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Abstract—In this article, the model-free optimal output cluster
synchronization control problem is investigated for nonlinear
multiagent systems (MASs). First, in view of the unknown out-
put of leader, relying on practical prescribed-time performance
function, an observer is designed for each follower to estimate
the output of leader, and can achieve the desired accuracy
within prescribed time. Then, based on the designed observer, an
augmented system consisting of observer dynamics and follower
dynamics is constructed and the cost functin is built for each
follower. Accordingly, the optimal output cluster synchronization
control problem is transformed into a numerical solution to solve
the Hamilton-Jacobian-Bellman equation (HJBE). Subsequently,
the off-policy reinforcement learning (RL) algorithm is addressed
to learn the solution to HJBE without any knowledge of the
system dynamics. Meanwhile, to release computational burden,
the single critic neural network (NN) framework is employed to
implement the algorithm, where the least square method is used
for training the NN weights. Thus, the designed control algorithm
can minimize the cost functions and ensure the output cluster
synchronization of MASs with the unknown system dynamics
and unavailable leader output. Finally, the simulation examples
confirm the validity of the designed control scheme.

Index Terms—Prescribed-time observer, optimal synchroniza-
tion, reinforcement learning, nonlinear multiagent systems.

I. INTRODUCTION

Multiagent systems (MASs) are autonomous sensing sys-
tems containing multiple independent agents. Each agent
shares information and collaborates with other agents to
accomplish tasks via the communication network. Thanks
to the robustness, extendibility and the ability to handle
complex tasks, the synchronization control problem of MASs
has received broad attention over the past decades, such
as multiple vehicles [1] and multiple spacecrafts [2]. Due
to the requirement of multiple tasks, MASs are partitioned
into a few subgroups to accomplish different but cooperative
tasks. Hence, the agents in the same cluster reach consistent
goals, while the agents in the different clusters fulfil tasks
variously, which is named cluster synchronization or group
consensus [3]. It was proposed in [3] for the first time and
extended to switching topologies and cooperation-competition
network in [4] and [5] later, respectively. Recently, many
scholars have made efforts for it. In [6], a relative-output-based
distributed control strategy was designed for MASs to achieve
cluster synchronization. The cluster synchronization control
problem via pinning control strategies was investigated for

heterogeneous MASs in [7]. It should be acknowledged that
in many performance-critical fields, such as missile guidance,
MASs rendezvous, emergency braking and obstacle avoidance,
achieving prescribed accuracy in given time is significant.

Fortunately, the prescribed-time control (PTC) was firstly
proposed by Song et al. to achieve the above target [8]. The
PTC derives from the classical idea of strategic and tactical
missile guidance application [9], inherited the characteristics
of finite-time control and fixed-time control. PTC came into
being, which was independent on the initial values of the
system and can achieve accurate prescribed settling time. Lots
of controllers can be integrated with PTC algorithms that
extend the application of PTC. Relying on [8], in [10], it has
proved that the regular Lyapunov inequality was utilized for
stability analysis and thus avoided the difficulty in stability
analysis brought by PTC. Later, in [11], the convergence
rate can be preset as desired and a universal method for
constructing the time-varying rate function was given which
can be regarded as an extension of [8], [10]. In [12], the PTC
was continued for observer with canonical form. In the above
results, the size of the steady-state error depends on unknown
parameters and the control accuracy after the settling time
was uncertain, which was undesirable in practice. Therefore,
the practical prescribed-time control was presented, where the
settling time and control accuracy were directly assigned in
advance by the designers [13]. In [13], a new time-varying
constraint function was designed to ensure that the system
can operate even after the prescribed time and the global
result was obtained. In [14], the practical PTC-based time-
scale performance function was constructed to handle the case
of arbitrary initial values and established the global consensus.

As a popular control method, optimal control has attracted
much attention. As we all know, for linear systems, with the
aid of dynamic programming method, the optimal strategy
is calculated associated with Ricatti equation. For nonlinear
systems, the optimal solution can be produced related to
Hamilton-Jacobian-Bellman equation (HJBE). Nevertheless,
the HJBE can not be obtained via numerical methods. To break
through this limitation, adaptive dynamic programming (ADP)
method was firstly developed by Werbos [15]. The basic idea
of ADP is to approximate the solution of HJBE by using the
function approximation structure according to the optimality
principle. Murray et al. [16] firstly proposed the value iteration



(VI) algorithm for continuous systems and proved the conver-
gence of algorithm, which was viewed as a major improvement
in ADP area. On the basis of [16], in [17], the policy iteration
(PI) algorithm was designed to approximate optimal saturation
controller for nonlinear systems with saturation constraints. VI
and PI are two important branches of ADP area, and also have
important significance in output synchronization optimization
for MASs, which mainly focuses on minimizing the cost
function consisting of local output error between the follower
and the leader. Currently, on the basis of PI/VI, many results
associated with optimal output synchronization for MASs have
been reported, e.g., see [18] and the references therein. It is
worth noting that the above results require complete dynamical
knowledge of the system and belong to model-based methods,
which are hard to accomplish in complex industrial processes.
Hence, model-free optimal approaches based on reinforcement
learning (RL) have been exploited to overcome this weakness.
RL is a fascinating machine learning technique in which
optimal control strategy is learned relying on the interactions
with the environment. In the optimal field, RL and ADP
are interchangeable concepts [19]. As a typical model-free
RL method, the off-policy algorithm was pioneered in [20]
that learned the solution to the HJBE from the system data
generated by an arbitrary training policy. This approach was
continued in [21] for seeking the Nash equilibrium solution
and solving H∞ control problem in [22], respectively. Later,
due to the powerful feature about coping the unknown system
dynamics, the off-policy RL algorithm was firstly extended to
solve optimal synchronization problem for MASs with linear
form in [23]. In [24], the optimal synchronization problem
for nonlinear MASs was investigated, which was viewed as
an advance in off-policy algorithm. Recently, on the basis of
[24], in [25], the asymmetric input-constraint was taken into
account in model-free optimal control problem. The optimal
synchronization of heterogeneous MASs in graphical games
was handled in [26], where the optimal control policy depend-
ing on not only the Nash equilibrium but the fixed control
policies of neighbors. However, to the best of the authors’
knowledge, there are no results about the HiTL optimal output
cluster synchronization problem considering unknown output
of leader, which motivates our research.

Driven by these observations, in this paper, the prescribed-
time observer-based HiTL optimal output cluster synchroniza-
tion control strategy is built for MASs via off-policy RL
algorithm. To improve the safety of MASs, the human operator
is introduced to guide the whole MASs by sending the signal
to the non-autonomous leader. A prescribed-time observer is
designed for the situation that only part of the followers can
access the output information of leader, which can achieve the
desired accuracy in the prescribed time interval. Based on the
constructed observer, the off-policy RL algorithm is applied
to obtain the optimal controller, in which the requirement of
completely known system dynamics is released. In addition,
to implement the algorithm, the single critic NN is utilized.
The main contributions are summarized as follows.

(1) In this paper, to cope with the practical situation that
the output of leader is unavailable to all followers, a
prescribed-time observer is developed for each follower
via the designed function. Compared with [27], [18],
the observer error can converge to the required accu-
racy in prescribed time and the requirement of full-
order derivatives information of the leader is relaxed.
More importantly, the prescribed time and accuracy are
independent of the initial conditions, which are friendly
to users and fit for practical engineering.

(2) In this paper, in view of balancing the performance and
cost of systems and achieving the optimal performance,
the off-policy RL algorithm is applied to solve the
optimal output cluster synchronization control problem
without any knowledge of system dynamics. Compared
with model-based RL algorithm in [18], [28], the model-
free RL algorithm relies only on measurement data of
systems and has a broader development prospect in large-
scale complex systems. Furthermore, in contrast to the
framework of critic-actor NNs in [25], [28], the single
critic NN is utilized to implement off-policy algorithm.
It leads to a simpler structure, less computation burden
and eliminates the training errors caused by actor NN.

The structure is listed as follows. In Section II, the consid-
ered system and some concepts are given. In Section III, the
practical prescribed-time observer is presented. In Section IV,
the process of designing optimal cluster synchronization con-
troller is provided. Model-free RL algorithm and simulation
results are presented in Section V and Section VI, respectively.
Finally, the conclusion is given in Section VII.

Notations: Throughout this article, Rn×m represents the set
of n × m real matrices; Ip represents the identity matrix of
dimension p; IN represents the identity matrix of dimension
N ; IpN represents the identity matrix of dimension pN ; Op×1

denotes the zero matrix of dimension p×1; Op×m denotes the
zero matrix of dimension p×m; ⊗ is the Kronecker product.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Communication Topologies

The communication topology contains N followers is rep-
resented by a directed graph G = {V, ε}, where V =
{V1,V2, · · · ,VN} and ε ⊆ V ×V represent the vertex set and
the edge set of N followers, respectively. If the information
can be delivered to the ith follower directly from the jth
follower, the edge (i, j) ∈ ε. Let A = [aij ] ∈ RN×N be the
weighted adjacency matrix, where aij > 0 if (i, j) ∈ ε, and
aij = 0 if (i, j) /∈ ε. The neighbor set of ith follower is defined
as Ni = {j ∈ V : aij = 1}. Define L = D − A ∈ RN×N as
the Laplacian matrix of G, where D = diag(d1, d2, · · · , dN ) ∈
RN×N denotes the degree matrix with di =

∑N
j=1 aij .

The vertex set V is divided into s clusters with one leader
being associated with each cluster. Each cluster is led by its
respective leader. Disjoint sets Vm,m = 1, · · · , s represent the
set of nodes in the mth cluster, and satisfy V =

⋃s
m=1 Vm.

If the node i belongs to the mth cluster, li = m. Let



B = diag{b1, b2, · · · , bN} ∈ RN×N , where bi = 1 indicates
that the information of the leader in its cluster is available for
the ith node. The ith node that can receive (send) information
from (to) other clusters is called an in-node (out-node) of
cluster ith. The sets of in-nodes and out-nodes of cluster m
are respectively denoted as Vin

m ⊆ Vm and Vout
m ⊆ Vm.
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