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ABSTRACT

Graph Edit Distance (GED) is a widely used metric for measuring similarity
between two graphs. Computing the optimal GED is NP-hard, leading to the
development of various neural and non-neural heuristics. While neural methods
have achieved improved approximation quality compared to non-neural approaches,
they face significant challenges: (1) They require large amounts of ground truth
data, which is itself NP-hard to compute. (2) They operate as black boxes, offering
limited interpretability. (3) They lack cross-domain generalization, necessitating
expensive retraining for each new dataset. We address these limitations with
GRAIL, introducing a paradigm shift in this domain. Instead of training a neural
model to predict GED, GRAIL employs a novel combination of large language
models (LLMs) and automated prompt tuning to generate a program that is used
to compute GED. This shift from predicting GED to generating programs imparts
various advantages, including end-to-end interpretability and an autonomous self-
evolutionary learning mechanism without ground-truth supervision. Extensive
experiments on seven datasets confirm that GRAIL not only surpasses state-of-
the-art GED approximation methods in prediction quality but also achieves robust
cross-domain generalization across diverse graph distributions.

1 INTRODUCTION AND RELATED WORK

Graph Edit Distance (GED) quantifies the dissimilarity between two graphs as the minimum number
of edits required to transform one graph into another. An edit may comprise adding or deleting
nodes and edges or replacing node and edge labels. Fig. 1 presents an example. Computing
GED is NP-hard Ranjan et al. (2022) and APX-hard Fan et al. (2020). Owing to its numerous
applications Blumenthal (2019); Ranu et al. (2014); Bommakanti et al. (2024b), polynomial-time
heuristics are designed in practice.

Figure 1: Illustration of edit path from g1 to g2 with GED 3.

1.1 EXISTING WORKS AND THEIR LIMITATIONS

Existing heuristics to approximate GED can be broadly grouped into two paradigms: non-neural and
neural.
Non-Neural Methods: A comprehensive survey on non-neural methods is available at Blumenthal
et al. (2020). These approaches leverage techniques such as transformations to the linear sum
assignment (NODE Justice & Hero (2006), BRANCH-TIGHT Blumenthal & Gamper (2018)),
mixed integer programming (MIP) (LP-GED-F2 Lerouge et al. (2017a), ADJ-IP Justice & Hero
(2006), COMPACT-MIP Blumenthal & Gamper (2020)), local search methods (IPFP Leordeanu
et al. (2009)), and approximations to the quadratic asssignment problem Bommakanti et al. (2024a).

*Denotes equal contribution.
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Name End-to-end interpretable Cross-domain
generalization

Non-reliant on NP-hard
supervision

Accurate

GREED Ranjan et al. (2022) X X X ✔
GEDGNN Piao et al. (2023) O X X ✔
H2MN Zhang et al. (2021) X X X ✔
ERIC Zhuo & Tan (2022) X X X ✔
GRAPHEDX Jain et al. (2024) X X X ✔
GRAPHOTSIM Doan et al. (2021) X X X ✔
GRAPHSIM Bai et al. (2020) X X X ✔
TAGSIM Bai & Zhao (2021) X X X ✔
GMN Li et al. (2019) X X X ✔
GENN-A* Wang et al. (2021) O X X ✔
SIMGNN Bai et al. (2019) X X X ✔
Non-neural approaches Blumenthal et al. (2020) O ✔ ✔ X
GRAIL ✔ ✔ ✔ ✔

Table 1: Summary of the drawbacks of existing algorithms and the proposed algorithm GRAIL. ✔
indicates satisfaction of a desirable property, X indicates non-satisfaction, and O indicates partial sat-
isfaction. GEDGNN, GENN-A*, and traditional non-neural approaches achieve partial interpretability
by providing edit paths corresponding to the GED, but they do not explain the semantic reasoning
behind these paths. In contrast, GRAIL achieves end-to-end interpretability through its code-based
output, where each decision can be traced to its underlying logical reasoning. Non-neural approaches
utilize unsupervised learning, enabling cross-domain generalization. However, their approximation
errors are significantly higher on average than neural approaches, as demonstrated in § 5.

Neural Methods: Recent literature shows a shift towards graph neural network-based approaches
for approximating GED, driven by their superior approximation quality compared to non-neural
methods Ranjan et al. (2022); Zhang et al. (2021); Bai et al. (2019); Piao et al. (2023); Wang et al.
(2021); Zhuo & Tan (2022); Jain et al. (2024); Bai et al. (2020); Doan et al. (2021); Li et al. (2019).
However, these advancements come with limitations, as summarized in Table 1.
• Lack of interpretability: Most neural methods only predict the GED and not the corresponding

edit path. The edit path is essential for various applications such as identifying functions of protein
complexes Singh et al. (2008), image alignment Conte et al. (2003), and uncovering gene-drug
regulatory pathways Chen et al. (2019). Few neural methods that predict the edit path Piao et al.
(2023); Wang et al. (2021) rely on expensive ground truth computation, which can only be attained
for very small graphs (≈ 10 nodes). For larger graphs, random edits are made to synthetic graphs
to generate the training samples.

• NP-hard training data: The training dataset for neural methods consists of graph pairs and their
true GED. GED computation is NP-hard. Therefore, generating this training data is prohibitively
expensive and restricted to small graphs only. Hence, approximation error deteriorates on larger
graphs. Ranjan et al. (2022)

• Lack of generalization: Neural GED approximators struggle to generalize across datasets. For
datasets from different domains (e.g., chemical compounds vs. function-call graphs), the node label
sets often differ. Since the number of parameters in a GNN depends on the feature dimensions of the
nodes, GNNs fail to generalize across domains. Even within the same domain, as demonstrated later
in §5, distribution shifts in structural and node label distributions lead to increased approximation
error. This limitation necessitates generating ground-truth data and training separate models
for each dataset. Given that generating training data is NP-hard, this pipeline becomes highly
resource-intensive.

1.2 CONTRIBUTIONS

We address the above-outlined limitations through GRAIL: Graph Edit Distance and Node Alignment
using LLM-Generated Code. GRAIL introduces a paradigm shift in the domain of GED approxima-
tions through the following novel innovations.

• Problem formulation: We shift the learning objective from approximating GED to learning a
program that approximates GED. This reformulation provides end-to-end interpretability, as each
algorithmic decision can be traced to its underlying logical reasoning. Moreover, by elevating the
output to a higher level of abstraction through code generation, we achieve superior generalization
across datasets, domains, graph sizes, and label distributions.

• LLM-guided program discovery: The algorithmic framework of GRAIL is grounded on three
novel design choices. First, we map the problem of approximating GED to maximum weight bipar-
tite matching, where the weights of the bipartite graph are computed using an LLM-generated pro-
gram. Second, the prompt provided to the LLM is tuned through an evolutionary algorithm Romera-
Paredes et al. (2024). Third, our prompt-tuning methodology eliminates the need for ground-truth
GED data by designing a prediction framework where the prediction is guaranteed to be an upper
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bound to the true GED. Hence, minimizing the upper-bound is equivalent to minimizing the
approximation error, thereby overcoming a critical bottleneck of existing neural approaches.

• Comprehensive Empirical Evaluation: Through extensive experiments across 6 datasets, we
demonstrate that GRAIL discovers foundational code-based heuristics. Specifically, these heuristics
not only surpass the state-of-the-art methods in GED computation but also exhibit generalization
across diverse datasets and domains. This crucial feature eliminates the need for costly dataset-
specific training, thereby addressing a significant limitation of existing neural algorithms.

2 PRELIMINARIES AND PROBLEM FORMULATION

Definition 1 (Graph). We represent a node-labeled undirected graph as G(V, E ,L) where V =
{v1, · · · , v|V|} is the set of nodes, E ⊆ V × V is the edge set and L : V → Σ is a labeling function
that maps nodes to labels, where Σ is the set of all labels.

In unlabeled graphs, all nodes are assigned the same label.
Definition 2 (Node Mapping). A node mapping between two graphs G1 and G2, each consisting of
n nodes, refers to a bijection π : V1 → V2, where every node v ∈ V1 is uniquely mapped to a node
π(v) ∈ V2.

Extension to graphs of different sizes: When dealing with two graphs G1 and G2 with different
numbers of nodes, n1 and n2 respectively, such that n1 < n2, the smaller graph G1 can be extended
to match the size of G2 by introducing n2 − n1 additional isolated dummy nodes. These new nodes
are labeled with a unique identifier, ϵ, indicating that they are placeholders with no connections. From
this point onward, we assume that any pair of graphs in consideration have an equal number of nodes,
with smaller graphs being augmented by dummy nodes as necessary.
Definition 3 (GED under a node mapping π). Given a node mapping π, the cost function for
calculating graph edit distance between graphs G1(V1, E1,L1) and G2(V2, E2,L2) is expressed as:

GEDπ(G1,G2) =
∑

v1∈V1

I (L1(v1) ̸= L2(π(v1)))

+
1

2

∑
v1∈V1

∑
v2∈V1

I (e1(v1, v2) ̸= e2(π(v1), π(v2)))

where,
• ei(u, v) returns 1 if the edge (u, v) ∈ Ei in graph Gi, 0 otherwise.
• I(A) is the indicator function, which is 1 if the condition A holds, and 0 otherwise.
Interpretation of edit path from node mapping: The first part of the equation captures node
mismatches where it evaluates the label differences between nodes in G1 and G2. Mapping a dummy
node to a real node (or vice versa) results in a label mismatch, reflecting the insertion or deletion of a
node, while a mismatch between real nodes denotes a substitution. The second part of the equation
captures edge mismatches. Specifically, if an existing edge in G1 (i.e., e1(v1, v2) = 1) is mapped to
a non-existing edge in G2 (i.e., e2(π(v1), π(v2)) = 0) or vice versa, the cost is 1 representing edge
deletion and insertion, respectively.
Definition 4 (Graph edit distance (GED)). The GED between graphs G1 and G2 is the minimum GED
across all possible node mappings.

GED(G1,G2) = min
∀π∈M

{GEDπ(G1,G2)} (1)

Here, M denotes the universe of all possible mappings.
The problem is hard (NP-hard and APX-hard) since the cardinality of M is n!, where n =
max{|V1|, |V2|}.

The problem of learning to code for approximating GED is defined as follows.
Problem 1 (Learning to code for GED). Given a set of training graph pairs T =
{⟨G1,G′

1⟩, ⟨G2,G′
2⟩, · · · , ⟨Gn,G′

n⟩}, learn a program P : (Gt,G′
t) → Z+ that takes as input a

graph pair ⟨Gt,G′
t⟩ ∈ T, and outputs a non-negative integral distance that minimizes

n∑
t=1

|P (Gt,G′
t)− GED(Gt,G′

t)| (2)

Note that our training set consists solely of graph pairs, without requiring their true GED, which is
computationally prohibitive due to its NP-hardness. As we will elaborate in the next section, we
identify polynomial-time computable upper bounds for the true GED and reformulate the optimization
objective to minimize this upper bound. This autonomous self-evolutionary learning mechanism
overcomes a significant limitation of neural GED approximators.

3



To appear at the ICLR 2025 Workshop on Deep Learning For Code (DL4C)

Prompt

LLM

Filter
1. Executes
2. Terminates 

within time limit

GED Approximation Module

For each graph 
pair in training set

Fully connected weighted 
bipartite graph

Maximum weight 
bipartite matching

Insert 

Island 1
Island 4

Island 2

Island 3Island 5

No
Top-b programs sampled 
from randomly selected 
islands

Yes

Answer set 
( Greedy (Alg 1) output on 
program pool )

Start

Program pool

Program P

Compute weight 
matrix with program P

<G1, G2>
…..

has 
converged ? 

Figure 2: Pipeline of GRAIL.

3 APPROXIMATION STRATEGY

The true GED corresponds to the minimum distance across all possible node mappings (Def. 4).
However, enumerating all such mappings is computationally infeasible due to its factorial complexity
relative to graph size. To overcome this challenge, we approximate the GED by evaluating a small
subset of mappings (e.g., 15) and selecting the minimum distance among them. These mappings are
generated by programs derived from the LLM, as detailed in § 4. Importantly, this approximated
GED serves as an upper bound to the true GED, as it considers only a subset of all possible node
mappings.

3.1 NODE MAPPINGS THROUGH BIPARTITE MATCHING

The task of mapping nodes between two graphs can be approximated as Maximum Weight Bipartite
Matching.
Definition 5 (Maximum Weight Bipartite Matching). Given a weighted bipartite graph
B(V,U , E ,W) with node sets V and U , and a weighted edge set E : V × U → R where W : E → R
assigns weights to edges, find a subset of edges E∗ ⊆ E that (1) induces a bijection between nodes in
V and nodes in U , and (2) maximizes the total weight of the mapped edges, i.e.,

∑
e∈E∗ W(e). Here,

W(e) represents the weight of edge e.

Maximum weight bipartite matching can be solved optimally in polynomial time using the Hun-
garian algorithm Kuhn (1955). Additionally, several heuristics have been proposed, such as the
Hopcroft–Karp Algorithm Hopcroft & Karp (1973), the Neighbor-biased mapper He & Singh (2006),
or greedy selection of the highest-weight edges while maintaining the one-to-one mapping constraint.
We use the notation π(B) to denote the node mapping obtained from B.

To use maximum weight bipartite matching for approximating GED, for given graphs G1(V1, E1,L1)
and G2(V2, E2,L2), we construct a fully connected, weighted bipartite graph B(V1,V2, E ,W) where
edge set E = {(v1, v2) | v1 ∈ V1, v2 ∈ V2}1. The weight of an edge (v1, v2) is set based on some
policy, which should ideally reflect the probability of v1 being mapped to v2 in the optimal GED
mapping. Maximum weight bipartite matching is then performed on B using any standard algorithm,
and the GED is computed based on the mapping π(B).
The quality of the mapping with respect to approximating GED, therefore, rests on the edge weights
in the bipartite graph. We will use an LLM to learn the policy, in the form of a program, with the
following minimization objective.

Problem 2 (Weight Matrix Generation). Given train set T = {⟨G1,G′
1⟩, · · · , ⟨Gn,G′

n⟩}, generate a
program P that takes as input each pair ⟨Gt,G′

t⟩ ∈ T and outputs a corresponding weight matrix
Wt ∈ R|Vt|×|V′

t| minimizing n∑
t=1

GEDπ(P )(Gt,G′
t) (3)

Here, Wt[i, j] denotes the weight of edge (vi, vj) where vi ∈ Vt to node vj ∈ V ′
t. π(P ) denotes the

mapping generated by maximum weight bipartite matching on the bipartite graph formed by P .

1Recall, we assume the smaller graph is padded with dummy nodes to ensure |V1| = |V2|.
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3.2 BUDGET-CONSTRAINED SELECTION OF NODE MAPS

Let D = {P1, · · · , Pm} be the set of programs generated by the LLM and π(Pi) denote the mapping
produced by program Pi ∈ D. From Def. 4, we know GEDπ(Pi)(G1,G2) ≥ GED(G1,G2), i.e., each
program provides an upper bound on the true GED. The smaller the upper bound, the closer we are
to the true GED. Our goal is to select a subset A∗ ⊆ D of b programs that minimize the cumulative
upper bounds across all train graph pairs. b ≪ |D| denotes the maximum number of mappings we are
allowed to evaluate. These b programs will finally be used during inference for unseen graph pairs.
Formally, this presents us with the following optimization problem.

Problem 3 (Map Selection). Given programs D = {P1, · · · , Pm}, select A∗ such that:

A∗ = arg min
∀A⊆D, |A|=b

{J (A)} (4)

J (A) =
∑

⟨G1,G2⟩∈T

min
P∈A

{
GEDπ(P )(G1,G2)

}
(5)

J (A) quantifies the quality of the subset of mappings in A.

Theorem 3.1. Prob. 3 is NP-hard.

Proof. The proposed optimization problem reduces to the Set Cover problem Cormen et al. (2009),
rendering it NP-hard. For the formal proof, please refer to App. A.1.1.

Owing to NP-hardness, finding the optimal subset of mappings A∗ is not feasible in polynomial
time. We establish that J (A) is monotonic and submodular (refer App. A.1.2). This enables us
to use the greedy hill-climbing algorithm (Alg. 1) to select a sub-optimal but reasonable subset of
programs, Agreedy . Alg. 1 iteratively selects the program inducing the highest marginal reduction in
J (Agreedy) till budget is exhausted.

4 GRAIL: PROPOSED METHODOLOGY

In § 3, we decompose Prob. 1 into two subproblems: weight selection in a bipartite graph (Prob. 2)
and budget-constrained map selection (Prob. 3). Prob. 3 is solved (approximately) using Alg. 1.
Hence, to complete our approximation scheme, we need to solve Prob. 2.

Fig. 2 presents the pipeline of GRAIL. The process begins with an initial prompt that specifies a
trivial program for weight selection, and the LLM is tasked with improving this program for GED
computation via bipartite matching (details in § 4.1). Each newly generated program is verified for
syntactic correctness and must terminate within a predefined time limit. If these criteria are met, the
program is evaluated on the training set of graph pairs and added to the program pool along with
its score, which reflects its marginal contribution to J (Agreedy). A new prompt is then constructed
by sampling the highest-scoring programs from the current pool. The LLM refines these programs,
generating new candidates to further enhance performance. These newly generated programs are
evaluated and added to the pool following the same procedure. This iterative process continues
until J (Agreedy) converges, ensuring that improvements stabilize across iterations. The following
sections detail each step of this process.

4.1 PROMPT SPECIFICATION

The prompt is a computer program consisting of three distinct components: (1) the problem
description, (2) the task specification, and (3) the top-k programs generated so far based on a scoring
function. A sample prompt is provided in Fig. 4 in the Appendix. Here, k is set to 2.

Algorithm 1 The greedy approach

Require: Train data T = {T1, · · · , Tn} where Tt = ⟨Gt,G′t⟩ is a pair of graphs, budget b.
Ensure: solution set Agreedy , |Agreedy| = b
1: Agreedy ← ∅
2: while size(Agreedy) ≤ b (within budget) do
3: P ∗ ← argmaxP∈D\Agreedy

{J (Agreedy ∪ {P})− J (Agreedy)}
4: Agreedy ← Agreedy ∪ {P ∗}
5: end while
6: Return Agreedy
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Problem Description: The problem description includes the definition of GED, which is embedded
as a comment within the program (refer to Fig. 4).

Task Specification: The LLM’s task is defined through a comment specifying the inputs it should
expect and the required output. The output is a weight matrix W ∈ R|V1|×|V2| for the bipartite graph,
where W[i, j] quantifies the strength of mapping node vi ∈ V1 to node vj ∈ V2 in the context of
GED computation. The input includes the graph pair represented by their adjacency matrices and an
initial weight matrix W0 ∈ R|V1|×|V2| with the same dimensions and semantics as the output. During
execution, the input weight matrix W0 is initialized such that W0[i, j] = 1 if the corresponding nodes
share the same label, i.e., L1(vi) = L2(vj) for vi ∈ V1 and vj ∈ V2, and W0[i, j] = 0 otherwise.
Additionally, the header of the function that the LLM needs to generate is explicitly provided.

Top-k Programs: The initial prompt includes a trivial program where ∀vi ∈ V1, vj ∈ V2,W[i, j] =
0. In subsequent iterations, k high-scoring programs are sampled for inclusion in the prompt, where
k is a hyper-parameter. The scoring and sampling methodology are described in § 4.2.

4.2 PROMPT TUNING

Filter: After a program is generated, it undergoes a filtering step to verify that it executes and
terminates on training graph pairs within a predefined time limit. Programs that fail this filter are
discarded. For those that pass, we compute their score and add them to our program database D.

Score computation: In Prob. 3, we take the minimum GED across all selected mappings in the answer
set. A program’s utility, therefore, depends on how it complements other programs in the answer
set. Hence, we define its score as the marginal contribution to the objective function J (Agreedy).
Specifically, we execute Alg. 1 on the current pool of programs, where A = {P1, . . . , Pi} represents
the subset of programs selected up to iteration i. If program P is added in the i+ 1-th iteration due
to providing the highest marginal contribution, its score is computed as:

score(P ) = J (A ∪ {P})− J (A), (6)

Evolutionary program selection: The next stage involves selecting programs from the pool to be
included in the next prompt. We use the evolutionary algorithm proposed in Funsearch Romera-
Paredes et al. (2024) for evolving our programs generated by LLM. Since the programs evolve
through mutations introduced by the LLM, the selection mechanism optimizes two distinct objectives.
First, the sampled programs should have high scores. Second, the sampled programs should have
smaller length improving the interpretability of generated programs.

The evolutionary algorithm follows the islands model Gordon & Whitley (1993). Specifically, the
population of existing programs is partitioned into s islands, where s is a hyperparameter. Initially,
all islands are empty. When a program is added to the pool, it is randomly assigned to an island.
Subsequently, to decide which k programs are included in the prompt, we randomly choose an island.
Similar to Funsearch, the programs within each island are then split into clusters depending on score.
After selecting the island, clusters are selected based on softmax distribution on score. Within a
clusters, the programs are selected based on length (smaller is better). Hence, the program selection
mechanism for the next prompt favors higher scores and shorter lengths. More details of the process
can be found in Romera-Paredes et al. (2024). The LLM is then tasked with further improving these
programs. With this design, each island evolves independently. To enable cross-fertilization among
islands, we periodically discard half of the islands which have the lowest score. The discarded islands
are replaced by iterating over each of the surviving islands, and selecting its best program to seed the
replacement population.

4.3 TRAINING AND INFERENCE

Training: As illustrated in Fig. 2, each iteration involves generating a program, scoring it, and
assigning it to an island before constructing and executing a new prompt. The quality of the program
pool is measured by J (Agreedy), serving as an analog to a loss function in our framework. This
iterative process continues until J (Agreedy) converges, defined as its improvement over the last
i iterations falling below a predefined threshold, akin to the patience parameter in neural model
training.

Overall, GRAIL seeks to minimize the upper bound of GED. With this strategy, we bypass the need
for ground-truth GED data, a key bottleneck in training neural approaches. This unique design is not
feasible in neural pipelines since the prediction can err on either side of the true distance.
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Inference: During inference, we directly return J (Agreedy) for the given input graph pair. Note
that since the output of the training phase is executable code, inference is CPU-bound, enabling it to
operate in low-resource environments.

5 EXPERIMENTS

In this section, we benchmark GRAIL and establish that:
• Approximation Error: GRAIL achieves low approximation errors and consistently ranks among

the top algorithms across all six datasets. Notably, unlike neural approximators, it achieves this
performance without relying on extensive NP-hard ground-truth GED training data.

• Foundational heuristics: GRAIL breaks new ground by generating heuristics that generalize
across diverse datasets, including those featuring unseen node labels and varying graph sizes.
This exceptional adaptability sets GRAIL apart, as no existing neural GED approximators have
demonstrated such versatility.

The codebase of GRAIL and the programs generated for the various datasets are available at https:
//github.com/idea-iitd/Grail.

Type Methods AIDS Linux IMDB ogbg-molhiv ogbg-code2 ogbg-molpcba Avg. Rank
LLM GRAIL 0.57 0.13 0.55 2.96* 4.22 3.18 2

GRAIL-MIX 0.64 0.11 0.53 2.96 4.10 3.40 2.17

Neural

GREED 0.61 0.41 4.8 3.02 5.52 2.48 3.5
GEDGNN 0.92 0.29 4.43 1.75 16.68 4.58 5
ERIC 1.08 0.30 42.44 3.56 17.55 2.79 6.5
H2MN 1.14 0.60 57.8 12.01 11.96 5.50 8.33
GRAPHEDX 0.78 0.27 32.36 14.14 21.46 10.01 8.33

Non Neural

ADJ-IP 0.85 0.50 42.18 10.21 14.94 8.06 7.33
NODE 2.71 1.24 61.03 4.97 8.34 4.94 8.17
LP-GED-F2 1.96 0.23 55.26 12.86 16.03 10.30 8.83
BRANCH 3.31 2.45 7.36 9.86 12.64 11.31 9.33
COMPACT-MIP 2.69 0.44 65.88 10.88 19.46 8.81 10
IPFP 4.18 2.29 69.45 13.69 15.19 10.02 11.5

Table 2: RMSE Comparison: The top-3 lowest RMSEs per dataset are highlighted in green shades,
with darker shades denoting better RMSE. An asterisk (*) marks the better value when additional
decimal places resolve ties after rounding to two decimal places.

Methods AIDS Linux IMDB ogbg-molhiv ogbg-code2 ogbg-molpcba Avg. Rank
GRAIL-MIX 0.80 ≈ 1 ≈ 1 0.20 0.12 0.12 1.83
GREED 0.58 0.79 0.17 0.23 0.09 0.21 2.17
ERIC 0.37 0.92 0.08 0.21 0.01 0.18 2.83
GEDGNN 0.35 0.85 0.07 0.57 0.01* 0.09 3.17

Table 3: EMR Comparison: The top-3 highest EMRs per dataset are highlighted in green shades,
with darker shades denoting better EMRs. The EMR values for GRAIL are in App. (Table 9). We
omit them here as GRAIL-MIX performs similarly across datasets. For a focused comparison, we only
include the top-3 baselines from Table 2, since the remaining do not provide competitive performance.
For ties after rounding to two decimals, an asterisk (*) marks the higher value. Values in (0.99, 1) are
shown as ≈ 1.

5.1 EXPERIMENT SETUP

Gemini-1.5 Pro has been used for all experiments. Further details of the software and hardware
environments and hyper-parameters used for GRAIL are listed in App. A.2.1.
Datasets: Table 7 in the appendix summarizes the datasets used in this study. A detailed description
of the data semantics is included in App. A.3. While AIDS, Linux and IMDB are obtained from
Morris et al. (2020), the other four datasets are made available by Hu et al. (2021).
Benchmark Algorithms: The recent baselines are listed in Table 1. From this set, we benchmark
GRAIL against GREED Ranjan et al. (2022), GEDGNN Piao et al. (2023), ERIC Zhuo & Tan (2022),
GRAPHEDX Jain et al. (2024) and H2MN Zhang et al. (2021). We omit SIMGNN, GRAPHOTSIM,
GMN, GRAPHSIM, TAGSIM and GENN-A*, since they have been outperformed by the considered
baselines of GREED, GRAPHEDX, GEDGNN and ERIC.
Among non-neural baselines we include the best-performing heuristics from the benchmarking study
in Blumenthal et al. (2020): namely, LP-GED-F2, COMPACT-MIP, ADJ-IP, BRANCH-TIGHT, NODE
and IPFP.
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GRAIL-MIX is a variant of GRAIL trained on a mixture of graph pairs from multiple datasets, while
maintaining the same training set size as GRAIL. The programs discovered by GRAIL-MIX are used
for inference across all datasets to assess whether a single training instance can generalize across
domains, eliminating dataset-specific training.

AIDS ogbg-molhiv ogbg-molpcba
Test set \Train Set GREED GRAIL GREED GRAIL GREED GRAIL

AIDS 0.61 0.57 5.71 0.64 4.58 0.59
ogbg-molhiv NA 3.02 3.02 2.96 3.86 2.89

ogbg-molpcba NA 3.59 2.16 3.54 2.48 3.18

Table 4: Intra-Domain Generalizability: RMSE of the best neural method, GREED, and GRAIL.
Off-diagonal entries represent cross-dataset performance. NA symbolizes that it’s not possible to
train a single model covering the train-test combination.

Train-Validation-Test Split: To construct the test set for a particular dataset, we select 1000 graph
pairs uniformly at random and compute their true GED. The procedure for computing the ground
truth GED is discussed in App. A.3.1. The training and validation sets depend on the algorithm.
• Neural Algorithms: All neural approaches are trained on 10,000 graph pairs per dataset. This

training time exceeds 15 days for certain datasets (see Fig. 6a).
• GRAIL and GRAIL-MIX: GRAIL is trained with only 1,000 graph pairs per dataset. As discussed

already, GRAIL does not require ground-truth GED. In GRAIL-MIX, we choose 166 graph pairs
from each of the datasets listed in Table 7 except ogbg-ppa. Both GRAIL and GRAIL-MIX do not
use a validation set.

• Non-Neural Baselines: These unsupervised algorithms do not require any training or validation
datasets.

Test set \Train set AIDS IMDB Linux ogbg-molhiv ogbg-code2 ogbg-molpcba
AIDS 0.57 0.63 0.65 0.64 0.62 0.59
IMDB 0.88 0.55 0.88 0.78 0.74 0.87
Linux 0.18 0.22 0.13 0.24 0.16 0.24

ogbg-molhiv 3.02 2.93 3.08 2.96 2.96 2.89
ogbg-code2 4.44 4.32 4.74 4.07 4.22 4.5

ogbg-molpcba 3.59 3.63 3.61 3.54 3.64 3.18

Table 5: Inter-Domain Generalizability: Generalization of GRAIL across domains, dataset sizes,
and node label distributions by training on one dataset and measuring RMSE on others. Off-diagonal
entries represent cross-dataset performance. The best two results for each test set(row) have been
highlighted in shades of green, with darker being better.

Metrics: We employ two metrics: Root Mean Squared Error (RMSE) and Exact Match Ratio (EMR).
EMR quantifies the proportion of test graph pairs for which the predicted GED exactly matches the
true GED. (See App. A.3.2 for details.)

5.2 EMPIRICAL ANALYSIS OF APPROXIMATION ERRORS

Tables 2 and 3 benchmark GRAIL in terms of RMSE and EMR. Several important observations
emerge. First, GRAIL and GRAIL-MIX comprehensively outperform the baselines despite not using
any ground truth for training. This is a critical advantage as it saves time in expensive ground truth
computation (Refer to Fig. 6a). The improvement is the highest in the IMDB dataset, which we
specifically analyze in § A.4. Second, the efficacy of GRAIL-MIX across datasets demonstrates
that the discovered programs are universally applicable on multiple datasets and can be called as
foundation functions. These foundation functions eliminate the need for dataset-specific training.
Third, GRAIL-MIX outperforms GRAIL in three datasets, indicating positive cross-dataset knowledge
transfer.

5.3 GENERALIZABILITY

An intrinsic requirement of all machine learning methods is that the training and test data are sampled
from the same distribution. Thus, the neural baselines depend on training data tailored to the test
dataset, limiting their ability to transfer knowledge due to reliance on dataset-specific features. In
contrast, GRAIL learns symbolic logical rules in the form of programs, facilitating out-of-domain and
out-of-distribution generalization. We now evaluate this capability.
Intra-domain: Neural models are limited by feature dimensionality, making zero-shot generalization
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Figure 3: (a) GRAIL-MIX at scale: Performance of GRAIL-MIX on the ogbg-ppa dataset when
compared to the top-3 non-neural baselines on the basis of average rank in Table 2. (b) Impact of
function budget on upper bound. (c) Impact of greedy submodular optimization on performance on
test set.

infeasible. However, for domains such as chemical compounds, a uniform feature space allows
training a single model. We retrain the best neural baseline, GREED, and compare its intra-domain
generalizability with GRAIL in Table 4. Note that the AIDS dataset has a smaller feature dimension
than the ogbg datasets, making it impossible to derive a common feature space. GRAIL generalizes
well across all train-test dataset pairs, while GREED struggles except for ogbg-molhiv and ogbg-
molpcba. This is because both datasets are adopted from the same parent dataset MoleculeNet Wu
et al. (2018); Hu et al. (2020) with similar topological features (Table 7).
Inter-domain: Table 5 showcases the ability of the functions discovered by dataset-specific training
of GRAIL to generalize across other datasets. We do not observe a significant increase in RMSE
on the off-diagonal entries, which showcases positive knowledge transfer and an ability not seen in
neural approximators.
Generalization to graph size: In this experiment, we evaluate GRAIL-MIX on the ogbg-ppa dataset,
which has been omitted from prior benchmarking due to the large size of its graphs (See Table 7).
Given the computational infeasibility of ground-truth GED computation for these graphs, neural
approximators cannot be trained on this dataset. To assess the generalization capability of GRAIL-
MIX, we compare the upper bound provided by its programs against the top-3 non-neural heuristics
(based on Table 2). We observe that GRAIL-MIX provides 30% to 45% tighter upper bounds. Fig. 10
in the appendix further substantiates that GRAIL generalizes better to large graphs than neural
baselines.
5.4 ABLATION STUDY AND PARAMETERS

Impact of budget b: For the true GED, all possible mappings (factorial in the graph size) must
be considered. Instead, GRAIL restricts this to b mappings, where each mapping is generated by a
program. In Fig. 3b, we plot how b affects the upper bound. As shown, the upper bound converges at
≈ 15 functions. Similar trends are observed in other datasets (see Fig. 5).
Impact of Submodularity: What happens if, instead of selecting the top-b functions using greedy
submodular optimization, we evolve and score functions individually based on their upper bounds
(Eq. 3) and select the top-b solely based on this criterion? Fig. 3c illustrates the impact on RMSE
across training iterations (LLM calls). While selecting the top-b functions through submodular
optimization shows a clear trend of decreasing RMSE on the test set, independently choosing the
top-b functions based on individual scores results in significantly higher RMSE, with a progressive
worsening trend indicative of overfitting to the training set. This result underscores the importance of
submodularity in selecting functions that complement one another and perform well collectively (See
Fig. 11 for additional metrics).
Interpretability: We present a case study in App. A.4 to showcase the interpretability aspects of
GRAIL for the IMDB dataset, where it outperforms all neural baselines by a large margin (Table 2).

6 CONCLUSIONS AND FUTURE DIRECTIONS

This paper introduced a new paradigm of computing GED by leveraging LLMs to autonomously
generate programs. Unlike traditional methods that rely on neural networks and require computa-
tionally expensive, NP-hard ground truth data, our method employs a self-evolutionary strategy to
discover programs without any ground truth data. Remarkably, these programs not only surpass
state-of-the-art methods on average but are also interpretable and demonstrate strong transferability
across various datasets and domains. While our approach is demonstrated on GED computation,
we believe it is generalizable to other combinatorial problems with similar constraints, both within
and beyond graph-related tasks. An interesting direction for future work is to critically analyze the
programs discovered by our method with domain experts and to develop mechanisms that facilitate
closer cooperation between human and LLM agents.
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STATEMENT OF IMPACT

This work introduces a novel approach to Graph Edit Distance (GED) computation by leveraging large
language models (LLMs) and evolutionary algorithms to generate interpretable programs for GED
approximation. Unlike existing methods, our approach prioritizes transparency, interpretability, and
cross-domain generalization while achieving state-of-the-art performance in approximation accuracy.

The societal implications of this work are significant. By addressing key limitations of neural
approaches—such as their reliance on costly ground truth data, lack of interpretability, and domain-
specific retraining—our method has the potential to make graph similarity computation more accessi-
ble and efficient across a variety of applications, including bioinformatics, social network analysis,
and cheminformatics. Moreover, the transparency of program-based solutions could foster trust and
reliability in critical domains where understanding the computation process is essential, such as
healthcare or legal systems.

We do not foresee any ethical concerns arising out of our work.
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A APPENDIX

A.1 PROOFS

A.1.1 NP-HARDNESS OF EQ. 4

REDUCTION TO PROVE NP-HARDNESS

We reduce the Set Cover problem to the given problem in polynomial time to demonstrate its
NP-hardness.

Given a universe of elements U = {e1, e2, . . . , en}, a collection of sets S = {S1, S2, . . . , Sm} where
Si ⊆ U , and a budget b, the set cover problem seeks to determine if there exist b sets S1, . . . , Sb ∈ S
whose union covers all elements of U .

Given an instance of the set cover problem, we construct a bipartite graph B = (V,U , E ,W), where
V = S , U = U , and an edge (Si, ej) ∈ E exists if and only if Si covers ej . Each edge (Si, ej) has a
weight:

w(Si, ej) =

{
1 if Si covers ej ,
1 + ∆ if Si does not cover ej .

where ∆ > 0.

The objective is to select b nodes from V (representing sets S) such that Eq. 4 is minimized on graph
B.

If a Set Cover of size b exists, then all n elements can be covered by b sets. This means if we select
the corresponding nodes A∗ ⊆ V , then every node in U will have at least one edge of weight 1 from
some node in A∗ incident on it. Hence, J (A∗) will return a cumulative sum of n.

Conversely, if no Set Cover of size b exists, then some elements will not be covered by the selected
sets, and their corresponding nodes in U will have only edges of edge weights 1 + ∆ from nodes in
A∗.

Therefore, a solution to the Set Cover problem exists iff selecting the corresponding nodes A∗ ⊆ V
leads to J (A∗) = n. Conversely, if J (A∗) > n, it implies that no b-set cover exists.

A.1.2 MONOTONICITY AND SUBMODULARITY

Lemma 1. Monotonicity: J (A) ≤ J (A′) if A ⊇ A′.

Proof. Since J (A′) computes minimum over all available mappings in A′, the minimum can only
reduce when additional mappings are added to form A.

Lemma 2. Submodularity: J (A ∪ {P})− J (A) ≤ J (A′ ∪ {P})− J (A′).

Proof. We seek to show that the marginal reduction in J (A) when a program (mapping) P is added
to A is atmost as large as adding P to its subset A′. We establish this through proof by contradiction.

Let us assume
∃A ⊇ A′, J (A ∪ {P})− J (A) > J (A′ ∪ {P})− J (A′) (7)

Due to the min operator in Eq. 5, Eq. 7 implies that the additional number of graph pairs where P
contributes to the minimum mapping is higher when added to A than when added to A′. This creates
a contradiction, since if P contributes to the minimum of a graph pair in A∪ {P}, then it guaranteed
to contribute to the minimum for the same pair in A′ ∪ {P} as well.

A.2 EXPERIMENTS

A.2.1 SETUP

All experiments ran on a machine equipped with an Intel Xeon Gold 6142 CPU @1GHz and a
GeForce GTX 1080 Ti GPU. While non-neural methods and GRAIL run on the CPU, neural baselines
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Figure 4: Example of an input prompt to GRAIL

exploit the GPU. For the LLM, we use Gemini 1.5 Pro. In particular, we have used the initial stable
version of Gemini 1.5 Pro, i.e., gemini-1.5-pro-001, which was released on May 24, 2024.

Hyper-parameters: Table H lists the hyper-parameters used for GRAIL. k stands for the number of

Hyper-parameter Value

k 2
b 15
number of islands 5
temperature 0.99
Algorithm for bipartite matching Neighbor-biased mapper He & Singh (2006)

Table H: Hyper-parameters used for GRAIL

functions per response generated by the LLM and b is the function budget employed for submodularity
while training. We decided to use k as 2, since with greater values of k, we observed no significant
improvement in quality metrics. This was also observed in FunSearch Romera-Paredes et al. (2024).
For the function budget b, we observed that a value of 15 was good enough for most datasets (Refer
Fig. 5).
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Figure 5: Avg. Upper Bound vs function budget (b) for submodular greedy selection

Name # Graphs Avg |V | Avg |E| # labels Domain

ogbg-molhiv 39650 24 52 119 Molecules
ogbg-molpcba 436313 26 56 119 Molecules
ogbg-code2 139468 37 72 97 Software
AIDS 700 9 9 29 Molecules
Linux 1000 8 7 Unlabeled Software
IMDB 1500 13 65 Unlabeled Movies
ogbg-ppa 39650 243.4 2226.1 Unlabeled Protein

Table 7: Datasets used for benchmarking GRAIL.

A.3 DATASETS

The semantics of these datasets are as follows:

• ogbg-molhiv and ogbg-molpcba: These are chemical compound datasets, with each graph
representing a molecule. Nodes in these graphs correspond to atoms and are labeled with their
atomic numbers, while edges denote the chemical bonds between atoms. These datasets vary in
size and complexity, with a rich diversity of molecular structures, enabling us to test the robustness
and generalizability of our method.

• ogbg-code2: This dataset comprises a vast collection of Abstract Syntax Trees (ASTs) generated
from nearly 450,000 Python method definitions. Each graph in this dataset represents an AST,
with nodes labeled from a predefined set of 97 categories, capturing various syntactic constructs
within the methods. These graphs are considered undirected, simplifying the representation while
preserving structural relationships.

• ogbg-ppa: This dataset includes undirected protein association neighborhoods extracted from
protein-protein interaction networks of 1,581 speciesSzklarczyk et al. (2019) across 37 diverse
taxonomic groups. To build these neighborhoods, 100 proteins were randomly selected from
each species, and 2-hop protein association neighborhoods were constructed around each selected
proteinZitnik et al. (2019). In these graphs, proteins are represented as nodes, and edges indicate
biologically relevant associations between them.

• AIDS: This dataset is a collection of graphs sourced from the AIDS antiviral screen database,
each graph representing a chemical compound’s molecular structure. These graphs are labeled,
capturing meaningful properties of the compounds, and are compact in size, containing no more
than 10 nodes.

• Linux: A collection of program dependence graphs where nodes correspond to statements and
edges indicate dependencies between statements. The graph sizes in this dataset are also limited to
10 nodes. This dataset is unlabeled and was introduced in Wang et al. (2012).

• IMDB: This dataset consists of ego-networks of actors and actresses who have shared screen time
in movies. Each graph represents an ego-network where the nodes correspond to individuals (actors
or actresses), and the edges denote shared appearances in films. This dataset is unlabeled and was
introduced in Yanardag & Vishwanathan (2015).

General dataset statistics have been provided in Table 7.
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A.3.1 GROUND-TRUTH DATA GENERATION

We employ MIP-F2 Lerouge et al. (2017b) to generate ground truth GED. MIP-F2 returns the lower
and upper bounds of GED. We compute these bounds with a time limit of 600 seconds per pair. Pairs
with equal lower and upper bounds are included in the ground truth.

A.3.2 METRICS

We use the following two metrics to quantify accuracy:

• RMSE: Evaluates the prediction accuracy by measuring the disparities between actual and predicted
values. For n graph pairs, it is defined as:√

1
n

∑n
i=1(true-gedi − pred-gedi)2

• Exact Match Ratio: Represents the proportion of graph pairs where the predicted GED exactly
matches the actual GED. For n graph pairs, it is defined as:

1
n

∑n
i=1 I

(
true-gedi = pred-gedi

)
where I(·) is an indicator function that returns 1 if the condition inside is true, and 0 otherwise. A
higher Exact Match Ratio indicates better predictive accuracy at the individual graph pair level.

A.3.3 TEST DATA:

The statistics of the test data used for the evaluation of GRAIL are presented in Table. 5.

Name # Graph pairs Avg |V | Avg |E|
AIDS 1000 8.8 8.8
Linux 1000 7.6 7.0
IMDB 967 12.2 57.0
ogbg-molhiv 902 23.0 49.5
ogbg-molpcba 859 25.0 54.1
ogbg-code2 968 36.7 35.7

Table H: Test Data Statistics

Method AIDS Linux IMDB ogbg-molhiv ogbg-code2 ogbg-molpcba
GRAIL 0.83 ≈ 1 0.99 0.18 0.11 0.12

Table 9: EMR results of GRAIL for all datasets. Values in the range (0.99,1) are denoted as ≈ 1

A.3.4 EFFICIENCY ANALYSIS

The training and inference time analysis is shown in Fig. 6.

Training Time: From Fig. 6a, we observe that GRAIL is significantly more efficient than the neural
baselines. Neural methods require NP-hard ground truth training data, which involves extensive
computation times of up to 15 days. Additionally, note that GRAIL-MIX requires training only once
while performing on par with GRAIL and neural baselines in terms of approximation error (see
Table 2).

Inference Time: We compare the inference time of GRAIL with the top three neural and non-neural
methods from Table 2, as shown in Fig. 6b. At the onset, we point out that while GRAIL infers on
CPUs and provides the node mapping in addition to the predicted GED, neural baselines rely on
GPUs and only provide the GED. Hence, neural methods have a lower computational workload
while having access to more powerful computational resources. Results indicate that GRAIL achieves
faster inference times than neural baselines for smaller and sparser datasets, such as AIDS and Linux.
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(a) Training Time

(b) Inference Time

Figure 6: (a) Training Time: Comparison of GRAIL with the top-3 neural methods in Table 2. (b)
Inference Time: Comparison of GRAIL with the top-3 neural and non-neural methods in Table 2.
The top-3 methods have been selected based on avg. ranks.
Note: Ground truth generation time is the same for a dataset (9 hrs 43 min : AIDS, 3 hrs 25 min :
Linux, 124 hrs 25 min : IMDB, 379 hrs 19 min : ogbg-molhiv, 21 hrs 42 min : ogbg-code2, 414 hrs
30 min : ogbg-molpcba) for all neural methods, but appears to be different in the plots due to log
scale conversion.

However, inference times increase for larger and denser datasets, such as IMDB and ogbg, due to
the computational overhead of computing mappings. The maximum recorded inference time is 94.6
seconds for 968 graph pairs in the ogbg-code2 dataset (∼ 0.1 seconds per pair), which remains
reasonable considering the various advantages of GRAIL, including its independence from ground
truth data, one-time training for GRAIL-MIX, and strong generalization capabilities. Furthermore, the
efficiency of GRAIL’s programs can be further improved through human intervention or translation to
more efficient languages, such as C.
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Figure 7: IMDB Case Study: The left-most graph represents Graph 1, while the middle and right-most
graphs depict Graph 2 with predicted edits from GRAIL-MIX (Fig: 9) and GEDGNN, respectively.
The red and green edges in each graph indicate the edge edits predicted by both methods. Ground
Truth GED:4, GRAIL-MIX GED:4, GEDGNN Mapping’s GED: 20.

(a) (b)

Figure 8: IMDB Case Study: Heatmap of weight matrix generated by (a) GRAIL-MIX (Fig: 9) and
(b) GEDGNN

A.4 INTERPRETABILITY: CASE STUDY ON IMDB

To shed light on the superior performance of GRAIL over GNN-based neural approximators, we
analyze a graph pair from the IMDB dataset, where GRAIL shows the highest improvement over all
baselines (Table 2). Figures 7 and 8 in the Appendix illustrate the graph structures, the edits made
by GRAIL and its closest competitor GEDGNN, and the node similarity matrices generated by these
algorithms. The program discovered by GRAIL-MIX, shown in Fig. 9, achieves the ground truth
GED of 4, while GEDGNN predicts a GED of 20. This program assigns node similarity scores based
on degree similarity and that of their neighbors. Since IMDB is unlabeled, feature similarity does not
influence the results.

Examining GEDGNN’s similarity matrix reveals a different score distribution compared to GRAIL.
For instance, node 1 in Graph 1 has the second-highest similarity to nodes 2 and 9 in GRAIL-MIX,
but GEDGNN assigns low similarity to these nodes, favoring nodes 0 and 6 instead. GRAIL-MIX’s
decision aligns with the similarity in their degrees (degree of 9 for node 1 in Graph 1 versus 7 for
nodes 2 and 9 in Graph 2). In contrast, GEDGNN, as a neural network, operates as a black box. We
hypothesize that the poor performance of GEDGNN and other GNN-based algorithms in IMDB is due
to the dataset’s unlabeled nature and high density, leading to oversquashing. Giovanni et al. (2024).
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Figure 9: IMDB Case Study: Program discovered by GRAIL-MIX that has minimum individual
RMSE on IMDB dataset.

Figure 10: Avg. RMSE vs. Avg. Graph Size comparison on IMDB, Linux and ogbg-code2 datasets.
GRAIL-MIX outperforms the best baselines at both smaller and larger graph sizes. The rate of
increase of error is lower for GRAIL-MIX as opposed to GREED and GEDGNN with increasing
average graph size.
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Figure 11: Performance comparison of Top-b vs. Greedy Submodular on the test set of AIDS dataset
with an increasing number of LLM calls.
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