
Self-Play Q-Learners Can Provably Collude in the Iterated Prisoner’s Dilemma

Quentin Bertrand 1 Juan Agustin Duque 2 Emilio Calvano 3 Gauthier Gidel 2 4

Abstract
A growing body of computational studies shows
that simple machine learning agents converge to
cooperative behaviors in social dilemmas, such
as collusive price-setting in oligopoly markets,
raising questions about what drives this outcome.
In this work, we provide theoretical foundations
for this phenomenon in the context of self-play
multi-agent Q-learners in the iterated prisoner’s
dilemma. We characterize broad conditions under
which such agents provably learn the cooperative
Pavlov (win-stay, lose-shift) policy rather than the
Pareto-dominated “always defect” policy. We val-
idate our theoretical results through additional ex-
periments, demonstrating their robustness across
a broader class of deep learning algorithms.

1. Introduction
In recent years, algorithmic pricing has increasingly sup-
planted manual pricing, both online—by 2015, one-third of
Amazon’s largest third-party sellers were already using such
tools (Chen et al., 2016)—and in physical markets, such as
gas stations (Schechner, 2017). The growing adoption of
machine learning–based pricing systems has raised signifi-
cant concerns in both academic (Ezrachi & Stucke, 2015;
Mehra, 2015) and institutional (OECD, 2017; Bureau, 2018)
circles regarding the potential for tacit collusion. Indeed, if
multiple firms competing within the same local market de-
ploy learning algorithms to set prices, a natural and pressing
question arises:

Could pricing algorithms autonomously learn to suppress
competition, thereby leading to higher prices?

*Equal contribution 1Université Jean Monnet Saint-Etienne,
CNRS, Institut d’Optique Graduate School, Inria, Laboratoire
Hubert Curien UMR 5516, F-42023, Saint-Étienne, France
2Mila, Université de Montréal 3Università LUISS (Rome),
Toulouse School of Economics, EIEF and CEPR 4Canada
AI CIFAR Chair. Correspondence to: Quentin Bertrand
<quentin.bertrand@inria.fr>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Prior works—based on simulated environments and empiri-
cal analyses of real-world pricing—have shown that algorith-
mic collusion is a tangible risk, not merely a theoretical con-
cern. For instance, Deneckere & Davidson (1985); Waltman
& Kaymak (2008); Hansen et al. (2021); Asker et al. (2022)
document that even simple algorithms can lead to higher
prices in standard models of price competition. Moreover,
Calvano et al. (2019; 2020b); Klein (2021) demonstrate that
standard machine learning algorithms, such as Q-learning
(Watkins & Dayan, 1992), can learn to sustain high prices
through reward–punishment mechanisms—patterns com-
monly characterized as ‘collusive’ in the antitrust literature;
see Calvano et al. 2020a for an in-depth discussion of re-
lated policy issues. Assad et al. (2024) go one step further
by providing the first empirical evidence of how algorith-
mic pricing affects competition: in Germany’s retail gaso-
line market, where machine learning pricing tools spread
after 2017, adoption increased profit margins only when
multiple competitors used them—consistent with concerns
over algorithm-driven collusion. More broadly, cooperation
among machine learning algorithms has also been observed
in general iterated social dilemmas, owing to the sequential
nature of the problems (Lanctot et al., 2017; Leibo et al.,
2017).

Theoretically, the emergence of tacit collusion has been
studied in highly simplified settings. Even in minimalist co-
operative/competitive games such as the prisoner’s dilemma
(Flood, 1958; Kendall et al., 2007), the dynamics induced
by standard machine learning algorithms in multi-agent con-
texts are often so complex that researchers typically resort
to oversimplified versions of these algorithms. In particular,
expected-value formulations of ϵ-greedy Q-learning (Seijen
et al., 2009; Sutton & Barto, 2018, Sec. 6.10), without
memory—that is, without access to previous states—are
frequently analyzed (Banchio & Skrzypacz, 2022; Banchio
& Mantegazza, 2022). In these prior theoretical results,
cooperation does not arise from agents learning equilibrium
strategies in the classical game-theoretic sense. Their
limited memory prevents them from conditioning on the
past actions of others, and thus from learning to implement
retaliatory pricing strategies (Calvano et al., 2023). By
contrast, learning to sustain high prices through retaliation
consistent with a subgame-perfect equilibrium represents a
stronger and more strategic form of cooperation: it captures

1

Self-play Q-Learners Can Provably Collude in the Iterated Prisoner’s Dilemma

equilibrium behavior that is robust to unilateral deviations
—unlike the limited-memory scenarios, where cooperation
can emerge without credible deterrence mechanisms.

In this paper, we aim to fill this gap by studying a richer
setting that, in principle, allows for collusion in the game-
theoretic sense. More precisely, the proposed project seeks
to shed light on the learning dynamics of algorithms as they
coordinate to cooperate—in contrast to the learning out-
comes, which have been the primary focus of prior work.
By analyzing the processes that lead to collusion in a mini-
malist self-play setting—i.e., where an agent interacts with
a copy of itself—we aim to better inform the development
of rules and regulations that ensure fair competition and
protect consumer interests.

Contributions. In this work, we study the dynamics of two
agents playing the iterated prisoner’s dilemma and choos-
ing their actions according to self-play ϵ-greedy Q-learning
policies. Importantly, as opposed to previous work (Banchio
& Skrzypacz, 2022; Banchio & Mantegazza, 2022), we the-
oretically study the standard stochastic (i.e., not averaged)
version of self-play ϵ-greedy Q-learning (Algorithm 1), with
a one-step memory. More precisely,

• First, we show that without exploration, i.e., self-play
ϵ-greedy Q-learning with ϵ = 0, if the initialization of
the agent is optimistic enough (Even-Dar & Mansour,
2001), then agents can learn to move from an always
defect policy, to a cooperative policy (Theorem 3.2 in
Section 3.1), referred to as win-stay, lose-shift
policy (Nowak & Sigmund, 1993).

• Then, we extend the convergence toward a cooperative
policy to self-play ϵ-greedy Q-learning with ϵ > 0
(Theorem 3.3 in Section 3.2). This is the main technical
difficulty, as one needs to prove the convergence of a
stochastic process toward a specific equilibrium.

• Finally, we empirically show that the collusion proved
for standard Q-learning algorithms is also observed for
deep Q-learning algorithms (Section 5).

The manuscript is organized as follows: Section 2 provides
recalls on the prisoner’s dilemma, multi-agent Q-learning,
and fixed points of the self-play multi-agent Bellman
equation. Section 3 contains our main results: the conver-
gence of Q-learning toward the collusive Pavlov strategy
(Theorems 3.2 and 3.3). Previous related works on
the dynamics of multi-agent Q-learning are detailed in
Section 4. Similar collusive behaviors are also observed
for deep Q-learning algorithms in Section 5.

2. Setting and Background
First, Section 2.1 provides recalls on the iterated prisoner’s
dilemma. Then, Section 2.2 provides recalls on reinforce-
ment learning, and more specifically, multi-agent Bellman

Table 1. Prisoner’s Dilemma Rewards/Payoff Matrix. Typical iter-
ated prisoner´s dilemma rewards satisfy rDC > rCC > rDD >
rCD and 2rCC > rCD + rDC.

Cooperate Defect

Cooperate
rCC

rCC

rCD

rDC

Defect
rDC

rCD

rDD

rDD

equation and ϵ-greedy Q-learning. In Section 2.3, we recall
the fixed-point policies of the multi-agent Bellman equa-
tion: always defect, Lose-shift, Pavlov (sum-
marized in Table 2). Interestingly, in the iterated prisoner’s
dilemma, these policies are also subgame perfect equilib-
rium, and might be different from always defect.

2.1. Iterated Prisoner’s Dilemma

In this work, we consider a two-player iterated prisoner’s
dilemma whose players have a one-step memory. At each
time step, players choose between cooperate (C) or defect
(D), i.e., each player i choose an action ai ∈ A ≜ {C,D},
which yields a reward ria1,a2 for player i, i ∈ {1, 2}. Ta-
ble 1 describes the rewards r1a1,a2 and r2a2,a1 respectively
obtained by each player depending on their respective ac-
tion a1 and a2. Note that such a game is symmetric:
r1a1,a2 = r2a2,a1 := ra1,a2 . For simplicity, in the experi-
ments (Section 5), we consider simplified rewards, which
are parameterized by a single scalar g, 1 < g < 2 (see
Table 3 in Appendix E, as in Banchio & Mantegazza 2022).

When the prisoner’s dilemma is not repeated, joint defec-
tion is the only Nash equilibrium: for a fixed decision of
the other prisoner, defecting always reaches better rewards
than cooperating. This yields the celebrated paradox: even
though the rewards obtained in the “defect defect” state are
Pareto dominated by the ones obtained with the “cooperate
cooperate” state, the Pareto-suboptimal mutual defection
remains the only Nash equilibrium.

When the prisoner’s dilemma is infinitely repeated, new
equilibria can emerge, and always defect is no longer
the dominant strategy (Osborne, 2004). We will refer to
“collusive” or “colluding” strategies, any strategy that differs
from the always defect strategy. Note that infinitely
many time steps are essential for such equilibria to exist1.

1Equivalently, one can consider that the game is finitely
repeated with a probability of ending equal to the discount factor
at each step (Littman, 1994; Osborne, 2004, Chap. 15.3).

2

Self-play Q-Learners Can Provably Collude in the Iterated Prisoner’s Dilemma

Algorithm 1 Multi-agent Self-Play Q-learning
init :s0, Q
param :α, γ, ϵ
for t in 1, . . . , niter do

// Compute a1
t and a2

t via Algorithm 2
a1t = Algorithm 2(Q, (a1t−1, a

2
t−1), ϵ)

a2t = Algorithm 2(Q, (a2t−1, a
1
t−1), ϵ)

st = (a1t−1, a
2
t−1)

// Update the Q-value entry in st, a
1
t

Qst,a1
t
+= α

(
ra1

t ,a
2
t
+ γmaxa Q(a1

t ,a
2
t),a

−Qst,a1
t

)
return Q

2.2. Q-Learning for Multi-Agent Reinforcement
Learning and Self-Play

Reinforcement learning. At a given step, the choice of
each player to cooperate or defect is conditioned by the
actions S ≜ {CC,DD,CD,DC} played at the previous
time step, where the first action stands for the action picked
by the first player at the previous time-step. ∆S

A denotes
the space of policies π : S × A → [0, 1], such that for all
s ∈ S,

∑
a∈A π(a|s) = 1. Given two policies (i.e., mixed

strategies) π1, π2 ∈ ∆S
A, a discount factor γ ∈ (0, 1), and

an initial distribution ρ over the state space S , the cumulated
reward observed by the agent i ∈ {1, 2} is given by

Ji(π1, π2) ≜ Es0∼ρ,ai
t∼πi(·|st)

[∞∑
t=0

γtra1
t ,a

2
t

]
. (1)

Q-learning. A popular approach to maximize the cumula-
tive reward function Equation (1) is to find an action-value
function or Q-function, that is a fixed point of the Bellman
operator (Sutton & Barto, 2018, Eq. 3.17). Since the reward
of the second player is stochastic in the multi-agent case,
the fixed-point equation writes, for all (st, a1t) ∈ S ×A:

Q⋆
st,a1

t
= Ea2

t∼π2(·|st)

(
r1a1

t ,a
2
t
+ γmax

a
Q⋆

(a1
t ,a

2
t),a

)
. (2)

Q-learning (Algorithm 1) consists of stochastic fixed-point
iterations on the Bellman Equation (4): with a step-size
α > 0

Qt+1
st,a1

t
= Qt

st,a1
t

+ α
(
r1a1

t ,a
2
t
+ γmax

a′
Qt

(a1
t ,a

2
t),a

′ −Qt
st,a1

t

)
. (3)

Self-play. Since the game is symmetric, we study the
dynamic of Equation (3), where the second agent is a
copy of the first agent, i.e., the actions a1t and a2t are
sampled according to the same policy π. Such a way to
model the opponent is referred to as self-play and has been
successfully used to train agents in deep reinforcement

learning applications (Lowe et al., 2017; Silver et al., 2018;
Baker et al., 2019; Tang, 2019):

a1t , a
2
t ∼ π(·|st) // same Q-table for a1t and a2t .

In the self-play setting, the Bellman Equation (2) writes

Q⋆
st,a1

t
= Ea2

t∼π(·|st)

(
ra1

t ,a
2
t
+ γmax

a
Q⋆

(a1
t ,a

2
t),a

)
. (4)

In addition, we study ϵ-greedy Q-learning policies (Algo-
rithm 2, 0 < ϵ < 1/2), i.e.,

π(a|s) =
{
1− ϵ if a = argmaxaQs,a

ϵ else
, i ∈ {1, 2},

We say that an ϵ-greedy policy is a fixed point of the self-
play multi-agent Bellman Equation (4) if the policy is greedy
with respect to its own Q-values. In other words, a fixed
point Q⋆ of the self-play multi-agent Bellman Equation (4)
must satisfy Equation (4), where the policy π is ϵ-greedy
with respect to the Q-table Q⋆. Interestingly, in this setting,
there exist multiple fixed-point policies Q⋆ of the self-play
multi-agent Bellman Equation (4).

In this paper, we study the dynamics of the multi-agent
self-play Q-learning (Equation (3)) in the one-step memory
case, i.e., A = {C,D} and S = {C,D}2. In particular,
in Section 3 we show convergence towards a specific
cooperative fixed point policy Q⋆ of the multi-agent
Bellman Equation (4). In the following Section 2.3,
we provide recalls on the fixed-point policies for the
multi-agent Bellman equation Equation (4).

2.3. Fixed Points of the Multi-Agent Bellman Equation

In the iterated prisoner’s dilemma with one-step memory,
multiple symmetric strategy profiles exist. However, only
three of them are fixed points of the self-play multi-agent
Bellman operator in Equation (4): always defect,
Pavlov, and grim trigger (Usui & Ueda, 2021). A
summary of these policies is provided in Table 2.

In Section 3, we show that one can transition from
always defect to Pavlov, passing through the
lose-shift policy (defined in Table 2). First, we recall
below that fixed-point policies of the multi-agent Bellman
Equation (4) can define always defect and Pavlov.

Proposition 2.1 (Always Defect). The following Q-
table Q⋆,Defect is a fixed point of the Bellman Equation (4)
and yields an always defect policy, ∀s ∈ {C,D}2,

Q⋆,Defect
s,D = Ea2∼π(·|s)rD,a2/(1− γ) ,

Q⋆,Defect
s,C = Q⋆,Defect

s,D − Ea2∼π(·|s)
(
rD,a2 − rC,a2

)
.

3

Self-play Q-Learners Can Provably Collude in the Iterated Prisoner’s Dilemma

Algorithm 2 ϵ-greedy
input :Q, s, 0 ≤ ϵ ≤ 1/2
return argmaxa′ Qs,a′ with probability 1 − ϵ and
argmina′ Qs,a′ with probability ϵ

More interestingly, the cooperative Pavlov policy (also
referred to as win-stay, lose-shift) can also be
a fixed point of the multi-agent Bellman Equation (4).
Pavlov can be summarized as cooperate as long as the
players are synchronized by playing the same action.

Proposition 2.2 (Pavlov). If γ > rDC−rCC

rCC−rDD
and ϵ is

small enough, then there exists a Q-function, Q⋆,Pavlov,
which is a fixed point of the self-play multi-agent Bellman
Equation (4) and yields the Pavlov policy, i.e,

∀s ∈ {CC,DD} Q⋆,Pavlov
s,C > Q⋆,Pavlov

s,D and

∀s ∈ {CD,DC} Q⋆,Pavlov
s,C < Q⋆,Pavlov

s,D .

Proofs of Propositions 2.1 and 2.2, the exact Q-values and
condition on ϵ are recalled in Appendices A.1 and A.2 for
completeness. In the rest of the manuscript we assume that
γ > rDC−rCC

rCC−rDD
, and the exploration ϵ is small enough such

that Pavlov policy exists.

The main takeaway from Proposition 2.2 is that there exists
a fixed point of the self-play multi-agent Bellman Equa-
tion (4) whose associated strategy is cooperative. Interest-
ingly, the only other fixed-point strategy is the (coopera-
tive) grim trigger policy (Usui & Ueda 2021, Table 1;
Meylahn & Janssen 2022). On the opposite, tit-for-tat is
not a fixed-point policy of the Bellman Equation (4). Ta-
ble 2 summarizes the greedy action of each fixed-point pol-
icy. Interestingly, always defect, Pavlov, and grim
trigger policies also are subgame perfect equilibrium,
which is a stronger notion of equilibrium than Nash equilib-
rium for iterated games (the subgame perfect definition can
be found in Sec. 5.5 of Osborne 2004). For completeness,
the proofs of the latter statement are recalled in Appendix B.

Propositions 2.1 and 2.2 illustrate the challenges of multi-
agent reinforcement learning for the prisoner’s dilemma:
multiple equilibria exist that yield outcomes with markedly
different levels of cooperation. Thus, one should not only
care about convergence toward equilibrium, but one should
also care about which type of equilibrium the agents con-
verge to. The reached equilibrium will depend on the dy-
namics of the algorithm used to estimate the policy π⋆: this
dynamics is studied in Section 3 for Q-learning.

Table 2. Summary of the symmetric fixed-point policies of the self-
play multi-agent Bellman Equation (4). The table displays the
greedy action at of each policy, given the state st = (a1

t−1, a
2
t−1).

Policy
State st (D,D) (C,C) (C,D) (D,C) Fixed

Point

Always defect D D D D ✓
Lose-shift C D D D ×××
Grim trigger D C D D ✓
Pavlov C C D D ✓

3. Q-Learning Dynamic in the Iterated
Prisoner’s Dilemma

The complex structure of the multi-agent Q-learning with
memory yields multiple fixed-point policies for the Bell-
man Equation (4). In this section, for a specific set of
Q-value initializations Q0, we show convergence of the dy-
namics resulting from ϵ-greedy Q-learning with memory
updates (i.e., Equation (3)) toward the cooperative fixed
point Pavlov policy.

More precisely, we show that, with an “optimistic enough”
initialization, the ϵ-greedy policy with a small enough learn-
ing rate α starts from the always defect policy, then
moves to the lose-shift policy, and finally converges
towards the Pavlov policy. The Q-values at initialization
are required to be “optimistic enough” in the sense that they
are "set to large values, larger than their optimal values"
(Even-Dar & Mansour, 2001).

For exposition purposes, the greedy case (ϵ = 0 in Algo-
rithm 2) is presented in Section 3.1, and the general case
(0 < ϵ < 1/2) in Section 3.2.

3.1. Fully Greedy Policy with No Exploration
(Algorithm 2 with ϵ = 0)

We first show the case ϵ = 0, i.e., with no exploration. We
assume that the initial policy is always defect, and we
require “optimistic enough” initial Q-values.

Assumption 3.1 (Q-values Initialization).

i) rDD

1−γ < Qt0
(D,D),C ,

ii) Qt0
(D,D),C < rCC

1−γ − rCC−rDD

1−γ2 < Qt0
(C,C),C and

Qt0
(D,D),D < Qt0

(C,C),C .

iii) Qt0
(C,C),C < rCC

1−γ .

Assumption 3.1 i) ensures that the algorithm moves
from always defect to lose-shift policy. As-
sumption 3.1 ii) ensure that the algorithm shifts from
lose-shift to Pavlov policy, and Assumption 3.1 iii)
ensures that the policy sticks to Pavlov.

Q-values Initialization in Practice. How can we ensure

4

Self-play Q-Learners Can Provably Collude in the Iterated Prisoner’s Dilemma

s = (D,D) s = (C,C) s = (D,C)

0.5 1.0
iterations ×103

−0.2

0.0

0.2

Q
s,

C
−
Q
s,

D Always defect
policy

Lose-shift policy

t0 = 0 t1 t2

Pavlov policy

Figure 1. From always defect to Pavlov policy, Algorithm 1 with no exploration (i.e., ϵ = 0). Evolution of the Q-learning
policy as a function of the number of iterations in the iterated prisoner’s dilemma. With a correct (optimistic) initialization, players go
from an always defect policy to the lose-shift policy (at time t1), and then go to the cooperative Pavlov policy (at time t2).
The incentive to cooperate and the discount factor are set to g = 1.8 (see Table 3) and γ = 0.6.

that Assumptions 3.1 i) to 3.1 iii) are actually satisfied in
practice? For standard Q-learning, the initial Q-values are
user-defined parameters of the algorithm (see Algorithm 1).
Figure 2 illustrates how the initial Q-values—specifically
Assumptions 3.1 i) and 3.1 ii)—influence the resulting pol-
icy. However, in more complex settings such as deep Q-
learning, the initial Q-values are not explicitly controlled,
since they result from randomly initialized neural network
weights. In such cases, initializing the weights to directly
satisfy Assumption 3.1 is non-trivial.

To address this, we propose a practical approach to approx-
imate initialization toward an always defect policy,
which can subsequently shift toward cooperation. Specif-
ically, we suggest initializing the Q-values using the out-
put of Algorithm 1 executed with an exploration parameter
ϵ = 1/2. This corresponds to a uniformly random policy:
p(C | s) = p(D | s) = 1

2 , ∀s ∈ {CC,DD,CD,DC}.
Under this initialization, the self-play multi-agent Bellman
Equation (4) admits a unique fixed-point policy, which cor-
responds to the always defect strategy.

Theorem 3.2. Suppose the initial policy is always
defect and the initial state s0 is defect defect:
s0 = DD. Then for all Q-values initializations Qt0 that
satisfy Assumption 3.1, Algorithm 1 with no exploration
(ϵ = 0) moves away from the always defect policy,
and learn the cooperative Pavlov policy.

Figure 1 illustrates Theorem 3.2 and shows the evolution
of Equation (4) as a function of the number of iterations. At
t = t0, Qs,D > Qs,C for all states s ∈ {C,D}2. The greedy
action is playing defect, Q(D,D),D−Q(D,D),C increases and
agents progressively learn the lose-shift policy. Once
the lose-shift policy is learned, the greedy actions are
“cooperate” when the state is DD and “defect” when the
state is CC. Hence, in this phase, Algorithm 1 successively

updates Q(C,C),D and Q(D,D),C entries, until Q(C,C),D

goes below Q(C,C),C. From this moment, the dynamic
changes, and agents start to play the Pavlov policy and
do not change.

Proof. (Theorem 3.2) As illustrated in Figure 1, the tra-
jectory can be decomposed in 3 phases: first, the pol-
icy goes from always defect to lose-shift policy
(Phase 1). Then, the policy goes from lose-shift to
Pavlov (Phase 2). Finally, the policy stays in the
Pavlov policy (Phase 3).

• Phase 1 – From always defect to
lose-shift (0 ≤ t ≤ t1). At t0 we have, s0 = DD,
and for all s ∈ {C,D}2, Qs,D > Qs,C, hence the greedy
action is defect, and is always chosen since ϵ = 0. Then,
the Q-learning update Equation (3) writes

Qt+1
(D,D),D = Qt

(D,D),D

+ α
(
rDD + γQt

(D,D),D −Qt
(D,D),D

)
. (5)

Thus, while Q(D,D),D > Q(D,D),C, Q(D,D),D is the only
updated entry and converges linearly towards Q⋆,Defect

(D,D),D:

Qt+1
(D,D),D −Q⋆,Defect

(D,D),D

= (1− α(1− γ))
t
(
Qt

(D,D),D −Q⋆,Defect
(D,D),D

)
,

where Q⋆,Defect
(D,D),D ≜ rD,D/(1− γ). Thus, since Qt0

(D,D),C >

Q⋆,Defect
(D,D),D ≜ rD,D/(1 − γ) (Assumption 3.1 i)), Q(D,D),D

converges linearly towards Q⋆,Defect
(D,D),D < Qt0

(D,D),C. Hence
there exists t1 such that Qt1

(D,D),C = Qt0
(D,D),C > Qt1

(D,D),D.
Once this time t1 is reached, the policy switches from
always defect to lose-shift, and the update in
Equation (5) no longer guides the dynamics.

5

Self-play Q-Learners Can Provably Collude in the Iterated Prisoner’s Dilemma

s = (D,D) s = (C,C) s = (D,C)

0.0 0.5 1.0
iterations ×103

−0.5

0.0

Q
s,

C
−
Q
s,

D Always defect policy

None of Ass. i) to iii)

0.0 0.5 1.0
iterations ×103

Always defect
policy

Lose-shift policy

Only Ass. i)

0.0 0.5 1.0
iterations ×103

Always
defect
policy

Lose-shift
policy

Pavlov
policy

All Ass. 3.3 i) to iii)

Figure 2. Influence of Assumptions 3.1 i) to 3.1 iii) (γ = 0.6 and g = 1.8 using the parameterization of Table 3). Evolution of the
Q-learning policy as a function of the number of iterations in the iterated prisoner’s dilemma, for multiple initializations. If one assumption
from Assumptions 3.1 i) to 3.1 iii) is not satisfied, then the Pavlov policy is not achieved. Except for the initialization, the experimental
setting is the same as for Figure 1.

• Phase 2 – From lose-shift to Pavlov (t1 ≤ t ≤
t2). In this phase, players alternate to defect in the CC
state and cooperate in the DD state. Hence the only entries
successively updated are Q(C,C),D and Q(D,D),C. For all
t ≥ t1, Equation (3) becomes

Q2t+1
(C,C),D = (1− α)Q2t

(C,C),D + α
(
rDD + γQ2t

(D,D),C

)
,

(6)

Q2t+2
(D,D),C = (1− α)Q2t+1

(D,D),C + α
(
rCC + γQ2t+1

(C,C),D

)
.

(7)

Similarly to Phase 1, one can show that Q(C,C),D converges
linearly towards Q⋆,lose-shift

(C,C),D . Additionally, one can show
that, while the dynamic follows Equations (6) and (7), and
Qt

(C,C),D > Qt
(C,C),C, then Qt

(D,D),C > Qt
(D,D),D (see

Lemma C.1 in Appendix C.1). Hence, there exists t2 such
that Qt2

(C,C),D < Qt2
(C,C),C and Qt2

(D,D),C > Qt2
(D,D),D: the

Pavlov policy is reached.

• Phase 3 – Staying in Pavlov (t ≥ t2).
In this part of the trajectory, both players cooperate in the
state CC, and Equation (3) writes

Qt+1
(C,C),C = Qt

(C,C),C + α
(
rCC + γQt

(C,C),C −Qt
(C,C),C

)
.

The only updated Q-entry is Q(C,C),C, and Q(C,C),C

converges linearly toward Q⋆,Pavlov
(C,C),C

Qt+1
(C,C),C −Q⋆,Pavlov

(C,C),C

= (1− α(1− γ))
(
Qt

(C,C),C −Q⋆,Pavlov
(C,C),C

)
.

Since Q⋆,Pavlov
(C,C),C ≜ rCC/(1 − γ) > Qt2

(C,C),D = Qt0
(C,C),D

(Assumption 3.1 ii), right), there is no other change of
policy.

We have shown that the convergence is linear in each
phase (from always defect to lose-shift, from
lose-shift to Pavlov, staying in Pavlov). In
addition, one can show that the time to go from one
policy to another varies as O(1/α) in each phase (see
Appendix C.2 for the proof of this result).

In Section 3.1, we showed that agents learned to cooperate
with no exploration. In Section 3.2, we investigate coop-
eration in the general case, with an exploration parameter
ϵ > 0.

3.2. ϵ-Greedy Q-Learning with Exploration
(Algorithm 2 with ϵ > 0)

In this section, we show that Algorithm 1 with sufficiently
small step-size α and exploration parameter ϵ yields a coop-
erative policy with high probability.
Theorem 3.3. Let δ > 0 and 1/2 > ϵ > 0, ϵ sufficiently
small such that Pavlov policy is a fixed-point of Equa-
tion (4) (as defined in Proposition 2.2). Suppose that As-
sumption 3.1 holds, and s0 = DD. Then, for α ≤ C log(1/ϵ)

log(1/δ) ,
where C is a constant that is independent of the discount
factor γ, the step-size α, the rewards and the initialization
of the Q-values, we have that with probability 1 − δ, Al-
gorithm 1 does achieve a cooperative policy: Pavlov or
lose-shift policy in O(1/α) iterations.

Theorem 3.3 states that for an arbitrarily large probabil-
ity, there exist small enough α > 0 and ϵ > 0 such that
agents following Algorithm 1 converge from an always
defect policy to a Pavlov policy. The full proof of The-
orem 3.3 can be found in Appendix D. A proof sketch is
provided below.

Proof sketch. We give the proof sketch for going from

6

Self-play Q-Learners Can Provably Collude in the Iterated Prisoner’s Dilemma

s = (D,D) s = (C,C) s = (D,C)

0 1 2
iterations ×103

0.0

0.5

Q
s,

C
−
Q
s,

D

ε = 0.01

0 1 2
iterations ×103

ε = 0.05

0 1 2
iterations ×103

ε = 0.10

Figure 3. From always defect to Pavlov policy, Algorithm 1 with exploration (g = 1.8 and γ = 0.6). Evolution of the
Q-learning policy as a function of the number of iterations in the iterated prisoner’s dilemma. With a correct (optimistic) initialization,
players go from an always defect policy to the lose-shift policy and then to the cooperative Pavlov policy.

always defect to lose-shift with high probabil-
ity (Step 1). The proof for Theorem 3.3 is three-folded: first,
we show that the non-greedy actions are chosen at most k
times. This requires controlling the occurring probability of
the event

Ek,T ≜ {either a1t or a2t is a non-greedy action
for at most k values of t = 1, . . . , T} ,

which is done in Lemma 3.4 i). Using bounds on the Q-
entries at each iteration (Lemma 3.4 ii)), one can control
the maximum deviation of the Q-entries of non-greedy
(Lemma 3.4 iii)) and greedy actions (Lemma 3.4 ii)). Build-
ing on Lemmas 3.4 ii) and 3.4 iii) one can find assump-
tions on k and T such that Q-learners go from always
defect to lose-shift Lemmas 3.4 v) and 3.4 vi).

Lemma 3.4. Let 0 < ϵ < 1/2, 0 < γ < 1 and 0 ≤
k ≤ T , k ∈ N. Suppose that Assumption 3.1 holds, s0 =
DD, and both agents are guided by ϵ-greedy Q-learning
(Algorithm 1), then

i) The probability of the event Ek,T is lower bounded

P(Ek,T) ≥ 1− 2T (2ϵ)k+1 .

ii) For all state-action pair (s, a) ∈ S ×A

|Qt+1
s,a −Qt

s,a| ≤
∆rα

1− γ
.

iii) On the event Ek,T , the deviation for the Q-values others
than Q(D,D),D is at most

|Qt
s,a −Qt0

s,a| ≤
2k∆rα

1− γ
, ∀(s, a) ̸= (DD,D) .

iv) On the event Ek,T , the deviation for the Q-value
Q(D,D),D is upper-bounded

Qt+1
(D,D),D −Q⋆,Defect

(D,D),D ≤ 2k∆rα

1− γ

+ (1− α(1− γ))
T−2k

(
Qt0

(D,D),D −Q⋆,Defect
(D,D),D

)
.

v) On the event Ek,T , for k < (1−γ)∆Q
2α∆r

, with ∆Q ≜

mins̸=DD Qt0
s,D −Qt0

s,C

Qt
s,D > Qt

s,C , ∀t ≤ T, s ̸= DD .

vi) On the event Ek,T , if T > 2k +

log

(
Q

t0
(D,D),C

−Q⋆,Defect
(D,D),D

− 4k∆rα
1−γ

)
−log

(
Q

t0
(D,D),D

−Q⋆,Defect
(D,D),D

)
log(1−α+γα) ,

then
QT

(D,D),D < QT
(D,D),C .

Combining Lemmas 3.4 i) to 3.4 vi) yields that agents learn
the lose-shift policy with high probability. Similar
arguments hold for learning the Pavlov policy from the
lose-shift policy.

Figure 3 shows the evolution of the Q-values as a function
of the number of iterations for multiple values of ϵ. 100 of
runs are averaged, and the standard deviation is displayed
in the shaded area. For ϵ = 0.01, we almost recover the no
exploration case. The larger the exploration parameter ϵ,
the less the condition for the Pavlov policy to be a fixed
point of the multi-agent Bellman Equation (4) is satisfied
(see Proposition 2.2).

4. Related Work
The question of tacit collusion/cooperation between agents
has been studied almost independently in the economics

7

Self-play Q-Learners Can Provably Collude in the Iterated Prisoner’s Dilemma

and reinforcement learning literature. On the one hand, the
economics community perceives collusion/cooperation as a
negative feature since collusion between sellers is against
the consumer’s interest and remains illegal, violating anti-
trust laws. On the other hand, in reinforcement learning, col-
lusion/cooperation is considered a desired property, which
would potentially yield symbiotic behaviors between decen-
tralized agents.

Q-learning without Memory. The dynamics of Q-learning
in the iterated prisoner’s dilemma has previously been stud-
ied without memory, i.e., Equation (4) with S = ∅. More
precisely, Banchio & Mantegazza (2022) studied the mem-
oryless, averaged (Seijen et al., 2009; Sutton & Barto,
2018, 6.10), and time-continuous dynamics of Equation (3)
(i.e., no stochasticity nor discreteness), with p(a1) the prob-
ability of picking the action a1 ∈ {C,D} writes

Q̇a1 = p(a1)
(
Ea2∼π(ra1,a2

)
+ γmax

a′
Qa′ −Qa1) . (8)

The main theoretical results from the memoryless case are
the following: (i) There is no equilibrium corresponding
to a cooperative policy, i.e., no fixed point of Equation (8)
such that Q⋆

D < Q⋆
C. (ii) There is always an equilibrium

corresponding to an always defect policy, i.e., a fixed
point of Equation (8) such that Q⋆

D > Q⋆
C (iii) Depending

on the value of the exploration parameter ϵ and the
incentive to cooperate g, an additional equilibrium at
the discontinuity of the vector field can appear, i.e., an
equilibrium where Q⋆

D = Q⋆
C. This equilibrium can be seen

as partial cooperation and is considered to be an artifact of
the memoryless setting.

Multi-agent Reinforcement Learning. The problem of
cooperation has also been approached in the multi-agent
reinforcement learning community, which tackles the
question of multiple agents’ decision-making in a shared
environment. Depending on the environment and the
rewards, agents can either prioritize their interests or
promote cooperation. This yielded a vast literature of
empirical algorithms aiming at learning cooperative
strategies (Whitehead, 1991) in various settings (Lowe et al.,
2017; Sunehag et al., 2017; Guan et al., 2023), depending
on if the agents can synchronize or not (Arslan & Yüksel,
2016; Yongacoglu et al., 2021; Nekoei et al., 2023; Zhao
et al., 2023; Yongacoglu et al., 2023).

Multi-agent reinforcement learning has also been ap-
proached from the theoretical side: the convergence of al-
gorithms has also been analyzed in the case of zero-sum
games (Littman, 1994), non-zero-sum with only a single
Nash equilibrium (Hu & Wellman, 1998). The main diffi-
culty of the multi-agent reinforcement learning theoretical
analyses (Zhang et al., 2021, §3) comes from (i) The notion
of optimality/learning goal, i.e., what are the desirable prop-
erties of the learned policy. (ii) The non-stationary environ-

0.02 0.1 0.12 0.15 0.18 0.2

ε

0.03

0.05

0.1

α

0.6

0.8

1.0

P
er

ce
nt

ag
e

of
ru

ns
ac

hi
ev

in
g

co
op

er
at

io
n

Figure 4. Influence of α and ϵ on the cooperation. For each
pair (α, ϵ), the probability of learning a cooperative strategy is
estimated with 100 runs. As predicted by Theorem 3.3, coopera-
tion is achieved with a high probability for smaller values of the
exploration parameter ϵ, and of the step-size α.

ment, which yields rewards depending on the other player’s
actions. (iii) The existence of multiple equilibria. While
the question of convergence towards a Nash has previously
been studied (Hu & Wellman, 1998; Wainwright, 2019; Usui
& Ueda, 2021; Meylahn & Janssen, 2022), characterizing
towards which equilibrium algorithms converge is much
harder, and is usually only studied numerically, via simu-
lations or by proposing approximation methods to reduce
the problem to solving a (prefereably smooth) dynamical
system which is then analyzed either theoretically or numeri-
cally (Kaisers, 2012; Gupta et al., 2017; Barfuss & Meylahn,
2023; Meylahn, 2023; Ding et al., 2023; Cartea et al., 2022).

5. Experiments
Experimental Setup. In all the experiments we consider a
prisoner’s dilemma with a fixed incentive to cooperate g and
a fixed discount factor γ: g = 1.8 and γ = 0.6. In Figures 1
to 3 the stepsize α is fixed to α = .1

Influence of Step Size and Exploration. Figure 4 shows
the percentage of runs that achieve cooperation for multiple
values of the exploration parameter ϵ and the step-size α.
For each pair (ϵ, α), Algorithm 1 is run 100 times, for 2000
iterations, with an optimistic initialization. The percentage
of runs that yields cooperation is displayed as a function
of ϵ and α. As predicted by Proposition 2.2, when ϵ is
too large (ϵ = 0.2), Pavlov policy is no longer a stable
point of Equation (4), and no cooperation is achieved. As
predicted by Theorem 3.3, smaller values of α and ϵ yield
a larger probability of cooperation. The influence of the
incentive to cooperate g is explored in Appendix E.1: similar
behavior are observed for multiple values of the influence
to cooperate g.

Similar Behaviour in Deep Q-learning. We train a deep
Q-network agent (Mnih et al., 2015) with a Q-function

8

Self-play Q-Learners Can Provably Collude in the Iterated Prisoner’s Dilemma

0

1

s
=

D
D

Probability of Cooperation p(C|s)

0

1

s
=

C
C

0

1

s
=

D
C

0 2000 4000 6000
iterations

0

1

s
=

C
D

Figure 5. Extension to deep Q-learning. Evolution of the prob-
ability to cooperate conditioned on the state, i.e., the previous
actions, as a function of the number of iterations in the iterated
prisoner’s dilemma. Multiple runs corresponding to multiple seeds
are displayed, as well as their mean. Agents are trained against
a random agent for the initialization and go from an always
defect policy to the cooperative Pavlov policy.

parameterized by a neural network with two linear layers
and ReLu activation function to play the iterated prisoner’s
dilemma. First, the network is initialized by playing against
a random agent for 500 iterations. As discussed in the
previous paragraph, this corresponds to Algorithm 2 with
an exploration parameter of ϵ = 1/2. Then the agent is
playing against itself, with a decreasing exploration going
from ϵ = 1/2 to ϵ = 10−2. Details and hyperparameters
can be found in Appendix E.2.

Comments on Figure 5. A batch of actions is drawn at each
iteration, and we compute the empirical probability of choos-
ing the ‘cooperate’ action given a specific state p(C|s), for
all the previous possible states, s ∈ {CC,CD,DC,DD}.
The procedure is repeated for multiple seeds and the mean
across the seed is displayed as a thick line. Figure 5 displays
the probability of cooperation as a function of the number
of iterations. Players start to cooperate in the CD states,
then successively in the DD and CC states. Finally, around
iteration 6000 players start to defect in the CD state and
reach the Pavlov policy.

6. Conclusion and Limitation
To understand the empirical collusion phenomenon of ma-
chine learning algorithms observed in the economics com-
munity (Calvano et al., 2020b), we theoretically studied
multi-agent Q-learning in the minimalist setting of the iter-
ated prisoner’s dilemma. We showed that two agents guided
by the usual Q-learning Algorithm 1 could learn the coop-
erative Pavlov policy, even when both agents start from
an always defect policy. In addition, we provided ex-
plicit conditions (Assumption 3.1) for convergence towards
such a cooperative strategy in the fully greedy case (ϵ = 0,
Section 3.1), and in the ϵ-greedy case (ϵ > 0, Section 3.2).

The major limitation of our analysis is the self-play assump-
tion, which is currently crucial in the proof of Theorems 3.2
and 3.3. Empirically, relaxing the self-play assumption still
yields cooperation “most of the time” (Barfuss & Meylahn,
2023, Fig. 1a): in this setting, players alternate between mul-
tiple strategies but on average mostly play the Pavlov strat-
egy. Hence, relaxing the self-play assumption would require
analyzing the stationary distribution of the process (as done
in Xu & Zhao 2024 in the memoryless case), which is sig-
nificantly harder and left as future work. Finally, we also
plan to study the extension of the emergence of collusion in
other reinforcement learning algorithms and more complex
environments, such as policy gradient or Bertrand games.

9

Self-play Q-Learners Can Provably Collude in the Iterated Prisoner’s Dilemma

Acknowledgements
Q.B. would like to thank Samsung Electronics Co., Ldt. for
partially funding this research. GG is partially funded by a
Canada CIFAR AI chair and and NSERC discovery grant.
E.C. acknowledges funding by the European Union (ERC
grant AI-Comp, 101098332) and PRIN 2022 grant ‘Algo-
rithms and economic choices’, codice Cineca 2022S5RC7R,
CUP E53D23006420001. This research project was initi-
ated during the research program "Learning and Games"
semester at the Simons Institute for the Theory of Comput-
ing.

Impact Statement
This paper presents work whose goal is mainly theoretical
advances in the field of machine learning. The findings
stress the importance of proactive ethical considerations and
regulatory frameworks for responsible machine learning de-
ployment, influencing policy-making and industry practices
to ensure fair competition and societal benefit.

References
Arslan, G. and Yüksel, S. Decentralized Q-learning for

stochastic teams and games. IEEE Transactions on Auto-
matic Control, 62(4):1545–1558, 2016.

Asker, J., Fershtman, C., and Pakes, A. Artificial intelli-
gence, algorithm design, and pricing. In AEA Papers and
Proceedings, volume 112, pp. 452–56, 2022.

Assad, S., Clark, R., Ershov, D., and Xu, L. Algorithmic
pricing and competition: empirical evidence from the ger-
man retail gasoline market. Journal of Political Economy,
132(3):723–771, 2024.

Baker, B., Kanitscheider, I., Markov, T., Wu, Y., Pow-
ell, G., McGrew, B., and Mordatch, I. Emergent tool
use from multi-agent autocurricula. arXiv preprint
arXiv:1909.07528, 2019.

Banchio, M. and Mantegazza, G. Adaptive algorithms and
collusion via coupling. arXiv preprint arXiv, 2202, 2022.

Banchio, M. and Skrzypacz, A. Artificial intelligence and
auction design. arXiv preprint arXiv:2202.05947, 2022.

Barfuss, W. and Meylahn, J. M. Intrinsic fluctuations of
reinforcement learning promote cooperation. Scientific
reports, 13(1):1309, 2023.

Bureau, C. Big data and innovation: Implications for com-
petition policy in CANADA. https://ised-isd
e.canada.ca/site/competition-bureau-c
anada/sites/default/files/attachment
s/2022/Big-Data-e.pdf, 2018.

Calvano, E., G.Calzolari, Denicolò, V., and Pastorello, S.
Algorithmic pricing what implications for competition
policy? Review of industrial organization, 55:155–171,
2019.

Calvano, E., Calzolari, G., Denicolò, V., Harrington Jr, J. E.,
and Pastorello, S. Protecting consumers from collusive
prices due to ai. Science, 370(6520):1040–1042, 2020a.

Calvano, E., Calzolari, G., Denicolo, V., and Pastorello, S.
Artificial intelligence, algorithmic pricing, and collusion.
American Economic Review, 110(10):3267–3297, 2020b.

Calvano, E., Calzolari, G., Denicolò, V., and Pastorello, S.
Algorithmic collusion: Genuine or spurious? Interna-
tional Journal of Industrial Organization, pp. 102973,
2023.

Cartea, A., Chang, P., Penalva, J., and Waldon, H. The
algorithmic learning equations: Evolving strategies in
dynamic games. Available at SSRN 4175239, 2022.

Chen, L., Mislove, A., and Wilson, C. An empirical analysis
of algorithmic pricing on amazon marketplace. In Pro-
ceedings of the 25th international conference on World
Wide Web, pp. 1339–1349, 2016.

Deneckere, R. and Davidson, C. Incentives to form coali-
tions with Bertrand competition. The RAND Journal of
economics, pp. 473–486, 1985.

Ding, Z.-W., Zheng, G.-Z., Cai, C.-R., Cai, W.-R., Chen, L.,
Zhang, J.-Q., and Wang, X.-M. Emergence of cooperation
in two-agent repeated games with reinforcement learning.
Chaos, Solitons & Fractals, 2023.

Even-Dar, E. and Mansour, Y. Convergence of optimistic
and incremental Q-learning. NeurIPS, 14, 2001.

Ezrachi, A. and Stucke, M. E. The curious case of competi-
tion and quality. Journal of Antitrust Enforcement, 3(2):
227–257, 2015.

Flood, M. M. Some experimental games. Management
Science, 5(1):5–26, 1958.

Guan, C., Chen, F., Yuan, L., Zhang, Z., and Yu, Y. Efficient
communication via self-supervised information aggre-
gation for online and offline multi-agent reinforcement
learning. arXiv preprint arXiv:2302.09605, 2023.

Gupta, J. K., Egorov, M., and Kochenderfer, M. Cooperative
multi-agent control using deep reinforcement learning.
In Autonomous Agents and Multiagent Systems: AAMAS
2017 Workshops, Best Papers, São Paulo, Brazil, May
8-12, 2017, Revised Selected Papers 16, 2017.

10

https://ised-isde.canada.ca/site/competition-bureau-canada/sites/default/files/attachments/2022/Big-Data-e.pdf
https://ised-isde.canada.ca/site/competition-bureau-canada/sites/default/files/attachments/2022/Big-Data-e.pdf
https://ised-isde.canada.ca/site/competition-bureau-canada/sites/default/files/attachments/2022/Big-Data-e.pdf
https://ised-isde.canada.ca/site/competition-bureau-canada/sites/default/files/attachments/2022/Big-Data-e.pdf

Self-play Q-Learners Can Provably Collude in the Iterated Prisoner’s Dilemma

Hansen, K. T., Misra, K., and Pai, M. Frontiers: Algorith-
mic collusion: Supra-competitive prices via independent
algorithms. Marketing Science, 40(1):1–12, 2021.

Hu, J. and Wellman, M. P. Multiagent reinforcement learn-
ing: theoretical framework and an algorithm. In ICML,
volume 98, pp. 242–250, 1998.

Kaisers, M. Learning against learning: Evolutionary dy-
namics of reinforcement learning algorithms in strategic
interactions. 2012.

Kendall, G., Yao, X., and Chong, S. Y. The iterated prison-
ers’ dilemma: 20 years on, volume 4. World Scientific,
2007.

Klein, T. Autonomous algorithmic collusion: Q-learning un-
der sequential pricing. The RAND Journal of Economics,
52(3):538–558, 2021.

Lanctot, M., Zambaldi, V., Gruslys, A., Lazaridou, A.,
Tuyls, K., Pérolat, J., Silver, D., and Graepel, . A uni-
fied game-theoretic approach to multiagent reinforcement
learning. Advances in neural information processing
systems, 30, 2017.

Leibo, J. Z., Zambaldi, V., Lanctot, M., Marecki, J., and
Graepel, T. Multi-agent reinforcement learning in sequen-
tial social dilemmas. Conference on Autonomous Agents
and Multiagent System, 2017.

Littman, M. L. Markov games as a framework for multi-
agent reinforcement learning. In Machine learning pro-
ceedings 1994, pp. 157–163. Elsevier, 1994.

Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, O. P.,
and Mordatch, I. Multi-agent actor-critic for mixed
cooperative-competitive environments. NeurIPS, 2017.

Mehra, S. K. Antitrust and the robo-seller: Competition in
the time of algorithms. Minn. L. Rev., 100:1323, 2015.

Meylahn, J. M. Does an intermediate price facilitate algo-
rithmic collusion? Available at SSRN 4594415, 2023.

Meylahn, J. M. and Janssen, L. Limiting dynamics for
Q-learning with memory one in symmetric two-player,
two-action games. Complexity, 2022(1):4830491, 2022.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,
Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wier-
stra, D., Legg, S., and Hassabis, D. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533, 2015.

Nekoei, H., Badrinaaraayanan, A., Sinha, A., Amini, M.,
Rajendran, J., Mahajan, A., and Chandar, S. Dealing with
non-stationarity in decentralized cooperative multi-agent
deep reinforcement learning via multi-timescale learning.
arXiv preprint arXiv:2302.02792, 2023.

Nowak, M. and Sigmund, K. A strategy of win-stay, lose-
shift that outperforms tit-for-tat in the prisoner’s dilemma
game. Nature, 364:56–58, 1993.

OECD. Collusion: Competition policy in the digital age.
https://www.oecd.org/daf/competition
/Algorithms-and-colllusion-competiti
on-policy-in-the-digital-age.pdf, 2017.

Osborne, M. J. An introduction to game theory, volume 3.
Oxford university press New York, 2004.

Schechner, S. Why do gas station prices constantly change?
blame the algorithm. Wall Street Journal, 8, 2017.

Seijen, H. V., Hasselt, H. V., Whiteson, S., and Wiering, M.
A theoretical and empirical analysis of expected sarsa. In
2009 ieee symposium on adaptive dynamic programming
and reinforcement learning, pp. 177–184. IEEE, 2009.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., and
Graepel, T. A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play. Sci-
ence, 362(6419):1140–1144, 2018.

Sunehag, P., Gruslys, G. L. A., Czarnecki, W. M., Zam-
baldi, V., Jaderberg, M., Lanctot, M., Sonnerat, N., Leibo,
J. Z., Tuyls, K., and Graepel, T. Value-decomposition
networks for cooperative multi-agent learning. arXiv
preprint arXiv:1706.05296, 2017.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Tang, Y. Towards learning multi-agent negotiations via
self-play. In Proceedings of the IEEE/CVF International
Conference on Computer Vision Workshops, 2019.

Usui, Y. and Ueda, M. Symmetric equilibrium of multi-
agent reinforcement learning in repeated prisoner’s
dilemma. Applied Mathematics and Computation, 409:
126370, 2021.

Wainwright, M. J. . Stochastic approximation with cone-
contractive operators: Sharp ℓ∞-bounds for Q-learning.
arXiv preprint arXiv:1905.06265, 2019.

Waltman, L. and Kaymak, U. Q-learning agents in a Cournot
oligopoly model. Journal of Economic Dynamics and
Control, 32(10):3275–3293, 2008.

11

https://www.oecd.org/daf/competition/Algorithms-and-colllusion-competition-policy-in-the-digital-age.pdf
https://www.oecd.org/daf/competition/Algorithms-and-colllusion-competition-policy-in-the-digital-age.pdf
https://www.oecd.org/daf/competition/Algorithms-and-colllusion-competition-policy-in-the-digital-age.pdf

Self-play Q-Learners Can Provably Collude in the Iterated Prisoner’s Dilemma

Watkins, C. and Dayan, P. Q-learning. Machine learning, 8:
279–292, 1992.

Whitehead, S. D. A complexity analysis of cooperative
mechanisms in reinforcement learning. In AAAI, pp. 607–
613, 1991.

Xu, Z. and Zhao, W. On mechanism underlying algorithmic
collusion. arXiv preprint arXiv:2409.01147, 2024.

Yongacoglu, B., Arslan, G., and Yüksel, S. Decentralized
learning for optimality in stochastic dynamic teams and
games with local control and global state information.
IEEE Transactions on Automatic Control, 67(10):5230–
5245, 2021.

Yongacoglu, B., Arslan, G., and Yüksel, S. Asynchronous
decentralized Q-learning: Two timescale analysis by per-
sistence. arXiv preprint arXiv:2308.03239, 2023.

Zhang, K., Yang, Z., and Başar, T. Multi-agent reinforce-
ment learning: A selective overview of theories and algo-
rithms. Handbook of reinforcement learning and control,
pp. 321–384, 2021.

Zhao, X., Pan, Y., Xiao, C., Chandar, S., and Rajendran,
J. Conditionally optimistic exploration for cooperative
deep multi-agent reinforcement learning. arXiv preprint
arXiv:2303.09032, 2023.

12

Self-play Q-Learners Can Provably Collude in the Iterated Prisoner’s Dilemma

A. Proofs of Q-values at Convergence
A.1. Always defect Policy

Proposition 2.1 (Always Defect). The following Q-table Q⋆,Defect is a fixed point of the Bellman Equation (4) and
yields an always defect policy, ∀s ∈ {C,D}2,

Q⋆,Defect
s,D = Ea2∼π(·|s)rD,a2/(1− γ) ,

Q⋆,Defect
s,C = Q⋆,Defect

s,D − Ea2∼π(·|s)
(
rD,a2 − rC,a2

)
.

Proof of Proposition 2.1 (always defect). The greedy action of the always defect policy is to defect all the time.
For all states st ∈ {C,D}2, a1t ∈ {C,D}, the self-play multi-agent Bellman equation writes

Q⋆,Defect
st,a1

t
= γ(1− ϵ)Q⋆,Defect

(a1
t ,D),D

+ γϵQ⋆,Defect
(a1

t ,C),D
+ Eara1

t ,a
, (9)

i.e., , for all state st ∈ {C,D}2

Q⋆,Defect
st,D

− γ(1− ϵ)Q⋆,Defect
(DD),D − γϵQ⋆,Defect

(DC),D = EarD,a (10)

Q⋆,Defect
st,C

− γ(1− ϵ)Q⋆,Defect
(C,D),D − γϵQ⋆,Defect

(C,C),D = EarC,a . (11)

Evaluating Equation (10) in st = (D,C) and st = (DD) yields

(1− γϵ)Q⋆,Defect
DC,D − γ(1− ϵ)Q⋆,Defect

(D,D),D = EarD,a (12)

−γϵQ⋆,Defect
DC,D + (1− γ(1− ϵ))Q⋆,Defect

DD,D = EarD,a . (13)

One can see that

Q⋆,Defect
DC,D = Q⋆,Defect

(D,D),D = EarD,a/(1− γ) , (14)

is a solution to the linear system. Plugging Equation (14) into Equation (10) yields

Q⋆,Defect
CC,D = Q⋆,Defect

CD,D = EarD,a/(1− γ) . (15)

Plugging Equation (15) into Equation (11) yields

∀s ∈ {C,D}2, Q⋆,Defect
s,C = EarC,a +

γ

1− γ
EarD,a (16)

=
1

1− γ
EarD,a − (EarD,a − EarC,a) (17)

= Q⋆,Defect
s,D − (EarD,a − EarC,a) . (18)

This means that these Q values imply a greedy always defect policy if and only if

EarD,a > EarC,a , i.e., (19)
(1− ϵ)rDD + ϵrDC > (1− ϵ)rCD + ϵrCC , (20)

which is always true since rDD > rCD and rDC > rCC.

A.2. Q-values at convergence for the Pavlov Policy

Proposition 2.2 (Pavlov). If γ > rDC−rCC

rCC−rDD
and ϵ is small enough, then there exists a Q-function, Q⋆,Pavlov, which is

a fixed point of the self-play multi-agent Bellman Equation (4) and yields the Pavlov policy, i.e,

∀s ∈ {CC,DD} Q⋆,Pavlov
s,C > Q⋆,Pavlov

s,D and

∀s ∈ {CD,DC} Q⋆,Pavlov
s,C < Q⋆,Pavlov

s,D .

13

Self-play Q-Learners Can Provably Collude in the Iterated Prisoner’s Dilemma

Proof of Q-values at convergence for the Pavlov Policy.

Q⋆,Pavlov
st,a1

t
= γ(1− ϵ)Q⋆,Pavlov

(a1
t ,ā

2(st)),ā1(a1
t ,ā

2(st))
+ γϵQ⋆,Pavlov

(a1
t ,a

2(st)),ā1(a1
t ,a

2(st))
+ Ea∼π(·|st) ra1

t ,a
(21)

Q⋆,Pavlov
CC,a1

t
= γ(1− ϵ)Q⋆,Pavlov

(a1
t ,C),ā1(a1

t ,C)
+ γϵQ⋆,Pavlov

(a1
t ,D,,ā1(a1

t ,D)
+ Ea∼π(·|CC) ra1

t ,a
(22)

Q⋆,Pavlov
DD,a1

t
= γ(1− ϵ)Q⋆,Pavlov

(a1
t ,C),ā1(a1

t ,C)
+ γϵQ⋆,Pavlov

(a1
t ,D),ā1(a1

t ,D)
+ Ea∼π(·|DD) ra1

t ,a
(23)

Q⋆,Pavlov
CD,a1

t
= γ(1− ϵ)Q⋆,Pavlov

(a1
t ,D),ā1(a1

t ,D)
+ γϵQ⋆,Pavlov

(a1
t ,C),ā1(a1

t ,C)
+ Ea∼π(·|CD) ra1

t ,a
(24)

Q⋆,Pavlov
DC,a1

t
= γ(1− ϵ)Q⋆,Pavlov

(a1
t ,D),ā1(a1

t ,D)
+ γϵQ⋆,Pavlov

(a1
t ,C),ā1(a1

t ,C)
+ Ea∼π(·|DC)ra1

t ,a
(25)

Hence

Q⋆,Pavlov
(C,C),C − γ(1− ϵ)Q⋆,Pavlov

(C,C),C − γϵQ⋆,Pavlov
(D,D),D = Ea∼π(·|CC) rC,a (26)

Q⋆,Pavlov
(C,C),D − γ(1− ϵ)Q⋆,Pavlov

(D,C),D − γϵQ⋆,Pavlov
(D,D),C = Ea∼π(·|CC) rD,a (27)

Q⋆,Pavlov
(D,D),C − γ(1− ϵ)Q⋆,Pavlov

(C,C),C − γϵQ⋆,Pavlov
(C,D),D = Ea∼π(·|DD) rC,a (28)

Q⋆,Pavlov
(D,D),D − γ(1− ϵ)Q⋆,Pavlov

(D,C),D − γϵQ⋆,Pavlov
(D,D),C = Ea∼π(·|DD) rD,a (29)

Q⋆,Pavlov
(C,D),C − γ(1− ϵ)Q⋆,Pavlov

(C,D),D − γϵQ⋆,Pavlov
(C,C),C = Ea∼π(·|CD) rC,a (30)

Q⋆,Pavlov
(C,D),D − γ(1− ϵ)Q⋆,Pavlov

(D,D),C − γϵQ⋆,Pavlov
(D,C),D = Ea∼π(·|CD) rD,a (31)

Q⋆,Pavlov
(D,C),C − γ(1− ϵ)Q⋆,Pavlov

(C,D),D − γϵQ⋆,Pavlov
(C,C),C = Ea∼π(·|DC) rC,a (32)

Q⋆,Pavlov
(D,C),D − γ(1− ϵ)Q⋆,Pavlov

(D,D),C − γϵQ⋆,Pavlov
(D,C),D = Ea∼π(·|DC) rD,a . (33)

One can observe that
Q⋆,Pavlov

(C,C),C = Q⋆,Pavlov
(D,D),C

Q⋆,Pavlov
(C,C),D = Q⋆,Pavlov

(D,D),D

Q⋆,Pavlov
(C,D),C = Q⋆,Pavlov

(D,C),C

Q⋆,Pavlov
(C,D),D = Q⋆,Pavlov

(D,C),D ,

(34)

(35)

(36)

(37)

and the system of equations rewrites

Q⋆,Pavlov
(C,C),C − γ(1− ϵ)Q⋆,Pavlov

(C,C),C − γϵQ⋆,Pavlov
(C,D),D = Ea∼π(·|CC) rC,a (38)

Q⋆,Pavlov
(D,D),D − γ(1− ϵ)Q⋆,Pavlov

(C,D),D − γϵQ⋆,Pavlov
(C,C),C = Ea∼π(·|DD) rD,a (39)

Q⋆,Pavlov
(C,D),C − γ(1− ϵ)Q⋆,Pavlov

(C,D),D − γϵQ⋆,Pavlov
(C,C),C = Ea∼π(·|CD) rC,a (40)

Q⋆,Pavlov
(C,D),D − γ(1− ϵ)Q⋆,Pavlov

(C,C),C − γϵQ⋆,Pavlov
(C,D),D = Ea∼π(·|CD) rD,a (41)

For Q⋆,Pavlov
(C,C),C and Q⋆,Pavlov

(C,D),D on needs to solve the following linear system:(
1− γ(1− ϵ) −γϵ
−γ(1− ϵ) 1− γϵ

)(
Q⋆,Pavlov

(C,C),C

Q⋆,Pavlov
(C,D),D

)
=

(
Ea∼π(·|CC) rC,a

Ea∼π(·|CD) rD,a

)
, (42)

which yields

Q⋆,Pavlov
(D,D),C = Q⋆,Pavlov

(C,C),C =
(1− γϵ)Ea∼π(·|CC) rC,a + γϵEa∼π(·|CD) rD,a

1− γ

Q⋆,Pavlov
(D,C),D = Q⋆,Pavlov

(C,D),D =
γ(1− ϵ)Ea∼π(·|CC) rC,a + (1− γ(1− ϵ))Ea∼π(·|CD) rD,a

1− γ
.

(43)

(44)

14

Self-play Q-Learners Can Provably Collude in the Iterated Prisoner’s Dilemma

Q⋆,Pavlov
(C,D),D −Q⋆,Pavlov

(C,D),C = Q⋆,Pavlov
(D,C),D −Q⋆,Pavlov

(D,C),C (45)

= γ(1− ϵ)Q⋆,Pavlov
(C,C),C + γϵQ⋆,Pavlov

(C,D),D + Ea∼π(·|CD) rD,a (46)

− γ(1− ϵ)Q⋆,Pavlov
(C,D),D − γϵQ⋆,Pavlov

(C,C),C − Ea∼π(·|CD) rC,a (47)

= γ(1− 2ϵ)Q⋆,Pavlov
(C,C),C − γ(1− 2ϵ)Q⋆,Pavlov

(C,D),D + Ea∼π(·|CD) rD,a − Ea∼π(·|CD) rC,a (48)

= γ(1− 2ϵ)(Q⋆,Pavlov
(C,C),C −Q⋆,Pavlov

(C,D),D) + Ea∼π(·|CD) rD,a − Ea∼π(·|CD) rC,a (49)

= γ(1− 2ϵ) (Ea∼π(·|CC) rC,a − Ea∼π(·|CD) rD,a)︸ ︷︷ ︸
depends on ϵ

+Ea∼π(·|CD) rD,a − Ea∼π(·|CD) rC,a︸ ︷︷ ︸
>0

(50)

= γ(1− 2ϵ) ((1− ϵ)(rCC − rDD) + ϵ(rCD − rDC))︸ ︷︷ ︸
depends on ϵ

+Ea∼π(·|CD) rD,a − Ea∼π(·|CD) rC,a︸ ︷︷ ︸
>0

(51)

= γ(1− 2ϵ)(2(g − 1)− 2gϵ) + (2− g) , (52)

Which is positive. In addition

Q⋆,Pavlov
(D,D),C −Q⋆,Pavlov

(D,D),D (53)

= γ(1− 2ϵ) (Ea∼π(·|CC) rC,a − Ea∼π(·|CD) rD,a)︸ ︷︷ ︸
depends

+Ea∼π(·|DD) (rC,a − rD,a)︸ ︷︷ ︸
<0

(54)

= γ(1− 2ϵ) ((1− ϵ)(rCC − rDD) + ϵ(rCD − rDC))︸ ︷︷ ︸
depends on ϵ

+(1− ϵ)(rCC − rDC) + ϵ(rCD − rDD)︸ ︷︷ ︸
<0

(55)

= 2γ(1− 2ϵ) (((g − 1)− gϵ))︸ ︷︷ ︸
depends on ϵ

+g , (56)

which is positive for ϵ small enough.

B. Propositions B.1 and B.2
Proposition B.1 (Always defect). For all γ ∈ (0, 1), the always defect policy, i.e., πDefect(D|s) = 1 , ∀s ∈ S,
is a subgame perfect equilibrium.

Proof. Regardless of the state, given that the opponent is always defecting, the best response at each time step is to defect
since r1(C,D) < r1(D,D).

Proposition B.2 (Pavlov). If 1 > γ ≥ 2−g
2(g−1) , then the Pavlov policy, i.e., πPavlov(D|s) = 1 , ∀s ∈ {CD,DC} and

πPavlov(C|s) = 1 , ∀s ∈ {DD,CC}, is a subgame perfect equilibrium.

Proof. Let us assume that our opponent plays according to Pavlov and show that the best response is to also adopt this
strategy. By the one deviation principle (Osborne, 2004, Prop 438.1), one only needs to show that for the four possible
starting states the best response against Pavlov is to follow Pavlov.

• If we start in s0 ∈ {CD,DC}, the opponent will defect and the best response is to defect since, if we cooperate, we end up in
s1 = CD which leads to a worse payoff that going straight to DD by defecting, rCD+γrDD+γ2rCC ≤ rDD+γrCC+γ2rCC,
which is always the case since rCD < rDD < rCC.

• If we start in s0 = CC, we should show that it is better to cooperate than to defect. It is the case if,
rCD + γrDD + γ2rCC ≤ rCC + γrCC + γ2rCC, which is true if and only if γ ≥ rDC−rCC

rCC−rDD
= 2−g

2(g−1) .

• Finally, if we start in s0 = DD, it is better to cooperate than to defect as the opponent is cooperating. Hence, the best
response to the Pavlov policy is to play according to Pavlov.

15

Self-play Q-Learners Can Provably Collude in the Iterated Prisoner’s Dilemma

C. Proof the Fully Greedy Case (Theorem 3.2)
C.1. Lose-shift to Pavlov

Equations (6) and (7) that govern the dynamics of Q(C,C),D and Q(D,D),C from the Lose-shift policy to Pavlov policy
are recalled below:

Qt+1
(C,C),D = (1− α)Qt

(C,C),D + α
(
rDD + γQt

(D,D),C

)
, (6)

Qt+1
(D,D),C = (1− α)Qt

(D,D),C + α
(
rCC + γQt+1

(C,C),D

)
. (7)

Plugging Equation (6) in Equation (7) yields:

Qt+1
(D,D),C = (1− α)Qt

(D,D),C + α
(
rCC + γ(1− α)Qt

(C,C),D + γα
(
rDD + γQt

(D,D),C

))
, i.e., (57)

Qt+1
(D,D),C = αγ(1− α)Qt

(C,C),D + (1− α+ αγ2)Qt
(D,D),C + α (rCC + γαrDD) , (58)

Following Equations (6) and (58), the dynamics of Q(C,C),D and Q(D,D),C is governed by the linear system(
Qt+1

(C,C),D

−Qt+1
(D,D),C

)
=

(
1− α −αγ

−αγ(1− α) 1− α+ (αγ)2

)(
Qt

(C,C),D

−Qt
(D,D),C

)
+ b , (59)

for a given b. Let (−Q⋆,lose-shift
(C,C),D , Q⋆,lose-shift

(D,D),C) be the fixed point of this linear system, it writes

(
Qt+1

(C,C),D −Q⋆,lose-shift
(C,C),D

−(Qt+1
(D,D),C −Q⋆,lose-shift

(D,D),C)

)
=

(
1− α −αγ

−αγ(1− α) 1− α+ (αγ)2

)(
Qt

(C,C),D −Q⋆,lose-shift
(C,C),D

−(Qt
(D,D),C −Q⋆,lose-shift

(D,D),C)

)
, (60)

Standard computations yield the eigenvalues of the matrix(
1− α −αγ

−αγ(1− α) 1− α+ (αγ)2

)
. (61)

are

λ± = 1− α+ αγ

(
αγ

2
±
√

1− α+
(αγ)2

4

)
. (62)

Thus for 0 < α < 1 and 0 < γ < 1 we have 0 < λ± < 1 and thus
(
Qt

(C,C),D, Q
t
(D,D),C

)
converges linearly towards(

Q⋆,lose-shift
(C,C),D , Q⋆,lose-shift

(D,D),C

)
.

Then using Lemma C.1, we have that Qt
(C,C),D will get below Qt0

(C,C),C before Qt
(D,D),C getting below Qt0

(D,D),D.

Lemma C.1. In the phase from lose-shift to Pavlov, if rDD+γrCC

1−γ2 ≜ Q⋆,lose−shift
(C,C),C < Qt0

(C,C),C ≤ rCC

1−γ , then while
Qt

(C,C),D > Qt0
(C,C),C, Qt

(D,D),C > Qt0
(D,D),D.

Proof. (Lemma C.1) In phase 2, Qt+1
(C,C),D > Qt0

(C,C),C Using Equation (7)

Qt+1
(D,D),C = (1− α)Qt

(D,D),C + α(rCC + γ Qt+1
(C,C),D︸ ︷︷ ︸

>Qt+1
(C,C),C︸ ︷︷ ︸

>Q
t0
(C,C),C

>Q
t0
(D,D),D

=Qt+1
(D,D),D

Assumption 3.1 iii)

) , (63)

hence

Qt+1
(D,D),C > Qt+1

(D,D),D . (64)

For phases 2 and 3, the convergence is also linear, and similar arguments hold.

16

Self-play Q-Learners Can Provably Collude in the Iterated Prisoner’s Dilemma

C.2. O(1/α) convergence rate

The convergence of the Q-values is linear in each phase (1 to 3). For instance, in phase 1 the convergence is linear with rate
(1− α(1− γ)), more specifically,

Qt
(D,D),D −Q⋆,Defect

(D,D),D = (1− α(1− γ))t(Qt0
(D,D),D −Q⋆,Defect

(D,D),D) . (65)

With the later decrease, the policy switches, i.e.,

Qt
(D,D),D −Q⋆,Defect

(D,D),D < Qt0
(D,D),C −Q⋆,Defect

(D,D),D

will require a number of steps

T = (log(Qt0
(DD),C −Q⋆,Defect

(D,D),D))− log(Qt0
(D,D),D −Q⋆,Defect

(D,D),D))/ log(1− α(1− γ)) (66)

∼α→0 (log(Qt0
(D,D),D −Q⋆,Defect

(D,D),D))− log(Qt0
(DD),C −Q⋆,Defect

(D,D),D)))/α(1− γ) (67)

= O(1/α) . (68)

For phases 2 and 3, the convergence is also linear, and similar arguments hold. To summarize, the convergence is linear in
the three phases (from always defect to Lose-shift, from Lose-shift to Pavlov, staying in Pavlov), and is
done in O(1/α) in each phase.

D. Proof of the ϵ-Greedy Case (Theorem 3.3)
Let us start with the proof of Lemma 3.4.

D.1. Proof of Lemma 3.4: from always defect to lose-shift

Lemma 3.4. Let 0 < ϵ < 1/2, 0 < γ < 1 and 0 ≤ k ≤ T , k ∈ N. Suppose that Assumption 3.1 holds, s0 = DD, and both
agents are guided by ϵ-greedy Q-learning (Algorithm 1), then

i) The probability of the event Ek,T is lower bounded

P(Ek,T) ≥ 1− 2T (2ϵ)k+1 .

ii) For all state-action pair (s, a) ∈ S ×A
|Qt+1

s,a −Qt
s,a| ≤

∆rα

1− γ
.

iii) On the event Ek,T , the deviation for the Q-values others than Q(D,D),D is at most

|Qt
s,a −Qt0

s,a| ≤
2k∆rα

1− γ
, ∀(s, a) ̸= (DD,D) .

iv) On the event Ek,T , the deviation for the Q-value Q(D,D),D is upper-bounded

Qt+1
(D,D),D −Q⋆,Defect

(D,D),D ≤ 2k∆rα

1− γ

+ (1− α(1− γ))
T−2k

(
Qt0

(D,D),D −Q⋆,Defect
(D,D),D

)
.

v) On the event Ek,T , for k < (1−γ)∆Q
2α∆r

, with ∆Q ≜ mins ̸=DD Qt0
s,D −Qt0

s,C

Qt
s,D > Qt

s,C , ∀t ≤ T, s ̸= DD .

vi) On the event Ek,T , if T > 2k +
log

(
Q

t0
(D,D),C

−Q⋆,Defect
(D,D),D

− 4k∆rα
1−γ

)
−log

(
Q

t0
(D,D),D

−Q⋆,Defect
(D,D),D

)
log(1−α+γα) , then

QT
(D,D),D < QT

(D,D),C .

17

Self-play Q-Learners Can Provably Collude in the Iterated Prisoner’s Dilemma

D.1.1. PROOF OF LEMMA 3.4 i)

Proof of Lemma 3.4 i). The proof of this result relies on the fact that

• The probability of the greedy action is 1− ϵ.

• Each agent picks their action independently of the other.

Thus, either both agents take a greedy action with probability (1− ϵ)2, or at least one of them picks a non-greedy action
with probability 2ϵ− ϵ2.

P(Ek,T) =
k∑

i=0

P(a non-greedy action has been picked exactly i times in T steps) (69)

=

k∑
i=0

(
T

i

)
(1− ϵ)2(T−i)(2ϵ− ϵ2)i (70)

= 1−
T∑

i=k+1

(
T

i

)
(1− ϵ)2(T−i)

≤(2ϵ)i≤(2ϵ)k+1︷ ︸︸ ︷
(2ϵ− ϵ2)i (because 0 ≤ ϵ ≤ 1/2) (71)

≥ 1− (2ϵ)k+1

≤
∑T

i=0 (
T
i)=2T︷ ︸︸ ︷

T∑
i=k+1

(
T

i

)
(1− ϵ)2(T−i) (72)

≥ 1− 2T (2ϵ)k+1 , (73)

i.e.,
P(Ek,T) ≥ 1− 2T (2ϵ)k+1 . (74)

We will then use this lemma in steps 1 and 2. The idea of the proof will be to leverage this lower bound to show that the
ϵ-greedy dynamic behaves similarly to the fully greedy policy.

D.1.2. PROOF OF LEMMA 3.4 ii)

Proof of Lemma 3.4 ii). For all state, action pair (s, a) ∈ S ×A, the Q-learning update rule writes

Qt+1
s,a = Qt

s,a + α
(
rt + γmax

a′
Qt

s,a′ −Qt
s,a

)
. (75)

In addition, since Q =
∑∞

t=0 γ
trt, then the Q values cannot go above (resp. below) the maximal (resp. minimal) reward. In

other words
rmin

1− γ
≤Qs,a ≤ rmax

1− γ
which yields (76)

rmin + γ
rmin

1− γ
− rmax

1− γ
≤rt + γmax

a′
Qt

s,a′ −Qt
s,a ≤ rmax + γ

rmax

1− γ
− rmin

1− γ
(77)

rmin − rmax

1− γ
≤rt + γmax

a′
Qt

s,a′ −Qt
s,a ≤ rmax − rmin

1− γ
. (78)

Plugging Equation (78) in Equation (75) yields the desired result

|Qt+1
s,a −Qt

s,a| ≤
∆rα

1− γ
, (79)

with ∆r ≜ rmax − rmin the difference between the maximal and the minimal reward.

18

Self-play Q-Learners Can Provably Collude in the Iterated Prisoner’s Dilemma

D.1.3. PROOF OF LEMMA 3.4 iii)

Proof of Lemma 3.4 iii). Conditioning on Ek,T , for all state-action pair (s, a) ̸= (DD,D), Qs,a is updated at most 2k times.
Since Qs,a is updated at most 2k times, Lemma 3.4 ii) repeatedly applied 2k times yields

|Qt
s,a −Qt0

s,a| ≤
2k∆rα

1− γ
, ∀(s, a) ̸= (DD,D) . (80)

D.1.4. PROOF OF LEMMA 3.4 iv)

Proof of Lemma 3.4 iv). Let us consider the first step, from always defect to lose-shift. We start from the
always defect region, i.e., the greedy action is to defect regardless of the state. When the greedy action D is picked in
the state DD, the entry Q(D,D),D is updated as follows. In other words, conditioning on Ek,T

• The defect action D in the state DD is played at least T − 2k times. When it is the case, Q(D,D),D is updated at least
T − 2k times according to

Qt+1
(D,D),D = Qt

(D,D),D + α
(
rDD + γQt

(D,D),D −Qt
(D,D),D

)
(81)

Qt+1
(D,D),D −Q⋆,Defect

(D,D),D = (1− α+ αγ)
(
Qt

(D,D),D −Q⋆,Defect
(D,D),D

)
, (82)

with Q⋆,Defect
(D,D),D = rDD

1−γ .

• Otherwise Q(D,D),D update is bounded 2k times using Lemma 3.4 ii):

Qt+1
(D,D),D −Q⋆,Defect

(D,D),D ≤ Qt
(D,D),D −Q⋆,Defect

(D,D),D +
∆rα

1− γ
. (83)

Combining Equation (82) for at least T − 2k steps, and Equation (83) for at most 2k steps yields

QT
(D,D),D −Q⋆,Defect

(D,D),D ≤ (1− α+ αγ)T−2k
(
Qt0

(D,D),D −Q⋆,Defect
(D,D),D

)
+

2k∆rα

1− γ
. (84)

D.1.5. PROOF OF LEMMA 3.4 v)

Proof. Let s ∈ S\DD, t ≤ T , on the event Ek,T

Qt
s,D −Qt

s,C = Qt
s,D −Qt0

s,D︸ ︷︷ ︸
≥− 2k∆rα

1−γ (using Lemma 3.4 iii))

+ Qt0
s,C −Qt

s,C︸ ︷︷ ︸
≥− 2k∆rα

1−γ (using Lemma 3.4 iii))

+ Qt0
s,D −Qt0

s,C︸ ︷︷ ︸
≥mins ̸=DD Q

t0
s,D−Q

t0
s,C≜∆Qt0

(85)

≥ −4k∆rα

1− γ
+∆Qt0 . (86)

Hence, if

k >
(1− γ)∆Qt0

4∆r
, (87)

then on the event Ek,T for all s ∈ S\DD,

QT
s,D −QT

s,C ≥ 0 . (88)

Note that ∆Qt0 ≜ mins̸=DD Qt0
s,D −Qt0

s,C > 0 since one starts from the always defect policy.

19

Self-play Q-Learners Can Provably Collude in the Iterated Prisoner’s Dilemma

D.1.6. PROOF OF LEMMA 3.4 vi)

Proof. Using Lemma 3.4 iv), on the event Ek,T , one has

QT
(D,D),D ≤ (1− α+ αγ)T−2k

(
Qt0

(D,D),D −Q⋆,Defect
(D,D),D

)
+

2k∆rα

1− γ
+Q⋆,Defect

(D,D),D (89)

≤ −2kα∆r

1− γ
+Qt0

DD,C if (90)

T > 2k +
log
(
Qt0

(D,D),C −Q⋆,Defect
(D,D),D − 4k∆rα

1−γ

)
− log

(
Qt0

(D,D),D −Q⋆,Defect
(D,D),D

)
log(1− α+ γα)

. (91)

Remark D.1.
(
Qt0

(D,D),C −Q⋆,Defect
(D,D),D − 4k∆rα

1−γ

)
needs to be positive.

In addition, using Lemma 3.4 iii) on Ek,T yields

−2kα∆r

1− γ
+Qt0

DD,C ≤ QT
DD,C . (92)

Combining Equations (90) and (92), yields that on Ek,T , if

T > 2k +
log
(
Q0

(D,D),C −Q⋆,Defect
(D,D),D − 4k∆rα

1−γ

)
− log

(
Q0

(D,D),D −Q⋆,Defect
(D,D),D

)
log(1− α+ γα)

, (93)

then
QT

(D,D),D < QT
(D,D),C . (94)

D.2. Proof of Theorem 3.3

Proof of Theorem 3.3. To conclude, if we set k = O(1/α), such that k <
∆Q(1−γ)
2α∆r

and the total number of steps T such

that T > 2k+
log

(
Q

t0
(D,D),C

−Q⋆,Defect
(D,D),D

− 4k∆rα
1−γ

)
−log

(
Q0

(D,D),D−Q⋆,Defect
(D,D),D

)
log(1−α+γα) , one that with the probability of at least 1−2T ϵT−k,

there exists t1 < T such that Qt1
(D,D),D < Qt1

(D,D),C.

The proof can be concluded as follows: in order to hold with probability at least 1− δ, ϵ must satisfy

T log(2) + k log 2ϵ ≤ log δ (95)

log(ϵ) ≤ 1

k︸︷︷︸
:=C/α

log(δ)− T

k︸︷︷︸
:=C1⊥⊥α

log(2) , (96)

where the constant C depends on the constants of T and k but is independent of alpha. Indeed, as both T and k grow as
1/α, the ration T/k can be chosen independent of α: this ensures that the event holds with high probability, and does not
contradict k ≤ ∆Q

(1−γ)
2α∆r

= O(1/α) from Theorem 3.3. More formally, the number of steps needed T , varies as a function
of 1/α: T ∼ C1/α, and k ∼ C2/α, for given C1, C2 ∈ R. The choice of k in Theorem 3.3 requires as well a growth as
1/α: k ≤ ∆Q(1− γ)/(2α∆r) = O(1/α).

To summarize, we proved that with high probability, there exists a time step t1 such that

Qt1
(D,D),D < Qt1

(D,D),C (97)

Qt1
(C,C),D > Qt1

(C,C),C (98)

Qt1
(D,C),D > Qt1

(D,C),C (99)

Qt1
(C,D),D > Qt1

(C,D),D , (100)

20

Self-play Q-Learners Can Provably Collude in the Iterated Prisoner’s Dilemma

and for all t < t1

Qt
(D,D),D > Qt

(D,D),C (101)

Qt
(C,C),D > Qt

(C,C),C (102)

Qt
(D,C),D > Qt

(D,C),C (103)

Qt
(C,D),D > Qt

(C,D),D . (104)

In plain words, the Q-values went from the always defect to the lose-shift region.

D.3. From lose-shift to Pavlov

In this section, we show similar results to Lemma 3.4. For simplicity, we considered that in Equations (6) and (7) one-time
step was performing two ϵ-greedy updates.

1. We can lower-bound P(Ek,T)

2. Under the event Ek,T we will observe at least (1− 4k)/2 pair of updates following Equations (6) and (7) are performed
and at most 4k greedy updates.

3. Thus the Q-values for the greedy actions Q(C,C),D and Q(D,D),C will converge linearly and can be bounded.

4. The Q-entries of the non-greedy actions can be bounded.

Similarly to Lemma 3.4, one can control the Q-values in the greedy and non-greedy states.

Lemma D.2. Let us consider Algorithm 1 with ϵ < 1/2, γ > 0 and δ > 0. If both agents act according to an ϵ-greed
lose-shift policy then,

i) On the event Ek,T , for all (s, a) ∈ S ×A

|Qt+1
s,a −Qt

s,a| ≤
∆rα

1− γ
.

ii) On the event Ek,T , for all t ≥ t1 the deviation for the Q-values others than Q(D,D),C and Q(C,C),D is at most

|Qt
s,a −Qt1

s,a| ≤
2k∆rα

1− γ
, ∀(s, a) /∈ {(DD,C), (CC,D)} .

iii) On the event Ek,T , the deviation for the Q-value Q(C,C),D is upper-bounded

Qt
(C,C),D −Q⋆,lose-shift

(C,C),D ≤ C1λ
t−k
1 + C2λ

t−k
2 +

2k∆rα

1− γ
. (105)

where C1 and C2 are defined in Equation (123).
iv) On the event Ek,T , for k < (1−γ)∆Q

2α∆r
, with ∆Q ≜ mins/∈{DD,CC} Q

t0
s,D −Qt0

s,C

Qt
s,D > Qt

s,C , ∀t ≤ T, s ̸= {DD,CC} .

v) If Qt0
(C,C),D −Qt0

(C,C),C ≥ 4k∆rα
1−γ then, for all t1 ≤ t ≤ t2

Qt
(D,D),C −Qt

(D,D),D +Qt
(C,C),D −Qt

(C,C),C ≥ k∆rα

1− γ
. (106)

In other words, this ensures that the agents either go to the Pavlov policy or oscillate between always defect and
lose-shift, but do not directly go from always defect to Pavlov.

The proof of Lemmas D.2 i) to D.2 iv) are the same as for Lemma 3.4.

21

Self-play Q-Learners Can Provably Collude in the Iterated Prisoner’s Dilemma

Final proof of Theorem 3.3. Once we reached the lose-shift policy, using Lemmas D.2 iii) and D.2 iv), either

• Qt
(C,C),D < Qt

(C,C),C, and the policy changes for the Pavlovpolicy.

• Either non-greedy actions are taken, and we go to the always always defect policy, i.e., we back to the previous
situation, Lemma 3.4, but at this time-step, Qt

(C,C),D might be closer to Qt
(C,C),C. In this situation

– Either greedy actions are taken and we achieve again the lose-shift region
– Either non-greedy actions are taken, and Qt

(C,C),D might become smaller than Qt
(C,C),C, which yield a win-stay

policy.

Proof of Lemma D.2 v).(
Qt+1

(C,C),D −Q⋆,lose-shift
(C,C),D

Qt+1
(D,D),C −Q⋆,lose-shift

(D,D),C

)
=

(
1− α αγ

αγ(1− α) 1− α+ (αγ)2

)(
Qt

(C,C),D −Q⋆,lose-shift
(C,C),D

Qt
(D,D),C −Q⋆,lose-shift

(D,D),C

)
, (107)

which yields (
ut

vt

)
= M t

(
u0

v0

)
, (108)

with

M =

(
a −b

−ab a+ b2

)
(109)

a = 1− α (110)
b = αγ (111)

ut = Qt
(C,C),D −Q⋆,lose-shift

(C,C),D (112)

vt = −
(
Qt

(D,D),C −Q⋆,lose-shift
(D,D),C

)
. (113)

The matrix M can be diagonalized:

M =

(
b2+

√
4a2+b4

2ab
b2−

√
4a2+b4

2ab
1 1

)
︸ ︷︷ ︸

:=P :=(w1|w2)

(
λ1 0
0 λ2

)(ab√
4a2+b4

1
2 −

√
4a2+b4

2(4a+b)
−ab√
4a2+b4

1
2 +

√
4a2+b4

2(4a+b)

)
︸ ︷︷ ︸

P−1

, (114)

with λ1 = a+ b2+
√
b4+a2

2 , λ2 = a+ b2−
√
b4+a2

2 .

Let (
δ01
δ02

)
:= P−1

(
u0

v0

)
=

 u0ab√
4a2+b4

+ v0
(

1
2 −

√
4a2+b4

2(4a+b)

)
−u0ab√
4a2+b4

+ v0
(

1
2 +

√
4a2+b4

2(4a+b)

) (115)

be the decomposition of
(
u0

v0

)
in the basis w1, w2:

(
u0

v0

)
= δ01w1 + δ02w2 . (116)

Combining Equations (108) and (116) yields (
ut

vt

)
= δ01λ

t
1w1 + δ02λ

t
2w2 , (117)

22

Self-play Q-Learners Can Provably Collude in the Iterated Prisoner’s Dilemma

and

ut − vt = δ01︸︷︷︸
>0

λt
1

〈
w1,

(
1
−1

)〉
+ δ02︸︷︷︸

>0

λt
2

〈
w2,

(
1
−1

)〉
(118)

= δ01︸︷︷︸
>0

λt
1

(
b2 +

√
4a2 + b4

2ab
− 1

)
︸ ︷︷ ︸

>0

− δ02︸︷︷︸
>0

λt
2

(
1− b2 −

√
4a2 + b4

2ab

)
︸ ︷︷ ︸

>0

. (119)

Since λ1 > λ2, then if ut1 − vt1 > 0, then ut − vt > ut1 − vt1 > 0.

In other words, in order to show that Qt
(C,C),D −Q⋆

(C,C),D +Qt
(D,D),C −Q⋆

(D,D),C := ut − vt ≥ Cste, then it is sufficient
that ut1 − vt1 ≥ Cste

Hence one only needs to show

Qt1
(D,D),C −Qt1

(D,D),D +Qt1
(C,C),D −Qt1

(C,C),C ≥ k∆rα

1− γ
(120)

Qt1
(C,C),D −Qt1

(C,C),C ≥ 2k∆rα

1− γ
(121)

Qt0
(C,C),D −Qt0

(C,C),C ≥ 4k∆rα

1− γ
, (122)

Proof. Lemma D.2 iii). Using Equation (116) one has

Qt
(C,C),D −Q⋆,lose-shift

(C,C),D ≤ δ01
b2 +

√
4a2 + b4

2ab︸ ︷︷ ︸
:=C1

λt−k
1 + δ02

b2 −
√
4a2 + b4

2ab︸ ︷︷ ︸
:=C2

λt−k
2 +

2k∆rα

1− γ
. (123)

E. Additional Experimental Details

Table 3. Prisoner’s dilemma rewards parameterization used in the experiments, 1 < g < 2.
Cooperate Defect

Cooperate
2g

2g
g

2 + g

Defect
2 + g

g
2

2

E.1. Influence of the Incentive to Cooperate g

Comments on Figure 6.. Figure 6 displays the evolution of Q-values difference as a function of the number of iterations in
the iterated prisoner’s for a self-play evolution of Algorithm 1 in the fully greedy case ϵ = 0. As the incentive to cooperate g
increase, the time when the lose-shift policy and then the Pavlov policy are reached (green zone) decrease, in other
words, cooperation is achieved faster.

E.2. Hyperparameter for the Deep Q-Learning Experiments

The hyperparameters used for the deep Q-learning experiments are summarized in Table 4. 5 runs are displayed in Figure 5,
each run takes 3 hours to train on a single GPU on RTX8000.

23

Self-play Q-Learners Can Provably Collude in the Iterated Prisoner’s Dilemma

s = (D,D) s = (C,C) s = (D,C)

−0.2

−0.1

0.0

0.1

0.2

g
=

1.
75

Q
s,

C
−
Q
s,

D

−0.2

−0.1

0.0

0.1

0.2

g
=

1.
8

Q
s,

C
−
Q
s,

D

−0.2

0.0

0.2

0.4

g
=

1.
85

Q
s,

C
−
Q
s,

D

0.5 1.0

iterations ×103

0.0

0.2

0.4

g
=

1.
9

Q
s,

C
−
Q
s,

D

Figure 6. Influence of the incentive to cooperate g. Evolution of the Q-learning policy as a function of the number of iterations
in the iterated prisoner’s dilemma. With a correct (optimistic) initialization, players go from an always defect policy to the
lose-shift policy (at time t1), and then go to the cooperative Pavlov policy (at time t2). The discount factor is set to γ = 0.6. The
incentive to cooperate g varies from g = 1.75 to g = 1.9 (see Table 3).

Table 4. List of hyperparameters used in the deep Q-learning experiment (Figure 5).

Hyperparameter Value

tau 0.01
seed 8
gamma 0.8
buffer_capacity 1000000
decay_eps true
eps_decay_steps 600
eps_start 0.5
eps_end 0.01
loss_type Huber Loss
optimizer_type SGD
hidden_size 32
num_actions 2
num_iters 10000
batch_size 16384
do_self_play true
pretrain_iters 600
pretrain_vs_random true

24

