1



DEL-ToM: Inference-Time Scaling for Theory-of-Mind Reasoning via Dynamic Epistemic Logic

Let’s try a few times,
analyze belief at state 2!

Belief Candidates
LLM under
Evaluation

Drawer Table

Null Fridge

Mary thinks John thinks
the chocolate is at...

0.99 0.41

0.62 0.01

Reward Score

PBM
Judge 

Drawer

Belief Update

State 1

  Belief State Update
State 2 State 3 State 4

Null

1 John, Mary and Alice entered the kitchen. State 1 
2 John put the chocolate in the drawer. State 2  
3 John exited the kitchen.  State 3
4 Mary moved the chocolate to the table.  State 4
Question: Where does Mary think John thinks the
chocolate is?

  ToM Actions

Next ... ...Drawer

Figure 1. Overview of the DEL-ToM framework.

with GPT-generated traces. Unlike other process-level re-
ward modeling datasets, which rely on human annotation
or LLM assistance (Wang et al., 2023), our labels are di-
rectly derived from a formal DEL system, ensuring their
correctness and consistency.

In conclusion, we approach ToM reasoning from the per-
spective of process reliability. By training a PBM via DEL,
we evaluate the quality of each intermediate reasoning step
and use search-based methods to select the most reliable
trace. This enables inference-time scaling and results in a
more robust ToM reasoning process.

2. Background and Motivation
For a full overview of related work, see Appendix A. Here,
we briefly introduce the background and motivation.

Theory of Mind in LLMs. To assess the ToM capabili-
ties of LLMs, researchers commonly adopt tasks that test
whether a model can reason about others’ beliefs. Among
these, false belief tasks are the most widely used. Figure 1
illustrates a typical instance of this task setup. The story
consists of four sentences, each describing an action that
incrementally changes the characters’ beliefs. Between ev-
ery two action, the characters are assumed to hold a belief
configuration, which we refer to as a belief state. ToM
reasoning aims to infer these belief states.

In this example, after Action 1, John, Mary, and Alice are
all present in the kitchen, but the chocolate has not been
introduced yet, so no beliefs are established. After Action
2, John places the chocolate in the drawer, and everyone
present (including Mary) observes this action. Hence, Mary
believes that John believes the chocolate is in the drawer.

Following Action 3, John exits the kitchen. Then, in Action
4, Mary moves the chocolate to the table, an action that
John is unaware of. As a result, Mary’s mental model of the
world (her world) now differs from John’s outdated view
(his world). Therefore, Mary thinks John still believes the
chocolate is in the drawer.

With a foundational understanding of ToM and its belief-
state dynamics, we now observe that this reasoning process
naturally aligns with the framework of DEL. In ToM tasks,
a sequence of actions leads to a sequence of belief states,
which evolve as characters gain or lose access to informa-
tion. We represent each belief state using an epistemic
model, and each action as an event model. DEL provides
a core operation called the product update, which allows
us to compute the next epistemic state by combining the
current state with an action. For full formal definitions and
examples, see Appendix B.

Our Objective: Inference-Time Scaling of ToM Capaci-
ties for SLMs. Our objective is to enhance the ToM capa-
bilities of SLMs without increasing their parameter count.
To strike a balance between performance and computational
efficiency, we adopt a reward model-based (Beeching et al.,
2024) inference-time scaling approach that allocates addi-
tional compute at inference to enable more structured and ac-
curate reasoning. This allows SLMs to achieve competitive
performance on socially grounded tasks while remaining
efficient for deployment.

3. DEL-ToM for Inference Time Scaling
In this section, we first describe how we construct and
train the PBM to evaluate belief traces. We then introduce
inference-time strategies for ranking and selecting belief
traces based on their process-level rewards.

3.1. Building PBM

3.1.1. DATASET SYNTHESIS VIA DEL

In this section, we describe how we construct the training
dataset for the PBM using DEL. We generate 20,000 ToM
examples using the scenario and question generation script
from the Hi-ToM framework (He et al., 2023). For process-
level labels, we design a DEL-based simulator to compute
the full belief update trace, as illustrated in Figure 2. For
reasoning traces, we use GPT-4o-mini (Hurst et al., 2024).
We observe that GPT-4o-mini produces a balanced mix of
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Figure 2. Training data synthesis paradigm for PBM.

correct and incorrect reasoning traces, making it suitable
for reward modeling. Each training sample thus consists
of a LLM-generated reasoning trace paired with a DEL-
generated process label.

3.1.2. TRAINING THE PBM

PBM is a scoring function f : P × S → R+ that assigns
a reliability score to each step si in a belief trace s under a
given ToM problem P . We treat this as a binary classifica-
tion task: each step is labeled as either correct or incorrect
according to the DEL-generated belief trace. The model is
trained using the following binary cross-entropy objective:

LPBM =

K∑
i=1

ysi log f(si) + (1− ysi) log(1− f(si)),

where K is the number of steps, ysi is the binary label, and
f(si) is the predicted score.

3.2. Inference-Time Scaling with PBM

After training the PBM, we integrate it with inference-time
search methods to enhance ToM reasoning. We consider
both online and offline strategies.

Online: Beam Search. In the online setting, the model
constructs the belief trace step-by-step. At each action, it
proposes several candidate updates, which are scored by the
PBM. The top-scoring candidates are retained for the next
step. We provide an example in Figure 1.

Offline: Best-of-N. In the offline setting, the model gener-
ates multiple full belief traces after reading the entire story.
The PBM then evaluates each trace using step-wise scores
aggregated by strategies such as last (score of the final step),
min (lowest score across all steps), avg (average score across
steps), and prod (product of step-wise scores).

Ranking Strategies. Based on the aggregated scores, we
consider two ways to choose the final answer: (i) Vanilla

Best-of-N, which selects the trace with the highest PBM
score; and (ii) Weighted Best-of-N, which groups traces by
final answer and sums scores across traces predicting the
same answer.

For detailed algorithmic procedures and scoring rules, see
Appendix C.

4. Experiments
4.1. Experimental Setup

We evaluate our method on both Qwen3 (Yang et al., 2025a)
and Llama3.2 (Grattafiori et al., 2024) model families, using
models ranging from 0.6B to 8B parameters. The PBM
is trained on the DEL-generated dataset using Llama3.1-
8B-Instruct. All inference and training are conducted on a
single GH200 node.

Experiments are performed on two datasets: Hi-ToM (He
et al., 2023) and the human-written benchmark from Kosin-
ski (2023), testing generalization across different data struc-
tures. Full model details, training settings, prompt formats,
and implementation specifics are provided in Appendix D.

4.2. Results and Analysis

We evaluate our method using both offline (Best-of-N ,
N = 1024) and online (beam search, N = 256) inference-
time scaling strategies. Results in Table 1 and Table 2 con-
firm that PBM consistently improves ToM accuracy across
models and belief orders, including low-capacity models
that would otherwise struggle to reason about beliefs.

Figure 3 (a)-(b) shows performance trends as N increases
under different aggregation and ranking strategies, highlight-
ing the importance of verifier-guided selection. We find that
simple methods like majority voting fail to benefit from in-
creased sampling, whereas PBM-guided selection continues
to yield improvements with more candidates.

3



DEL-ToM: Inference-Time Scaling for Theory-of-Mind Reasoning via Dynamic Epistemic Logic

Table 1. Offline inference-time scaling methods across belief orders in HiToM Dataset, with and without PBM. “Ori” denotes the baseline
accuracy from a single sample without inference-time scaling.

Model 0-th Order 1-th Order 2-th Order 3-th Order 4-th Order Average

Ori +PBM Ori +PBM Ori +PBM Ori +PBM Ori +PBM Ori +PBM

Qwen3-4B 100.0 100.0 79.8 85.0 79.3 90.0 70.2 82.5 46.0 65.0 75.1 84.5
Qwen3-1.7B 78.0 82.5 59.7 65.0 45.2 55.0 47.0 62.5 47.8 57.5 55.5 64.5
Qwen3-0.6B 69.2 80.0 52.0 72.5 35.0 47.5 31.5 52.5 34.0 47.5 44.3 60.0
Llama3.2-3B 68.2 85.0 52.0 80.0 43.2 82.5 37.0 82.5 36.8 75.0 47.4 81.0
Llama3.2-1B 41.5 46.2 40.0 53.8 28.5 61.5 41.5 84.6 29.2 58.3 36.1 60.9

Table 2. Online inference-time scaling methods across belief orders in HiToM Dataset, with and without PBM. “Ori” denotes the baseline
accuracy from a single sample without inference-time scaling.

Model 0-th Order 1-th Order 2-th Order 3-th Order 4-th Order Average

Ori +PBM Ori +PBM Ori +PBM Ori +PBM Ori +PBM Ori +PBM

Qwen3-8B 96.5 80.0 53.3 80.0 38.8 85.0 55.8 95.0 57.8 95.0 60.4 87.0
Qwen3-4B 100.0 100.0 79.8 85.0 79.3 97.5 70.2 82.5 46.0 60.0 75.1 85.0

Table 3. Offline inference-time scaling methods on the (Kosinski, 2023) dataset, evaluated across different belief types, with and without
PBM. “Ori” denotes baseline accuracy from a single sample without PBM.

Model False Belief Informed Protagonist No Transfer Present Protagonist Average

Ori +PBM Ori +PBM Ori +PBM Ori +PBM Ori +PBM

Qwen3-8B 83.3 87.5 83.8 85.0 92.8 97.5 79.5 85.0 84.8 88.8
Qwen3-4B 70.2 80.0 86.2 90.0 93.2 95.0 88.0 92.5 84.4 89.4
Qwen3-1.7B 18.2 35.0 15.5 37.5 24.8 60.0 13.8 30.0 18.1 40.6
Qwen3-0.6B 14.5 12.5 23.5 30.0 25.0 35.0 21.0 32.5 21.0 27.5
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(b) Weighted Best-of-N decoding.
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Figure 3. Comparison of decoding strategies and scaling trends across models.

Figure 3 (c) further demonstrates that PBM facilitates more
effective scaling with model size, helping unlock latent
ToM capabilities that are not expressed through standard
decoding. In particular, models that initially underperform
due to misaligned reasoning patterns (e.g., Qwen3-8B) can
achieve state-of-the-art accuracy when guided by PBM.

We also validate the generalization of PBM on the Kosinski
benchmark (Kosinski, 2023), where it continues to yield
consistent gains (Table 3), confirming that the PBM operates
as a genuine verifier of belief dynamics rather than merely
overfitting to synthetic training data.

These findings demonstrate that inference-time scaling via
DEL, guided by the PBM, provides an effective and gener-

alizable framework for performing justified ToM reasoning.
See Appendix E for detailed results and analysis.

5. Conclusion
This work presents a new approach to Theory-of-Mind
(ToM) reasoning by focusing on inference-time reliabil-
ity rather than model scale. By formalizing belief updates
through Dynamic Epistemic Logic (DEL) and using a ver-
ifier model trained with logic-generated labels, we enable
small language models to reason in a more transparent and
structured manner. Our inference-time framework improves
ToM performance of small LLMs across several bench-
marks. It demonstrates that social reasoning tasks can ben-
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efit from compute-efficient methods that guide rather than
retrain the model. This opens new possibilities for deploying
socially aware AI in resource-limited settings.
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A. Related Works
Dynamic Epistemic Logic and Its Connections to Theory-of-Mind. The intersection of DEL and ToM has emerged as
a promising framework for formalizing belief-based social reasoning. DEL offers a principled approach to representing
and updating agents’ mental states through formal mechanisms such as product updates over epistemic and event mod-
els (Van Ditmarsch et al., 2007). This directly aligns with the core of ToM, which centers on inferring and reasoning about
others’ beliefs. Earlier cognitive models (Van Ditmarsch et al., 2007; Bolander & Andersen, 2011) employed DEL to
simulate belief change in multi-agent settings. More recent computational work extends this line by incorporating DEL
into neural architectures, using logic-based simulators to provide symbolic supervision for belief updates (Bolander, 2014;
Rabinowitz et al., 2018). Building on this foundation, our work leverages DEL not only as a modeling formalism but also as
a scaffold for inference-time supervision, enabling compositional and verifiable reasoning in ToM tasks (Hansen & Bolander,
2020).

Inference-Time Scaling of LLMs. Recent research has investigated inference-time scaling as a compute-efficient alternative
to architectural scaling for enhancing the reasoning capabilities of LLMs (Beeching et al., 2024; Muennighoff et al., 2025).
Instead of increasing model size, this approach leverages additional computation during inference to simulate deeper
cognitive reasoning. Techniques such as Best-of-N and beam search exemplify this paradigm by enabling small LLMs to
explore multiple reasoning paths and select the most plausible outcome, effectively mimicking the deliberation depth of
larger models without incurring additional training costs (Snell et al., 2024; Misaki et al., 2025). While promising, current
applications of inference-time scaling are largely confined to mathematical reasoning (Wang et al., 2023; Yang et al., 2025b;
Yao et al., 2023). This work aims to broaden its applicability by targeting ToM as a new frontier for inference-time scaling.

B. Formulation: ToM Reasoning as DEL
We begin by introducing the formal language and semantics used to represent ToM reasoning within the framework of DEL.
Let P be a countable set of atomic propositions, representing basic facts about the world, and let A be a non-empty finite
set of agents, corresponding to the characters involved in the story. The epistemic language L(P,A) is defined by each
component φ(p) ∈ L(P,A) follows the Backus-Naur Form (Knuth, 1964):

φ(p) ::= p | ¬p | p ∧ p | Bi(p)

where p ∈ P and i ∈ A. The formula Bi(p) is interpreted as “agent i believes p”, and can also be written as Bip. For
example, “John believes the chocolate is in the drawer” can be written as BJohn(chocolate in drawer). Next, we define the
epistemic and event models for future usage.
Definition B.1 (Epistemic Model). An epistemic model over agent set A and proposition set P is a triple M = (W,R, V ),
where:

• W is a set of possible worlds, where each world represents a complete assignment of truth values to all atomic propositions
in P;

• R : A → 2W×W assigns each agent a ∈ A an accessibility relation Ra;
• V : P → 2W maps each atomic proposition p ∈ P to the set of worlds where p is true.

A state is a pointed epistemic model (M, w) where w ∈ W is the designated actual world.

We write wRav to denote that world v is accessible from world w according to agent a: agent a considers v possible in state
w.

The semantics of formulas in L(P,A) is defined inductively as follows:

• M, w |= p iff w ∈ V (p);
• M, w |= Baφ iff for all v ∈ W such that wRav, we have M, v |= φ.
Definition B.2 (Event Model). An event model is a tuple ε = (E,Q, pre, post), where:

• E is a finite, non-empty set of events;
• Q : A → 2E×E assigns to each agent a ∈ A a binary relation Qa over events;
• pre : E → L(P,A) assigns a precondition formula to each event, specifying when it is executable;
• post : E → L(P,A) assigns a postcondition formula to each event, describing how the world changes.

We refer to a pointed event model (E, e) as an action, where e ∈ E is the actual event that occurs.
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Definition B.3 (Product Update). Given a state (M, w) and an action (ε, e), suppose that the precondition is satisfied,
i.e., M, w |= pre(e). Then the product update results in a new state (M′, (w, e)), where the updated epistemic model
M′ = (W ′, R′, V ′) is defined as follows:

• W ′ = {(w′, e′) ∈ W × E | M, w′ |= pre(e′)};
• For each agent a ∈ A, R′

a = {((w′, e′), (v′, f ′)) ∈ W ′ ×W ′ | w′Rav
′ and e′Qaf

′};
• For each atomic proposition p ∈ P , (w′, e′) ∈ V ′(p) iff post(e′) |= p or (M, w′ |= p and post(e′) ̸|= ¬p).

C. Details of Inference-Time Scaling Methods
After training the PBM, we integrate it with various inference-time searching methods to improve ToM reasoning through
inference-time scaling. We consider both online and offline strategies.

Online: Beam Search. Beam search is a structured decoding method that maintains multiple partial belief traces during
generation. At each reasoning step, it explores several alternative updates and selects the most promising ones based on the
PBM scores. Formally, the procedure works as follows:

• Initialize a set of k beams by sampling k candidate first steps from the model.
• At each step, for every current beam, sample b next-step candidates, forming k × b new paths.
• Score each extended path using the PBM. We use the PBM score of the last step to rank partial paths.
• Retain the top k paths with the highest scores and repeat the process until reaching an end-of-sequence token or a

maximum depth.

This approach jointly optimizes the generation and evaluation of belief traces, allowing the model to explore plausible
alternatives and commit to higher-reward reasoning trajectories.

Offline: Best-of-N. In the offline setting, we sample N complete belief traces independently, and then evaluate them using
the PBM. We experiment with different aggregation rules for scoring each trace based on step-wise PBM scores:

• Last: Use the PBM score of the final step.
• Min: Use the lowest score across all steps.
• Avg: Use the average score across the trace.
• Prod: Multiply the scores of all steps.

Based on the aggregated scores, we consider two ranking strategies for selecting the final answer:

(i) Vanilla Best-of-N. Select the trace with the highest PBM score and extract its final answer. This method chooses the most
confident individual trace, but does not account for answer consistency across traces.

(ii) Weighted Best-of-N. Group traces by their final answers, then aggregate PBM scores across traces that predict the same
answer. The answer with the highest total score is selected:

ŷ = argmax
y∈Y

N∑
i=1

⊮(yi = y) · PBM(p, si)

Here, si is the i-th belief trace, yi its final answer, and PBM(p, si) the trace-level score. This strategy emphasizes both
answer quality and consistency across samples.

D. Detailed Experimental Setup
Platform. All experiments are conducted on a single NVIDIA GH200 GPU node. We use the vLLM (Kwon et al., 2023)
framework for efficient batched inference and large-scale decoding.

PBM Training. We fine-tune a PBM model based on Llama3.1-8B-Instruct (Grattafiori et al., 2024). The model is trained
for 1 epoch using our DEL-generated dataset. All training is performed on the same GH200 machine.

Test Models. We evaluate our methods on both the Qwen3 series (0.6B, 1.7B, 4B) (Yang et al., 2025a) and Llama3.2
series (1B, 3B) (Grattafiori et al., 2024). All models are evaluated using their default generation settings, with no change to
temperature, top-k, or nucleus sampling parameters.
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Datasets. We conduct evaluations on two datasets: Hi-ToM (He et al., 2023) and (Kosinski, 2023). The Hi-ToM dataset
is constructed using our DEL-based generator, while (Kosinski, 2023) is a human-written ToM benchmark. These two
datasets differ in structure, providing a testbed for evaluating the generalization of the PBM.

Metrics and Prompt Format. We report final answer accuracy as the main evaluation metric. All models are evaluated
using a consistent prompting format across datasets, as detailed in Appendix F.

E. Detailed Results and Analysis
E.1. Offline Methods Result

We set N up to 1024 and apply the weighted Best-of-N strategy, selecting the best aggregation rule (among avg, last, min,
and prod) as the final answer for each instance.

Main Results. As shown in Table 1, incorporating PBM leads to a significant improvement in ToM reasoning performance
across all models. For example, Llama3.2-3B exhibits a substantial gain of 33.6 points in average accuracy, while Qwen3-4B
improves by 9.4 points. Across all belief orders (from 0-th to 4-th), PBM consistently yields higher accuracy, confirming the
robustness and generalizability of our inference-time scaling method.

Scaling N for ToM Reasoning. As shown in Figure 3 (a)-(b), increasing the number of sampled belief traces N
consistently improves ToM reasoning performance. Among the aggregation strategies, min and prod exhibit stable
and similar performance across both vanilla and weighted ranking schemes. In contrast, avg and last tend to degrade
in performance under weighted aggregation, likely due to their sensitivity to low-quality or inconsistent samples. We
recommend using min or prod as robust aggregation rules for inference-time ToM scaling.

Majority Voting Doesn’t Work for ToM Reasoning. Interestingly, we observe that scaling N with majority voting does
not lead to improved accuracy on ToM tasks. This contrasts with math reasoning tasks, where majority voting often benefits
from larger N by amplifying consistent correct answers. The discrepancy highlights a key distinction: ToM reasoning
is a dynamic, social process that cannot be reduced to static answer aggregation. Therefore, our trained PBM is crucial:
without such a verifier, inference-time scaling for ToM would be ineffective. It is precisely the PBM that enables us to assess
whether each intermediate belief state in the reasoning process is likely to be justified.

E.2. Online Methods Result

Online Setting. For online inference-time scaling, we conduct beam search experiments on Qwen3-4B and scale up to
Qwen3-8B. We do not include smaller models because their instruction-following ability is insufficient for producing valid
intermediate reasoning steps. The number of beams N is varied from 4 to 256.

Main Results. Again, as shown in Table 2, we observe that incorporating PBM leads to substantial improvements in ToM
reasoning. For Qwen3-4B, the PBM-enhanced accuracy reaches 85.0, which is comparable to the best results in the offline
setting. Interestingly, the original Qwen3-8B model underperforms Qwen3-4B, suggesting that baseline ToM ability does
not necessarily scale with model size. However, with PBM guidance, Qwen3-8B achieves the highest accuracy of 87.0,
demonstrating the effectiveness of inference-time scaling even for larger LLMs.

Online Methods or Offline Methods? Which strategy should we prefer for ToM reasoning—online or offline? Our
experiments suggest that both approaches yield comparable accuracy. For instance, Qwen3-8B achieves similar performance
under both settings. However, online methods are significantly harder to evaluate reliably. This is because many smaller
or less instruction-aligned models struggle to follow step-by-step prompting in an online rollout, failing to produce valid
intermediate states and making PBM evaluation infeasible.

In contrast, offline methods allow the model to generate a full belief trace in one shot, which is generally easier even for
weaker models. Even when shortcuts or hallucinations appear mid-trace, the PBM can still function effectively. Furthermore,
when paired with high-throughput generation backends such as vLLM, offline methods can generate large numbers of
candidate traces efficiently. Overall, we recommend using offline inference-time methods for ToM reasoning.
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E.3. Results on Other Benchmarks

Our PBM is trained on data generated under the Hi-ToM framework. A natural question arises: Can the trained PBM
generalize to ToM reasoning tasks from a different distribution?

To evaluate this, we test our method on the dataset proposed by (Kosinski, 2023), which features hand-written scenarios
involving false beliefs and a variety of true belief controls. We conduct experiments using both the Llama 3.1 and Qwen3
model series. In all experiments, we follow the same inference-time scaling and PBM-based trace selection procedure as in
the Hi-ToM evaluations.

Main Results. As shown in Table 3, We observe that the PBM also generalizes well to out-of-domain data. Across all
tested models, accuracy consistently improves after applying inference-time scaling guided by the PBM. This confirms
that our PBM functions as a genuine verifier of whether a ToM reasoning process is justified, rather than merely fitting
surface patterns in the training distribution. The improvements on the (Kosinski, 2023) benchmark demonstrate its ability to
evaluate belief traces beyond synthetic scenarios, highlighting the robustness and transferability of our approach.

E.4. Discussion

Scaling with Model Size. Figure 3 (c) illustrates the impact of model scaling on ToM accuracy across different model sizes.
We observe that PBM consistently improves performance and facilitates more effective scaling. For Llama 3.2, the accuracy
curve becomes steeper when equipped with PBM, indicating that larger models benefit more and generalize better under our
inference-time intervention. Interestingly, Qwen3 exhibits a failure in scaling at 8B under the vanilla setting—performing
worse than its 4B counterpart. However, once PBM is applied, Qwen3-8B achieves the highest accuracy among all its
variants. This suggests that inference-time scaling via PBM not only improves absolute performance but may also enable
the emergence of higher-order reasoning capabilities that are otherwise latent in the base model.

Comparison with GRPO-based Methods. Recent work has proposed using ToM supervision to fine-tune smaller models
via GRPO (Shao et al., 2024), in order to enhance their ToM capabilities. However, GRPO-based training requires substantial
computational resources and is notoriously difficult to optimize. In contrast, our PBM module is lightweight and efficient: it
can be trained in under three hours on a single GH200 GPU. Moreover, GRPO must be re-trained for each target model
individually, whereas our PBM is trained once and can be applied across multiple models without retraining. Notably, prior
work also reports that GRPO-trained models, while improving ToM reasoning, may suffer performance degradation on
other benchmarks such as GSM8K. Our inference-time scaling method avoids this drawback entirely, as it does not modify
the parameters of the underlying model. Overall, PBM offers a practical, generalizable, and non-invasive alternative for
enhancing ToM reasoning in SLMs.

F. Prompt Templates
We present the prompt templates in the folllowing textbox.

One-Shot Prompt

Here is a story that unfolds in chronological order.

You will be asked a question about the story, which may involve either:
(1) Locating an object, or
(2) Inferring an agent’s mental state (e.g., what A thinks B thinks C thinks).

To solve it, think step-by-step. At each step, repeat the current line from the
story, then explain its effect on beliefs. Use [Null] if someone does not yet
have knowledge. If a belief chain cannot be formed (e.g., some agent exited too
early), freeze belief at the last available step.

<Note>
{note}

In public or private communication:
- The speaker believes the listener will believe the claim.
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- If the listener exited the room earlier than the speaker, they will believe it.

If the question is zero-order (e.g., "Where is X really?"), then in each step, only
track the actual location of the object (e.g., "X is in [Y]"). You do not need to
track nested beliefs.

Here is an example:
<Story>
1 Amelia, Chloe, Liam, Owen and Benjamin entered the TV_room.
2 The celery is in the red_envelope.
3 Amelia made no movements and stayed in the TV_room for 1 minute.
4 Chloe lost his watch.
5 Amelia exited the TV_room.
6 Chloe moved the celery to the green_bucket.
7 Chloe exited the TV_room.
8 Liam moved the celery to the red_bathtub.
9 Liam exited the TV_room.
10 Owen made no movements and stayed in the TV_room for 1 minute.
11 Owen exited the TV_room.
12 Benjamin made no movements and stayed in the TV_room for 1 minute.
13 Benjamin exited the TV_room.
14 Amelia, Chloe, Liam, Owen and Benjamin entered the waiting_room.
15 Liam publicly claimed that celery is in the white_bathtub now.
16 Benjamin privately told Liam that the celery is in the blue_drawer now.

<Question>
Where does Owen think Liam thinks Chloe thinks the celery is?

<Trace>
## Step 1 ##
Amelia, Chloe, Liam, Owen and Benjamin entered the TV_room.
Everyone is present, but the celery’s location is still unknown.
Owen thinks Liam thinks Chloe thinks the celery is in [Null]

## Step 2 ##
The celery is in the red_envelope.
Everyone observes this.
Owen thinks Liam thinks Chloe thinks the celery is in [red_envelope]

## Step 3 ##
Amelia made no movements and stayed in the TV_room for 1 minute.
No effect.
Owen thinks Liam thinks Chloe thinks the celery is in [red_envelope]

## Step 4 ##
Chloe lost his watch.
Irrelevant.
Owen thinks Liam thinks Chloe thinks the celery is in [red_envelope]

## Step 5 ##
Amelia exited the TV_room.
Irrelevant.
Owen thinks Liam thinks Chloe thinks the celery is in [red_envelope]

## Step 6 ##
Chloe moved the celery to the green_bucket.
Only Chloe, Liam, Owen, Benjamin are present. They all see this move.
Owen thinks Liam thinks Chloe thinks the celery is in [green_bucket]

## Step 7 ##
Chloe exited the TV_room.
Chloe’s belief frozen; still [green_bucket]
Owen thinks Liam thinks Chloe thinks the celery is in [green_bucket]
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## Step 8 ##
Liam moved the celery to the red_bathtub.
Only Liam, Owen, Benjamin present. They observe the move. Chloe not present, so her

belief unchanged.
Owen thinks Liam thinks Chloe thinks the celery is in [green_bucket]

## Step 9 ##
Liam exited the TV_room.
No change.
Owen thinks Liam thinks Chloe thinks the celery is in [green_bucket]

## Step 10 ##
Owen made no movements and stayed in the TV_room for 1 minute.
Irrelevant.
Owen thinks Liam thinks Chloe thinks the celery is in [green_bucket]

## Step 11 ##
Owen exited the TV_room.
Owen’s belief frozen.
Owen thinks Liam thinks Chloe thinks the celery is in [green_bucket]

## Step 12 ##
Benjamin made no movements and stayed in the TV_room for 1 minute.
Irrelevant.
Owen thinks Liam thinks Chloe thinks the celery is in [green_bucket]

## Step 13 ##
Benjamin exited the TV_room.
No change.
Owen thinks Liam thinks Chloe thinks the celery is in [green_bucket]

## Step 14 ##
Everyone entered the waiting_room.
No effect on beliefs.
Owen thinks Liam thinks Chloe thinks the celery is in [green_bucket]

## Step 15 ##
Liam publicly claimed that celery is in the white_bathtub now.
Owen hears this statement. However, public speech only affects first- and second-

order beliefs (e.g., what Liam believes, what Owen thinks Liam believes, and what
Liam thinks Owen believes). It does not change Owen’s belief about what Liam

thinks Chloe thinks.
Owen thinks Liam thinks Chloe thinks the celery is in [green_bucket]

## Step 16 ##
Benjamin privately told Liam that the celery is in the blue_drawer now.
Owen does not hear this, but more importantly, private communication only affects

beliefs between the speaker and the listener. It can change what Liam believes (
based on exit order), or what Liam thinks Benjamin believes (based on exit order)
, or what Benjamin thinks Liam believes (always change) - but it cannot affect
higher-order beliefs. So this does not change Owen’s belief about what Liam
thinks Chloe thinks.

Owen thinks Liam thinks Chloe thinks the celery is in [green_bucket]

Final Answer: [green_bucket]

Now it’s your turn.

<Story>
{story}
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<Question>
{question}

Give a step-by-step trace as in the example. Then, give the final answer in one line
like:

Final Answer: [your choice]

<trace>
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