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Abstract

Humans excel at isolating relevant information from noisy data to predict the
behavior of dynamic systems, effectively disregarding non-informative, temporally-
correlated noise. In contrast, existing reinforcement learning algorithms face
challenges in generating noise-free predictions within high-dimensional, noise-
saturated environments, especially when trained on world models featuring realis-
tic background noise extracted from natural video streams. We propose a novel
information-theoretic approach that learn world models based on minimising the
past information and retaining maximal information about the future, aiming at
simultaneously learning control policies and at producing denoised predictions. Uti-
lizing Soft Actor-Critic agents augmented with an information-theoretic auxiliary
loss, we validate our method’s effectiveness on complex variants of the standard
DeepMind Control Suite tasks, where natural videos filled with intricate and task-
irrelevant information serve as a background. Experimental results demonstrate
that our model outperforms nine state-of-the-art approaches in various settings
where natural videos serve as dynamic background noise. Our analysis also reveals
that all these methods encounter challenges in more complex environments.

1 Introduction

Figure 1: Top Row: Ground truth data from a
random sequence. Bottom Row: Reconstruction
from DPI.

A major open problem in Reinforcement learn-
ing (RL) is to learn the dynamics and control
policies from the high-dimensional observations
such as images [Ha and Schmidhuber, 2018,
Lillicrap et al., 2016, Hafner et al., 2020a,
2021a, Hansen et al., 2022]. Conventionally, it
is assumed that the observations in the environ-
ment, often derived through hand-engineered
features, consist exclusively of task-relevant
information. This allows RL algorithms to
operate in a controlled setting with optimal
efficiency, primarily due to the absence of
exogenous noise (unrelated or uncontrollable
external variables such as weather variations
or random background movements), that could
potentially hinder the learning process.
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In the real world, the landscape is vastly different, brimming with a plethora of information, much
of which is irrelevant to a specific task. The challenge lies in accurately identifying task-relevant
information and avoid the modeling of temporally correlated dynamics of the background noise.
Prior RL methodologies [Yarats et al., 2021, Hafner et al., 2020a, Ha and Schmidhuber, 2018] that
derive representations directly from observations, often integrate task-irrelevant information into
their representations. They struggle to disentangle the noise from relevant information, unnecessarily
modeling noise dynamics, leading to sub-optimal performance under noise (see Table 1).

The process of computing representations relies on the past inputs, while the imagination and
exploration are directed towards future [Hafner et al., 2020b]. Our objective is to develop a cohesive
perspective on how an agent formulates its current representation after observing past input and before
observing future. Could it be feasible to model this process as an information flow, transitioning from
past to future, mediated by the current state?

We introduce Denoised Predictive Imagination (DPI), a model-based reinforcement learning approach
that leverages information theory to learn robust and meaningful representations. DPI models
Predictive Information [Bialek and Tishby, 1999], the mutual information between the past and the
future, and employs the Information Bottleneck principle [Tishby et al., 2000] to derive a compact
representation of the current state from historical observations, while preserving maximal predictive
information about future outcomes. Essentially, DPI focuses on learning a concise abstraction of the
system dynamics and leverages it to learn control policies and generate noise-free future predictions.
This is achieved through deriving an objective integrating two central ideas: minimization of mutual
information about past and the maximization of predictive ability for future. This dual objective
consists of two contrastive losses and is formulated as a Lagrangian optimization problem. While
in this paper we focus on the algorithmic derivation and the performance of DPI, the information
theoretic nature of it enables future investigations of generalization, stability and robustness aspects.
The primary contributions of our work are as follows:

1. This work is the first to demonstrate that denoised state representations can be effectively
derived through the preservation of predictive information.

2. By implicitly integrating various methodologies from prior studies, we present a theoretical
generalized framework for world model learning within the context of bottleneck methods.

3. DPI surpasses nine existing approaches across the majority of modified DeepMind control
(DMC) tasks, additionally showing superior noise-free prediction capabilities alongside
dynamic learning.

2 Related Work

In this section, we delve into related work on reinforcement learning from visual input, focusing
specifically on model-based approaches and representation learning concepts. For a more comprehen-
sive discussion, refer to the Supplementary Material.

Learning Control from pixels with distractors. Recent developments in model-based RL [Zhang
et al., 2021, Ma et al., 2021, Nguyen et al., 2021, Fu et al., 2021, Bai et al., 2021, You et al., 2022,
Bharadhwaj et al., 2022, Wang et al., 2022, Islam et al., 2022, Tomar et al., 2023, Liu et al., 2024] have
put forward a variety of innovative ideas aimed at extracting relevant information from observations.
Contrastive Variational Reinforcement Learning (CVRL, Ma et al. [2021]) aims at maximises the
MI between observations and representations i.e. I(ot, zt), which is exactly similar to our objective
"Predictive Observation Model" in Equation 3 (except we consider it for all the timesteps and not
just a single instance) and leverages InfoNCE contrastive loss [Oord et al., 2018] to optimise the
objective. However, it does not address any objective related to generating noise-free dynamics or
predictions, which can be observed via the reconstruction results in the original paper [Ma et al.,
2021] (Figure 3, Page 7). MIRO [Ding et al., 2020] is another method that bears a close resemblance
to CVRL. However, unlike CVRL, MIRO focuses on maximizing the mutual information (MI)
between the state and observation, conditioned on the given action and constrained by dynamic
predictions. Deep Bisimulation for Control (DBC, Zhang et al. [2021]) learns control policies by
learning representations of the states that preserve the bisimulation metric. Temporal Predictive
Coding (TPC, Nguyen et al. [2021]) shares conceptual similarities with our approach, striving to
eliminate temporal noise while focusing only on the relevant aspects. The goal of TPC is to maximize
the MI between future latent codes and the combination of prior latent codes and action tuples. This
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objective is achieved through contrastive learning, which exhibits a mathematical resemblance to
Equation 10. More recent methods such as Task Informed Abstractions (TIA, Fu et al. [2021])
maintain two separate latent models, one for tasks and another for distractors, bifurcating noise and
signal. TIA falters in achieving better rewards when the grayscale background is replaced with RGB
(see the experimental section). Iso-Dreamer [Pan et al., 2022] learns inverse dynamics model to
understand the controllable and non-controllable state-action relationship. It then aims to decouple
these dynamics by rolling out their latent representations into the future to understand how these
dynamics influence current behavior. Our work bypasses the need for explicitly defining these types
of model rules and instead builds on a general information-theoretic model wherein these types of
features implicitly emerge.

3 Notation and Preliminaries

Reinforcement Learning. An agent operates in a Markov Decision Process (MDP), which is charac-
terised by a tupleM = (O,A,P,R, γ), consisting of the observation space O with observations
o (we interchangeably use “states" and “observations"), action space A with actions a, transition
dynamics P , Reward spaceR and discount factor γ ∈ [0, 1). The encoder ϕ(z|o) produces a latent
representation z from observations, and then the policy π(a|z) decodes this latent representation
into actions. The goal of RL is to learn a policy π∗(a|z) that maximizes the expected cumulative
discounted rewards Jπ = argmaxπEp

[∑
t γ

t−1rt
]
.

Predictive Information. Predictive Information (PI) is a quantity that measures how much our
observations from the past can inform us about the future [Bialek and Tishby, 1999] . Mathematically,
it can be defined as the mutual information (MI) between the past (xpast) and the future (xfuture),
denoted as I(xpast; xfuture). Assuming temporal invariance (any fixed time length is expected to
have the same entropy), PI becomes a subextensive quantity, as expressed by limT→∞ I(T )/T = 0,
where I(T ) is the predictive information over a time window of length 2T (with T steps of the past
predicting T steps into the future), see Equation 3.1 in [Bialek et al., 2001]. As the time frame
increases, the past contains a diminishing predictive value for the future. In order to capture only
the necessary information from xpast for predicting xfuture, a compressed representation of xpast is
required.

Information Bottleneck. For learning this compressed representation, we utilize the Information
Bottleneck (IB) principle [Tishby et al., 2000]. IB aims at learning a representation z that aims to
optimally compress the information provided by the input x ∈ X , i.e. minimize I(x; z), while still
maintaining enough knowledge to predict the outcome y ∈ Y , i.e. maximize I(z; y). This objective
is unified with the inclusion of a Lagrangian multiplier and formalized as max I(z; y)− βI(x; z).
The parameter β controls the information flow from the input x to the latent representation, balancing
the trade-off between information preservation and compression.

4 Denoised Predictive Imagination

Denoised Predictive Imagination (DPI) is an information theory-based approach, that encapsulates
the notions of predictive information and the information bottleneck. This core idea enables the
learning of a compressed representation from high-dimensional observations, distilling task-relevant
details from past observations, and leveraging this refined knowledge for future predictions while
effectively filtering out noise. We hypothesise that the current state should encapsulate the requisite
and meaningful information essential to perform the task. If the information is insufficient, the latent
representations may fail to capture all the task-relevant information, leading to sub-optimal learning
outcomes. On the other hand, if we incorporate an overabundance of information, our representations
could become encumbered with noise-related artifacts that results in a dilution of task-relevant data
and in a performance decrease.

We denote the latent representations for the past observations by ot− , current observation by ot,
and the future observations by ot+ . We use zt− , zt and zt+ respectively for the latent space. For
consistency and clarity, we establish that the episode initiates at time t = 1 and terminates at the
horizon t = T . The objective is to encode observations o≤t = (ot− , ot) into latent representations
z≤t = (zt− , zt), transform them to next state representations zt+ , and decode into future observations
ot+ (Figure 2). Consequently, this process creates a two-fold bottleneck: one while transforming
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observations into latent representations and vice-versa (ot←→zt), and another when acquiring the
latent representation itself from other latent representations (zt−1−→zt−→zt+1). In this context, our
transition function can be conceptualized as a model operating simultaneously as an encoder and a
decoder, encoding zt from zt− and decoding zt to yield zt+ , with bottleneck being zt.

Intuitively, we obtain task-relevant information from raw observations into our latent representations
by minimising mutual information I(o≤t; z≤t) while maximising the mutual information I(o≥t; z≥t),
which preserves the predictive information for the reverse scenario. When expressed in Lagrangian
formulation, we obtain,

min I(o≤t; z≤t)− β1I(o≥t; z≥t)). (1)
In order to learn temporal abstractions and compressed representations from a sequence of past states
and acquire relevant predictions, we employ the principle of Information Bottleneck. We apply a
Lagrangian on the latent space with the aim of minimising I(z≤t) and maximising I(z≥t),

min I(z≤t)− β2I(z≥t). (2)

Merging objectives from equation (1) and (2), we obtain a unified Lagrangian optimizing problem,

min
[
I(o≤t; z≤t)︸ ︷︷ ︸

Historical
observation model

+ I(z≤t)︸ ︷︷ ︸
Historical latent
space dynamics

]
−

[
β1I(o≥t; z≥t)︸ ︷︷ ︸

Predictive
observation model

+ β2I(z≥t)︸ ︷︷ ︸
Predictive latent
space dynamics

]
,

where β1 and β2 are the Lagrangian multipliers. This implies that the problem can be optimised
by minimizing the upper bound associated with the past, as represented by the first two terms, and
simultaneously maximizing the lower bound related to the future, embodied in the final two terms. The
objective of our DPI considers action dependencies implicitly through the latent space representations,
p(zt|zt− , at−), thereby reflecting the innate characteristics of system transitions. This compatibility
with RL principles facilitates a seamless integration of our approach into existing RL algorithms,
where DPI can serve as an auxiliary function, significantly enhancing the learning of representations.
Due to space limitations, all subsequent derivations and details are in the Supplementary Material
(Section 1).

4.1 State Space Model

Figure 2: State-space model. The variable
zt acts as a bottleneck for the model, serving
as a critical link between the historical (white
circles) and predictive elements (grey circles).
Solid edges designate the inputs required for
inference, while the dotted edges represent
the generative components.

We use the state-space model described in Figure 2
with,

Encoder Representation: zt ∼ pφ(zt | ot)
Transition dynamics: zt+1 ∼ qθ(zt+1 | zt, at, ht)
Observation model: ot ∼ rψ(ot | zt)
History model: ht ∼ p(ht | ht−1, at−1).

(3)

The conditional p(ht | ht−1, at−1) denotes the history
model, that encapsulates the past variables into a single
history variable i.e.,

ht = {zt−1, at−1, ..., z1, a1} = {zt−1, at−1, ht−1}.
(4)

4.2 Minimising the upper bound of the Past
Mutual Information

This subsection discusses the minimization of the first two terms in the Lagrangian of DPI in
Equation 3.

Upper bound of historical latent space dynamics. We aim at minimising the tractable upper bound
on the mutual information I(z≤t). The mutual information can be represented as,

I(z1; ...; zt) = Ep(z1,...,zt)

[
log

p(z1, ..., zt)∏t
k=1 p(zk)

]
,
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We incorporate actions into the model by introducing a conditional probability distribution
p(zt− , zt|at−),

I(z1:t) = Ep(z1:t,a1:t−1)

[
log

p(z1:t)p(z1:t|a1:t−1)

p(z1:t|a1:t−1)
∏t
k=1 p(zk)

]
≤ Ep(z1:t,a1:t−1)

[
log

p(z1:t|a1:t−1)∏t
k=1 p(zk)

]
.

(5)
Utilising the chain rule in conditional probability and for every t, substituting {zt−1, at−1, ht−1} as
ht like Equation (4), we can write Equation (5) as

I(z1:t) ≤
t−1∑
k=1

Ep(zk,ak)

[
log

p(zk+1|zk, ak, hk)
p(zk+1)

]
=

t−1∑
k=1

I
(
zk+1; zk, ak, hk

)
. (6)

In essence, this implies that we can optimize the mutual information between the past latent repre-
sentations and the present state’s representation by minimising the upper bound of the MI for each
individual, independent transition in a Markovian manner.

For the purpose of minimizing this upper bound, we employ Contrastive Log-ratio Upper Bound of
Mutual Information (CLUB, Cheng et al. [2020]), where the core idea is to estimate the MI through
the difference of conditional probabilities for positive and negative sample pairs. Since the condi-
tional distribution p(zk+1|zk, ak, hk) is intractable, the upper bound of I(zk+1; zk, ak, hk) cannot be
directly minimized. As a consequence, we introduce a variational distribution q(zk+1|zk, ak, hk),
serving essentially as the transition function of the model, parameterised by θ, to approximate the
upper bound of mutual information,

I(zk+1|zk, ak, hk) =
1

N

N∑
i=1

[
log q̂θ −

1

N

N∑
j=1

log q̂θ

]
= ICLUB , (7)

where q̂ denotes qθ(zik+1|zik, aik, hik), i.e. the i-th sample at k-th timestep. We obtain the negative
sample pair (z′k+1, (zk, ak, hk)) via random shuffling.

Upper bound of the historical observation model. As in the previous section, it can be shown
that an upper bound for I(o1:t, z1:t) can be derived by introducing the conditional distribution
p(zt− , zt|at−),

I(o1:t; z1:t) ≤ Ep(z1:t,o1:t)

[
log

p(z1:t|o1:t)
p(z1:t|a1:t−1)

]
.

Taking this further, we employ the same tractable variational distribution drawn from our transition
function,

I(o1:t; z1:t) ≤
t−1∑
k=1

Ep(zk,ok,ak)

[
log

p(zk+1|ok+1)

qθ(zk+1|zk, ak, hk)

]
= ILTC . (8)

This term is an upper-bound for I(o1:t, z1:t), quantifying the ratio between the latent representation
derived from the encoder and the transitioning state obtained from a past representation when a
specific action is applied. Intuitively, this constrains the latent dynamical model (transition function)
to diverge minimally from the latent representations obtained from the observation encoder. Hence,
we refer to this term as the Latent Consistency Loss LLTC.

4.3 Maximising the lower bound of the Predictive Mutual Information

This subsection discusses the maximization of the last two terms in the Lagrangian of DPI in
Equation 3.

Lower bound of the predictive latent space dynamics. In order to obtain the lower bound on this
MI term, we factorise the transition model by applying the chain rule,

I(zt:T ) = Ep(zt:T )

[
log

p(zt:T )∏T
k=t p(zk)

]
= Ep(zt:T )

[
log

T−1∏
k=t

p(zk|zk+1:T )

p(zk)

]

≥
T−1∑
k=t

Ep(zk,ak)

[
log

p(zk|zk+1, ak)

p(zk)

]
=

T−1∑
k=t

I
(
zk+1, ak; zk

)
. (9)
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(a) Latent transition consistency loss Model (b) NCE loss Model

Figure 3: Representation of models used for calculating auxiliary losses (a) LTC loss LLTC and
NCE loss (LNCE). Encoder and target encoder parameters are defined as φ0 and φm respectively. a)
Once the current representation is obtained, it is passed through the transition function qθ to obtain the
next latent representation, from which the LLTC is finally calculated (Algorithm 2 in Supplementary
material). b) Next latent representation and current action is passed via concatenation function c to
obtain unified representation, then compared with current state representation via contrastive learning.

The mutual information objective I(zk+1, ak; zk) can be decomposed using the chain rule for mutual
information, yielding I(zk; zk+1) + I(zk; ak|zk+1). The first component, solely depends on state-
transitions. It is closely related to the predictive coding objective [Oord et al., 2018, Anand et al.,
2019]. Omitting actions could impair the model’s capability to determine the optimal actions [Rakelly
et al., 2021]. The second term can be represented in terms of conditional entropy as H(ak|zk) −
H(ak|zk, zk+1). The term H(ak|zk, zk+1) effectively characterizes the entropy of the inverse
dynamics, conceptually aligns closely with an extensive spectrum of prior studies that have focused
on exploration and unsupervised learning of representations [Zhang et al., 2018, Pathak et al., 2017,
Chandak et al., 2019, Bharadhwaj et al., 2022]. Also, this term is the empowerment objective used
in InfoPOWER [Bharadhwaj et al., 2022]. From an intuitive perspective, inverse models operate
as an agreement mechanism between the actual and the ground truth action representations. This
mechanism enables the representation to capture only those aspects of the state that are essential for
predicting the action, thereby discarding potentially irrelevant information. The MI term in Equation 9
can be viewed as a combined objective that optimises state transitions with the regularization of
action representations.

For optimising this lower bound, we will utilise contrastive learning [Oord et al., 2018], which yields
a variational lower bound of the mutual information in Equation 9. Strategies employed by [He et al.,
2020, Laskin et al., 2020] relies on data augmentation to generate positive and negative samples.
Contrary to them, we take inspiration from Bai et al. [2021] that incorporate policy transitions to
obtain these samples. Positive samples are directly acquired by sampling transitions (zt, at, zt+1),
while the construction of negative samples involves randomly sampling z∗t and concatenating it with
(at, zt+1). As a result, we produce samples (z∗t , at, zt+1) that deviate from the transition dynamics.
Thus we obtain MI objective as,

I(zk+1, ak; zk) ≥ Ep,N

[
log

eσ(zk,ak,zk+1)∑
z∗k∈N−∪zk e

σ(z∗k,ak,zk+1)

]
≜ INCE , (10)

where N is the set of negative samples and σ is the score function. Score function distinguishes
between positive samples (those following the actual transition dynamics) and negative samples
(those deviating from these dynamics). It providing high score to the positive examples and low
score to the negative examples. It tells how well an action ak leads to a transition from a latent
state zk to a subsequent latent state zk+1. This evaluation is based on the degree to which the action
and the resultant state change are congruent with the expected dynamics of the system. We opt for
bilinear products as our score function [Oord et al., 2018, Laskin et al., 2020, Henaff, 2020], which is
mathematically defined as σ(zk, ak, zk+1) = c(at, zt+1)

TWzt. The concatenation function c( · , · )
is parameterised by a neural network that merges the action at with the subsequent latent state zt+1

into a single vector (as shown in Figure 3b) andW is the learnable weight matrix.

Lower bound of the predictive observation model. Directly maximizing I(zt,t+ ; ot,t+) is infeasible
due to its marginal’s intractability. Similar to Alemi et al. [2017], we propose to optimise a lower
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bound on our MI,

I(zt:T ; ot:T ) = Ep(zt:T ,ot:T )

[
log

T∏
k=t

p(ok|zk)
p(ok)

]
≥

T∑
k=t

Ep(zk,ok)

[
log

rψ(ok|zk)
p(ok)

]
,

where where p(ok|zk) is an intractable conditional distribution and rψ(ok|zk) is a tractable variational
decoder, represented by a neural network with parameters ψ. We rule out the entropy term as it is
independent of our optimization procedure,

I(zt:T ; ot:T ) =

T∑
k=t

Ep(zk,ok)
[
log rψ(ok|zk)

]
= IRec . (11)

IRec can be interpreted as the log-likelihood of the observations given the state encodings.

4.4 Combined Objective

Our optimization strategy can be unified into a single objective function as,

min
θ,ψ,ϕ,W

LDPI = [α1ILTC + α2ICLUB ]− [β1IRec + β2INCE ]. (12)

The two losses, ILTC and IRec, are responsible for the representations from the encoder and decoder
respectively, while the other two terms, ICLUB and INCE , formulated as a contrastive loss, control
the representations of the transition functions. They are jointly optimized.

4.5 Practical Implementation with Soft-Actor Critic

We jointly train DPI and SAC, an off-policy model-free reinforcement learning method, by in-
corporating Equation (12) as an auxiliary objective while training the algorithm (Supplementary
Material Section 3.1). The transition model, accounting for latent dynamics, is designed to capture
the inherent stochasticity of the transitions. It is parameterised with a neural network that returns a
Gaussian distribution defined by its mean and variance. The Observation model implemented as a
Deconvolutional Neural Network [Zeiler et al., 2010]. The History model is implemented as a Gated
Recurrent Unit (GRU, Cho et al. [2014]). We utilize a stochastic encoder to obtain representations
from the images [Eysenbach et al., 2021, Theis and Agustsson, 2021], parameterised by φ. For
encoding subsequent observations, we leverage an exponential moving average of the online network
parameters, denoted as φm [He et al., 2020]. We utilise the same principle for latent targets [Hansen
et al., 2022] for transition function, as it should ensure more stable learning process, accommodating
any potential fluctuations in the learning (Figure 3a). The complete algorithm with SAC is described
in the Supplementary material.

5 Experiments

In this section, we conduct a thorough empirical assessment of the proposed DPI method on the
DeepMind control suite (DMC, Tassa et al. [2018]) in various settings and compare it with existing
state-of-the-art approaches. We evaluate three distinct types of environments: (i) Standard environ-
ment with a static background, (ii) Natural environment with video-based, real-world backgrounds,
and (iii) Random environment with varying backgrounds in each frame. These settings can be
viewed as introducing increasing levels of noise in the visual observations, with the stochasticity of
the noise escalating in each scenario. It is important to highlight that the noise considered in our
setup is specifically related to the background of the observation, while the controlled part of the
image remains unaffected. This type of noise is particularly relevant in practical applications, where
background clutter or irrelevant visual information can significantly impact the performance of RL
agents. The ability to maintain robust policy learning in the presence of such noise is crucial for
deployment in real-world environments, where the visual scene is often complex and dynamic. To
underline the significance of each element in the model, we conclude this section with an ablation
study.
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5.1 Environment Settings

For all three environments, we conducted experiments on six DMC tasks: Cheetah Run, Walker Walk,
Cartpole Swingup, Reacher Easy, Pendulum Swingup and Cup Catch. These robot control tasks
pose different challenges, such as sparse rewards, contacts and complex dynamics. For the standard
settings, no perterbutations are applied to the observations. The observations are RGB images of
the size 84 × 84 × 3. By incorporating the ground plane, a substantial portion of the background
image is obscured, thereby simplifying the task at hand. Thus, the ground plane is eliminated to
maximize the utilization of the background image. These natural videos are incorporated from
Kinetics 400 dataset [Kay et al., 2017] at random. We used videos from random categories compared
to the simplified challenge in DBC [Zhang et al., 2021] who only considered the driving category.
Contrary to the predominant use of grayscale images in benchmarking, we employing RGB videos
in the background. We independently sampled 100 videos separately for training and testing. More
information about the background noise is provided in the Supplementary Material (Section 5.1).

Table 1: Rewards in Natural Environment Background Settings

Method CR WW CS PS RE CC
DBC 122 ± 4 74 ± 41 181 ± 48 26 ± 46 305 ± 470 0 ± 0
De-MDPs 71 ± 18 113 ± 26 73 ± 2 0 ± 0 83 ± 33 0 ± 0
Dreamer 42 ± 9 68 ± 31 109 ± 46 0 ± 0 129 ± 188 68 ± 31
Dreamer-V2 118 ± 51 39 ± 29 137 ± 78 0 ± 0 0 ± 0 0 ± 0
SPR 45 ± 59 37 ± 6 150 ± 21 7 ± 10 100 ± 78 99 ± 1
TIA 20 ± 14 80 ± 52 118 ± 11 0 ± 0 115 ± 161 237 ± 411
TPC 42 ± 37 30 ± 9 106 ± 27 25 ± 35 16 ± 3 237 ± 334
VSG 56 ± 14 232 ± 43 139 ± 10 0 ± 0 12 ± 17 0 ± 0
Iso-Dreamer 10 ± 4 250 ± 48 99 ± 50 0 ± 0 12 ± 3 0 ± 0
DPI (Ours) 263 ± 11 454 ± 60 658 ± 62 40 ± 57 308 ± 222 332 ± 576

The table illustrates the rewards obtained in natural background settings across a variety of tasks.
The best or comparable method is present in bold. Shorthands: CR - Cheetah Run, WW - Walker
Walk, CS - Cartpole Swingup, PS - Pendulum Swingup, RE - Reacher Easy, CC - Cartpole Swingup,
De-MDPs - Denoised MDPs.

5.2 Baselines and Implementation details

In this evaluation, we compare our approach to a selection of nine most-closely related approaches
i.e. Dreamer [Hafner et al., 2020a], Dreamer-V2 [Hafner et al., 2021b], Task-informed Abstrac-
tions (TIA, Fu et al. [2021]), Denoised MDPs [Wang et al., 2022], Deep Bisimulation for Control
(DBC, Zhang et al. [2021]), Self-Predicting Representations (SPR, Schwarzer et al. [2021]), Varia-
tional Sparse Gating (VSG, Jain et al. [2022]), Iso-Dreamer Pan et al. [2022] and Temporal Predictive
Coding (TPC, Nguyen et al. [2021]). These selected methods are distinguished by their superior
performance and accompanied by publicly accessible source code. The task return is examined every
1000 steps. For all baseline methods, we employed the optimal set of hyperparameters as indicated
in the respective papers. Each task is executed with three different seeds for each model. Detailed
explanations of these methods and of the implementations can be found in the Supplementary Material
(Section 4).

5.3 Results in Standard settings

The performance of all the evaluated methods in the standard DMC environment is illustrated in the
Supplementary Material (Section 5.4). DPI exhibits a degree of effectiveness in certain scenarios
involving static backgrounds, although it does not consistently outperform all other methods.

5.4 Results in Natural Background settings

Figure 1 (Supplementary Material) illustrates the outcomes when employing natural backgrounds,
wherein the background videos were not presented to the agent during its training phase. The main
reasons for the degraded performance of most baseline methods was changing the background
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image to RGB. Dreamer struggles to accurately capture the agent’s entire state, and inadvertently
incorporates the irrelevant background noise into its representation (Supplementary Material Section
6). TIA, on the other hand, can only effectively distinguish the agent from the distractor when the
background is rendered in grayscale. DBC’s performance is on par with these methods, however,
it does not achieve the performance that was reported by Zhang et al. [2021]. This discrepancy
is largely due to the inclusion of RGB image in the background and authors’ approach to use the
same video for both training and testing, which hampers its capability to manage diverse distraction
and restricts its generalization capability to unseen distractions. Similarly, TPC [Nguyen et al.,
2021] and Denoised MDPs [Wang et al., 2022] underperformed due to its incapability to generalise
to diverse unseen distractions. Our implementation utilises the authors’ open-sourced code, with
the sole adjustment being the introduction of additional videos. Contrary to these methods, DPI
achieves better rewards in the top three environments in Table 1 (also see Figure 6 in Supplementary
Material) demonstrates the superior performance of DPI across most environments. This is due
to our bottleneck framework preserving predictive information during transitions, resulting in
blurred backgrounds and enhanced agents. This highlights DPI’s ability to encode task-relevant
components, improving performance in complex and noisy environments (Reconstruction Results in
Supp. Material Section 6). In Pendulum Swingup, Reacher Easy, and Cup Catch, performance is
influenced by seed randomness. In Cup Catch, episodes starting with the cup in the holder lead to
scores averaging 333±576. In Reacher Easy, methods like VSG, DBC, Iso-Dreamer, and DPI rotate
the arm instead of reaching, scoring higher inadvertently. This issue does not occur in Cheetah Run,
Walker Walk, or Cartpole Swingup. In Cartpole Swingup, many methods rotate the cartpole, scoring
150-200, except DPI, which learns the intended swingup and balancing action.

Failure under Sparse rewards. Our approach excels in Dense reward scenarios (e.g., Cheetah
run, Walker walk, Cartpole swingup). However, it struggles with sparse reward environments (Cup
Catch and Pendulum Swingup) after 106 environment steps. The complexity of the task, when
paired with the visual noise in the environment, presents a considerable challenge and surpasses the
limits of current methodologies. In conclusion, the tasks that are inherently hard for model-based
methods would remain hard for DPI. Significant improvements can be made for exploration in such
environments.

5.5 Results in Random Background settings

In this experiment, every time instance features a unique background image, inducing maximum
stochasticity in the environment. This experiment illustrates the preservation of temporally predictive
information by DPI. As demonstrated in Figure 2 (Supplementary Material), for Cheetah run,
DPI effectively isolates task-relevant features, managing to reconstruct only the agent against a
randomized background. In Table 4, a comparative analysis is presented between DPI and nine
baseline methodologies in Cheetah Run and Cartpole swingup environment. This shows superior
performance of DPI over the baselines in natural background settings. The notable performance drop
observed in Denoised MDPs [Wang et al., 2022] can be attributed to the introduction of varied and
continually changing videos during the evaluation phase. It is likely that it has encountered the frames
where the agent is not capable of segregating the relevant components from the non-relevant ones.
This issue highlights a key limitation in its robustness and adaptability to varying environments.

6 Discussion and Conclusion

Our work demonstrates that our information-theoretic formulation suggests a pathway to segregate
and represent task-relevant information in a noisy world, without explicitly modelling any rules of the
MDPs. We also show that objectives related to maximising information on various variables, that are
explicitly mentioned in other research [Bai et al., 2021, You et al., 2022, Lee et al., 2020b], implicitly
emerge out from our theoretical formulation. In our analysis, all the methodologies exhibit strong
performance in noise-free scenarios. When subjected to natural noise scenarios, characterized by real-
world videos, DPI consistently either surpassed or equaled the best of nine baselines in performance.
However, there’s a noticeable path for improvement as every method encountered challenges in tasks
dominated by sparse rewards (bottom row of Figure 1 Supplementary Material). Most notably, in
random noise conditions, DPI does not face significant drop in performance and outperforms all
other baseline methodologies. We assert that, while there have been notable contributions in the
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segregation of controllable and non-controllable elements within scenes, the field is in dire need of
algorithms that are capable of performing effectively in challenging and complex environments. This
necessity is clearly underscored by our empirical analysis, which highlights the current limitations
and underscores the importance of continued development in this area. While using vision alone
may seem limited, integrating it with other types of data can lead to a more powerful multimodal
approach. By combining vision with other modalities like proprioception, tactile, language etc., we
can create a more robust multimodal approach that leverages the strengths of each modality [Becker
et al., 2024, You and Liu, 2024, Peri et al., 2024, Dave et al., 2024, Yang et al., 2024, Wang et al.,
2019, Yu et al., 2022]. The current method could be extended to incorporate these additional data
sources, making it even more versatile.
Our method can be potentially combined with any existing RL model that performs exponentially
well in noise-free environment. We believe that there is a great room for improving the performance
of our model, e.g., by improving the model architecture for the encoding representations using Resnet
like in Bai et al. [2021], by utilising experience replay sampling strategies like PER [Schaul et al.,
2016], or by incorporating sophisticated exploration strategies for sparse environments [Laskin et al.,
2020, You et al., 2022].
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Denoised Predictive Imagination: An Information-theoretic approach for
learning World Models (Supplementary Material)

7 Derivations

In this section, we derive equations from the Section "Denoised Predictive Imagination".

7.1 Derivation of Equation (7)

We aim to minimize the Mutual Information (MI) from the beginning to timestep t i.e. min I(z≤t). To
make our model action dependent, we introduce a conditional probability distribution p(zt− , zt|at−),

I(z1; ...; zt) = Ep(z1,...,zt)

[
log

p(z1, ..., zt)∏t
k=1 p(zk)

]
,

(13)

= Ep(z1:t,a1,t−1)

[
log

p(z1:t) p(z1:t|a1:t−1)

p(z1:t|a1:t−1)
∏t
k=1 p(zk)

]
,

(14)

= Ep(z1:t,a1:t−1)

[
log

p(z1:t|a1:t−1)∏t
k=1 p(zk)

]
− Ep(z1:t,a1:t−1)

[
log

p(z1:t|a1:t−1)

p(z1:t)

]
.

(15)

The first term is similar to the variational upper bound introduced in Alemi et al. [2017]. The second
term is the KL-divergence between p(z1:t|a1:t−1) and p(z1:t). Since the KL-divergence is always
non-negative, the first term in the equation provides an upper bound on the MI objective we seek to
optimize i.e.,

I(z1:t) ≤ Ep(z1:t,a1:t−1)

[
log

p(z1:t|a1:t−1)∏t
k=1 p(zk)

]
.

(16)

We can write the conditional distribution p(z1:t|a1:t−1) in its autoregressive form,

p(z1:t|a1:t−1) = p(z1, ..., zt|a1, ..., at−1),

= p(zt|zt−1, at−1, ..., z1, a1) p(zt−1, ..., z1|at−1, ..., a1),

= p(zt|zt−1, at−1, ..., z1, a1) p(zt−1|zt−2, at−2, ..., z1, a1) ... p(z1).

(17)

To address past states and actions within the conditional distribution, we treat them as history.
This history model is implemented through a Gated Recurrent Units (GRU, Cho et al. [2014]) that
encapsulates these past variables into a single history variable, ht = {zt−1, at−1, ..., z1, a1} =
{zt−1, at−1, ht−1}. Thus we can write our conditional probability in Equation (17) as,

p(z1:t|a1:t−1) = p(zt|zt−1, at−1, ht−1) p(zt−1|zt−2, at−2, ht−2) ... p(z1), (18)

= p(z1)

t−1∏
k=1

p(zk+1|zk, ak, hk). (19)
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We can substitute the conditional distribution from Equation (19) into the Upper bound in Equa-
tion (16),

I(z1:t) ≤ Ep(z1:t,a1:t−1)

[
log�

��p(z1)
∏t−1
k=1 p(zk+1|zk, ak, hk)

�
��p(z1)

∏t−1
k=1 p(zk+1)

]
,

(20)

≤ Ep(z1:t,a1:t−1)

[
log

t−1∏
k=1

p(zk+1|zk, ak, hk)
p(zk+1)

]
,

(21)

≤
t−1∑
k=1

Ep(zk,ak)

[
log

p(zk+1|zk, ak, hk)
p(zk+1)

]
,

(22)

≤
t−1∑
k=1

I
(
zk+1; zk, ak, hk

)
. (23)

7.2 Derivation of Equation (9)

We aim to minimize the Mutual Information (MI) between the latent variables zt from the beginning
to time step t and the observations ot from the environment i.e. min I(z≤t; o≤t), where ·≤t is the
variable from timestep 1 to t,

I(z1, ..., zt; o1, ..., ot) = Ep(z1:t,o1:t)

[
log

p(z1:t|o1:t)
p(z1:t)

]
.

(24)

Here we introduce the conditional probability distribution p(zt− , zt|at−) with the aim of removing
out the denominator and including actions into our model,

I(z1:t; o1:t) = Ep(z1:t,o1:t,a1:t−1)

[
log

p(z1:t|o1:t) p(z1:t|a1:t−1)

p(z1:t|a1:t−1) p(z1:t)

]
,

(25)

= Ep(z1:t,o1:t)

[
log

p(z1:t|o1:t)
p(z1:t|a1:t−1)

]
− Ep(z1:t,a1:t−1)

[
log

p(z1:t)

p(z1:t|a1:t−1)

]
,

(26)

= Ep(z1:t,o1:t)

[
log

p(z1:t|o1:t)
p(z1:t|a1:t−1)

]
−DKL

(
p(z1:t)||p(z1:t|a1:t−1)), (27)

≤ Ep(z1:t,o1:t)

[
log

p(z1:t|o1:t)
p(z1:t|a1:t−1)

]
.

(28)

The second term is the KL-divergence between p(z1:t) and p(z1:t|a1:t−1), which is always non-
negative, leading to Equation (28) being an upper bound on our MI objective. The encodings at
every timesteps depends only on that observation’s timestep i.e. p(z1:t|o1:t) =

∏t
k=1 p(zk|ok).

Autoregressing the denominator according to Equation (19), we get,

I(z1:t; o1:t) = Ep(z1:t,o1:t)

[
log

p(z1|o1)
∏t−1
k=1 p(zk+1|ok+1)

p(z1)
∏t−1
k=1 p(zk+1|zk, ak, hk)

]
,

(29)

=

t−1∑
k=1

Ep(zk,ok)

[
log

p(zk+1|ok+1)

p(zk+1|zk, ak, hk)

]
−DKL

(
p(z1)||p(z1|o1)

)
. (30)

In Equation (8), we approximate this with the transition function with variational function qθ(zk+1|ẑ),
where ẑ = (zk, ak, hk). The transition function is a neural network with parameters θ. This is the
same transition function described in the Equation (9),

I(z1:t; o1:t) ≤
t−1∑
k=1

Ep(zk,ok)

[
log

p(zk+1|ok+1)

qθ(zk+1|ẑ)

]
−DKL

(
p(zk+1|ẑ)||qθ(zk+1|ẑ)

)
. (31)

16



As KL-divergence is non-negative, this is the upper bound on our main objective,

I(z1:t; o1:t) ≤
t−1∑
k=1

Ep(zk,ok)

[
log

p(zk+1|ok+1)

qθ(zk+1|zk, ak, hk)

]
.

(32)

7.3 Derivation of Equation (10)

We aim to maximise the Mutual Information (MI) from the current timestep to the Horizon T i.e.,
max I(z≥t); where ≥ t = {t+ 1, ..., T},

I(zt; ...; zT ) = Ep(zt:T )

[
log

p(zt:T )∏T
k=t p(zk)

]
.

(33)

The numerator in Equation (33) can be factorised with chain rule,

p(zt, ..., zT ) = p(zt|zt+1, ..., zT ) p(zt+1|zt+2, ..., zT ) ... p(zT ), (34)
= p(zt|zt+1:T ) p(zt+1|zt+2:T ) ... p(zT ), (35)

= p(zT )

T−1∏
k=t

p(zk|zk+1:T ). (36)

Integrating Equation (36) in Equation (33),

I(zt:T ) = Ep(zt:T )

[
log�

��p(zT )
∏T−1
k=t p(zk|zk+1:T )

�
��p(zT )

∏T−1
k=t p(zk)

]
,

(37)

= Ep(zt:T )

 log

T−1∏
k=t

p(zk|zk+1:T )

p(zk)


.

(38)

Here we incorporate conditional probability p(zk|zk+1,ak) to remove p(zk|zk+1:T ) out of our equa-
tion.

I(zt:T ) = Ep(zt:T ,at:T )

 log

T−1∏
k=t

p(zk|zk+1:T ) p(zk|zk+1, ak)

p(zk|zk+1, ak) p(zk)


,

(39)

=

T−1∑
k=t

Ep(zk,ak)

[
log

p(zk|zk+1, ak)

p(zk)

]
+

T−1∑
k=t

DKL

(
p(zk|zk+1:T )||p(zk|zk+1, ak)

)
,

(40)

≥
T−1∑
k=t

Ep(zk,ak)

[
log

p(zk|zk+1, ak)

p(zk)

]
,

(41)

=

T−1∑
k=t

I
(
zk; zk+1, ak

)
. (42)
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7.4 Derivation of Equation (12)

We aim to maximize the Mutual Information (MI) between the latent variables zt and the observations
ot from current time step t to time-horizon T i.e. max I(zt:T ; ot:T )

I(zt:T ; ot:T ) = Ep(zt:T ,ot:T )

[
log

p(ot:T |zt:T )
p(ot:T )

]
,

(43)

= Ep(zt:T ,ot:T )

 log

T∏
k=t

p(ok|zk)
p(ok)


.

(44)

Introducing a tractable variational decoder with parameters ψ,

I(zt:T ; ot:T ) = Ep(zt:T ,ot:T )

 log

T∏
k=t

p(ok|zk) rψ(ok|zk)
rψ(ok|zk) p(ok)


,

(45)

=

T∑
k=t

Ep(zk,ok)

[
log

rψ(ok|zk)
p(ok)

]
+

T∑
k=t

DKL

(
p(ok|zk)||rψ(ok|zk)

)
, (46)

≥
T∑
k=t

Ep(zk,ok)

[
log

rψ(ok|zk)
p(ok)

]
,

(47)

=

T∑
k=t

Ep(zk,ok)
[
log rψ(ok|zk)

]
−

T∑
k=t

Ep(ok)
[
log p(ok)

]
,

(48)

=

T∑
k=t

Ep(zk,ok)
[
log rψ(ok|zk)

]
+

T∑
k=t

H(ok), (49)

=

T∑
k=t

Ep(zk,ok)
[
log rψ(ok|zk)

]
.

(50)

The entropy term H(ok) is independent of the parameter ψ, and consequently, can be disregarded
during optimization.

8 Extended Related Work

In this section, an extended related work discussion is provided.

8.1 Relation to Human Psychology

Predictive Information is maximized by the brain at a higher, more abstract level as a strategy to
prevent sensory overload [Friston, 2005, Rao and Ballard, 1999]. Imagine a scenario where you’re
driving a vehicle and nearing a bend in the road, beyond which visibility is limited. Based on the
experience of having faced congested traffic thus far (for say), you may anticipate a similar traffic
configuration beyond the bend. In these instances, you mentally simulate future possibilities based
on the historical experience and using the current location as a reference point. Notably, during
this mental forecast, you instinctively disregard exogenous noise like vehicle’s number plate, cloud
formations in the sky, or roadside billboards. This subconscious omission of inconsequential details
significantly influences the agent’s decision-making process [Nasr et al., 2008]. While maintaining
scholarly modesty, it’s essential to clarify that our contribution in this paper does not constitute
an ultimate solution to the challenges described. Instead, our work introduces alternative ideas,
traversing similar territory and contributing fresh perspectives to the existing discourse.

Model-based Reinforcement Learning. These models simultaneously learn policy and transition
dynamics, which can be used for planning, and are often sample efficient due to their ability to handle
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rich observations [Kaiser et al., 2020, Chua et al., 2018, Hafner et al., 2019, Ebert et al., 2018, Lowrey
et al., 2019, Gelada et al., 2019, Lee et al., 2020a]. World Models Ha and Schmidhuber [2018] uses
recurrent latent model to imagine future frames. Stochastic Optimal control with Latent Representa-
tions (SOLAR, Zhang et al. [2019]) model dynamics with linear-quadratic regulator. In particular,
Dreamer [Hafner et al., 2020a] optimises policies via backpropogating through latent dynamics and
uses recurrent state-space model for planning in latent space. These reconstruction-based methods
perform effectively in standard environments. However, when exposed to environments with noise
distractors, they struggle to bifurcate between information they should reconstruct and what they
should disregard.

Learning Representations and RL. Recent works [Chen et al., 2020, Henaff, 2020, Tian et al.,
2020] have demonstrated progress in learning representations from unlabeled data. These concepts
have been integrated into reinforcement learning by works like [Laskin et al., 2020, Oord et al., 2018,
Shu et al., 2020, Ma et al., 2021, Oord et al., 2018, Ma et al., 2021, Hjelm et al., 2019]. Learning
invariant representations with Information-theoretic constraints have been extensively used in the
literature. However, the challenge of identifying and effectively utilizing task-relevant information,
which necessitates not only the preservation of predictive information but also the generation of noise-
free predictions, remains largely unaddressed by most existing methods that predominantly rely on
auxiliary decoders. Our concept shares similarities with PI-SAC [Lee et al., 2020b], whose objective
is also centered around Predictive Information. PI-SAC aims to identify a latent representation
of the current state that reduces the MI between past observations and actions I(ot− ; zt− |at−),
while simultaneously maximising the MI between all future observations and rewards, represented
as I(ot+ ; rt+). Notably, the authors of PI-SAC present this objective straightforwardly, without
an underlying mathematical derivation of selection of the variables. In contrast, our method is
underpinned by a solid theoretical foundation, where objectives related to latent representations and
actions emerge implicitly. Furthermore, we incorporate a historical variable that circumvents the need
to consider the entire trajectory by accumulating all the information in that variable, which solves the
problem of considering the entire trajectory. Empirically, it has been shown in numerous previous
papers that PI-SAC underperforms in scenarios involving distractors Wang et al. [2022], Liu et al.
[2024], underscoring the robustness and effectiveness of our approach in such complex environments.
Unlike strategies such as Dynamic Bottleneck (DB, Bai et al. [2021]) and Sequential Information
Bottleneck (SIBE, You et al. [2022]), our approach not only seeks compact representations under
noisy conditions, but also emphasizes on achieving noiseless future predictions and treating temporal
noise along representations.

9 Implementation Details

In this section further algorithmic implementation details are discused.

9.1 Algorithm

We jointly train DPI with Soft Actor-Critic by incorporating Equation (13) as an auxiliary objective.
Soft Actor-Critic (SAC) [Haarnoja et al., 2018] is an off-policy actor-critic reinforcement learning
algorithm designed to optimize stochastic policies. It incorporates maximum entropy framework,
ensuring a stochastic policy that seeks to balance reward maximization with entropy maximization.
SAC employs a value function and two Q-functions (or critics) to reduce value overestimation. We
specifically utilise the same encoder architecture as in Yarats et al. [2021]. It aims at learning the
latent state representation and policy jointly.
The training algorithm for DPI with SAC is presented in Algorithm 1. Estep is the environment step
function. φ and θ are the parameters of observation encoder and transition function respectively. They
are jointly optimised. The parameters of the two Q-function and the policy π are denoted by {ϕ1q, ϕ2q}
and ϕa respectively. {φm, ϕ̂1q, ϕ̂2q} are the parameters of the target encoder and target Q-functions
respectively, which updated with an exponential moving average. α is the temperature parameter.
λQ, λπ, λα and λDPI are the learning rates for four different objective functions.

9.2 Model Architecture Details

Our implementation of Soft Actor-Critic [Haarnoja et al., 2018] is implemented in PyTorch and is
based on the implementation of SAC-AE [Yarats et al., 2021].
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Algorithm 1 Training Algorithm for SAC with DPI

Require: Estep, α,φ, θ, ψ, ϕa, ϕ1q, ϕ
2
q , L ▷ Environment and initial parameters.

1: D ← ∅ ▷ Initialize replay buffer
2: for each initial collection step do
3: at ∼ πrandom(·|ot) ▷ Sample action from a random policy
4: ot+1, rt+1 ∼ Estep(at) ▷ Apply action
5: D ← D ∪ (ot+1, at, rt+1) ▷ Append experience to replay buffer
6: end for
7: for every training step do
8: {(ot, at, rt, ot+1)}L+kt=k ∼ D ▷ Sample minibatch of sample from buffer
9: for t = 1 to L do

10: at ∼ πϕa
(at|ot) ▷ Sample action from the policy

11: ot+1, rt+1 ∼ Estep(at)
12: D ← D ∪ (ot+1, at, rt+1)
13: for each gradient step do
14: {ϕiq, φ} ← {ϕiq, φ} − λQ∇LQ(ϕiq, φ) for i ∈ {1, 2} ▷ Update soft Q-functions
15: ϕa ← ϕa − λπ∇Lπ(ϕa) ▷ Update policy
16: α← α− λα∇Lα(α) ▷ Adjust temperature
17: {φ, θ} ← {φ, θ} − λDPI∇LDPI(φ, θ) ▷ Update encoder and transition model
18: ϕ̂iq ← τϕiq + (1− τ)ϕ̂iq for i ∈ {1, 2} ▷ Update target Q-function
19: φm ← τφ+ (1− τ)φm ▷ Update target encoder
20: end for
21: end for
22: end for

9.2.1 Critic and Actor Network

For our critic, we use double Q-learning, where each Q-function is a 3-layer MLP, using ReLU
activations after every layer, except the final one. Similarly, the actor is structured as a 3-layer MLP
with ReLUs, designed to produce the mean and covariance values of the diagonal Gaussian. The
hidden dimensions are set to 50 for actor and critic.

9.2.2 Observation Encoder and Decoder Networks

Encoder. Our encoder architecture aligns with the design proposed by Yarats et al. [2021]. The
architecture starts with an initial convolutional layer featuring a 3 × 3 kernel and a stride of 2.
Subsequent to this, there are three more convolutional layers, each characterized by a 3 × 3 kernel
and a stride of 1, resulting in a total of four convolutional layers, which have RELU activations. The
50 dimensional output of the fully-connected layer is stabilized using layer normalization [Ba et al.,
2016], then divided into mean and standard deviation. We add tanh non-linearity on the standard
deviation, then perform reparameterization trick to produce encoder’s representation from the given
observation.

Decoder. Our decoder is structured with an initial fully connected linear layer, followed by three
deconvolutional layers with a 3 × 3 kernel and with a stride of 1, and the last layer with the same
kernel size and stride of 2.

9.2.3 Transition Network

Our transition model integrates representation zt (from the encoder) and action at into a single
encoding, denoted as zat, of size 256 via a fully connected linear layer. This encoding is subsequently
passed through three additional fully connected layers, each having the same size and all using the
Exponential Linear Units (ELU) as the activation function. To incorporate temporal dependencies, the
state-action encoding is merged with the past history variable ht−1 via a Gated Recurrent Unit (GRU)
mechanism. On another hand, this state-action encoding is concatenated (zinputt ) and passed via a
fully connected linear layer to generate the next representation mean µzt+1

and standard deviation
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σzt+1 . They are then reparameterised to produce the next representation zt+1. The entire procedure
is comprehensively detailed in Algorithm 2.

Algorithm 2 Transition Model Pseudo-code

Require: zt, at, ht−1 ▷ Representation, Action and History
1: zat ← cat(zt, at) ▷ Concatenate Representation and action
2: zat ← ELU(fc1(zat)) ▷ Representation-action encoding
3: for i = 2 to 4 do
4: zat ← ELU(fci(zat))
5: end for
6: ht ← GRU(zat, ht−1) ▷ Current history variable for next representation
7: zinputt ← cat(zat, ht−1) ▷ Input for encoding next representation
8: µzt+1 ← ELU(fcµ(z

input
t )) ▷ Next representation mean

9: σzt+1
← tanh(fcσ(z

input
t )) ▷ Next representation standard deviation

10: zt+1 ← µzt+1
+ ϵ⊙ exp(σzt+1

) ▷ Reparameterization trick

9.3 Code details

Upon publication, all code will be made publicly available. Additionally, we intend to release the
code for the benchmarked algorithms.

10 Hyperparameters

To ensure a fair comparison, we maintained the original hyperparameters for each method and used
the code as provided by the authors. The only adjustment we made is in how background images are
incorporated into the observation. The complete set of Hyperpameters essential to implement our
approach are provided in the Table 2.

10.1 Sequence Length

A crucial aspect in our method is selecting the length of the time sequence. Ideally, it could span
from the trajectory’s start to a certain time horizon in the future. In our method, we establish that
each information term can be splitted in a Markovian fashion, due to the incorporation of the history
variable. For our experiments, we’ve chosen a time sequence length of three timesteps.

10.2 Action Repeat

Following Dreamer [Hafner et al., 2020a], we designate repeat action of 2 for each environment. We
adopt the same settings for all our baselines.

10.3 Weighing Coefficients

We performed a grid search on the weighing coefficients from a range of 1 to 10−5. We empirically
found out that setting α2 large makes the algorithm unstable, as the ICLUB loss dominates other terms
significantly. The best settings are shown in the Table 3.

Table 3: Environment and their Coefficients
Environment Weighing Coefficients

α1 α2 β1 β2

Cheetah Run 10−1 10−3 10−2 10−2

Walker Walk 10−2 10−4 10−2 1

Cartpole Swingup 10−2 10−4 10−1 10−1
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Table 2: Hyperparameter settings and descriptions for the SAC with DPI implementation
Parameter name Value Description
Replay buffer capacity 2.5× 105 Maximum number of past experiences stored for

off-policy learning.
Image size 84× 84× 3 RGB image of size 84× 84.
Batch size 32 Number of experiences sampled from the replay

buffer for each update.
Discount γ 0.99 Factor by which future rewards are discounted in

the Q-function.
Optimizer Adam Optimization algorithm used for training; Parame-

ters: β1 = 0.9, β2 = 0.999, ϵADAM = 10−7.
Critic learning rate 10−5 Learning rate used to update the critic’s parame-

ters.
Critic target update frequency 2 Frequency of copying weights from the critic to

the target critic.
Critic Q-function soft-update rate τQ 0.005 Rate of soft-updating the critic’s Q-function.
Critic encoder soft-update rate τϕ 0.005 Rate of soft-updating the critic’s encoder.
Actor learning rate 10−5 Learning rate used to update the actor’s parameters.
Actor update frequency 2 Frequency of actor parameter updates.
Actor log stddev bounds [-10, 2] Bounds on the logarithm of the actor’s policy stan-

dard deviation.
Encoder learning rate 10−5 Learning rate used to update the encoder’s parame-

ters.
Decoder learning rate 10−5 Learning rate used to update the decoder’s parame-

ters.
Temperature learning rate 10−4 Learning rate for the temperature parameter in the

SAC’s objective.
Init temperature 0.1 Initial temperature parameter that scales the en-

tropy term in SAC’s objective.

The coefficients are as follows, α1: Weighing coefficient for ILTC , α2: Weighing coefficient for
ICLUB , β1: Weighing coefficient for IRec and β2: Weighing coefficient for IRec.

11 Experiments and Analysis

11.1 Videos Configuration

In this study, we slightly modified the background from what has been traditionally done in previous
research. These minor alterations significantly influenced the outcomes. Our experimental conditions
closely resembles that of Temporal Predictive Coding (TPC, Nguyen et al. [2021]), but we find it
crucial to articulate this explicitly here.

1. Contrary to the predominant use of grayscale images in benchmarking across numerous past
studies, including Denoised MDPs [Wang et al., 2022], Task Informed Abstractions (TIA, Fu et al.
[2021]), Deep Bismulation for Control (DBC, Zhang et al. [2021]),Dreamer [Hafner et al., 2020a],
with the notable exception of TPC (Nguyen et al. [2021]), our work deviates by employing RGB
videos instead.

2. We eliminated the ground plane to fully expose the natural background in the observations.

3. In order to ensure generalizability, we leverage a large collection of videos, segregating them into
distinct sets for training and testing. Specifically, we’ve independently sampled 100 videos each
for both training and testing. These natural videos are incorporated from Kinetics 400 dataset [Kay
et al., 2017] at random.

For transparent benchmarking and easy access, we will subsequently upload these videos to a cloud
storage platform on publication.
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11.2 Baseline Methods

DBC. We used the observation of size 84 × 84 and stacked 3 consecutive frames following the
original work [Zhang et al., 2021]. We used the same hyperparameters mentioned in its paper.

Others. Utilizing the Recurrent State-Space Model (RSSM) as their transition model [Hafner et al.,
2019], these methods follow an identical training schedule. For all the methods, we use 64×64 images
and use the same parameters described in their respective papers. In order to maintain homogeneity,
we used the same number of actions for all the baselines. The author’s open source-code are utilised
for their implementation without any changes.

11.3 Difference in Iso-Dreamer Performance

Our results demonstrate that the performance of Iso-Dreamer [Pan et al., 2022], as seen in Table 1 and
Table 4, does not align with the outcomes reported in its original publication (refer to Table 1 on Page 7
in Pan et al. [2022]). This discrepancy can be attributed to our methodological approach, particularly
our decision to train and test on the video_hard environment, as opposed to the video_easy
environment discussed in Section 4.2 of the Iso-Dreamer paper Pan et al. [2022]. Opting for the
video_hard environment significantly escalates the complexity of the problem. This environment
presents more intricate and challenging scenarios for learning, thereby making it harder to learn
noise-free representations. Additionally, to ensure consistency, we extended the training duration to
1M steps, rather than the 500K steps as mentioned in the original study. We also made sure that the
rotation of the target is fixed in the Reacher Easy environment.

11.4 Results in Standard Settings

While our main focus isn’t on noiseless environments, we evaluated our method against baseline
approaches in such settings. We observed that Dreamer outperforms all the methods in most of the
environment in these settings. As depicted in Figure 4, our method is competitive in most of the
environments.

Figure 4: Standard setting. Performance comparison of our method (DPI) and baselines on six
observation-based continuous control tasks from DMC Suite. Mean of 3 runs; shaded areas are 95%
confidence intervals.

23



Table 4: Rewards in Random Environment Background Settings

Task Cheetah Run Cartpole Swingup
DBC 37 ± 3 268 ± 167
De-MDPs 118 ± 41 149 ± 38
Dreamer 118 ± 41 149 ± 38
Dreamer-V2 155 ± 103 144 ± 38
SPR 105 ± 32 201 ± 18
TIA 16 ± 7 75 ± 2
TPC 59 ± 10 132 ± 97
VSG 127 ± 79 139 ± 10
Iso-Dreamer 5 ± 2 56 ± 27
DPI (Ours) 248 ± 33 572 ± 110

The table illustrates the rewards obtained in random background settings in two environments. The
best or comparable method is present in bold.

11.5 Results in Random Settings

The results for the Cheetah run task in random background settings shows the performance of DPI in
comparison with nine relevant baselines. As illustrated in Figure 5, it is evident that DPI outperforms
the performance of all in this setting. Denoised MDPs [Wang et al., 2022], our closest competitor
here, exhibits high variance and instability, making its results less reliable and subject to fluctuation,
undermining its utility in stochastic environments.

Figure 5: Random setting. Performance comparison of our method (DPI) and nine relevant baselines
on Cheetah run environment. Mean of 3 runs; shaded areas are 95% confidence intervals.
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11.6 Computational Costs

All the experiments were done on a single GPU, that required atmost 8GB memory for all the tasks.
We use multiple NVIDIA GPUs for training: 4070 (DBC and DPI), 4090 (DPI and Denoised MDPs),
3090 (TPC), P500 (TIA and Dreamer). Training time required for each run heavily depends on the
CPU specification too. It also heavily relies on the batch size the algorithms are trained on. Single
seed of each method on average takes following time: DPI: 8 ∼ 20 hours, TIA: 15 ∼ 24 hours,
Denoised MDPs: 5 ∼ 8 hours, TPC: 30 ∼ 40 hours, Dreamer: 15 ∼ 24 hours, DBC: 12 ∼ 20 hours.

12 Reconstructions

12.1 Reconstruction in the natural background setting

In our experiments, we explore the type of information encoded by different model encoders when
trained in natural background settings. As depicted in Figure 6, while Dreamer (3rd row) attempts to
encode both the agent and the background, DPI (2rd row) emphasizes on encoding the task-relevant
agent, while the background is blurred. On the other hand, Denoised MDPs [Wang et al., 2022] also
incorporate the background of other natural videos in the dataset, a consequence of overfitting on the
training background noise, failing to generalise and separate the background from the agent.

Figure 6: Reconstruction. Observation reconstruction of DPI versus Dreamer in the Natural
background setting. First row: Ground Truth, Second row: DPI, Third row: Dreamer, Fourth Row:
Denoised MDPs.

12.2 Reconstruction in blended backgrounds

We conduct experiments to investigate the challenges encountered in environments where the agent
blends with their background due to similar colors. This phenomenon of color-based blending makes
it difficult for the encoder to bifurcate between task-relevant features and background noise.
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Figure 7: Reconstruction in blended environments. Observation reconstruction of DPI in the
Natural background setting with similar color of agent and the background. First row: Ground Truth,
Second row: DPI reconstruction

As illustrated in Figure 7, DPI prioritizes capturing task-relevant information and opts not to encode
the background when it exhibits similar colors. In the reconstructions, the agent stands out distinctly,
whereas the background appears blurred, underscoring DPI’s focus on the agent over the surrounding
noise.

12.3 Reconstruction of Cartpole swingup in random backgrounds

To investigate further into whether our method effectively emphasizes on relevant details, we carried
out additional experiments on the Cartpole Swingup task. The findings from these experiments are
shown in Figure 8.

Figure 8: Reconstruction in cartpole environment in random settings. Observation reconstruction
of DPI in the Cartpole environment in random background setting. First row: Ground Truth, Second
row: DPI reconstruction

13 Ablation Analysis

In this section, we delve into an ablation study for the Cheetah Run environment, breaking down
the components of the DPI model. Our experiment is conducted on various settings, each excluding
distinct components in DPI (See Equation (13) for reference). Specifically, we consider:

A No latent consistency; removes ILTC from LDPI by setting α1 = 0.
B No upper bound minimization; removes ICLUB from LDPI by setting α2 = 0.
C No lower bound maximization; removes INCE from LDPI by setting β2 = 0.
D No reconstruction; removes IRec from LDPI by setting β1 = 0.
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Figure 9: Ablation Analysis. Evaluating the impact of individual components removal on DPI’s
performance on Cheetah Run from DMC Suite. Mean of 3 runs; shaded areas are 95% confidence
intervals.

The results of the experiments on Cheetah Run are illustrated in the Figure 9. Here we discuss the
potential effects of these terms:

A No latent consistency settings eliminates the regularization of the latent representation from the
transition from the observation encoder. Without this crucial regulation, the agent may deviate
from its intended dynamic pathways. This deviation stems from the unmitigated noise infiltrating
the predictive process due to past observations. Consequently, the agent’s trajectory can diverge
from its expected dynamics, underscoring the essential role of latent consistency in guiding and
stabilizing the agent’s behavior in alignment with its inherent dynamics. This results into a drop
in performance and noise addition from the past observations into the predicted observations
(Figure 10, Third row).

B No upper bound minimization setting impacts the performance and stability in natural setting.
This term is responsible for finding the current state representation from the past inputs. Exclusion
of this term results in added noise in the current representations, potentially leading to higher
variance and reduced performance. This can be seen in the Figure 10 (Fourth Row), where the
learning algorithm is not able to accurately differentiate background video from the agent and as a
result induces much more noise than in original DPI’s reconstruction. The results are similar to A.

C No lower bound maximization; removes INCE from LDPI by setting β2 = 0. This term is
responsible for predictive dynamics in the latent space. Based on our findings, omitting this
term most profoundly diminishes the model’s performance compared to the other components.
A plausible explanation might be that this term prevents the representation from collapsing by
incorporating the target encoder and updating it through a moving average. This is evident in the
reconstructed image shown in Figure 10 (Fourth row), where all the observations converge to a
singular representation, leading to similar outputs during reconstruction. It’s worth mentioning
that only the agent remains and the background is entirely eliminated in this scenario. This could
be attributed to ICLUB taking control and effectively filtering out all the noise.

D No reconstruction; removes IRec fromLDPI by setting β1 = 0. In a reconstruction-based approach
like ours, the reconstruction loss is vital for training the model to accurately generate and replicate
the complex dynamics of the observed environment. Without this component, the model’s ability
to accurately predict and reconstruct future states based on current observations is significantly
compromised.

Concluding remarks on the Ablation study: We systematically evaluated the impact of omitting
specific components within DPI, revealing their individual and collective contributions to the model’s
performance. Eliminating any component from our model results in a notable decline in performance,
either due to the introduction of noise into our representations or a loss of the model’s predictive
capabilities. Our findings demonstrate that each component plays a critical role in the model’s ability
to accurately capture and predict the environment’s dynamics.
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Figure 10: Ablation Reconstruction. Evaluating the impact of individual components removal
on DPI’s reconstruction on Cheetah Run from DMC Suite. First row: Ground Truth, Second row:
DPI, Third row: A, Fourth row: B, Fifth row: C. We have not included D as it does not have the
reconstruction.
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