
Published as a conference paper at ICLR 2025

HOW MANY SAMPLES ARE NEEDED TO TRAIN A
DEEP NEURAL NETWORK?

Pegah Golestaneh, Mahsa Taheri & Johannes Lederer
Department of Mathematics, Computer Science, and Natural Sciences
University of Hamburg
{pegah.golestaneh,mahsa.taheri,johannes.lederer}@uni-hamburg.de

ABSTRACT

Although neural networks have become standard tools in many areas, many impor-
tant statistical questions remain open. This paper studies the question of how much
data are needed to train a ReLU feed-forward neural network. Our theoretical and
empirical results suggest that the generalization error of ReLU feed-forward neural
networks scales at the rate 1/

√
n in the sample size n—rather than the “paramet-

ric rate” 1/n, which could be suggested by traditional statistical theories. Thus,
broadly speaking, our results underpin the common belief that neural networks need
“many” training samples. Along the way, we also establish new technical insights,
such as the first lower bounds of the entropy of ReLU feed-forward networks.

1 INTRODUCTION

Neural networks have ubiquitous applications in science and business (Goodfellow et al., 2016;
Graves et al., 2013; LeCun et al., 2015; Badrinarayanan et al., 2017). However, our understanding of
their statistical properties remains incomplete. For example, a basic yet very important open question
is: how many training samples are needed to train a (non-linear) neural network?

Over the past two decades, significant progress has been made deriving upper bounds for the
generalization error of neural networks (Anthony & Bartlett, 2009; Arora et al., 2018; Yarotsky, 2017;
Nagarajan & Kolter, 2019). Works like Neyshabur et al. (2015); Bartlett et al. (2017); Neyshabur
et al. (2017; 2018) first highlight the relationship between the complexity of the network space
and the generalization error and then, they bound the corresponding complexity measure. For
example, Neyshabur et al. (2015) study the growth of the Rademacher complexity of classes of ℓ1-
constraint neural networks. Additionally, generalization error bounds for networks with spectral
norm constraints are proposed by Neyshabur et al. (2018) (employing a PAC-Bayesian framework)
and Bartlett et al. (2017) (employing a margin-based framework) for Lipschitz activation functions.
A common limitation of the works mentioned above is that their generalization bounds often exhibit
strong dependence—frequently exponential—on either the depth or width of the network. Golowich
et al. (2018) address this by providing bounds that avoid direct dependence on network depth for norm-
constrained neural networks, with rates that grow only polynomially in depth. More recently, Taheri
et al. (2021; 2022); Mohades & Lederer (2023); Lederer (2023) have proposed generalization bounds
for regularized neural networks that show logarithmic growth in the total number of parameters, with
the potential to decrease with additional layers, in contrast to exponential growth. For example, Taheri
et al. (2021) provides an upper bound for the generalization error of ℓ1-regularized feed-forward
neural networks for general activation functions growing by (L/2)1/2−L

√
log(P)(log(n)/

√
n),

where P corresponds to the total number of parameters in the network, L is the number of hidden
layers, and n is the number of training samples.

While works mentioned above target to upper bound the generalization error of neural networks,
another line of research study lower bounds for the mini-max risk of neural networks in a parametric
setting. The central question here is if improving the rate 1/

√
n is possible for neural networks in

general or not. Klusowski & Barron (2017) provide a mini-max lower bound for shallow neural
networks with Sinusoidal activation, assuming input vectors are uniformly distributed across [−1, 1]d

that decays as 1/
√
n. Du et al. (2018) provide a mini-max lower bound for a CNN with linear

activation, where the input domain is normally distributed with a mean of 0 and an identity covariance

1

Published as a conference paper at ICLR 2025

matrix. They also determined the sample complexity for a convolutional neural network with linear
activation functions and asserted that tackling the challenges posed by non-linear activation functions,
even without convolution structure, remains a difficult task.

To make it short, to the best of our knowledge, a mini-max lower bound for deep feed-forward
neural networks with non-linear activation functions that match upper bounds have not been
established. In this paper, we use a technique from information theory known as Fano’s inequality to
establish such a bound. Our bound scales as

√
log(d)/n (with n as the number of training samples

and d as the input dimension) that matches the above-mentioned upper bound rate in Taheri et al.
(2021). We also confirm this rate in several applications for both regression and classification tasks.
Thus, we demonstrate that the minimum number of samples needed to train a neural network to
achieve a prediction error ϵ2 essentially scales as 1/ϵ4—rather than 1/ϵ2. One of the main challenges
in our proofs is establishing a sharp lower bound for the packing number of deep ReLU neural
networks, which, to the best of our knowledge, is being extracted for the first time in our paper (see
Lemma 3.2).

Our key technical contributions are:

1. We establish a mini-max lower bound for the risk of ReLU feed-forward networks that
depends on the input dimensions only through a logarithmic factor and the level of sparsity of
the parameter space. The bound decreases as 1/

√
n with the number of training samples n,

which matches recent upper bounds. It is also important to note that the rate of 1/2 in the
exponent remains the same across various input dimensions and network configurations
(Theorem 2.2).

2. We support this theoretical bound empirically, also beyond feed-forward settings to include
CNNs (Section 5).

3. We establish a lower bound for the packing number of deep ReLU networks’ spaces
(Lemma 3.2).

The main broader implication is as follows:

• Most practitioners are convinced that deep learning requires “more” data than classical
methods. It is well-known that the accuracy of classical methods, like the least-squares
estimator in linear regression, scale like 1/n in the sample size (Wainwright, 2019; Guo1
et al., 2024). Our mathematical proof along with the numerical illustrations showing that
this is not the case for (non-linear) deep learning, are arguably the first confirmation and
underpinning of the mentioned practitioners’ belief.

More generally, the paper provides a rigorous mathematical perspective on an important aspect of
deep learning to complement the much more abundant “engineering perspective” in the field. We will
come back to the relevance of this perspective in the conclusion section (Section 6).

Other related works: In addition to the aforementioned works, a growing body of research has
emerged focused on employing deep ReLU networks to approximate non-parametric regression
models (Suzuki, 2019; Parhi & Nowak, 2022; Raskutti et al., 2009; Schmidt-Hieber & Bos, 2022;
Raskutti et al., 2012; Schmidt-Hieber, 2020; Zhang & Wang, 2023; Tsuji, 2021). These models
are characterized by sparse additive structures and specific smoothness properties, such as Hölder,
Besov, or Sobolev functions. These studies investigate the approximation capabilities of deep ReLU
networks for non-parametric regression functions by establishing mini-max optimal rates. It is crucial
to consider that their mini-max lower bounds for the function classes degrade either with the depth of
the network or with the parameters of smoothness.

In this paper, our perspective differs slightly from that of others, such as Schmidt-Hieber (2020),
as we view deep ReLU networks as fundamental functions of interest in their own right, rather
than as approximation methods for other function classes. We explore the statistical properties of
deep ReLU networks by establishing a mini-max lower bound for these networks. In contrast, they
emphasize the distinction between function classes and approximation methods and aim to confirm
the superiority of deep learning to other representative methods like wavelet transforms, kernel
methods, and spline methods in non-parametric settings. Schmidt-Hieber (2020) shows that sparse
deep neural networks with ReLU activation function and a well-designed architecture achieve the

2

Published as a conference paper at ICLR 2025

mini-max rates of convergence (up to log n-factors) in multivariate non-parametric regression, under
a broad composition assumption on the regression function. They focus on the regression setup and
demonstrate that deep ReLU networks can achieve faster rates under a hierarchical composition
assumption on the regression function. This assumption encompasses (generalized) additive models
as well as the composition models considered in (Juditsky et al., 2009; Kohler & Krzyżak, 2017).
Furthermore, they demonstrate that, given the composition assumption, wavelet estimators are only
able to obtain sub-optimal rates. Theoretical analysis in Suzuki (2019) reveals that deep learning with
ReLU activation in Besov spaces exhibits superior adaptivity, demonstrating mini-max optimal rates
and outperforming non-adaptive estimators such as kernel ridge regression. Furthermore, the study
highlights deep learning’s ability to mitigate the curse of dimensionality in mixed smooth Besov
spaces, emphasizing its high adaptivity and effectiveness as a feature extractor in capturing the spatial
inhomogeneity of target functions. Imaizumi & Fukumizu (2019) provides a comprehensive review
of prior research related to function estimation using deep neural networks.

Thus, to the best of our knowledge, our work is the first to illustrate, both theoretically and practically,
that in the absence of additional assumptions, the rate of 1/

√
n is the “correct rate” in deep learning.

It is important to note that some works, such as Schmidt-Hieber (2020), obtain a rate of 1/n, but only
under very strict assumptions. For instance, to achieve a rate of 1/n in their results, it is necessary to
assume that the parameters are bounded by one and the network functions are bounded.

Organisation: Section 2 provides the problem formulation and establishes a lower bound on the
mini-max risk for ReLU feed-forward neural networks (Theorem 2.2). Section 3 provides some
technical results that form our main result’s foundation including, a lower bound for the packing
number of a ReLU network’s space (Lemma 3.2). We provide the proof of our main theorem in
Section 4. In Section 5, we shift our focus to the empirical findings to support our theories. We
conclude our paper in Section 6. More technical results, empirical details, and detailed proofs are
deferred to the Appendix.

2 PROBLEM FORMULATION AND MAIN RESULT

This section provides an outline of the core elements of our study. We introduce the problem setting
before presenting our main result. To start, we consider the following regression model

yi = f∗(xi) + ui for i ∈ {1, . . . , n} , (1)

for an unknown neural network f∗ : Rd → R and independent and identically distributed noise ui ∼
N (0, σ2) with σ ∈ (0,∞). We observe n independent and identically distributed data samples
(x1, y1), (x2, y2), . . . , (xn, yn) ∈ Rd ×R drawn independently from a joint distribution Px,y with a
fixed marginal distribution Px = N (0, Id). It is assumed that ui and xi are independent and that the
networks are of the form

fΘ : Rd → R
x 7→ fΘ(x) ··= WLϕL

(
. . .W 1ϕ1(W 0x)

) (2)

indexed by Θ = (WL, . . . ,W 0) summarizing the weight matrices W l ∈ Rhl+1×hl for
l ∈ {0, 1, . . . , L}. The number of hidden layers (the depth of the network) denotes as L ∈ {1, 2, . . .},
and hl denotes the number of nodes in the l-th layer (the width of the l-th layer), where h0 = d and
hL+1 = 1. The function ϕl : Rhl → Rhl is the ReLU activation function of the l-th layer, and for a
vector z = [z1, . . . , zhl

] ∈ Rhl is defined as

ϕl(z) ··=
[
max{0, z1},max{0, z2}, . . . ,max{0, zhl

}
]
.

We then consider a (ℓ1-type) sparse parameter space BL constraints on the parameters of the network.
We use ℓ1-type constraints as opposed to ℓ0-type constraints, primarily because ℓ0-type constraints
tend to make the problem hard to optimize and “combinatorial”, particularly in high-dimensional
settings (Lederer, 2022, Chapter 2). Furthermore, although the ℓ1-type constraint is non-smooth, it
generally causes few computational issues (see Friedman et al. (2010)). Also, it has recently been
successfully applied to encourage sparsity in neural networks (Lemhadri et al., 2021). Then, we
define a function class

FBL
··=
{
fΘ |Θ = (WL, . . . ,W 0) ∈ BL

}
,

3

Published as a conference paper at ICLR 2025

where BL, denotes a sparse parameter space for ReLU feed-forward networks and defined as

BL ··=
{
(WL, . . . ,W 0)

∣∣ L∑
l=1

|||W l|||1 ≤ vs, |||W 0
j,·|||1 ≤ v0 for all j ∈ {1, . . . , h1}

}
,

for W l ∈ Rhl+1×hl and l ∈ {0, 1, . . . , L} and we define |||W l|||1 ··=
∑hl+1

k=1

∑hl

j=1 |W l
kj |.

Assumption 2.1 (v0 = 1) For simplicity in the proof of our technical results (Lemma 3.2), we assume
v0 = 1.

This assumption is useful for constructing a subclass of space FBL
in the proof of Lemma 3.2 to

establish a lower bound for the packing number of a deep ReLU network’s space. This assumption
basically determines the structure of the weight between the input layer and the first hidden layer of a
neural network. It also guarantees that the number of input dimensions d, matches the width of the
constructed subclass of FBL .

The mini-max risk for the function class FBL
can be defined as (Wainwright, 2019, Chapter 15)

R(n,d)(FBL
; Φ ◦ ρ) ··= inf

f̂
sup

f∗∈FBL

E(xi,yi)ni=1

[
Φ
(
ρ(f̂ , f∗)

)]
, (3)

where ρ : FBL
× FBL

→ [0,∞) is a semi metric1 and Φ : [0,∞) → [0,∞) is an increasing
function. The expectation is taken with respect to the training data (xi, yi)

n
i=1 and the infimum runs

over all possible estimators f̂ (measurable functions) of f∗ on the training data (xi, yi)
n
i=1. Hence,

f̂(x) ≡ f̂(x, {(xi, yi)}ni=1), where x is a new data point with the same distribution Px. We use the
notation R(n,d)(FBL ; Φ ◦ ρ) to emphasize that the mini-max risk depends on the number of training
samples n, the input dimension d and the space FBL .

In this paper, our focus is on the standard setting where ρ represents the L2(Px)-norm, and Φ(t) = t2.
Therefore, Φ(ρ(f̂ , f∗)) is the squared L2(Px)-norm, that is our mini-max risk

inf
f̂

sup
f∗∈FBL

E(xi,yi)ni=1

[
||f̂ − f∗||2L2

]
.

We assume that the distribution Px has a density h(x) with respect to the Lebesgue measure dx
which, implies that

||f̂ − f∗||L2
··=
(∫

x∈X

(
f̂(x)− f∗(x)

)2
h(x)dx

)1/2

.

We now present our mini-max risk lower bound for deep ReLU neural networks. Considering the
regression model defined in Equation (1), where f∗ ∈ FBL (a ReLU neural network with L hidden
layers and ℓ1-bounded weights), then we have:

Theorem 2.2 (Mini-max risk lower bound for ReLU feed-forward networks) Using the
L2(Px)-norm as our underlying semi metric ρ, and x1, . . . ,xn ∼ N (0, Id), then for d large enough
and any increasing function Φ : [0,∞) → [0,∞), it holds that

R(n,d)(FBL
; Φ ◦ ρ) ≥ 1

2
Φ

[
c
√
VF

(log(d)
n

)1/4]
, (4)

with c ··=
√
τσ/160, where τ ∈ (0,∞) is a numerical constant, and VF ··= (vs/L)

L. For
Φ(·) = (·)2, we specifically obtain

inf
f̂

sup
f∗∈FBL

E(xi,yi)ni=1

[
||f̂ − f∗||2L2

]
≥ c2

2
(VF)

√
log(d)

n
. (5)

1A semi metric satisfies all properties of a metric, except that there may exist pairs f ̸= f ′ for which
ρ(f, f ′) = 0.

4

Published as a conference paper at ICLR 2025

For the technical reasons, we assume that the input dimension is large enough, let say d ∈ [10,∞).
Our mini-max lower bound above reveals essentially a 1/

√
n-decrease in the sample size, and a log(d)-

increase in the input dimension, that perfectly aligns with the upper bounds on the generalization error
of deep neural networks with ℓ1-type regularization (compare to Taheri et al. (2021)). Additionally,
the factor VF in our rates can be interpreted as a product over the ℓ1-norm bounds of different
layers in FBL

. This interpretation aligns perfectly with the established upper and lower bounds on
the generalization error of regularized neural networks found in the literature (Taheri et al., 2021;
Klusowski & Barron, 2017). The presence of VF in our rate supports the sharpness of our result
(compare with Taheri et al. (2021)).

Theorem 2.2 demonstrates that for all possible f̂ , risk (also called “generalization error”) scales at
least as VF

√
log(d)/n. Then, by considering an upper bound for the risk

E(xi,yi)ni=1

[
||f̂ − f∗||2L2

]
≤ ϵ2 ,

the result of Theorem 2.2 can be reformulated. It implies that one requires a minimum of

n ≥
(c
ϵ

)4 (VF)
2 log(d)

4
, (6)

samples to achieve an error of at most ϵ2 for ReLU feed-forward neural networks. Based on this
formula, while we can’t determine the exact required number of samples in advance, we can still
make some useful observations.

1. We need “many” samples based on the rate 1/
√
n.

2. The noisier the data, the more training samples are needed to achieve the desired error level.

This also stands in strong contrast to classical methods (consider, for instance, linear regression with
the least squares estimator as the quintessential example of a traditional pipeline), which usually
require of the order 1/ϵ2 samples to reach the same accuracy. However, of course, this does not
mean that one should not apply deep learning! Deep learning is extremely flexible in approximating
functions, which makes it the preferred method in many modern applications.

3 TECHNICAL RESULTS

Here, we provide a technical result essential in proving our main theorem 2.2. Since our proof ap-
proach is based on a classical result from information theory known as Fano’s inequality (Lemma A.1),
we need to find a lower bound for the packing number of our network’s space (Lemma 3.2).

The following notation will be used throughout the paper. For a vector v ∈ Rd, ℓ0-norm is defined
by ||v||0 ··= #{i ∈ {1, . . . , d} : vi ̸= 0}, ℓ1-norm is defined by ||v||1 ··=

∑d
i=1 |vi| and the

Euclidean norm is defined by ||v||2 ··=
√∑d

i=1(vi)
2. We recall |||W l|||1 ··=

∑hl+1

k=1

∑hl

j=1 |W l
kj | and

|||W l|||∞ ··= max
1≤k≤hl+1

∑hl

j=1 |W l
kj | for a matrix W l ∈ Rhl+1×hl . The cardinality of the 2δ-packing

of the corresponding network’s space FBL
for δ ∈ (0,∞) and with respect to L2(Px)-norm is defined

as M ··= M(2δ,FBL
, || · ||L2

). We use the notation DKL(P ∥ Q) to denote the Kullback-Leibler
(KL) divergence between two probability distributions P and Q. We define [M] ··= {1, . . . ,M} as
the index set. And we define the notation Xn ··= (x1, . . . ,xn)

⊤ and Y n ··= (y1, . . . , yn)
⊤.

We now present the definition of the packing number, as given in (Vaart & Wellner, 1996).

Definition 3.1 (Packing number) Consider a metric space consisting of a set FBL
and a semi

metric ρ as defined in Section 2 then, an 2δ-packing of FBL
in the semi metric ρ is a collection

{fΘ1 , . . . , fΘM} ⊆ FBL
such that ρ(fΘj , fΘk) ≥ 2δ for all j, k ∈ [M] and j ̸= k. The

2δ-packing number M(2δ,FBL , ρ), is the cardinality of the largest 2δ-packing.

Our next lemma provides a lower bound for the packing number of a ReLU network’s space.

Lemma 3.2 (Lower bounding the packing numbers of ReLU feed-forward networks’ spaces)
For a sparse collection of deep ReLU feed-forward networks’ spaces FBL , there exist δ ∈ (0,∞)

5

Published as a conference paper at ICLR 2025

such that
logM

(
2δ,FBL , || · ||L2

)
≥
(τVF

20δ

)2
log(d) ,

where τ ∈ (0,∞) is a numerical constant and VF = (vs/L)
L.

This lemma provides valuable insights into the capacity and potential complexity of ReLU feed-
forward networks. The key components of this bound are twofold: 1. the favorite log(d) factor (and
not the huge network size) and 2. the factor VF , that both are enhanced employing the ℓ1-norm
control over the parameters of the network. In particular, the logarithmic dependence on the input
dimension d and the factor VF offer a perspective on how complexity growth relates to the network
size and the sparsity level.

4 PROOF OF THEOREM 2.2

Here, we provide the proof of our main theorem:

Proof The proof is based on employing a variants of Fano’s method well-known as “local packing”
or “rescaling” (Wainwright, 2019; Yang & Barron, 1999) and our Lemma 3.2.

Let’s start the proof writing the mutual information in terms of KL divergence (see also Section A):
assuming a 2δ-packing is available with centers j ∈ [M]; then, using Wainwright (2019, Equa-
tion 15.30) we can obtain

I(J ;Y n|Xn) =
1

M

M∑
j=1

DKL(Pn
fΘj

∥ Q̄) ≤ max
j,k∈[M],j ̸=k

DKL(Pn
fΘj

∥ Pn
f
Θk

) ,

where Q̄ ··= (1/M)
∑M

j=1 Pn
fΘj

is the mixture distribution, J is uniformly distributed over the
index set [M], and Pn

fΘj
is the n-product distribution (see Section A). The naive idea of “lo-

cal packing” is considering a 2δ-packing within the space FBL
(in the semi metric ρ) such that

maxj,k∈[M],j ̸=k DKL(Pn
fΘj

∥ Pn
f
Θk

) ≤ n(2κδ)2 for a quantity κ ∈ [1,∞). That implies the
KL divergence should be bounded by a multiple of δ for all centers in the packing set. In fact, instead
of the whole space, we consider just a local area of that (specified as a ball with radius 2κδ). Then,
employing our earlier display implies an upper bound for the mutual information.

Following above technique, we focus on a local area of the network’s space and call it FS , consider
a 2δ-packing set of that where for two distinct networks fΘj , fΘk ∈ FS with j, k ∈ [M′] we
have ρ(fΘj (x), fΘk(x)) ≥ 2δ. Also, we suppose that ρ(fΘj (x), fΘk(x)) ≤ 2κδ for a constant
κ ∈ [1,∞) for fΘj , fΘk ∈ FS with j, k ∈ [M′] (note that we can always find such an area just
by rescaling across our networks output; exact value of δ be specified later). Then, employing
Lemma A.3, we obtain

DKL(Pn
fΘj

∥ Pn
f
Θk

) ≤ n

2σ2
ρ
(
fΘj (x), fΘk(x)

)2 ≤ n

2σ2
(2κδ)2 ,

for all j ̸= k ∈ [M′], where the last inequality is reached using our assumption on FS , that is a ball
with radius 2κδ. Collecting results above, we can obtain I(J ;Y n|Xn) ≤ n(2κδ)2/2σ2 (see also
Lemma A.5).

In the second step and based on (local) Fano’s inequality, we need to specify 2δ-packing set with the
largest cardinality to verify (I(J ;Y n|Xn) + log 2)/ logM ≤ 1/2. So we assign the value of δ to
ensure

logM
(
2δ,FS , || · ||L2

)
≥
(
n(2κδ)2

σ2
+ 2 log 2

)
≥
(
4n(κδ)2

σ2

)
.

Next step is lower bounding logM(2δ,FS , || · ||L2). Let recall that FS is a local area of FBL

(FS ⊂ FBL). Employing Yang & Barron (1999, Lemma 3), logM(2δ,FS , || · ||L2) that is a local-
entropy can be lower-bounded on a high level by a fraction of logM(2δ,FBL

, || · ||L2
) that is the

global entropy. Accordingly, we employ our lower bound on the packing number in Lemma 3.2 as a
lower bounding (a fraction of) logM(2δ,FBL

, || · ||L2
) that implies

4

σ2
n(κδ)2 =

(τVF

20δ

)2
log(d) ,

6

Published as a conference paper at ICLR 2025

and gives

δ2 =
τσVF

40κ

√
log(d)

n
.

Let note that our specified value for δ above is not exact, because for simplicity we just keep the
impact of main factors like n, d and σ, while skipping some constants connecting the local and
global entropy. We can 1. substitute the obtained value of δ into “local packing” version of Fano’s
inequality (Wainwright, 2019, Section 15.3.3), 2. perform some rewriting and 3. plug in the value of
(κ = 4) (see Appendix Section A) to yield

R(n,d)(FBL
; Φ ◦ ρ) ≥ 1

2
Φ

[(
τσVF

40κ

√
log(d)

n

)1/2
]

=
1

2
Φ

[(
τσVF

40κ

)1/2(
log(d)

n

)1/4
]

=
1

2
Φ

[(
τσVF

160

)1/2(
log(d)

n

)1/4
]
.

We can plug the value of c— in the view of Theorem 2.2— into this inequality and get

R(n,d)(FBL
; Φ ◦ ρ) ≥ 1

2
Φ

[
c
√
VF

(log(d)
n

)1/4]
,

which proves our first claim. For the second claim, we simply use Φ(·) = (·)2 to obtain

R(n,d)(FBL
; Φ ◦ ρ) ≥ c2

2
(VF)

√
log(d)

n
.

Based on our mini-max risk setting (Section 2), the above expression can be presented as follows:

inf
f̂

sup
f∗∈FBL

E(xi,yi)ni=1

[
||f̂ − f∗||2L2

]
≥ c2

2
(VF)

√
log(d)

n
,

as desired.

5 EMPIRICAL STUDIES

This section supports our theoretical findings with simulations on benchmark datasets. While our
theoretical results were established based on feed-forward ReLU neural networks, in this empirical
study, we extend our investigation to include both ReLU feed-forward networks and ReLU CNNs.
The focus is on understanding whether the generalization error of ReLU neural networks scales
more significantly with a 1/n-rate or a 1/

√
n-rate. We use prediction error of our test samples as an

estimate of the “generalization error” (as defined in Section 2) for the trained ReLU networks.

For our experiments, we consider both classification and regression tasks. The datasets used include
MNIST, Fashion-MNIST and CIFAR10 for classification, and the California Housing Prices
(CHP) dataset for regression analysis. We use Cross-entropy (CE) and Mean-squared (MS)
error as loss functions for classification and regression datasets, respectively. The implementation of
these neural networks was carried out using the TensorFlow library (see Appendix C for further
details). It is also important to note that for none of these real-world datasets do we consider any
assumptions such as Gaussian distributions or other assumptions. We conduct our experiments in two
steps: in the first step, we train the network and compute the error for the test samples. In the second
step, we determine the appropriate curve (either 1/

√
n or 1/n scales) that best fits the test error

values. To address the impact of various factors like network depth (L), the number of parameters
(P) and the width of the hidden layers, we consider two curves (c1 + α/

√
n) and (c2 + β/n) with

α, β, c1, c2 ∈ (0,∞) (note that we consider the constant terms c1, c2 in the context of approximation
error). Optimizing these parameters is achieved through the Sequential Least Squares
Quadratic Programming (SLSQP) method (Kraft, 1988) and the minimize function from

7

Published as a conference paper at ICLR 2025

10000 20000 30000 40000 50000 60000
Number of Training Samples

10 1

100

Te
st

in
g

Er
ro

r (
lo

g-
sc

al
e)

Testing Error
c1 + n

c2 + n

10000 20000 30000 40000 50000 60000
Number of Training Samples

10 1

100

Te
st

in
g

Er
ro

r (
lo

g-
sc

al
e)

Testing Error
c1 + n

c2 + n

Figure 1: Comparative analysis of the strength of two curves (c1 + α/
√
n) and (c2 + β/n) to model

the generalization error in different architectures for the MNIST dataset: (a) Shallow ReLU feed-
forward network, width of 128 and (b) Four-hidden-layer network, uniform width of 128 (left to
right).

scipy.optimize is employed for SLSQP implementation. The objective function calculates the
sum of squared differences between the generalization error of a neural network and two separate
curves. The optimization process aims to find the values for the coefficients that minimize this sum of
squared differences. We investigate the strength of these two curves in fitting the generalization error
behavior both visually, through figures (Figure 1 to Figure 5), and numerically, using metrics such as
R-squared and MSE values (Table 1 to Table 4). We begin this investigation with the MNIST dataset.

MNIST The MNIST dataset consists of 60 000 training images and 10 000 testing images, each
with dimensions of 28× 28 pixels. We perform experiments by incrementally increasing the number
of training samples in steps of 500, evaluating the performance across various neural network
architectures, including both shallow and deep ReLU feed-forward networks. We consider two
scenarios in our analysis. In the first scenario, we consider the entire dataset and gradually increase
the number of training samples in intervals of 500. In the second scenario, we focus on larger training
samples—we begin with 20 000 training samples— and similarly increase the sample size in intervals
of 500. Figure 1(a) and Figure 2(a) illustrate the result of our analysis for a shallow neural network
with a width of 128, while Figure 1(b) and Figure 2(b) illustrate the result for a four-hidden layer
ReLU feed-forward neural network with a uniform width of 128.

Table 1: Numerical metrics to compare the strength of two curves (c1 + α/
√
n) and (c2 + β/n) to

model the generalization error in different architectures for the MNIST dataset.

MSE R-squared
Architectures (c2 + β/n) (c1 + α/

√
n) (c2 + β/n) (c1 + α/

√
n)

Shallow ReLU Network 1.7 · 10−2 5.2 · 10−4 −1.4 · 100 9.3 · 10−1

Four-hidden-layer ReLU Network 1.1 · 10−2 2.4 · 10−4 −7.8 · 10−1 9.6 · 10−1

25000 30000 35000 40000 45000 50000 55000 60000
Number of Training Samples

10 1

6 × 10 2

Te
st

in
g

Er
ro

r (
lo

g-
sc

al
e)

Testing Error
c1 + n

c2 + n

25000 30000 35000 40000 45000 50000 55000 60000
Number of Training Samples

10 1

6 × 10 2

Te
st

in
g

Er
ro

r (
lo

g-
sc

al
e)

Testing Error
c1 + n

c2 + n

Figure 2: Comparative analysis of the strength of two curves (c2 + β/n) and (c1 + α/
√
n) to model

the generalization error in different architectures for the MNISTS dataset for larger training samples:
(a) Shallow ReLU feed-forward network, width of 128 and (b) Four-hidden-layer network, uniform
width of 128 (left to right).

Fashion-MNIST The Fashion-MNIST dataset contains 60 000 training images and 10 000
testing images, both with dimensions of 28× 28 pixels. We run the experiments in intervals of 500

8

Published as a conference paper at ICLR 2025

10000 20000 30000 40000 50000 60000
Number of Training Samples

100

4 × 10 1

6 × 10 1

2 × 100

Te
st

in
g

Er
ro

r (
lo

g-
sc

al
e)

Testing Error
c1 + n

c2 + n

10000 20000 30000 40000 50000 60000
Number of Training Samples

100

4 × 10 1

6 × 10 1

2 × 100

Te
st

in
g

Er
ro

r (
lo

g-
sc

al
e)

Testing Error
c1 + n

c2 + n

10000 20000 30000 40000 50000 60000
Number of Training Samples

100

Te
st

in
g

Er
ro

r (
lo

g-
sc

al
e)

Testing Error
c1 + n

c2 + n

Figure 3: Comparative analysis of the strength of two curves (c1 + α/
√
n) and (c2 + β/n) to model

the generalization error in different architectures for the Fashion-MNIST dataset: (a) Shallow
ReLU feed-forward network, width of 100, (b) Three-hidden-layer network, uniform width of 100,
and (c) CNN ReLU network (left to right).

samples (training samples) and examined with three different architectures. Figure 3(a) illustrates the
result of our analysis for a shallow neural network with a width of 100, while Figure 3(b) illustrates
the result for a three-hidden layer ReLU feed-forward neural network with a uniform width of 100.
Additionally, Figure 3(c) illustrates the result for a CNN ReLU.

Table 2: Numerical metrics to compare the strength of two curves (c1 + α/
√
n) and (c2 + β/n) to

model the generalization error in different architectures for the Fashion-MNIST dataset.

MSE R-squared
Architectures (c2 + β/n) (c1 + α/

√
n) (c2 + β/n) (c1 + α/

√
n)

Shallow ReLU Network 1.3 · 10−2 6.1 · 10−4 −1.6 · 100 8.8 · 10−1

Three-hidden-layer ReLU Network 1.4 · 10−2 8.4 · 10−4 −2.1 · 100 8.2 · 10−1

CNN ReLU Network 3.1 · 10−2 1.4 · 10−3 −1.7 · 100 8.7 · 10−1

CIFAR10 The CIFAR10 dataset contains 50 000 training images and 10 000 testing images, both
with dimensions of 32 × 32 pixels. We run the experiments in intervals of 500 samples (training
samples) and explore various neural network architectures, including both ReLU feed-forward
networks and CNN ReLU. Figure 4(a) illustrates the result of our analysis for a shallow ReLU neural
network with the width of 1000, and Figure 4(b) illustrates the result for a CNN ReLU network.

Table 3: Numerical metrics to compare the strength of two curves (c1 + α/
√
n) and (c2 + β/n) to

model the generalization error in different architectures for the CIFAR10 dataset.

MSE R-squared
Architectures (c2 + β/n) (c1 + α/

√
n) (c2 + β/n) (c1 + α/

√
n)

Shallow ReLU Network 7.9 · 10−2 8.1 · 10−3 −3.5 · 100 5.3 · 10−1

CNN ReLU Network 2.9 · 10−1 3.1 · 10−2 −3.7 · 100 4.8 · 10−1

California housing prices (CHP) The version considered in this study comprises 8 numeric input
attributes and a dataset of 20 640 samples. These samples were randomly divided into 15 000 for the
training data and the remaining for the test data. The batch size for the training samples is set to 20.
We run the experiments in intervals of 200 samples (training samples).

Table 4: Numerical metrics to compare the strength of two curves (c1 + α/
√
n) and (c2 + β/n) to

model the generalization error of a five-hidden layer network with a uniform width of 300 for the
CHP dataset.

Architecture MSE R-squared

Five-hidden-layer ReLU Network (c2 + β/n) (c1 + α/
√
n) (c2 + β/n) (c1 + α/

√
n)

9.9 · 10−2 2.1 · 10−2 2.1 · 10−1 8.4 · 10−1

9

Published as a conference paper at ICLR 2025

10000 20000 30000 40000 50000
Number of Training Samples

2 × 100

3 × 100

4 × 100

Te
st

in
g

Er
ro

r (
lo

g-
sc

al
e)

Testing Error
c1 + n

c2 + n

10000 20000 30000 40000 50000
Number of Training Samples

100

2 × 100

3 × 100

4 × 100

6 × 100

Te
st

in
g

Er
ro

r (
lo

g-
sc

al
e)

Testing Error
c1 + n

c2 + n

Figure 4: Comparative analysis of the strength of two curves (c1 + α/
√
n) and (c2 + β/n) to model

the generalization error in different architectures for the CIFAR10 dataset: (a) Shallow ReLU feed-
forward network, width of 1000 and (b) CNN ReLU network (left to right).

2000 4000 6000 8000 10000 12000 14000
Number of Training Samples

100

Te
st

in
g

Er
ro

r (
lo

g-
sc

al
e)

Testing Error
c1 + n

c2 + n

Figure 5: Comparative analysis of the strength of two curves (c1 + α/
√
n) and (c2 + β/n) to model

the generalization error of a five-hidden layer network with a uniform width of 300) for CHP dataset

By analyzing both the numerical results and the figures, it is evident that for both regression and
classification tasks, the generalization error scales more significantly at a rate of 1/

√
n rather than

1/n. These findings consistently hold true for both ReLU feed-forward networks and ReLU CNNs.

6 CONCLUSION

This paper uses Fano’s inequality to establish a mini-max risk lower bound for ReLU feed-forward
neural networks. The bound scales at the rate

√
log(d)/n. Our empirical findings support this

conclusion and indicate that for both regression and classification problems, the generalization error
of ReLU neural networks scales at the rate 1/

√
n. More specifically, our theories and empirical

results demonstrate that the generalization error of a ReLU feed-forward network cannot be improved
beyond the rate 1/

√
n in general. Our theory is also much closer to current practice than earlier

works: for example, we focus on deep networks rather than shallow ones (Du et al., 2018; Klusowski
& Barron, 2017), and we employ ReLU activation functions instead of Sinusoidal (Klusowski &
Barron, 2017) or linear (Du et al., 2018) activation functions.

The current discussions about large language models (LLMs) illustrate that our research is extremely
relevant and timely. The training data for LLMs have steadily grown over the last years: for example,
GPT-3 was trained on about 300 billion tokens (Brown et al., 2020), Chinchilla on about 1.4 trillion
tokens (Hoffmann et al., 2022), GPT-4 on about 13 trillion tokens (OpenAI, 2023) and Llama 3 on
over 15 trillion tokens (Meta, 2024). However, it is believed that this trend will have a natural end
soon: there will simply not be enough fresh texts any more. A trend is, therefore, the development of
smaller models, such as Phi-3-Mini (Abdin et al., 2024), which are trained on less data in general and
on “real” data enriched with synthetic data. But how much data are really needed for such minimal
AI-solutions? This paper is a small step toward answering this question.

7 ACKNOWLEDGMENTS

This research was partially funded by grants 50906238, 01IS24065B, 543964668 (SPP2298), and
520388526 (TRR391) from the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion).

10

Published as a conference paper at ICLR 2025

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, Alon Benhaim, Misha
Bilenko, Johan Bjorck, Sébastien Bubeck, Martin Caio, Caio César Teodoro Mendes, Weizhu
Chen, Vishrav Chaudhary, Parul Chopra, Allie Del Giorno, Gustavo de Rosa, Matthew Dixon,
Ronen Eldan, Dan Iter, Amit Garg, Abhishek Goswami, Suriya Gunasekar, Emman Haider,
Junheng Hao, Russell J. Hewett, Jamie Huynh, Mojan Javaheripi, Xin Jin, Piero Kauffmann, Nikos
Karampatziakis, Dongwoo Kim, Mahoud Khademi, Lev Kurilenko, James R. Lee, Yin Tat Lee,
Yuanzhi Li, Chen Liang, Weishung Liu, Eric Lin, Zeqi Lin, Piyush Madan, Arindam Mitra, Hardik
Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-Becker, Thomas Portet, Reid
Pryzant, Heyang Qin, Marko Radmilac, Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli
Saarikivi, Amin Saied, Adil Salim, Michael Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma,
Xia Song, Masahiro Tanaka, Xinghan Wang, Rachel Ward, Chengruidong Yu, Cyril Zhang, Jianwen
Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan Zhang, and Xiren Zhou. Phi-3 technical
report: a highly capable language model locally on your phone. arxiv.org/pdf/2404.14219, 2024.

M. Anthony and Peter Bartlett. Neural network learning: Theoretical foundations. Cambridge Univ.
Press, 2009.

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for
deep nets via a compression approach. In ICML, pp. 254–263, 2018.

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. SegNet: A deep convolutional encoder-
decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 39(12):
2481–2495, 2017.

Peter Bartlett, Dylan Foster, and Matus Telgarsky. Spectrally-normalized margin bounds for neural
networks. In NIPS, volume 30, pp. 6240–6249, 2017.

Lucien Birgé. Approximation dans les espaces metriques et theorie de l’estimation. Z. Wahrsch. Verw.
Gebiete, 65:181–237, 1983.

Alexei Botchkarev. Performance metrics (error measures) in machine learning regression, forecasting
and prognostics: Properties and typology. arXiv:1809.03006, 2018.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Her-
bert Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. arxiv.org/abs/2005.14165,
2020.

Simon Du, Yining Wang, Xiyu Zhai, Sivaraman Balakrishnan, Ruslan Salakhutdinov, and Aarti
Singh. How many samples are needed to estimate a convolutional neural network? In NIPS, 2018.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Regularization paths for generalized linear
models via coordinate descent. J. Stat. Softw., 33(1):1–22, 2010.

Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample complexity of
neural networks. In COLT, volume 75, pp. 297–299, 2018.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT Press, 2016.

Alex Graves, Abdelrahman Mohamed, and Geoffrey.E. Hinton. Speech recognition with deep
recurrent neural networks. In ICASSP, pp. 6645–6649, 2013.

Yilin Guo1, Shubhangi Ghosh, Haolei Weng, and Arian Maleki. A note on the minimax risk of sparse
linear regression. arxiv.org/pdf/2405.05344, 2024.

Satoshi Hayakawa and Taiji Suzuki. On the minimax optimality and superiority of deep neural
network learning over sparse parameter spaces. Neural Networks, 123:343–361, 2020.

11

Published as a conference paper at ICLR 2025

Mohamed Hebiri, Johannes Lederer, and Mahsa Taheri. Layer sparsity in neural networks. J. Stat.
Plan. Inference, 234, 2025.

Yaoshiang Ho and Samuel Wooky. The real-world-weight cross-entropy loss function: Modeling the
costs of mislabeling. IEEE Access, 8:4806–4813, 2019.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models. arxiv.org/abs/2203.15556, 2022.

Masaaki Imaizumi and Kenji Fukumizu. Deep neural networks learn non-smooth functions effectively.
In AISTATS, volume 89, pp. 869–878, 2019.

Anatoli B. Juditsky, Oleg V. Lepski, and Alexandre B. Tsybakov. Nonparametric estimation of
composite functions. Ann. Statist, 37(3):1360–1404, 2009.

Jason.M. Klusowski and Andrew Barron. Mini-max lower bounds for ridge combinations including
neural nets. In ISIT, 2017.

Michael Kohler and Adam Krzyżak. Nonparametric regression based on hierarchical interaction
models. IEEE Trans. Inform. Theory, 63(3):1620–1630, 2017.

Dieter Kraft. A software package for sequential quadratic programming. Know. Reporting d. DFVLR,
1988.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521:436–444, 2015.

Johannes Lederer. Fundamentals of high-dimensional statistics with exercises and R labs. Springer,
2022.

Johannes Lederer. Statistical guarantees for sparse deep learning. AStA Adv. Stat. Anal., 2023.

Ismael Lemhadri, Feng Ruan, Louis Abraham, and Robert Tibshirani. Lassonet: a neural network
with feature sparsity. J. Mach. Learn. Res., 22(127):1–29, 2021.

Meta. Introducing meta llama 3: the most capable openly available llm to date.
https://ai.meta.com/blog/meta-llama-3/, 2024.

Ali Mohades and Johannes Lederer. Reducing computational and statistical complexity in machine
learning through cardinality sparsity. arxiv.org/abs/2302.08235, 2023.

Kevin P. Murphy. Machine learning: A probabilistic perspective (adaptive computation and machine
learning series). The MIT Press, 2012.

Vaishnavh Nagarajan and J. Zico Kolter. Generalization in deep networks: The role of distance from
initialization. arxiv.org/abs/1901.01672, 2019.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neural
networks. In COLT, volume 40, pp. 1376–1401, 2015.

Behnam Neyshabur, Srinadh Bhojanapalli, David Mcallester, and Nati Srebro. Exploring generaliza-
tion in deep learning. In NIPS, pp. 5949–5958, 2017.

Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A pac-bayesian approach to spectrally-
normalized margin bounds for neural networks. In ICLR, 2018.

OpenAI. Gpt-4 technical report. arxiv.org/pdf/2303.08774, 2023.

Rahul Parhi and Robert Nowak. What kinds of functions do deep neural networks learn? insights
from variational spline theory. SIAM J. Math. Data Sci., 4(2):464–489, 2022.

Garvesh Raskutti, Bin Yu, and Martin.J. Wainwright. Lower bounds on minimax rates for nonpara-
metric regression with additive sparsity and smoothness. In NIPS, volume 22, 2009.

12

Published as a conference paper at ICLR 2025

Garvesh Raskutti, Martin J. Wainwright, and Bin Yu. Minimax-optimal rates for sparse additive
models over kernel classes via convex programming. J. Mach. Learn. Res., 13:389–427, 2012.

Jonathan Scarlett and Volkan Cevher. An introductory guide to fano’s inequality with applications in
statistical estimation. Cambridge Uni. Press, 2021.

Johannes Schmidt-Hieber. Nonparametric regression using deep neural networks with relu activation
function. Ann. Statist., 48(4):1875–1897, 2020.

Johannes Schmidt-Hieber and Thijs Bos. Convergence rates of deep relu networks for multiclass
classification. Electron. J. Stat., 16(1):2724–2773, 2022.

Taiji Suzuki. Adaptivity of deep relu network for learning in besov and mixed smooth besov spaces:
Optimal rate and curse of dimensionality. In ICRL, 2019.

Mahsa Taheri, Fang Xie, and Johannes Lederer. Statistical guarantees for approximate stationary
points of simple neural networks. arxiv.org/abs/2205.04491, 2022.

Mahsa Taheri, Fang Xie, and Johannes Lederer. Statistical guarantees for regularized neural networks.
Neural Networks, 142:148–161, 2021.

Kazuma Tsuji. Estimation error analysis of deep learning on the regression problem on the variable
exponent besov space. Electron. J. Stat., 15(1):1869–1908, 2021.

Aad W. Vaart and Jon A. Wellner. Weak convergence and empirical processes with applications to
statistics. Springer, 1996.

Martin.J. Wainwright. High-dimensional statistics : A non-asymptotic viewpoint. Cambridge Uni.
Press, 2019.

Yuhong Yang and Andrew Barron. Information-theoretic determination of minimax rates of conver-
gence. Ann. Statis, 27(5):1564–1599, 1999.

Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks, 94:
103–114, 2017.

Kaiqi Zhang and Yu-Xiang Wang. Deep learning meets nonparametric regression: Are weight
decayed dnns locally adaptive? In ICLR, 2023.

13

Published as a conference paper at ICLR 2025

A FURTHER TECHNICAL RESULTS

In this section, we present additional technical results from the work of others and our own, that are
essential for the proof of Theorem 2.2’s components but might also be of interest by themselves. We
divide the results into two main parts. The first part includes Lemma A.5 and a few other results that
are contained in the proof of this lemma, and the second part includes a few results, both from our work
and others’ to prove Lemma 3.2. Before providing those preliminary results, we provide the general
formula for Fano’s inequality (Wainwright, 2019, Proposition 15.12). Based on the concept of packing
number, assume that {Pn

fΘ1
, . . . ,Pn

fΘM
} is a family of n-product distributions (as defined in Part 1)

for the corresponding neural networks fΘ1 , · · · , fΘM which satisfy ρ(fΘj (x), fΘk(x)) ≥ 2δ for
all j, k ∈ [M] and j ̸= k. Then, assume that J is uniformly distributed over the index set [M] and the
conditional distribution of (Y n|Xn) given J defined by ((Y n|Xn) | J = j) ∼ Pn

fΘj
. Accordingly,

Fano’s inequality can be formalized as:

Lemma A.1 (Fano’s Inequality) Let {fΘ1 , . . . , fΘM} ⊆ FBL
be a 2δ-packing set with respect to

ρ. Then, for any increasing function Φ : [0,∞) → [0,∞), the mini-max risk is lower bounded by

R(n,d)(FBL
; Φ ◦ ρ) ≥ Φ(δ)

(
1− I(J ;Y n|Xn) + log 2

logM

)
.

The symbol I(J ;Y n|Xn) represents the mutual information between a random index J , which is
drawn uniformly from the index set [M] and the samples (Y n|Xn) drawn from the prior distribution
Pn
fΘj

corresponding to fΘj ··= fΘJ . The mutual information, measures how much information can
be revealed about the index J of a 2δ-packing set by drawing the samples (Y n|Xn).

PART 1: PRELIMINARY RESULTS FOR UPPER BOUNDING THE MUTUAL INFORMATION

We present some auxiliary results that are contained in the proof of Lemma A.5. To follow these
results more conveniently, we explain the necessary steps briefly. After defining the KL divergence
as a measure of distance between two probability measures, we calculate the KL divergence be-
tween two multivariate normal distributions Hayakawa & Suzuki (2020, Lemma A.1). Then, we
calculate KL divergence of n-product of two multivariate normal distributions and finally, we find
the connection between the mutual information and KL divergence.

The KL divergence between two different probability distributions P and Q on domain X with
densities p(x) and q(x), respectively, can be defined as (Wainwright, 2019, Equation 3.57)

DKL

(
P ∥ Q

)
=

∫
x∈X

p(x) log
p(x)

q(x)
dx .

Since we deal with n independent samples, the probabilities are defined on a product space of
n components. Therefore, we need to find the KL divergence between two different n-product
distributions. Assume that (P1, . . . ,Pn) be a collection of n probability distributions, and define
P1:n ··=

⊗n
i=1 P

i as the n-product distributions. Define another n-product distribution Q1:n in a
similar way. For the ease of notation, we define Pn ··= P1:n and Qn ··= Q1:n. Then, the connection
between the KL divergence of n-product distributions Pn and Qn and the KL divergence of the
individual pairs (Wainwright, 2019, Equation 15.11a), can be formalized as the following lemma:

Lemma A.2 (Decomposition of the KL divergence for n-product distributions) For two n-
product distributions Pn and Qn, it holds that

DKL

(
Pn ∥ Qn

)
=

n∑
i=1

DKL

(
Pi ∥ Qi

)
.

And in the case of i·i·d· product distributions — meaning that P i = P 1 and Qi = Q1 for all
i ∈ {1, . . . , n}— we have

DKL

(
Pn ∥ Qn

)
= n×DKL

(
P1 ∥ Q1

)
.

We consider short-hands P and Q, for P1 and Q1, respectively. So, the previous equation takes form

DKL

(
Pn ∥ Qn

)
= n×DKL

(
P ∥ Q

)
.

14

Published as a conference paper at ICLR 2025

We then proceed to calculate the KL divergence between two normal distributions. Consider the
regression model defined in Equation (1) and the network model defined in Equation (2). We assume
that the noise terms are independent and identically distributed and ui ∈ N (0, σ2). Recall that the
explanatory variables xi follow a fixed distribution Px and have the density h(x). Then, we define
z ··= (x, y) ∈ Rd × R as the joint variable of x and y. According to the conditional probability, the
joint density can be written as follows:

pfΘj (z) = pY |X(y|x)h(x)

=
1√
2πσ2

e−

(
y−f

Θj (x)

)2
2σ2 h(x) ,

(7)

where j ∈ [M] and pfΘj (z) is the joint density of (x, y) with regression function fΘj (x). And
consider pf

Θk
(z) as another joint density of (x, y) in the same manner with regression function

fΘk(x) and two distinct corresponding normal distributions PfΘj and Pf
Θk

such that have densities
pfΘj (z) and pf

Θk
(z), respectively. Recall that fΘj and fΘk are any two distinct neural networks of

the neural network model defined in Section 2, which parameterized by Θj and Θk (j, k ∈ [M] as
any two distinct indices of the 2δ-packing set). Then, the KL divergence between any two normal
distributions PfΘj and Pf

Θk
can be calculated as the following lemma (Yang & Barron, 1999):

Lemma A.3 (The KL divergence between two multivariate normal distributions) Assume any
two normal distributions PfΘj and Pf

Θk
for all j, k ∈ [M] and j ̸= k, then it holds that

DKL(PfΘj ∥ Pf
Θk

) =
1

2σ2

∫
x∈X

(
fΘj (x)− fΘk(x)

)2
h(x)dx

And that
DKL(Pn

fΘj
∥ Pn

f
Θk

) =
n

2σ2

∫
x∈X

(
fΘj (x)− fΘk(x)

)2
h(x)dx .

To fulfill this part’s goal, we have just left to find a connection between the KL divergence and the
mutual information.

In the next lemma, we are interested to upper bounding the mutual information (Scarlett & Cevher,
2021) —which measures the dependence between the joint distributions and the product of the
marginals of two random variables— by describing it’s connection with the KL divergence. Assume
that under the Markov chain J → fΘJ → (Y n|Xn), a random index J is drawn uniformly from
{1, . . . ,M} and samples (Y n|Xn) are drawn from the prior distributions Pn

fΘj
corresponding to

fΘj ··= fΘJ . Note that if one sample (Y |X) drawn, then we have I(J ;Y |X).

There are many tools to upper bounding the mutual information and the most straight forward tools is
based on the KL divergence (Wainwright, 2019, Equation 15.34) as follows:

Lemma A.4 (The connection between the mutual information and the KL divergence) For
any two distinct normal probability distributions PfΘj and Pf

Θk
for all j, k ∈ [M], it holds that

I(J ;Y |X) ≤ 1

M2

M∑
j,k=1
j ̸=k

DKL

(
PfΘj ∥ Pf

Θk

)
.

For any two distinct n-product normal probability distributions Pn
fΘj

and Pn
f
Θk

, it holds that

I(J ;Y n|Xn) ≤ n

M2

M∑
j,k=1
j ̸=k

DKL

(
PfΘj ∥ Pf

Θk

)
.

Lemma A.5 (Upper bounding I(J ;Y n|Xn) of the 2δ-packing of network’s space FBL
) For all

possible pairs of two distinct networks fΘj , fΘk ∈ FBL
satisfy ρ(fΘj (x), fΘk(x)) ≥ 2δ, the

mutual information I(J ;Y n|Xn) is upper bounded by

I(J ;Y n|Xn) ≤ 2n(κδ)2

σ2
,

15

Published as a conference paper at ICLR 2025

for a suitable κ ∈ [1,∞), such that ρ(fΘj (x), fΘk(x)) ≤ 2κδ.

PART 2: RELATIONSHIP BETWEEN GLOBAL AND LOCAL METRIC ENTROPIES

Here, we briefly provide a connection between the global metric entropy and the local metric entropy
(Yang & Barron, 1999, Section 7). In fact, the global metric entropy ensures the existence of “at least
one” local packing set which has the property required for the use of Birgé’s argument (Birgé, 1983).
Accordingly, in the proof of our main Theorem 2.2, instead of considering the entire space (FBL

),
we focus on a local area (ball with radius 2κδ) where the “local” Fano’s method is applied. The
following Definition A.6 (Yang & Barron, 1999, Section 7) and Lemma A.7 (Yang & Barron, 1999,
Lemma 3) assist us in determining the value for κ, ensuring that there is no concern about κ being
too large. These also allow us to work with a more manageable subset of the function space FBL

,
called FS in the proof of our Theorem 2.2. By considering the case when d is a metric and assuming
the global packing entropy of the space S under the distance d is M(δ), the definition of the local
metric entropy is as follows (Yang & Barron, 1999, Section 7):

Definition A.6 (Local metric entropy) The local δ-entropy at θ ∈ S is the log of the largest (δ/2)-
packing set in B(θ, δ) = {θ′ ∈ S : d(θ′, θ) ≤ δ}. The local δ-entropy at θ is denoted by M(δ|θ) and
the local δ-entropy of S is defined as M loc(δ) = max

θ∈S
M(δ|θ).

Based on this definition, the relationship between the global and local entropies can be formulate as
follows (Yang & Barron, 1999, Lemma 3):

Lemma A.7 (The relationship between the global and local metric entropies) the global and lo-
cal metric entropies have the following relationship:

M(δ/2)−M(δ) ≤ M loc(δ) ≤ M(δ/2) .

Value of κ : Employing Lemma A.7, logM
(
2δ,FS , || · ||L2

)
—that is a local entropy— can be

lower bounded on a high-level by a fraction of logM
(
2δ,FBL

, || · ||L2

)
, that is a global entropy

(Lemma 3.2). In the proof of Theorem 2.2, we used the result of Lemma A.7 to bound the local
packing. We proceed as follows: we begin with 2δ-packing, meaning that ρ(fΘj (x), fΘk(x)) ≥ 2δ
for all j ̸= k ∈ [M]. It is easy to conclude that these centers will be within 4δ from θ. By applying the
triangle inequality, we conclude that ρ(fΘj (x), fΘk(x)) ≤ 8δ. As we have ρ(fΘj (x), fΘk(x)) ≤
2κδ (see Lemma A.5), this gives us κ = 4. We use this value directly in the proof of Theorem 2.2.

PART 3: PRELIMINARY RESULTS FOR DERIVING A LOWER BOUND FOR PACKING NUMBER OF
RELU NETWORKS’ SPACES

In this section, we present supporting lemmas that are included in the proof of Lemma 3.2 for
deriving the lower bound for the packing number of our defined ReLU network’s space. We start
by calculating the Gaussian integrals over a half-space. Assume that x is a realization of random
variable X that follows the d-dimensional Gaussian distribution, then we say that for k ∈ {1, . . . S},
b⊤k x > 0 and b⊤k x ≤ 0 are two half-spaces of hyperplane b⊤k x = 0 for bk ∈ Rd. We then can define
the probability density function of x with mean vector µ and the covariance matrix Σ as follows:

p(x,µ,Σ) =
1

(2π)d/2
√

|Σ|

∫
x∈X

e
−(x−µ)⊤Σ−1(x−µ)

2 dx ,

where |Σ| ≡ det(Σ), is the determinant of Σ.

If µ = 0, then we have

p(x,0,Σ) =
1

(2π)d/2
√
|Σ|

∫
x∈X

e
−x⊤Σ−1x

2 dx .

Accordingly, the probability density function of x on either half-space b⊤k x > 0 or b⊤k x ≤ 0 takes
the form

p(b⊤k x > 0,0,Σ) =
1

(2π)d/2
√
|Σ|

∫
b⊤
k x>0

e
−x⊤Σ−1x

2 dx ,

and can be calculated as the following lemma:

16

Published as a conference paper at ICLR 2025

Lemma A.8 (Gaussian integrals over a half-space) Assume that x, bk ∈ Rd and for a fixed vector
bk, we define a half-space b⊤k x > 0. Then, for the corresponding probability density function it holds
that

p(b⊤k x > 0,0,Σ) =
1

2
.

In the next lemma we are motivated to employ the result of Lemma A.8 to calculate E[(ϕ(b⊤k x))
2]

which is necessary for the proof of Lemma 3.2.

Lemma A.9 (The expectation of squared ReLU functions) Let x be a Gaussian random variable
and b⊤k x > 0 is a half-space, then,

E
[(
ϕ(b⊤k x)

)2]
=

1

2
.

In the following lemma, we present Klusowski & Barron (2017, Lemma1), which concerns the
cardinality of a set and is integral to the proof of Lemma 3.2. This lemma helps us define our desired
set with a predefined Hamming weight, and its elements can be interpreted as binary codes. Now, let
state the lemma.

Lemma A.10 (Cardinality of a binary set) For integers d and d′ with d ∈ [10,∞) and d′ ∈
[1, d/10], define a set

S ··=
{
w ∈ {0, 1}d : ||w||1 = d′

}
.

Then, there exists a subset A ⊂ S with cardinality at least S ··=
√
(d
d′) such that each element has

Hamming weight d′ and any pairs of elements have minimum Hamming distance d′/5.

B PROOFS

In this section, we provide the proof of Lemma 3.2. Additionally, the proofs of the lemmas in
Appendix A will be included.

B.1 PROOF OF LEMMA 3.2

Proof The core of this proof involves two steps: first, the construction of a subclass of functions
within FBL

, and then finding a lower bound for log of the cardinality of the constructed class. Second,
using the fact that a lower bound for the cardinality of a smaller space can serve as a lower bound for
the cardinality of the larger space. Let us begin by discussing the construction of the subclass of the
function class FBL

.

STEP 1: THE CONSTRUCTION A SUBCLASS OF FUNCTION CLASS FBL

Our first step is to construct a subclass of our defined function class FBL
and then to find a lower

bound for the log of the packing number of the constructed class. To achieve this, we begin by
defining a set of binary vectors C ∈ {0, 1}d for d ∈ [10,∞) such that each element of this set has a
Hamming weight of d′, where d′ ∈ [1, d/10] and the cardinality of this set is denoted by S. Recall
that, we assume that v0 = 1, so, we can choose d′ = v0

2 = 1. Then, anyone can readily conclude
that S = d and we can consider the vector bi ∈ {0, 1}d as a vector with all the entries equal to zero
except for the ith entry, which is set to one. It implies that for all i ̸= j ∈ {1, . . . , S}

|b⊤i bj | = 0 .

We can also conclude that for each bi with i ∈ {1, . . . , S}, we have

||bi||2 =

√(
(bi)1

)2
+ . . .+

(
(bi)d

)2
= 1 .

Following the same argument as above we have

||bi||1 =
∣∣(bi)1∣∣+ . . .+

∣∣(bi)d∣∣ = 1 .

17

Published as a conference paper at ICLR 2025

Then, for an enumeration b1, . . . , bS of C, we claim that the function space F0 as defined below can
represent a subspace of FBL

:

F0 ··=

{
f(w,b)(x) ··=

VF

λ

S∑
k=1

wkϕ
1(b⊤k x) : w ∈ A

}
with w ··= (VF/λ)w and A ··= {w ∈ {0, τ}S : ||w||1 = τλ} for VF , τ ∈ (0,∞) and an integer
λ ∈ [1, S/10] (exact values of VF and λ be specified later in the proof, while the τ is a constant
depending on vs.) We argue that F0 is representing a subspace of deep neural networks FBL

with
non-negative weight matrices W l for l ∈ {1, . . . , L} inspired by Hebiri et al. (2025). To be more
precise, we state that for a fixed pair λ, τ and ∀ w ∈ A, there exists a tuple of non-negative weight
matrices (W 1, . . . ,WL) with

∑L
l=1 |||W l|||1 ≤ vs that their product verifies WLWL−1 . . .W 1 = w

(see Remark B.1). For example, for a large enough vs, we can fix τ = 1, since our network space FBL

can generate binary vectors w with cardinality S employing a suitable tuple of non-negative matrices
(W 1, . . . ,WL). In fact, we are using the property that for non-negative weight matrices, the ReLU
activations in deep neural networks (for layers l ∈ {1, . . . , L}) can be ignored and so, deep network
for the corresponding layers behaves like a simple matrix product (Hebiri et al., 2025). This property
gives us the chance to write those specific networks (with non-negative weight matrices) in the form
of a shallow neural network as stated in F0. Let’s also note that for the corresponding networks, we
can 1. invoke compatible norms L times, 2. use the inequality of arithmetic and geometric means,
3. definition of our ReLU network’s space (defined in Section 2) and 4. invoke the definition of VF—
in the view of Theorem 2.2—, to get

||WLWL−1 · · ·W 1||1 ≤ ||WL||1|||WL−1 · · ·W 1|||∞
...

≤ ||WL||1|||WL−1|||1|||WL−2|||1 · · · |||W 1|||1

≤
(1
L

L∑
i=1

|||W i|||1
)L

≤
(vs
L

)L
= VF .

Some rewriting over the F0 implies

F0 =

{
f(w,b)(x) =

τVF

λ

S∑
k=1

wkϕ
1(b⊤k x) : w ∈ A

}
,

where w ··= (τVF/λ)w and A ··= {w ∈ {0, 1}S : ||w||1 = λ} is the set in Lemma A.10.
λ ∈ [1, S/10] is an integer and denotes as the Hamming weight of each element of this set (Klusowski
& Barron, 2017, Theorem 2).

According to the above definition of F0, we have

E
[
||f(w,b)(x)− f(w′,b)(x)||2L2

]
=
(τVF

λ

)2
E
[(S∑

k=1

(wk − w′
k)ϕ

1(b⊤k x)
)2]

,

where w,w′ ∈ A.

Note that, based on the structure of w and w′, for all k ∈ {1, . . . , S}, (wk − w′
k) falls within the

set {−1, 0, 1}. And if (wk − w′
k) = 0, the value of the expected term on the right-hand side –for

the corresponding k– is equal to 0; thus for the sake of convenience, we consider an integer value
S′ < S in such a way that |wk − w′

k| = 1 for all k ∈ {1, . . . , S′}. Based on the structure of all pairs
w,w′ ∈ A and Lemma A.10, we can conclude that S′ ≥ λ/5. We will use S′ for the remainder of
the proof.

We then proceed with

E
[
||f(w,b)(x)− f(w′,b)(x)||2L2

]
=
(τVF

λ

)2
E
[(S′∑

k=1

(
(wk − w′

k)ϕ
1(b⊤k x)

))2]
.

18

Published as a conference paper at ICLR 2025

Next, we are motivated to find a lower bound for E[||f(w,b)(x)− f(w′,b)(x)||2L2
]. We can 1. employ

the last view, 2. expand the squared over the sum and invoke the linearity of expected value, 3. invoke
the linearity of expected value, 4. apply the above assumption that (wk − w′

k)
2 = 1, 5. use the result

of Lemma A.9, which shows E[(ϕ(b⊤k x))
2] = 1/2, and the properties of sum function and 6. use the

fact that E[ϕ1(b⊤k x)ϕ
1(b⊤j x)] = 1/2π, and the properties of sum function to obtain

E
[
||f(w,b)(x)− f(w′,b)(x)||2L2

]
=
(τVF

λ

)2
E
[(S′∑

k=1

(
(wk − w′

k)ϕ
1(b⊤k x)

))2]

=
(τVF

λ

)2(S′∑
k=1

E
[(
(wk − w′

k)ϕ
1(b⊤k x)

)2]

+ E
[S′∑
k=1

S′∑
j=1
j ̸=k

(wk − w′
k)ϕ

1(b⊤k x)(wj − w′
j)ϕ

1(b⊤j x)

])

=
(τVF

λ

)2(S′∑
k=1

E
[(
(wk − w′

k)ϕ
1(b⊤k x)

)2]

+

S′∑
k=1

S′∑
j=1
j ̸=k

E
[
(wk − w′

k)ϕ
1(b⊤k x)(wj − w′

j)ϕ
1(b⊤j x)

])

=
(τVF

λ

)2(S′∑
k=1

E
[(
ϕ1(b⊤k x)

)2]

+

S′∑
k=1

S′∑
j=1
j ̸=k

E
[
(wk − w′

k)ϕ
1(b⊤k x)(wj − w′

j)ϕ
1(b⊤j x)

])

=
(τVF

λ

)2(S′

2
+

S′∑
k=1

S′∑
j=1
j ̸=k

(wk − w′
k)(wj − w′

j)E
[
ϕ1(b⊤k x)ϕ

1(b⊤j x)
])

=
(τVF

λ

)2(S′

2
+

1

2π

S′∑
k=1

S′∑
j=1
j ̸=k

(wk − w′
k)(wj − w′

j)

)
,

here, we need to analyse the second term. We know that |wk−w′
k| = 1. Thus, (wk−w′

k), (wj −w′
j)

for k, j ∈ {1, . . . , S′} can have either the same signs or different signs that result in the corresponding
positive or negative terms. The worst case happens when the number of +1 and −1 cases are equal.
There, the number of total terms is S′(S′ − 1), and we have S′((S′/2) − 1) number of positive
terms and the remaining terms are negative (S′2/2). So, we can proceed the lower bounding by
1. employing the last view, 2. considering the worst case scenario as discussed, 3. performing some
simplifications, 4. performing some arithmetic math, 5. using the fact that (π − 1)/2π) > 2/10,

19

Published as a conference paper at ICLR 2025

6. applying the conclusion that S′ ≥ λ/5 and 7. performing some simplifications to obtain

E
[
||f(w,b)(x)− f(w′,b)(x)||2L2

]
=
(τVF

λ

)2(S′

2
+

1

2π

S′∑
k=1

S′∑
j=1
j ̸=k

(wk − w′
k)(wj − w′

j)

)

≥
(τVF

λ

)2(S′

2
+

1

2π

(
S′
(
S′

2
− 1

)
− S′2

2

))

=
(τVF

λ

)2(S′

2
+

−S′

2π

)
=
(τVF

λ

)2(
S′
(π − 1

2π

))
≥
(τVF

λ

)2(1

5
S′
)

≥
(τVF

λ

)2(1

5
× λ

5

)
=
((τVF)

2

25λ

)
.

So, a 2δ-separation implies

(2δ)2 =
(τVF)

2

25λ
=⇒ λ =

(τVF

10δ

)2
.

Then, we can 1. use the result of Lemma A.10 that log(#F0) denotes as the log of the cardinality of
F0 is at least log

(
S
λ

)
≥ (λ/4) log(S) and 2. plugin the value of S that gives

log(#F0) ≥
(τVF

20δ

)2
log(S)

=
(τVF

20δ

)2
log(d) .

Based on the formula λ = (τVF/10δ)
2, when VF is fixed, it is evident that as δ decreases, λ increases.

Moreover, since λ ≤ d/10, we need to assume that d is large enough. Consequently, for small values
of δ, a sufficiently wide network becomes necessary. This observation is particularly interesting as
it provides valuable insights into selecting an appropriate width for the network based on the input
dimension. The larger the input dimension d, the wider the network should be.

STEP 2: DERIVING A LOWER BOUND FOR log(#FBL)

For the second step, our aim is to lower bound the log of the cardinality of the function class FBL

using the result of the first step. Since we define F0 as a subclass of FBL
, we can conclude that the

lower bound established for log(#F0) in the first step also serves as a lower bound for log(#FBL
).

We then can get

logM
(
2δ,FBL , || · ||L2

)
≥
(τVF

20δ

)2
log(d) ,

as desired.

Remark B.1 (Constructing a vector in A using non-negative weights) Consider an example
where L = 3, width of the network is set to four, and λ = 2. Our aim is constructing a binary vector
with the length four (where λ of those are ones) by a factor of τ ∈ (0,∞). To get our desired final
vector, the weights could be as follows:

W 3 = [0 c 0 c] , W 2 = W 1 =

0 0 0 0
0 c 0 0
0 0 0 0
0 0 0 c

 .

20

Published as a conference paper at ICLR 2025

Then

W 3W 2W 1 = [0 c 0 c]

0 0 0 0
0 c 0 0
0 0 0 0
0 0 0 c

0 0 0 0
0 c 0 0
0 0 0 0
0 0 0 c

 = τ [0 1 0 1] .

Now, for example if we set c = 1/2, then we get τ = 1/8.

B.2 PROOF OF LEMMA A.3

Proof To calculate the KL divergence between two normal distributions PfΘj and Pf
Θk

of
a continuous random variable, each with the corresponding densities pfΘj (z) and pf

Θk
(z),

for all j, k ∈ [M] where j ̸= k, we can 1. use the definition of the KL divergence, 2. plug the
value of pfΘj (z) and pf

Θk
(z) in, 3. perform some simplification, 4. apply the definition of expected

value, 5. the linearity of expected value, 6. use y = fΘj (x)+u, 7. perform further rewriting, 8. apply
the linearity of expected value, assuming independence between each ui and xi, 9. cancel out the
second term (E[u] = 0) and 10. recognize that only x values remain, to get

DKL(PfΘj ∥ Pf
Θk

) =

∫
X×Y

pfΘj (z) log
pfΘj (z)

pf
Θk

(z)
dz

=

∫
X×Y

pfΘj (z) log

((
1/
√
2πσ2

)
e−
(
(y−fΘj (x))

2/2σ2
)
h(x)(

1/
√
2πσ2

)
e−
(
(y−f

Θk (x))2/2σ2
)
h(x)

)
dz

=

∫
X×Y

pfΘj (z)
1

2σ2

((
y − fΘk(x)

)2 − (y − fΘj (x)
)2)

dz

= Ez∼pf
Θj

(z)

[
1

2σ2

((
y − fΘk(x)

)2 − (y − fΘj (x)
)2)]

=
1

2σ2
Ez∼pf

Θj
(z)

[(
y − fΘk(x)

)2 − (y − fΘj (x)
)2]

=
1

2σ2
Ez∼pf

Θj
(z)

[(
fΘj (x) + u− fΘk(x)

)2 − (u)2
]

=
1

2σ2
Ez∼pf

Θj
(z)

[(
fΘj (x)− fΘk(x)

)2 − 2u
(
fΘj (x)− fΘk(x)

)]
=

1

2σ2

(
Ez∼pf

Θj
(z)

[(
fΘj (x)− fΘk(x)

)2]
− 2E[u]Ez∼pf

Θj
(z)

[
fΘj (x)− fΘk(x)

])
=

1

2σ2

(
Ez∼pf

Θj
(z)

[(
fΘj (x)− fΘk(x)

)2])
=

1

2σ2

∫
x∈X

(
fΘj (x)− fΘk(x)

)2
h(x)dx .

Furthermore, by combining this result with Lemma A.2’s result, it holds that for all j, k ∈ [M] and
j ̸= k

DKL(Pn
fΘj

∥ Pn
f
Θk

) =
n

2σ2

∫
x∈X

(
fΘj (x)− fΘk(x)

)2
h(x)dx ,

as desired.

Note that we only assume Gaussian noise, and accordingly we define pfΘj (z) as the joint density of
(x, y) with regression function fΘj (Equation 7). More specifically, the outputs of the network are
not Gaussian: they are just Gaussian conditional on x.

21

Published as a conference paper at ICLR 2025

B.3 PROOF OF LEMMA A.4

Proof Consider a family of distributions {PfΘ1 , . . . ,PfΘM}, then I(J ;Y |X) with respect to
J → fΘJ → (Y |X), can be defined by using the KL divergence —as the underlying measure of
distance— Wainwright (2019, Equation 15.29)

I(J ;Y |X) ··= DKL

(
Q(X,Y),J ∥ Q(X,Y)QJ

)
,

where, Q(X,Y),J is the joint distribution of the pair ((X,Y), J), and Q(X,Y)QJ is the product of
their marginals, and assume that Q ≡ Q(X,Y) ··= 1/M

∑M
j=1 PfΘj is the mixture distribution. We

can rewrite the joint distribution Q(X,Y),J as follows:

Q(X,Y),J = Q
(
(X,Y) = (x, y), J = j

)
= Q

(
(X,Y) = (x, y) | J = j

)
Q(J = j) .

Given that J is chosen uniformly from {1, . . . ,M}, we have:

Q(J = j) =
1

M
.

So, we can rewrite the joint distribution as follows:

Q(X,Y),J

(
(x, y), j

)
= Q

(
(X,Y) = (x, y) | J = j

)
Q(J = j)

= Pfθj
(x, y)× 1

M
.

We can 1. use the definition of KL divergence, 2. plug the value for the joint distribution into it and
3. invoke the definition of KL divergence and perform some rewriting to get

DKL

(
Q(X,Y),J ∥ Q(X,Y)QJ

)
=
∑

(x,y),j

Q(X,Y),J

(
(x, y), j

)
log

Q(X,Y),J

(
(x, y), j

)
Q(X,Y)(x, y)QJ(j)

=
∑

(x,y),j

1

M
Pfθj

(x, y) log

1
MPfθj

(x, y)

Q(X,Y)(x, y)× 1
M

=
1

M

M∑
j=1

DKL

(
Pfθj

∥ Q(X,Y)

)
,

where, Q(X,Y) is the mixture distribution. Accordingly, I(J ;Y |X) can be written in terms of
component distributions {PfΘj , j ∈ [M]} as follows:

I(J ;Y |X) =
1

M

M∑
j=1

DKL

(
PfΘj ∥ Q

)
.

Intuitively, it means the mean of the KL divergence between PfΘj and Q— averaged over the choice
of index j—gives the mutual information. Furthermore, based on the definition of the KL divergence,
we can conclude that for j = k

DKL

(
PfΘj ∥ Pf

Θk

)
= 0 .

Accordingly, we can 1. employ the mixture distribution formula in the above equation, 2. use the
convexity of the KL divergence and apply Jensen inequality and 3. use the linearity property of sum
to obtain

I(J ;Y |X) =
1

M

M∑
j=1

DKL

(
PfΘj ∥ 1

M

M∑
k=1

Pf
Θk

)

≤ 1

M

(M∑
j=1

(
1

M

M∑
k=1

DKL

(
PfΘj ∥ Pf

Θk

)))

=
1

M2

M∑
j,k=1
j ̸=k

DKL

(
PfΘj ∥ Pf

Θk

)
.

22

Published as a conference paper at ICLR 2025

Consequently, if we can construct a 2δ-packing set such that all two distinct pairs of distributions
PfΘj and Pf

Θk
are close in average, then the mutual information can be controlled.

For the second claim, we employ the previous view with the result of Lemma A.2 to get

I(J ;Y n|Xn) ≤ n

M2

M∑
j,k=1
j ̸=k

DKL

(
PfΘj ∥ Pf

Θk

)
,

as desired.

B.4 PROOF OF LEMMA A.5

Proof The aim of this proof is to establish an upper bound on the mutual information I(J ;Y n|Xn),
for the 2δ-packing within the neural network’s space FBL

. To achieve this, we invoke the result of
Lemma A.4, which establishes a connection between the mutual information and the KL divergence.
We then apply the result obtained from Lemma A.3. Finally, we employ the same re-scaling procedure
as demonstrated in Wainwright (2019, Example 15.14) and Wainwright (2019, Example 15.16) to
construct a 2δ-packing in such a way that, for a suitable constant κ ∈ [1,∞), we ensure that
ρ(fΘj (x), fΘk(x)) ≤ 2κδ holds for all pairs fΘj (x) and fΘk(x) corresponding to j ̸= k ∈ [M].

We can 1. use the result provided by Lemma A.4, 2. use the fact that
∑M

j,k=1 DKL(PfΘj ∥ Pf
Θk

) ≤(M
2

)
sup
k,j

(DKL(PfΘj ∥ Pf
Θk

)) for all j ̸= k ∈ [M], 3. calculate the permutation, 4. some arithmetic

calculation, 5. use the fact that M ≥ 1, so 0 ≤ (M− 1)/M < 1, 6. use the view of Lemma A.3,
7. invoke the definition of ρ as L2(Px)- norm, 8. employ the re-scaling procedure and 9. simplify the
factor 2 to obtain

I(J ;Y n|Xn) ≤ n

M2

M∑
j,k=1
j ̸=k

DKL

(
PfΘj ∥ Pf

Θk

)

≤ n

M2

(
M
2

)
sup

j,k∈[M]
j ̸=k

(
DKL

(
PfΘj ∥ Pf

Θk

))

=
n

M2

M!

(M− 2)!
sup

j,k∈[M]
j ̸=k

(
DKL

(
PfΘj ∥ Pf

Θk

))

=
n(M− 1)

M
sup

j,k∈[M]
j ̸=k

(
DKL

(
PfΘj ∥ Pf

Θk

))
≤ n sup

j,k∈[M]
j ̸=k

(
DKL

(
PfΘj ∥ Pf

Θk

))

=
n

2σ2
sup

j,k∈[M]
j ̸=k

(∫
x∈X

(
fΘj (x)− fΘk(x)

)2
h(x)dx

)

=
n

2σ2
sup

j,k∈[M]
j ̸=k

(
ρ
(
fΘj (x), fΘk(x)

)2)

≤ n(2κδ)2

2σ2

=
2n(κδ)2

σ2
,

as desired.

23

Published as a conference paper at ICLR 2025

B.5 PROOF OF LEMMA A.8

Proof In this proof, we first define a rotation matrix R ∈ SO(d), which belongs to
the special orthogonal group. Then, based on the fact that R⊤ = R−1, we can write
b⊤k x = b⊤k R

−1Rx = (Rbk)
⊤Rx. Accordingly, we can obtain

p(b⊤k x > 0,0,Σ) =
1

(2π)d/2
√
|Σ|

∫
(Rbk)⊤Rx>0

e
−(Rx)⊤RΣ−1R⊤(Rx)

2 dx .

By defining G ··= Rx and b̃k ··= Rbk and dx = (dx/dG)× dG, we get

p(b⊤k x > 0,0,Σ) =
1

(2π)d/2
√

|Σ|

∫
b̃⊤
k G>0

e
−G⊤RΣ−1R⊤G

2

(dx

dG

)
× dG .

Then, 1. by setting Σ̃ ··= RΣ−1R⊤, (dx/dG) ··= |R| (|R| ≡ det(R)) and
b̃k = (||bk||2, 0, . . . , 0)⊤, 2. by factoring out the term |R|, 3. the fact that the probability den-
sity function of a Gaussian distribution for a random variable across its domain is 1 and 4. by noting
that |R| = 1, we can obtain

p(b⊤k x > 0,0,Σ) =
1

(2π)d/2
√

|Σ|

∫
b̃⊤
k G>0

e
−G⊤Σ̃−1G

2 |R|dG

=
|R|

(2π)d/2
√

|Σ|

∫
b̃⊤
k G>0

e
−G⊤Σ̃−1G

2 dG

=
|R|
2

=
1

2
,

as desired.

B.6 PROOF OF LEMMA A.9

Proof In this proof, our objective is to compute E[ϕ(b⊤k x)ϕ(b⊤k x)], which is a crucial component
of the proof presented in Lemma 3.2, helping us establish a lower bound for a ReLU neural network.
To achieve this, we can 1. employ the definition of expected value, 2. apply the definition of ReLU
function, 3. perform some rewriting, 4. take out b⊤k and bk, 5. employing Lemma A.8, 6. employ the
definition of expectation, 7. apply the fact that E[xx⊤] = Id, 8. apply b⊤k Id bk = b⊤k bk and 9. use

24

Published as a conference paper at ICLR 2025

b⊤k bk = 1 to obtain

E
[
ϕ(b⊤k x)ϕ(b⊤k x)

]
=

∫
X
ϕ(b⊤k x)ϕ(b⊤k x)h(x)dx

=

∫
x:b⊤

k x>0

(b⊤k x)
2h(x)dx

=

∫
x:b⊤

k x>0

(b⊤k x)(b
⊤
k x)

⊤h(x)dx

= b⊤k

(∫
x:b⊤

k x>0

xx⊤h(x)dx

)
bk

= b⊤k

(∫
X xx⊤h(x)dx

2

)
bk

= b⊤k
E[xx⊤]

2
bk

=
1

2
b⊤k Id bk

=
1

2
b⊤k bk

=
1

2
,

as desired.

C EMPIRICAL DETAILS

Here, we first explain the two loss functions employed for training the networks in both classification
and regression datasets and then we provide more details about the implementation settings.

C.1 LOSS FUNCTIONS:

In the training process of ReLU networks, we utilize two distinct loss functions implemented in
TensorFlow: “mean_squared_error” for regression and “categorical_crossentropy” for classifica-
tion. The details of these loss functions are as follows:

Cross-entropy loss For classification purpose, we use (categorical) Cross-entropy and define
it as (Murphy, 2012; Ho & Wooky, 2019)

ℓCE (fΘ) ··= − 1

n

m∑
k=1

n∑
i=1

(
(yi)k log p

(
fΘ(xi), k

))
,

where (yi)k is the k-th element of the one-hot vector of the target label for the i-th data sample and

p(fΘ(x), k) ··=
e(fΘ(x))k∑m
i=1 e

(fΘ(x))i
,

where (fΘ(x))k is the k-th output of a network indexed by Θ.

Mean-squared error For regression, we use Mean-squared and define it as (Botchkarev, 2018)

ℓMS (fΘ) ··=
1

n

n∑
i=1

m∑
k=1

(
(yi)k −

(
fΘ(x)

)
k

)2
m

,

where (yi)k, is the k-th element of the target vector and (fΘ(x))k is the k-th output of a network
indexed by Θ.

25

Published as a conference paper at ICLR 2025

C.2 EXPERIMENTAL SETTING:

Here we provide further details about our implementations. We itemized these properties such as
accessing the dataset, the computer resources, the environment, splitting data and so on.

1. Computer resources: we conducted some of the experiments in Python using Google Colab
and some of them using the basic plan of deepnote (https://deepnote.com). For the
regression dataset, we used the basic plan of them that utilizes a machine with 5GB RAM
and 2vCPU. For the CIFAR10 dataset, we used one of the deepnote’s plans that utilizes a
machine with 16GB RAM and 4 vCPUs. It took about 8 hours. In fact, the computation
time taken is not of great importance for this paper.

2. Test and train splitting: for classification, we have worked with well-known datasets
like MNIST, CIFAR10, and Fashion-MNIST, utilizing the packages that import
those datasets. Accordingly, our test and training data are exactly those provided
by these datasets. For example, we imported the Fashion-MNIST dataset from
tensorflow.keras.datasets package. For the housing dataset, we randomly di-
vided the whole dataset, using 15 000 samples for training and the remaining samples for
testing. Apart from this, as our aim in this paper is to determine which of these curves can
better model the generalization error as the number of training data increases, we run the
experiments (for example for MNIST dataset) in intervals of 500 samples, that is, we
first use 500 samples, then 1000 samples, then 1500 samples, and so forth. This choice of
intervals gives us a detailed yet computationally feasible curve of the networks’ performance
as a function of the sample size. To ensure a significant amount of randomness multiple
times, we randomly selected the required subset from our full training data. In our paper, the
main trend of the test error as the number of training data increases is much more important
than the specific error values themselves.

3. Optimization method: in the training procedure for our experiments, we have used Adam
optimization method.

4. Finding the values for the two curves (c2 + β/n) and (c1 + α/
√
n): we use SLSQP method

to find the parameters of those curves.

26

	Introduction
	Problem formulation and main result
	Technical results
	PROOF OF THEOREM 2.2
	Empirical studies
	Conclusion
	Acknowledgments
	Further technical results
	Proofs
	PROOF OF LEMMA 3.2
	PROOF OF Lemma A.3
	PROOF OF Lemma A.4
	PROOF OF LEMMA A.5
	PROOF OF LEMMA A.8
	PROOF OF LEMMA A.9

	Empirical details
	Loss functions:
	Experimental setting:

