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ABSTRACT

Code completion is usually cast as a language modelling problem, i.e., contin-
uing an input in a left-to-right fashion. However, in practice, some parts of the
completion (e.g., string literals) may be very hard to predict, whereas subsequent
parts directly follow from the context. To handle this, we instead consider the
scenario of generating code completions with “holes” inserted in places where a
model is uncertain. We develop GRAMMFORMER, a Transformer-based model
that guides code generation by the programming language grammar, and compare
it to a variety of more standard sequence models.
We train the models on code completion for C# and Python given partial code
context. To evaluate models, we consider both ROUGE as well as a new metric
REGEXACC that measures success of generating completions matching long out-
puts with as few holes as possible. In our experiments, GRAMMFORMER gener-
ates 10-50% more accurate completions compared to traditional generative mod-
els and 37-50% longer sketches compared to sketch-generating baselines trained
with similar techniques.

1 INTRODUCTION

Recent high-capacity language models (LM) have shown that machine learning models are able to
generate coherent, realistic text, but it is often hard to guide them towards a specific goal, especially
when describing the intent is complex or more costly than manually generating the target output.

One such scenario are LMs of source code (LMC). Since Hindle et al. (2012) increasingly sophis-
ticated LMCs have been built, including transformer-based ones, such as those of Svyatkovskiy
et al. (2020); Feng et al. (2020); Chen et al. (2021) and various similar unpublished models such
as TabNine and SourceAI. These models generate full sequences of code tokens left-to-right with
any prefix acting as the (partial) user intent. While LMs generate realistic-looking outputs, they are
known to occasionally “hallucinate” (Puduppully et al., 2019; Malmi et al., 2019; Maynez et al.,
2020; Liu et al., 2021), i.e. generate plausible but incorrect content. This is particularly problematic
in generating source code, where small mistakes can lead to erroneous code that is very hard to
debug or introduces vulnerabilities (Pearce et al., 2021).

In this work, we investigate models that can decline to make predictions in places where there is
high uncertainty (e.g., where the user should choose a name), but continue generating around these
“holes”. For example, in Fig. 1(left) a developer has typed some code and is about to type the next
line. A likely completion is to consume more command line arguments, but their name is unclear
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Code Context:
1 import sys
2 target = sys.argv[1]
3 I

Ground-Truth:
ID = sys.argv[2]

Suggested Code Completions:
L→ R target = target.replace("\\", "/")
L→ R +⦸ target =
L→ R +� print(target)
Copilot (No suggestion)
GRAMMFORMER � = sys.argv[2]

Figure 1: A sample snippet (left; abbreviated from Fig. 12 in Appx. A). A developer has just typed
the code and their cursor (in blue) is at line 3. Code completions provided by a number of models
are shown on the right, where L→ R is a standard LMC and GRAMMFORMER is our new model.

from the context. A traditional generative model (e.g. Fig. 1; top right) may choose to provide a
completion that exists in the training data, but is not clearly called for here. On the other hand, a
model able to explicitly mark where it is uncertain (Fig. 1; bottom right) makes it clear to a user
where further input is required.

However, creating such models is not trivial. A simple first attempt may be to use a standard LMC,
but output a “hole token” � whenever the model is uncertain about the next output token. However,
continuing after the “�” then becomes infeasible, as the LMC was not trained on such data. Hence,
a suitable training dataset and objective need to devised. As no large datasets with holes exist, we
instead choose to use a reinforcement learning approach in which our reward function encourages
the model to make “long” predictions with as few “�” tokens as possible, but to avoid making
incorrect predictions. We found that standard left-to-right sequence models perform poorly on this
task. Hence, we developed GRAMMFORMER, a model that construct suggestions by generating a
(partial) syntax tree, but which has the option of leaving non-terminals in its output.

Contributions (1) We present GRAMMFORMER, a transformer-based model that generates code
based on the programming language grammar and can predict hole tokens rather than output it is
uncertain about. (2) We develop REGEXACC, a metric that evaluates the quality of predictions with
holes. (3) We evaluate GRAMMFORMER on Python and C# code and show that GRAMMFORMER
makes longer and more precise statement-level sketch completions compared to baselines.

2 METHOD

Our aim is to predict code completions as sketches, a mix of actual tokens and “holes” �, which
are meant to signify that the model is unable to make a useful prediction within the given context
and further user input is required. Formally, we consider models that take a context sequence x of
tokens as input and have to produce an output sequence y; intuitively, x is what the user typed so far,
and y is the suggestion presented to the user. In our setting, y is a sketch, a mix of tokens from the
programming language and the special token � signifying a “hole” that could be filled by an arbitrary
sequence of tokens. For example, t = foo(�) is a sketch corresponding to assigning the return
value of function foo to variable t, but leaves the arguments of the function call undetermined.

Metric A good sketch is one that (a) can be completed into the correct output and (b) is as precise
as possible. To measure how successful a method is in doing so, we define a new metric REGEXACC.
For (a), we use toRegex(ŷ) to turn a predicted code sketch ŷ into a regular expression by replacing
all holes with the wildcard matching any non-empty sequence (“.+” in Perl Compatible Regular
Expression syntax). If the regex matches the ground truth, matches(⋅, ⋅) returns a score of 1
otherwise it returns 0. To implement (b), we scale this result by the proportion of terminal tokens
predicted, by defining nTokens(ŷ) as the function that returns the number of non-hole symbols in
ŷ. More formally, assume an output sketch ŷ and a ground-truth sequence y

∗, where y
∗ does not

contain any � tokens. REGEXACC is then defined as

REGEXACC(ŷ,y∗) ≜ matches(toRegex(ŷ),y∗) ⋅ nTokens(ŷ)
nTokens(y∗) .

Beyond REGEXACC, we also consider ROUGE (Lin, 2004), since a sketch can be thought as a form
of a “summary” of the target text. For this, we use a helper function ERASEHOLES(ŷ) that simply
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x
(0): r = ⟨Expr⟩ i

(0)
= 3

x
(1): r = ⟨Expr⟩ * ⟨ParenthesizedExpr⟩ i

(1)
= 5

x
(2): r = ⟨Expr⟩ * ( ⟨Expr⟩ ) i

(2)
= 6

x
(3): r = ⟨Expr⟩ * ( ⟨Expr⟩ - ⟨Expr⟩ ) i

(3)
= 8

x
(4): r = ⟨Expr⟩ * ( ⟨Expr⟩ - ⟨Identifier⟩ ( ⟨ArgList⟩ ) ) i

(4)
= 8

x
(5): r = ⟨Expr⟩ * ( ⟨Expr⟩ - foo ( ⟨ArgList⟩ ) ) i

(5)
= 10

x
(6): r = ⟨Expr⟩ * ( ⟨Expr⟩ - foo ( ⟨Identifer⟩ ) ) i

(6)
= 10

x
(7): r = ⟨Expr⟩ * ( ⟨Expr⟩ - foo ( args ) ) i

(7)
= 6

x
(8): r = ⟨Identifier⟩ * ( ⟨Expr⟩ - foo ( args ) ) i

(8)
= 6

x
(9): r = x * ( ⟨Expr⟩ - foo ( args ) ) i

(9)
= ⦸

Figure 2: Progress of grammar-based code generation of the sketch r = x * (�-
foo(args)) by GRAMMFORMER. Each line represents consecutive x

(t) in Alg. 1. Terminal
tokens are shown in monospace blue font. The underlined non-terminal at position i(t) is se-
lected by Ps and its expansion is generated by Pe, i.e. the output underneath the selected (under-
lined) non-terminal. Fig. 5 and Fig. 6 in Appx. A show real example generation sequences from our
datasets.

drops all � tokens, and then consider ROUGEF1(ERASEHOLES(ŷ),y∗). ROUGE is more lenient to
errors than REGEXACC and gives partial credit to non-matching but plausible sketches.

2.1 LINEAR CODE SKETCH GENERATION

First, we consider the idea of generating code sketches using a standard generative model for lan-
guage. To this end, we simply extend the vocabulary with the special “�” token. An obvious
problem is that while we have plenty of training data for a standard generative model, we do not
have training data for outputs y that contain the � token. Consequently, we cannot train the model
in a fully supervised fashion, and instead turn to reinforcement learning. Concretely, we devise a
reward function r(⋅) that averages REGEXACC and ROUGE, i.e. for a predicted output sketch ŷ and
a ground truth output (without � tokens) y∗, we define

r(ŷ,y∗) = 1

2
(REGEXACC(ŷ,y∗) + ROUGEF1(ERASEHOLES(ŷ,y∗)) . (1)

Using the combination of ROUGE (which does not consider holes) and REGEXACC is crucial here,
as ROUGE is much “smoother” compared to REGEXACC, which is 0 for all but very few predictions,
allowing us to measure partial improvement. We use our reward function from Eq. 1 to evaluate the
quality of the output of the full model and compute a loss. Inspired by Paulus et al. (2017) we use
self-critical policy gradient training (Rennie et al., 2017) and for a prediction ŷ we minimise

L(x,y∗) = (r(ŷ,y∗) − r̃(x)) ⋅ Lgen (x, ŷ) (2)

Here, r̃(x) is the reward achieved by the prediction from the snapshots of the model that achieved
the best score so far and Lgen is the loss of the generative model. Intuitively, this objective rewards
models that improve upon the previous best policy with respect to r.

To model this in practice, we use a standard encoder/decoder Transformer model Vaswani et al.
(2017); Radford et al. (2019), “translating” the context x into the output y using separate encoder
and decoder models. We additionally also consider the language modelling case, i.e., a model that
conditioned on x predicts token y0, conditioned on x,y0 predicts token y1, etc..

Pretraining In practice, we found that directly training a sequence model to maximise Eq. 1, is
very slow and does not converge to a useful model. Instead, we heuristically generate a dataset
suitable for supervised pretraining. We replace random AST non-terminals of the target output by
� and generate target sequences. These contain terminals and zero or more �. We then pretrain the
model on this dataset to convergence, and then fine-tune it using the reward of Eq. 1.

2.2 GRAMMAR-BASED CODE SKETCH GENERATION

In experiments, we found the simple extended sequence model from above to not perform well, in
particular, � tokens would not replace semantically meaningful subsequences (e.g. “szconv.�)”
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Algorithm 1 GRAMMFORMER generative process, given an input sequence x
(0).

for t = 0, 1, 2, ... do
i
(t)
∼ Ps (i ∣ x(t)

, N(x(t))) ▷ sample non-terminal position from N(x(t)) to expand

if i(t) = ⦸ then ▷ if x(t) does not contain non-terminals or none was selected by Ps

break ▷ stop generation
u

(t)
⊚i(t)

∼ Pe (u ∣ x(t)
, i

(t)) ▷ sample expansion of non-terminal at position i(t)

x
(t+1)

← x
(t)
<i(t)

∶∶ u
(t)
⊚i(t)

∶∶ x
(t)
>i(t)

▷ create x
(t+1) by replacing non-terminal at i(t) by u

(t)
⊚i(t)

return NONTERMINALSTOHOLES(x(t))▷ convert remaining non-terminals to holes and return

does not contain a left parenthesis and requires the user to fill it in.). To resolve this, we developed
GRAMMFORMER, a grammar-guided model. It generates code by following the structure of the
context-free grammar (CFG) defining the programming language syntax, iteratively expanding non-
terminal symbols. Crucially, it can choose to not expand some non-terminal symbols, which can
then be presented as � to users. In traditional grammar-based generation of text (Cohen et al., 2012)
or code (Maddison & Tarlow, 2014; Yin & Neubig, 2017; Allamanis & Sutton, 2014; Bielik et al.,
2016), the CFG is followed by sequentially expanding the left-most, bottom-most non-terminal
symbol, using one of the production rules of the grammar. GRAMMFORMER changes this and
instead selects the non-terminal symbol to expand, if any. An example generation is shown in Fig. 2.

Probabilistic Model A CFG is defined as a tuple (Σ,N , S,R) where Σ is a set of terminal sym-
bols, N is a set of non-terminal symbols, S ∈ N is the root symbol andR is a set of production rules.
We denote non-terminals as ⟨NonTerminalName⟩. GRAMMFORMER can be viewed as a sequence-
to-sequence model transforming x = x0,x1, ...,xn into a new sequence in which one non-terminal
symbol xi has been replaced by a new sequence of new symbols, according to a production rule of
the grammar. Examples of such sequences and rewrites are shown in Fig. 2.

GRAMMFORMER does this rewriting in two steps. First, a non-terminal selector model Ps selects
a non-terminal in x to expand and then the non-terminal expansion model Pe determines how to
expand it. To define Ps, letN(x) = {i ∣ xi ∈ N }∪{⦸} denote the set of non-terminal positions in x
and a special “stop expansion” ⦸ symbol. Conditioned on x, Ps produces a probability distribution
over N(x). In turn, Pe is conditioned on x and a position i ∈ N(x) and models a probability
distribution over expansion sequences u ∈ (Σ ∪ N )∗. Note that factorising GRAMMFORMER
into two models Ps and Pe is an important modelling decision: how to best expand a non-terminal
is entirely separated from predicting whether a hole should be introduced. These two concepts
are intermixed in standard (sequence) decoders. In practice, we define both models using neural
architectures with partially shared parameters, as discussed below.

Alg. 1 shows a high-level description of GRAMMFORMER, in which Ps and Pe are used repeatedly
to select and expand non-terminals (not necessarily the left-most one), until none are left or the Ps

indicates that expansion should stop. Here, NONTERMINALSTOHOLES(⋅) replaces all remaining
non-terminal symbols with a hole �. Note that GRAMMFORMER is not context-free, taking into
account the whole input sequence when expanding a non-terminal. Second, in contrast to many
grammar-based methods (Yin & Neubig, 2017; Bielik et al., 2016), any non-terminal can be ex-
panded at each step. Finally, Pe is not directly constrained to follow the production rule set R, but
can generate any sequence. In practice, it learns to follow to the rules of R from the data, but this
flexibility is important for handling string literals and argument tuples of variable length.

Neural Model To implement Ps and Pe, we use a shared encoder module that computes a rep-
resentation of the input sequence x = x0, . . . ,xn as vectors e0, . . . , en, ei ∈ RD, where D is a
hyperparameter. Our encoder module is a Transformer (Vaswani et al., 2017), given the impressive
results of transformer-based models in NLP and code (Feng et al., 2020). Other architectures (RNNs,
1D-CNNs, Transformer variants) would be suitable, but we leave their study for future work.

Ps is implemented similar to a pointer network on top of this encoder module, i.e.

Ps(i ∣ x) = softmax
i∈N(x)

(f(ei)) ,
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where f is a learnable feed-forward neural network. For our purposes, we define e⦸ as the repre-
sentation of the special start symbol [CLS] used in our Transformer encoder.

The expansion model Pe follows a standard autoregressive decoder formulation, i.e.

Pe(u ∣ x, i) =
m

∏
j=1

Pdec(uj ∣ e0, . . . , en, i,u<j).

We implement Pdec as a (causal) relational Transformer decoder, similar to Wang et al. (2019).
Relational transformers augment the attention mechanism by incorporating predefined relationships
among elements; attention scores are then biased by learnable weights for each relation. In GRAMM-
FORMER, we only use a single relation, connecting each token to the expanded non-terminal token
xi, to help the model focus on the token it needs to generate an expansion for.

Objective Due to the lack of supervised data, we employ reinforcement learning to train GRAMM-
FORMER. We use our reward function from Eq. 1 to evaluate the quality of the output of the full
model. We use self-critical policy gradient training as in Eq. 2 and minimise

L(x,y∗) = (r(ŷ,y∗) − r̃(x)) ⋅
T

∑
t=0

(− logPs (i(t) ∣ x(t)) − I (i(t) ≠ ⦸) ⋅ logPe ((u
(t)
⊚i(t)

)∗ ∣ x(t)
, i

(t))) .

(3)
Here, r̃(x) is the reward achieved by the snapshots of Ps and Pe that achieved the best score so far.
The rest of the objective follows the iterations of the loop in Alg. 1, where t is the iteration index,
ŷ is the predicted sketch, y∗ is the ground-truth sequence of terminals, and I(⋅) is the indicator
function.

Pretraining As in the sequence model, directly training with the RL objective Eq. 3 is computa-
tionally intensive due to the sampling requirement. We again use a pretraining strategy. First, we
train Pe to expand every non-terminal, independently of the expansion order learned by Ps. To do
this, we use the input training examples and follow Alg. 1, but instead of sampling from Ps(⋅), we
sample i(t) from a uniform distribution over the non-terminals in x

(t), Ñ(x(t)) = {i ∣ xi ∈ N }.
This yields sequences of intermediate sketches x

(t) for each example. Furthermore, for each x
(t),

we compute the ground-truth expansion (u(t)
⊚i )

∗ for all non-terminals i ∈ Ñ(x(t)). We can then
pretrain Pe using the supervised objective

Lpre, e (x(t)
, (u(t)

⊚i )
∗
i∈Ñ(x(t))) =

1

∣Ñ(x(t))∣
⋅ ∑
i∈Ñ(x(t))

− logPe ((u
(t)
⊚i(t)

)∗ ∣ x(t)
, i) ,

i.e. the negative log-likelihood of the correct expansion for all non-terminals in x
(t). This computa-

tion is more computationally efficient compared to the one in Eq. 3 since the cost of encoding x
(t)

is amortised across all potential expansions and no sampling is required. Once Pe is pretrained, we
pretrain Ps. For this, we fix the weights of the shared encoder module, and optimise only the re-
maining parameters of Ps through Eq. 3. Once we have a pretrained both models, we then fine-tune
all model weights end-to-end, using Eq. 3.

Optimisation: Grammar Flattening Following the formal grammar of a programming language
commonly introduces tedious expansions. For example, the Python non-terminal ⟨Call⟩ is always
expanded to ⟨Expr⟩(⟨ArgumentList⟩), and the C# non-terminal ⟨NotEqualOp⟩ is always ex-
panded to the terminal !=. We “flatten” the grammar by replacing non-terminals such as ⟨Call⟩
and ⟨NotEqualOp⟩ with all their possible expansions. In Appx. C we provide the list of the flat-
tened non-terminals. Note that if we repeated this process for all non-terminals except from the
starting symbol S, GRAMMFORMER would degenerate into a standard encoder-decoder model.

Beam Search At test time, we employ a two-step beam search, and replace sampling from Ps

and Pe with their top-ν outputs, keeping a beam of size k. First, for each x
(t) in the beam, we

compute Ps and select the top-m non-terminal positions to expand. For each of those m positions,
we sample the top-n expansions from Pe using a standard beam search. We compute the likelihood
of all k ⋅ n ⋅m results, and then keep only the top-k. This process (detailed in Appx. E) is similar to
a standard beam search but takes into account that two submodels are used.
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Computational Cost GRAMMFORMER’s ability to predict sketches comes with additional com-
putational cost compared to standard transformer encoder-decoders: at each iteration of the loop in
Alg. 1 x

(t) changes, Ps and Pe must be recomputed. This means that the encoder-decoder runs once
on each partial sequence, in contrast to left-to-right causal generation, in which intermediate results
can be re-used. Future work may consider selecting more than one element to expand from N(x(t))
at each step, reducing the expansion steps, similar to Welleck et al. (2019); Stern et al. (2019).

3 EVALUATION

To empirically evaluate our model’s ability to predict useful completions, we use REGEXACC and
ROUGE. Note that we measure these on the generated sequence, i.e. we ignore the context tokens.

Datasets To collect a dataset, we clone all non-fork repositories with more than 20 stars on GitHub
that have C# or Python as their top language. Then, we deduplicate the corpus using the method
of Allamanis (2019); Lopes et al. (2017). Finally, we parse all files into a syntax tree using Tree-
sitter, ignoring any files that cannot be parsed using the v0.19.0 grammar definitions. Finally, we
split the files into 70-10-20 train-validation-test. To create (pre-)training examples, i.e. inputs to
Alg. 1, we search the syntax tree of each file and for each ⟨SimpleStatement⟩ non-terminal create
an example. The syntax tree rooted at the ⟨SimpleStatement⟩ non-terminal is then used to get the
ground-truth expansions during pre-training and the ground-truth expansion y

∗. For our test set,
we randomly sample a ⟨SimpleStatement⟩ non-terminal for each file to evaluate and obtain 318K
(resp. 362K) examples for C# (resp. Python). For each example, x is the 200 terminal tokens before
the ⟨SimpleStatement⟩ non-terminal. More details about the dataset can be found in Appx. B.

Baselines Since we are not aware of any prior model that targets code completion with sketches,
we consider two Transformer-based baselines. We consider both the sequence-to-sequence setting
using separate encoder and decoder models (Vaswani et al., 2017) as well as the language modelling
setting (where there is no distinction between encoder and decoder). We refer to these as “L → R”
and “LM”. We use “L → R” to denote a standard Transformer encoder-decoder model (Vaswani
et al., 2017) used in sequence-to-sequence tasks. Additionally, we consider “L → R + ⦸” and
“LM +⦸”, which are trained to stop generation by inserting a final � token that captures any suffix.
Note that this models can only generate sketches that are prefixes of the target completion, i.e. it
corresponds to a standard token-level generative model with a learnable stopping ability. To train
this model, we use self-critical policy gradient training (as in Eq. 2).

Model Training We provide the training details for all experiments. Most of our models use a
6-layer Transformer as encoder and 6-layer Transformer as decoder, each with a hidden dimension
of 768 and 12 attention heads, with the exception of the LM model (and its variations), which uses
a single 12-layer Transformer, to match the number of parameters of the other models. We set the
intermediate dimension of each Transformer layer as 3072 and use 3 fully-connected layers with
3072, 768 and 1 hidden sizes as the feed-forward neural network f in the selector model Ps. The
vocabulary is constructed using byte-pair encoding (Sennrich et al., 2015) and the vocabulary size is
25 000. We set max length of input and output sequences as 512 and 64, respectively. We train the
model with Adam optimiser using a learning rate of 2e-5 and batch size 4 096. We used automatic
mix precision. Training used 64 NVIDIA Tesla P100 with 16GB memory for 10 days. For beam
search we use k = 5, n = 1 and m =∞, i.e. we consider all non-terminals in each x

(t). We selected
these during early experiments as a reasonable trade-off between speed and predictive performance.

Results Tbl. 1 shows the results for all considered models. For both Python and C#, GRAMM-
FORMER outperforms the baseline methods in terms of REGEXACC, showing that the grammar-
based generation can create better sketches compared to simpler methods. Note that althoughL→ R
has a comparable or better ROUGE score, it does substantially worse than GRAMMFORMER with re-
spect to REGEXACC, meaning that the predictions are “similar” but the sketches contain errors (i.e.
do not match the ground-truth). This means that if a code completion system suggested the full
output of L → R, the user would have to pause and correct the suggestion more frequently. On the
other hand, L→ R+⦸ improves over L→ R in terms of REGEXACC but has a worse ROUGE and
generates significantly shorter suggestions (5.3 vs. 7.5 tokens-long for C#). This is expected since
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Table 1: Performance of GRAMMFORMER compared to baselines for Python and C#.

C# Python

REGEXACC ROUGE Avg REGEXACC ROUGE Avg

Top 1 Top 5 Len Top 1 Top 5 Len

LM 0.42 0.52 75.7 8.0 0.18 0.24 51.0 8.6
L → R 0.42 0.47 77.0 7.1 0.17 0.20 53.2 5.8
LM +⦸ 0.42 0.49 70.9 6.8 0.19 0.25 49.5 7.3
L → R +⦸ 0.45 0.54 69.1 5.3 0.20 0.29 39.3 3.0
LM +� 0.44 0.54 73.3 6.3 0.20 0.27 53.9 6.6
L → R +� 0.45 0.55 73.5 5.8 0.18 0.22 48.9 4.7
GRAMMFORMER (pre-trained only) 0.45 0.57 77.0 7.2 0.20 0.29 50.2 5.7
GRAMMFORMER 0.47 0.59 77.4 7.5 0.21 0.30 51.6 6.1
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Figure 3: Sketch length vs. ground-truth length

L→ R+⦸ is trained to be more “conservative” (i.e. avoid incorrect suggestions) but is also unable
to introduce holes beyond the last generated token. Finally, we can see that while GRAMMFORMER
already performs well after our pre-training procedure, we can further improve its performance with
our fine-tuning technique. We believe that this is because when Ps and Pe are trained jointly, they
co-adapt: some of the capacity of the shared encoder module that is used to make predictions for
hard-to-expand non-terminals is “freed” since Ps learns to not expand them.

Fig. 3 shows how the length of the generated code sketch relates to the length of the ground truth
expression. While the differences between models are small for short target sequences, GRAMM-
FORMER generates substantially longer suggestions than other models when more complex sugges-
tions are required. In particular, the L → R + ⦸ model generates very short suggestions, as it is
trained to stop generation whenever it reaches a point at which it is uncertain about the next token.

Fig. 4 in turn shows how often the suggested sketch was correct dependent on the length of the
ground truth token sequence. Here, L→ R+⦸ does best because it generates the shortest (i.e., least
determined) predictions, which is exactly the trade-off captured by our REGEXACC metric. Of the
models that generate longer suggestions, GRAMMFORMER clearly does best, with the improvement
becoming more pronounced with the length of the target sequence. Note that the performance of the
models on C# is generally better compared to the performance in Python. We believe that this has
to do with the grammar of each language and the patterns it induces within the developer’s code.
Casalnuovo et al. (2019); Karampatsis et al. (2020) have observed a similar phenomenon on the
perplexity across (standard left-to-right) language models for different programming languages.

Ablations Next, we look into ablations of GRAMMFORMER and reason about how its components
perform. To this end, Tbl. 2 shows the performance of different model variants on the C# dataset.
First, we analyse the effect of the selector model Ps. To this end, we consider two ablations. The first
is the “random expansion” model, in which the non-terminal token to expand is sampled uniformly at
random from the full set of non-terminal symbols, and which hence does not stop expansion as long
as any holes are remaining. This is effectively GRAMMFORMER after our pre-training procedure
for Pe. This model achieves the best ROUGE score, but a relatively bad REGEXACC, as it is forced
to generate a prediction even when it is very uncertain. The second ablation, a “fixed threshold”
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Figure 4: Percent Correct (i.e., matching) sketches (top-1 generated sketch) vs. ground-truth length

Table 2: Performance for GRAMMFORMER ablations (C#), for different Ps and reward functions.

REGEXACC ROUGE Avg Length

Top 1 Top 5

GRAMMFORMER 0.47 0.59 77.4 7.5

Random expansion, no ⦸ 0.42 0.54 78.3 8.1
Random expansion, ⦸ at fixed threshold 0.45 0.57 71.6 5.8

GRAMMFORMER, r(⋅) = ROUGEF1 0.42 0.54 78.2 8.1
GRAMMFORMER, r(⋅) = REGEXACC 0.51 0.62 70.8 5.8

L → R 0.42 0.47 77.0 7.1
GRAMMFORMER, no ⦸ 0.42 0.55 78.1 8.2

model is similar to our first ablation, but stops expansion when the probability of the generated
x
(t) falls below a threshold. We choose this threshold on the validation set. This model makes

shorter, but more accurate sketch predictions compared to the “random expansion”, but is worse
than GRAMMFORMER. These two ablations demonstrate that our learned Ps is useful.

Second, we consider the effect of using different reward functions r(⋅) in the training of GRAMM-
FORMER. Concretely, whereas we use the mean of REGEXACC and ROUGE in GRAMMFORMER,
we now consider using only a single of these two metrics. As expected, the results on the correspond-
ing metric improve, with a substantial cost in the other metric. Concretely, using only REGEXACC
leads to significantly shorter predictions with a low ROUGE score. We believe that this is because
REGEXACC is a strict metric, returning 0 if the sketch does not match, which leads to sparse rewards
and makes the resulting model more conservative at expanding non-terminals.

Finally, to evaluate the benefit of the grammar-guided decoder, we consider a variant of GRAMM-
FORMER that does not allow the introduction of � and instead has continue expansion until no
non-terminals exist anymore. This variant can be compared to L → R, which also cannot stop or
introduce � tokens. Our ablation shows that there is substantial benefit in using grammar-guided
decoding, leading both to longer predictions as well as more correct ones.

3.1 QUALITATIVE EVALUATION

Having observed the quantitative results, we now turn our attention to a qualitative look at the
results and show some cherry-picked examples that illustrate desired and undesired behaviours of
GRAMMFORMER and the baselines, where we also include the suggestions of the GitHub Copilot
system GitHub (2021). Fig. 1 shows an example and eleven more are shown in Appx. A. Fig. 1
illustrates the importance of generating sketches instead of concrete sequences of terminal tokens:
oftentimes, the code context does not provide sufficient information about the user’s intent. Sketch-
generating models can offer more informative suggestions given the partial intent.

Of course, GRAMMFORMER also makes mistakes. For example, GRAMMFORMER and L→ R+⦸
are sometimes “too” conservative (e.g. Fig. 15 in Appx. A) generating holes where L→ R generates
fully concrete completions. This suggests future research opportunities for better calibration of Ps.

8



Published as a conference paper at ICLR 2022

Finally, a pure language modelling approach to code completion will always be insufficient. For
example, user-defined types and rare APIs cannot be predicted by a language model, since‘’ the
APIs cannot be known during training (Fig. 7 and Fig. 17 in Appx. A). Researching methods to
scalably introduce information from static analyses and additional context may alleviate this.

4 RELATED WORK

One of the successful applications of LMCs is code completion (Svyatkovskiy et al., 2019; Karam-
patsis et al., 2020). Transformer LMs have shown exceptional performance at the task being able
to predict relatively long code sequences (Svyatkovskiy et al., 2020; Chen et al., 2021). Grammar-
based code completion and generation has been researched with neural (Maddison & Tarlow, 2014;
Yin & Neubig, 2017; Kim et al., 2021) and non-neural models (Bielik et al., 2016), always ex-
panding the left-most, bottom-most non-terminal. In contrast to GRAMMFORMERs, all these mod-
els target the generation of complete code without the ability to create sketches. R3NN (Parisotto
et al., 2017) generates only complete programs of a simple string transformation DSL but expands
the non-terminal with the highest confidence, instead of the left-most, bottom-most one, similar to
GRAMMFORMER. In contrast to the aforementioned models, GRAMMFORMER does not maintain
an explicit tree representation but instead uses the sequences of leaves in the generation tree.

Sketch-like ideas appear in NLP such as the coarse-to-fine semantic parsing of Dong & Lapata
(2018) and chat-bots of Shum et al. (2019). However, sketches are extracted deterministically to
create a supervised dataset. Similarly, SketchAdapt (Nye et al., 2019) uses a sequence model to
generate sketches for small functional programs of a simple DSL towards speeding-up enumerative
program synthesis from input-output examples. SketchAdapt is also trained as a supervised sketch
generator. A supervised corpus is created by enumerating all possible sketches and selecting the one
with the highest-probability and within a heuristically computed time budget. In GRAMMFORMER
domain, enumerating all sketches is computationally intractable due to the complexity of general-
purpose programming languages while no similar heuristic exists for code completion.

Recently, sequence generation approaches beyond the left-to-right paradigm have been pro-
posed (Welleck et al., 2019; Stern et al., 2019; Gu et al., 2019; Ford et al., 2018; Lee et al., 2018;
Shah et al., 2018), usually by considering generation as an procedure that iteratively changes or
extends a sequence. These models often aim in speeding-up inference or allowing models to figure
a better order for full sentence generation. However, since these models focus on natural language
and since its grammar is not defined a priori, these methods do not follow a grammar that limits the
space for sketch generation. Additionally, these generate full utterances of text, rather than sketches.

A related concept is learning to abstain (Ziyin et al., 2019) where a model learns to predict a “don’t
know”. This resembles the stop symbol “⦸” with the difference that GRAMMFORMER employs RL
to learn Ps for a sequential problem rather than learning to abstain for a single-step classification.

5 DISCUSSION & CONCLUSIONS

In this work, we presented GRAMMFORMER, a generative model of code that goes beyond standard
left-to-right generation and is able to generate sketches, i.e. snippets of code with holes. Design-
ing generative machine learning models with such abilities is important towards facilitating better
collaboration between machine learning models and their human users.

While we showed that GRAMMFORMER performs better than alternatives in sketch generation, there
are still many research opportunities. First, larger transformers will most probably yield better
results, as shown in the literature. Second, although we used REGEXACC as an evaluation metric,
human studies to evaluate it are needed. Such studies, similar to those in machine translation and
summarization, can yield more informed r(⋅) and improved user experiences. Second, although we
focused on programming languages, modelling natural language also seems possible. Finally, we
treated programming languages as a sequence of terminals and non-terminals, ignoring the structure
imposed by code’s semantics, e.g. data and control flow. Explicitly providing x‘the code’s structure,
e.g. with relational transformers (Hellendoorn et al., 2019) may further improve GRAMMFORMER.
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Michael Shum, Stephan Zheng, Wojciech Kryściński, Caiming Xiong, and Richard Socher. Sketch-
Fill-AR: A persona-grounded chit-chat generation framework. arXiv preprint arXiv:1910.13008,
2019.

Mitchell Stern, William Chan, Jamie Kiros, and Jakob Uszkoreit. Insertion transformer: Flexible
sequence generation via insertion operations. arXiv preprint arXiv:1902.03249, 2019.

11



Published as a conference paper at ICLR 2022

Alexey Svyatkovskiy, Ying Zhao, Shengyu Fu, and Neel Sundaresan. Pythia: AI-assisted code com-
pletion system. In Proceedings of the 25th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pp. 2727–2735, 2019.

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. IntelliCode Compose:
Code generation using transformer. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering,
pp. 1433–1443, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, pp. 5998–6008, 2017.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew Richardson. RAT-
SQL: Relation-aware schema encoding and linking for text-to-SQL parsers. arXiv preprint
arXiv:1911.04942, 2019.

Sean Welleck, Kianté Brantley, Hal Daumé III, and Kyunghyun Cho. Non-monotonic sequential
text generation. arXiv preprint arXiv:1902.02192, 2019.

Pengcheng Yin and Graham Neubig. A syntactic neural model for general-purpose code generation.
2017.

Liu Ziyin, Zhikang Wang, Paul Pu Liang, Ruslan Salakhutdinov, Louis-Philippe Morency, and
Masahito Ueda. Deep gamblers: Learning to abstain with portfolio theory. arXiv preprint
arXiv:1907.00208, 2019.

12



Published as a conference paper at ICLR 2022

A GENERATED SAMPLES

Fig. 5 and Fig. 6 show two examples from our dataset along with the ground-truth and the sequence
of expansions performed by GRAMMFORMER. Fig. 7-13 show example generations by GRAMM-
FORMER and the baseline models L → R and L → R + ⦸. The parentheses in red indicate the
REGEXACC score for each suggestion. For the L → R + ⦸ baseline the special non-terminal
<suffix> is added to indicate that a hole is introduced at the end of the left-to-right generation.
Finally Fig. 15-17 show example generations where GRAMMFORMER make mistakes. A discussion
for each of those sample is found at the caption of each figure.

Context:
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
public class BottleFlipAcademy: Academy{

public float MaxDistance;
public float MinScale;
public bool IsRandomDirection;
public override void AcademyReset(){

MaxDistance = resetParameters["max_distance"];
<expression_statement>

Ground Truth:
MinScale = resetParameters["min_scale"];

Prediction:
MinScale = resetParameters[<string_literal>];

Generation Process:
<expression_statement>
<left> <assignment_operator> <right> ;
<left> = <right> ;
<identifier> = <right> ;
<identifier> = <expression> [ <argument> ] ;
<identifier> = <identifier> [ <argument> ] ;
<identifier> = resetParameters [ <argument> ] ;
<identifier> = resetParameters [ <string_literal> ] ;
MinScale = resetParameters [ <string_literal> ] ;

Figure 5: An example GRAMMFORMER generation for C#. Each line in the generation process
shows subsequent states of xt in Alg. 1. Here, GRAMMFORMER predicts a sketch that matches the
ground-truth expansion, but places a hole at the key of the dictionary lookup, instead of predicting a
low-likelihood string literal.

B DATASET STATISTICS

Some statistics about the datasets used throughout this work are shown in Tbl. 3

C FLATTENED NON-TERMINALS

The non-terminals in Tbl. 4 are always expanded and are not considered as non-terminals. Most
of these non-terminals have always the same children (terminals or non-terminals), representing
a single CFG rule. By flattening those non-terminals the depth of tree is reduced (and hence the
number of loops needed in Alg. 1).
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Context:
import sys
import os
import platform
if platform.system() == "Linux":

os.system('clear')
elif platform.system() == "Windows":

os.system('cls')
target = sys.argv[1]
<expression_statement>

Ground Truth:
ID = sys.argv[2]

Prediction:
<identifier> = sys.argv[2]

Generation Process:
<left> = <right>
<left> = <subscript>
<left> = <value> [ <subscript> ]
<identifier> = <value> [ <subscript> ]
<identifier> = <attribute> [ <subscript> ]
<identifier> = <object> . <attribute> [ <subscript> ]
<identifier> = <object> . <identifier> [ <subscript> ]
<identifier> = <object> . argv [ <subscript> ]
<identifier> = <object> . argv [ <integer> ]
<identifier> = <object> . argv [ 2 ]
<identifier> = <identifier> . argv [ 2 ]
<identifier> = sys . argv [ 2 ]

Figure 6: An example GRAMMFORMER generation for Python. Each line in the generation process
shows subsequent states of xt in Alg. 1. GRAMMFORMER here predicts that the user’s intent is to
read-in a second argument and store it in a variable. However, within the current context, the name
of the variable storing the second argument would be impossible to predict. GRAMMFORMER—
reasonably — places a hole at the given location and generates a matching sketch. In this example,
any traditional left-to-right model would need to first predict an accurate target variable name (which
seems unlikely in the given context) before predicting the right-hand side of the assignment.

Python C#

Num Training Files/Trees 1973400 1948516
Num Validation Files/Trees 218398 216299
Num Test Files/Trees 460874 480166
Avg num tokens of xt 194.5 201.4
Median num tokens of xt 205 206
99 percentile num tokens of xt 250 260
Avg num tokens of y 1.9 1.9
Median num tokens of y 1 1
99 percentile num tokens of y 9 7

Table 3: Statistics of the datasets used.

D UNDERSTANDING REGEXACC

Since REGEXACC is a new metric, we include two deterministic ways of introducing sketches in
Tbl. 5. First, if all literals (strings, numeric) are replaced with a hole, we see that a high REGEXACC
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Context:
...
ExchangeActivity

= (ExchangeActivity) Singleton<ActivitySys>.GetInstance().GetActivity(
COM_WEAL_TYPE.COM_WEAL_EXCHANGE,
msg.stPkgData.stWealExchangeRes.dwWealID) ;

if ( exchangeActivity != null ){
exchangeActivity.IncreaseExchangeCount(

(int) msg.stPkgData.stWealExchangeRes.bWealIdx,
msg.stPkgData.stWealExchangeRes.dwDrawCnt );

<expression_statement>

Ground Truth:
exchangeActivity.UpdateView();

Prediction:
𝑳 → 𝑹: 
Singleton<CUIManager>.GetInstance().CloseSendMsgAlert(); (0.000)

𝑳 → 𝑹 +⦸:
Singleton<<suffix> (0.000)

𝑳 → 𝑹 ∪ ∎:
exchangeActivity.<hole>(); (0.833)

𝑪𝒐𝑷𝒊𝒍𝒐𝒕 :
} (0.000)

𝑮𝒓𝒂𝒎𝒎𝑭𝒐𝒓𝒎𝒆𝒓: 
exchangeActivity.<identifier>(); (0.833)

Figure 7: A C# example and completion outputs from different models. REGEXACC score re-
ported in red. Here, GRAMMFORMER correctly identifies that a method should be invoked on
exchangeActivity, but does not predict the concrete method. If GRAMMFORMER was ex-
tended with information from a static analysis about the ExchangeActivity (potentially a user-
defined type) then an accurate suggestion could have potential been made.

is achieved. In contrast, replacing both identifiers and literals (leaving “just” parentheses, brackets,
dots, etc.) we get an easy “lower-bound”. Note how C# — which is syntactically more verbose —
achieves a better score, compared to Python. In Tbl. 6, we show some example sketches and their
associated REGEXACC score.

E BEAM SEARCH

Alg. 2 presents the beam search used in GRAMMFORMER.
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Context:
...
[Test] public void CanPassTwoProviders( ){

// arrange
var expectedLength = 100;
var input1 = new TestSampleProvider(44100, 2, 50);
var input2 = new TestSampleProvider(44100, 2, 50);
var concatenator = new ConcatenatingSampleProvider(new[]{input1, input2});
var buffer = new float[2000];
var read = concatenator.Read(buffer, 0, buffer.Length);
Assert.AreEqual(expectedLength, read, "read == expectedLength");
Assert.AreEqual(49, buffer[49]);
<expression_statement>

Ground Truth:
Assert.AreEqual(0, buffer[50]);

Prediction:
𝑳 → 𝑹: 
Assert.AreEqual(50, buffer[50]); (0.000)

𝑳 → 𝑹 +⦸:
Assert.AreEqual(<suffix> (0.333)

𝑳 → 𝑹 ∪ ∎:
Assert.AreEqual(expectedLength, read); (0.00)

𝑪𝒐𝑷𝒊𝒍𝒐𝒕 :
Assert.AreEqual(50, buffer[50]); (0.000)

𝑮𝒓𝒂𝒎𝒎𝑭𝒐𝒓𝒎𝒆𝒓: 
Assert.AreEqual(<argument>, buffer[50]); (0.917)

Figure 8: A C# example and completion outputs from different models. REGEXACC score reported
in red. Here, GRAMMFORMER correctly predicts that an AreEqual assert statement should be
made, checking the value of buffer[50]. However, within this context, the correct concrete
expected value (0) would be hard to predict, even for a human. GRAMMFORMER places a hole
there and generates a correct line-level sketch. In contrast, L → R introduces a wrong completion
and L→ R +⦸ creates a correct, but much shorter sketch.

Algorithm 2 GRAMMFORMER beam search, given an input sequence x0.

b← {(x0, 0,false)} ▷ Initialize Beam (state, logprob, isDone)
while ∃(x, p, isDone) ∈ b with isDone = false do ▷ While beam contains incomplete
generations

b
′
← {}

for (x, p, isDone) ∈ b do ▷ For each sample in beam
if isDone then ▷ If suggestion is complete

b
′
← b

′ ∪ {(x, p, isDone)} ▷ No operation, beam is complete
continue

for i ∈ TOPM(Ps(i∣x, N(x))) do ▷ Get top-m non-terminal positions
ps ← logPs(i∣x, N(x))
if i = ⦸ then

b
′
← b

′ ∪ {(x, p + ps,true)} ▷ Stop Expansion
else

for y ∈ TOPN(Pe(y∣x, i)) do ▷ Beam search on y yields n candidates
pe ← Pe(y∣x, i)
b
′
← b

′ ∪ {(x<i ∶∶ y ∶∶ x>i), p + ps + pe,false)} ▷ Expand xi
b← TOPK(b′) ▷ Prune Candidates and keep top k

return b
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Context:
...
namespace Bug604053.Prueba{

public class Data{
public int M1{get; set;}
public string M2{get; set;}
public Data(int m1, string m2){M1 = m1; M2 = m2;}
}

[DataObject(true)] public class DataSource{
public Data[] Retrieve( ){

Data[] data = new Data[10];
for (int i = 0; i<10; i++){

<expression_statement>

Ground Truth:
data[i] = new Data(i, i.ToString());

Prediction:
𝑳 → 𝑹: 
data[i] = new Data( ); (0.000)

𝑳 → 𝑹 +⦸:
data[i] = new Data( ); (0.000)

𝑳 → 𝑹 ∪ ∎:
data[i] = new Data( ); (0.000)

𝑪𝒐𝑷𝒊𝒍𝒐𝒕 :
data[i] = new Data(i, "Data" + i); (0.000)

𝑮𝒓𝒂𝒎𝒎𝑭𝒐𝒓𝒎𝒆𝒓: 
data[i] = new Data(i, <string_literal>); (0.706)

Figure 9: A C# example and completion outputs from different models. REGEXACC score reported
in red. While all models predict that an assignment needs to be made to each data[i], the exact
form of the constructor is hard to predict. GRAMMFORMER seems to be looking at the constructor
definition and predicts that some ⟨StringLiteral⟩ needs to be used as the second argument, although
it is uncertain about its concrete form, hence introducing a hole.
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Context:
# Provides a character-based width estimate when simple tags
# such as <b> and <i> are present in a multi-line,
# \"break\"-delimited, string. Very approximate, but a useful
# default.
def htmlWidth(sIn):

iBr = indexOfBr(sIn)
if (-1 == iBr):

s = sIn
else:

s = sIn[:iBr]
<return_statement>

Ground Truth:
return len(s)

Prediction:
𝑳 → 𝑹: 
return len(s) (1.000)

𝑳 → 𝑹 +⦸:
return <suffix> (0.200)

𝑳 → 𝑹 ∪ ∎:
return s (0.000)

𝑪𝒐𝑷𝒊𝒍𝒐𝒕 :
s = s.replace("&nbsp;", " ") (0.000)

𝑮𝒓𝒂𝒎𝒎𝑭𝒐𝒓𝒎𝒆𝒓: 
return len(s) (1.000)

Figure 10: A Python example and completion outputs from different models. REGEXACC score
reported in red. Here both L → R and GRAMMFORMER predict the full line correctly, but L →
R +⦸ seems to return a more conservative (but correct) sketch.
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Context:
#!/usr/bin/env python2
from __future__
import print_function
import argparse
import os
import subprocess
import sys
ap = argparse.ArgumentParser()
ap.add_argument("--release", action = "store_true")
ap.add_argument("--prerelease", action = "store_true")
<expression_statement>

Ground Truth:
ap.add_argument("--experimental", action = "store_true")

Prediction:
𝑳 → 𝑹: 
args = ap.parse_args() (0.000)

𝑳 → 𝑹 +⦸:
args = ap.parse_args() (0.000)

𝑳 → 𝑹 ∪∎:
args = ap.add_argument(<hole> (0.000)

𝑪𝒐𝑷𝒊𝒍𝒐𝒕 :
ap.add_argument("--beta", action = "store_true") (0.000)

𝑮𝒓𝒂𝒎𝒎𝑭𝒐𝒓𝒎𝒆𝒓: 
ap.add_argument(<string>, action = "store_true") (0.833)

Figure 11: A Python example and completion outputs from different models. REGEXACC score
reported in red. See main text in the introduction for a description.

Python block, tuple, and, or, +, -, *, /, &, ||, //, %, @, +=, -=,
*=, /=, //=, @=, &=, |=, call, keyword_argument, name,
binary_operator, for_in_clause, unary_operator, **,
true, not_operator, none, false, boolean_operator,
augumented_assignment, await, >>, pair, |, parameters,
<<, dictionary_comprehension, ellipsis, arguments,
assignment, ^, ~

C# block, tuple, and, or, +, -, *, /, &, ||, //, %, @,
+=, -=, *=, /=, //=, %=, @=, &=, |=, **, >>, |, <<, ^,
~, assignment_expression, invocation_expression,
arguments, member_access_expression, try_statement,
catch_clause, conditional_expression, ==, array_type,
rank, base_expression, conditional_access_expression,
member_binding_expression, initializer, null_literal,
>, element_access_expression, subscript, ??,
this_expression, implicit_array_creation_expression,
cast_expression, !=, variable_declaration,
implicit_type, &&, as_expression,
as, <, local_declaration_statement,
if_statement, >=, <=, throw_expression,
default_expression, pattern, is_pattern_expression,
binary_expression, bracketed_argument_list, name,
object_creation_expression, await_expression, ,

Table 4: Non-terminals that are always expanded in the Tree-Sitter grammar for the two languages
considered.
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Context:
import sys
import os
import platform
if platform.system() == "Linux":

os.system('clear')
elif platform.system() == "Windows":

os.system('cls')
target = sys.argv[1]
<expression_statement>

Ground Truth:
ID = sys.argv[2]

Prediction:
𝑳 → 𝑹: 
target = target.replace("\\\\", "/") (0.000)

𝑳 → 𝑹 +⦸:
target = <suffix> (0.000)

𝑳 → 𝑹 ∪ ∎:
print(target) (0.000)

𝑪𝒐𝑷𝒊𝒍𝒐𝒕 :
No Suggestion (0.000)

𝑮𝒓𝒂𝒎𝒎𝑭𝒐𝒓𝒎𝒆𝒓: 
<identifier> = sys.argv[2] (0.875)

Figure 12: A Python example and completion outputs from different models. REGEXACC score
reported in red. Generation steps of GRAMMFORMER shown in Fig. 6. L → R and L → R + ⦸
cannot generate correct sketches since the first token would be impossible to guess within this code
context.

C# Python

Replace all literals with holes 0.865 0.608
Replace all literals and identifiers with holes 0.126 0.060

Table 5: REGEXACC when deterministically introducing holes at specific location.

Table 6: Example REGEXACC scores for a variety of sketches.

Ground-truth
ap.add_argument("--experimental", action="store_true")

REGEXACC

ap.add_argument(� , action="store_true") 0.9
ap.add_argument(� , action=� ) 0.8
ap.add_argument(� , � ) 0.6
ap.add_argument(� , action="store_false") 0.0
ap.add_argument(� , required=�) 0.0
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Context:
...
console.setLevel(logging.DEBUG)
log.addHandler(console)
# moving assembled contigs (scaffolds) to misc dir
if os.path.isfile(args.corrected):

shutil.move(args.corrected, args.assembled)
tmp_dir_for_corrector = os.path.join (args.output_dir, "mismatch_corrector", args.assembly_type)
# correcting
result_corrected_filename = os.path.join(tmp_dir_for_corrector, "corrected_contigs.fasta")
<expression_statement>

Ground Truth:
dst_configs = os.path.join(tmp_dir_for_corrector, "configs")

Prediction:
𝑳 → 𝑹: 
result_corrected_fasta = os.path.join(args.output_dir, "corrected_fasta") (0.000)

𝑳 → 𝑹 +⦸:
result_corrected_fasta = <suffix> (0.000)

𝑳 → 𝑹 ∪ ∎:
result_corrected_filename = <hole> (0.000)

𝑪𝒐𝑷𝒊𝒍𝒐𝒕 :
if os.path.isfile(tmp_dir_for_corrector): (0.000)

𝑮𝒓𝒂𝒎𝒎𝑭𝒐𝒓𝒎𝒆𝒓: 
<identifier> = os.path.join(tmp_dir_for_corrector, <string>) (0.769)

Figure 13: A Python example and completion outputs from different models. REGEXACC score
reported in red. GRAMMFORMER completes the line creating a correct sketch with two holes at
locations avoiding to make the mistakes that L→ R and L→ R +⦸ makes.

Context:
...
left = right = new Rect(0, 0, config.borderSize, height);
right.x = width - config.borderSize;
top = bottom = new Rect(config.borderSize, 0, width-config.borderSize*2, config.borderSize);
bottom.y = height-config.borderSize;}
Color32 previousColor;
public override void OnGUI(){

if(!props.wrongActionShowFrame)
return;

previousColor = GUI.color;
GUI.color = config.borderColor;
GUI.DrawTexture(left, config.texture);
GUI.DrawTexture(right, config.texture);
<expression_statement>

Ground Truth:
GUI.DrawTexture(top, config.texture);

Prediction:
𝑳 → 𝑹: 
GUI.color = previousColor; (0.000)

𝑳 → 𝑹 +⦸:
GUI.color = previousColor; (0.000)

𝑳 → 𝑹 ∪∎:
GUI.color = Color.white; (0.000)

𝑪𝒐𝑷𝒊𝒍𝒐𝒕 :
GUI.DrawTexture(top, config.texture); (1.000)

𝑮𝒓𝒂𝒎𝒎𝑭𝒐𝒓𝒎𝒆𝒓: 
GUI.DrawTexture(bottom, config.texture); (0.000)

Figure 14: A C# example and incorrect completion outputs from different models. REGEXACC
score reported in red. The prediction from GRAMMFORMER is almost right but should have created
a hole at the first argument for the user to fill-in. This shows that improved methods for training the
policy network may improve results in the future.
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Context:
···
namespace AspNetMvcCorePerformance{

public class Program{
public static int Main(string[] args){

try {
string urlBase = "http://localhost:54562/";
var threadCount = 1;
var iterationsPerThread = 50;
if (args?.Length > 0){

urlBase = args[0];
threadCount = int.Parse(args[1]);
<expression_statement>

Ground Truth:
iterationsPerThread = int.Parse(args[2]);

Prediction:
𝑳 → 𝑹: 
iterationsPerThread = int.Parse(args[2]); (1.000)

𝑳 → 𝑹 +⦸:
iterationsPerThread = int.Parse(args[2]); (1.000)

𝑳 → 𝑹 ∪∎:
iterationsPerThread = int.Parse(args[2]); (1.000)

𝑪𝒐𝑷𝒊𝒍𝒐𝒕 :
iterationsPerThread = int.Parse(args[2]); (1.000)

𝑮𝒓𝒂𝒎𝒎𝑭𝒐𝒓𝒎𝒆𝒓: 
iterationsPerThread = <integer_literal>; (0.250)

Figure 15: A C# example and completion outputs from different models. REGEXACC score reported
in red. GRAMMFORMER suggests a correct sketch but the right-hand side of the assignment has
to stop expansion since ⟨IntegerLiteral⟩ cannot generate int.Parse(args[2]). This suggests
some of the limitations that the grammar-based generation of GRAMMFORMER may have, especially
for shorter sequences.

Context:
import multiprocessing
from os import getenv
bind = '127.0.0.1:8001'
<expression_statement>

Ground Truth:
workers = multiprocessing.cpu_count() * 3

Prediction:
𝑳 → 𝑹: 
workers = 2 (0.000)

𝑳 → 𝑹 +⦸:
workers = <suffix> (0.222)

𝑳 → 𝑹 ∪∎:
workers = 4 (0.000)

𝑪𝒐𝑷𝒊𝒍𝒐𝒕 :
workers = multiprocessing.cpu_count() * 2 + 1 (0.000)

𝑮𝒓𝒂𝒎𝒎𝑭𝒐𝒓𝒎𝒆𝒓: 
<identifier> = <string> (0.111)

Figure 16: A Python example and completion outputs from different models. REGEXACC score
reported in red. Although the sketch of the prediction from GRAMMFORMER is typically correct, it
is not useful. Researching better evaluation metrics may improve GRAMMFORMER.
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Context:
# import python modules
import random
import time
import OSC
# Connect to SuperCollider's internal port
<expression_statement>

Ground Truth:
c = OSC.OSCClient()

Prediction:
𝑳 → 𝑹: 
OSC.ConnectCollider() (0.000)

𝑳 → 𝑹 +⦸:
OSC.<suffix> (0.000)

𝑳 → 𝑹 ∪∎:
OSC.connect() (0.000)

𝑪𝒐𝒑𝒊𝒍𝒐𝒕: 
client = OSC.OSCClient() (0.000)

𝑮𝒓𝒂𝒎𝒎𝑭𝒐𝒓𝒎𝒆𝒓: 
conn = OSC.connect() (0.000)

Figure 17: A Python example and completion outputs from different models. REGEXACC score
reported in red. All model fail to invoke the correct API of the library. A potential future direction
to mitigate the problem is to incorporate definitions of the external or system classes.
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