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Abstract

Weak-to-strong (W2S) generalization is a type
of finetuning (FT) where a strong (large) student
model is trained on pseudo-labels generated by a
weak teacher. Surprisingly, W2S FT often outper-
forms the weak teacher. We seek to understand
this phenomenon through the observation that
FT often occurs in intrinsically low-dimensional
spaces. Leveraging the low intrinsic dimensional-
ity of FT, we analyze W2S in the ridgeless regres-
sion setting from a variance reduction perspec-
tive. For a strong student-weak teacher pair with
sufficiently expressive low-dimensional feature
subspaces Vs,Vw, we provide an exact character-
ization of the variance that dominates the gener-
alization error of W2S. This unveils a virtue of
discrepancy between the strong and weak mod-
els in W2S: the variance of the weak teacher is
inherited by the strong student in Vs ∩ Vw, while
reduced by a factor of dim(Vs)/N in the subspace
of discrepancy Vw \ Vs with N pseudo-labels for
W2S. Our analysis further casts light on the sam-
ple complexities and the scaling of performance
gap recovery in W2S. The analysis is supported
by experiments on synthetic regression problems,
as well as real vision and NLP tasks.

1. Introduction
As the capabilities of modern machine learning models
grow and exceed human performance in many domains,
an emerging problem is whether it would be possible to
align the strong superhuman models with weaker supervi-
sors such as human feedback. The weak-to-strong (W2S)
framework introduced in (Burns et al., 2024) is a feasible
analogy for this problem, inquiring how much capacity of a
strong student model can be evoked under the supervision
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of a weak teacher model. W2S is related to various learning
paradigms like co-training (Blum & Mitchell, 1998), self-
training (Scudder, 1965), knowledge distillation (Hinton,
2015), and self-distillation (Zhang et al., 2019; 2021), yet
being critically dissimilar.

Formalizing the discrepancy between the student and the
teacher in their model capacities is essential for understand-
ing W2S. Most existing theories for W2S treat model ca-
pacity as an absolute notion with respect to the downstream
task, e.g. the weak teacher lacks the robustness to perturba-
tion (Lang et al., 2024; Shin et al., 2024) or the ability to fit
the target function (Ildiz et al., 2024; Wu & Sahai, 2024).
Nevertheless, empirical observations suggest W2S models
also surpass weak models’ performance on less challenging
tasks (Burns et al., 2024), where the weak teacher has suf-
ficient capacity to achieve good performance. This gap of
understanding motivates some natural questions:

Why W2S happens when both the teacher and student have
sufficient capacities for the downstream task?

What affects W2S generalization beyond the absolute notion
of model capacity?

To answer the above questions, we analyze W2S general-
ization through the lens of intrinsic dimension beyond the
absolute notion of model capacity. We develop a theoretical
framework that incorporates student-teacher correlation, pro-
viding a more nuanced explanation of when and why W2S
model surpasses the weak teacher’s performance.

Our framework is built on two inspiring observations on
finetuning (FT): (i) FT tends to fall in the kernel regime (Ja-
cot et al., 2018; Wei et al., 2022; Malladi et al., 2023); and
(ii) for a downstream task, relevant features in a stronger
pretrained model tend to concentrate in a subspace of lower
dimension, known as the intrinsic dimension, even when
FT is highly overparametrized (Aghajanyan et al., 2021).
Leveraging these properties, we cast FT as a ridgeless re-
gression problem over subgaussian features. In particular,
we consider two subspaces Vs,Vw ⊂ Rd of low dimen-
sions ds, dw ≪ d that encapsulate relevant features in the
strong student and weak teacher, respectively. The “absolute”
model capacities are measured from two aspects: (i) the in-
trinsic dimensions ds, dw that quantify the representation
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“complexity” and (ii) the approximation errors ρs < ρw that
quantify the representation “accuracy” of the strong and
weak models, respectively. In addition, the student-teacher
correlation is measured by alignment between the strong
and weak feature subspaces through their canonical angles
(see Appendix D), ds∧w =

∑
cos(∠(Vs,Vw)) such that

ds∧w ∈ [0,min{ds, dw}].

This framework reveals the roles of low intrinsic dimensions
and student-teacher correlation in W2S. Decomposing the
W2S generalization error into variance and bias, the bias
is due to the approximation errors, ρs, ρw, which are low
when both student and teacher have sufficient capabilities;
whereas the variance comes from noise in the labeled sam-
ples for finetuning the weak teacher. When finetuning the
strong student with N ≳ ds pseudo-labels generated by a
weak teacher supervisedly finetuned with n ≳ dw noisy
labels, the variance of W2S is proportional to:

ds∧w
n

Var. in Vs ∩ Vw

+
ds
N

W2S

dw − ds∧w
n

Var. in Vw \ Vs

.

Specifically, the student mimics variance of the weak teacher
in the overlapped feature subspace Vs ∩ Vw but reduces
the variance by a factor of ds/N in the discrepancy be-
tween Vw and Vs. Compared to the weak teacher variance
that scales as dw/n, W2S happens (i.e. the student outper-
forms its weak teacher) with sufficient sample sizes n,N
when: (i) the strong student has a lower intrinsic dimension,
ds < dw (as empirically observed in (Aghajanyan et al.,
2021) on NLP tasks), or (ii) the student-teacher correlation
is low, ds∧w < dw. This unveils the benefit of discrepancy
between the teacher and student features for W2S:

In the variance-dominated regime, W2S comes from
variance reduction in the discrepancy of weak teacher

features from strong student features.

To provide intuitions for such variance reduction, let’s con-
sider Vs and Vw with large discrepancy as two distinct as-
pects of a downstream task that both provide sufficient in-
formation. For example, to classify the brand of a car in an
image, one can use either the simple information in the logo
(strong features Vs with a lower intrinsic dimension ds) or
the complex information in the design (weak features Vw
with a higher intrinsic dimension dw). In a high-dimensional
feature space, Vs and Vw that encode irrelevant information
are likely almost orthogonal, leading to a small ds∧w. Then,
the error of weak teacher induced by noise in the n labeled
samples is only correlated to the design features in Vw but
almost independent of the logo features in Vs. Therefore,
the error in weak supervision can be viewed as independent
label noise for the student. With an intrinsic dimension
of ds, the generalization error of student induced by such
independent noise vanishes at a rate of O(ds/N).

Our main contributions are summarized as follows:

• We introduce a theoretical framework for W2S based on
the low intrinsic dimensions of FT, where we characterize
model capacities from three aspects: approximation errors
for “accuracy”, intrinsic dimensions for “complexity”, and
student-teacher correlation for “alignment” (Section 2).

• We provide a generalization analysis for W2S with an
exact characterization of the variance under a Gaussian
feature assumption, unveiling the virtue of discrepancy
between the student and teacher in W2S (Section 3.1).

• We investigate the relative W2S performance in terms
of performance gap recovery (PGR) (Burns et al., 2024)
and outperforming ratio (OPR) compared to the strong
baseline model supervisedly finetuned with n labels. A
case study provides insights into the scaling of PGR and
OPR with respect to the sample sizes n,N and sample
complexities in W2S (Section 3.2).

1.1. Related works
In this section, we review literature directly related to W2S
and intrinsic dimension, while deferring detailed discussions
on other related topics to Appendix A.

W2S alignment: emergence & growing influence. W2S
generalization was first introduced by (Burns et al., 2024),
offering a promising avenue for aligning superhuman mod-
els. A rapidly expanding body of work has empirically
validated this phenomenon across diverse tasks in vision
and language models since then. Guo et al. (2024); Liu
& Alahi (2024) propose loss functions and multi-teacher
algorithms. Guo & Yang (2024); Yang et al. (2024b) re-
fine training data to improve W2S alignment, while Li et al.
(2024); Sun et al. (2024) use weak models for data filtering
and reranking. In contrast, Yang et al. (2024a) highlight the
issue of W2S deception, where strong models superficially
align with weak teachers but fail in new or conflicting cases.
This calls for theoretical understanding of the mechanism
behind W2S generalization and better strategies to mitigate
misalignment. Coinciding with our theoretical findings, the
strong negative correlation between model similarity and
W2S performance is empirically observed in the concurrent
work (Goel et al., 2025) in extensive experiments.

Theoretical perspectives on W2S generalization. Exist-
ing theories on W2S interpret the difference between strong
and weak models in terms of the quality of their represen-
tations (from the bias perspective in our context). Lang
et al. (2024) study W2S in classification through the lens
of neighborhood expansion (Wei et al., 2020; Cai et al.,
2021) where model capacity is interpreted as the robustness
to perturbation. Within this framework, Shin et al. (2024)
highlights the importance of data selection in W2S while
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proposing metrics and algorithms for data selection in W2S.
In the same classification setting, Somerstep et al. (2024)
takes a transfer learning perspective and highlights the limi-
tation of naive FT in W2S. Wu & Sahai (2024) take a benign
overfitting (Bartlett et al., 2020; Muthukumar et al., 2021)
perspective and show the asymptotic transition between
W2S generalization and random guessing. For regression
tasks, Charikar et al. (2024) reveals the connection between
W2S gain and misfit error of the strong student on weak
pseudo-labels. Ildiz et al. (2024) treats W2S as a special
case of knowledge distillation, showing its limitation in
terms of improving the data scaling law (Spigler et al., 2020;
Bahri et al., 2024). We consider a similar ridgeless regres-
sion setting as Ildiz et al. (2024) but from a fundamentally
different aspect – variance reduction. This offers a fresh
take on the roles of intrinsic dimension and student-teacher
correlation in W2S. Parallel to this work, Medvedev et al.
(2025); Yao et al. (2025) analyze W2S in the context of
early stopping and loss functions, respectively.

Intrinsic dimension. There has been prevailing empiri-
cal and theoretical evidence that natural high-dimensional
systems often exhibit low-dimensional structures (Udell &
Townsend, 2019). The concept of intrinsic dimension has
been widely studied in manifold learning (Tenenbaum et al.,
2000), dimensionality reduction (Van der Maaten & Hinton,
2008), and representation learning (Bengio et al., 2013).
In the context of neural network training, Li et al. (2018)
propose a method to measure the intrinsic dimension of the
objective landscape based on the Johnson-Lindenstrauss-
type transforms (Johnson, 1984). This offers a structural
perspective on task complexity, which is largely absent from
prior W2S studies. Aghajanyan et al. (2021) investigate the
intrinsic dimensions of FT, showing that FT over large mod-
els usually has surprisingly low intrinsic dimensions, while
good pretraining tends to reduce the intrinsic dimension.
Our work extends these insights by linking the intrinsic
dimension to W2S, decomposing generalization error into
bias and variance, and building upon findings from Yang
et al. (2020); Amari et al. (2020) on variance-dominated
risks in learning from noisy labels.

1.2. Notations
Given any n ∈ Z+, we denote [n] = {1, · · · , n}. Let en be
the n-th canonical basis of conformable dimension; In is
the n× n identity matrix; and 0n, 1n ∈ Rn are vectors with
all zeroes and ones. For any distribution p and n ∈ Z+, let
pn ≜

⊗n
i=1 p as the n-fold product distribution of p, sam-

pling which yields n i.i.d. samples from p. For any matrix
A ∈ Rn×d, let A† be the Moore-Penrose pseudoinverse.
We adapt the standard asymptotic notations: for any func-
tions f, g : R+ → R+, we write f = O (g) or f ≲ g if
there exists some constant C > 0 such that f(x) ⩽ Cg(x)
for all x ∈ R+; f = Ω(g) or f ≳ g if g = O (f); f ≍ g

if f = O (g) and f = Ω(g). Also, we denote f = o(g) or
f/g = ox(1) if limx→∞ f(x)/g(x) = 0.

2. Problem setup
In this section, we cast FT as a ridgeless regression problem.
The setup is introduced in three parts: model capacity, FT
algorithms, and metrics for W2S performance.

Consider the problem of learning an unknown data distribu-
tion D(f∗) : X × Y → [0, 1] (where X is a set and Y ⊆ R)
associated with a downstream task characterized by an un-
known ground truth function f∗ : X → R. Every sample
(x, y) ∼ D(f∗) satisfies y = f∗(x)+z where z ∼ N (0, σ2)
is an independent Gaussian label noise. Let D : X → [0, 1]
be the marginal distribution over X . We assume that f∗
is bounded: |f∗(x)| ⩽ 1 for x ∼ D almost surely (under
normalization without loss of generality).

For any f : X → R learned with samples from D(f∗), we
measure the generalization error via excess risk:

ER(f) = Ex∼D
[
Ef
[
(f(x)− f∗(x))

2
]]

, (1)

where randomness in f comes from its training samples.
Notice that ER(f) can be decomposed into variance and
bias, ER(f) = Var(f) +Bias(f), where

Var(f) = Ex∼D
[
Ef
[
(f(x)− Ef [f(x)])2

]]
,

Bias(f) = Ex∼D
[
(Ef [f(x)]− f∗(x))

2
]
.

2.1. Measures for model capacity
Model capacity is a key notion in W2S that distinguishes
the weak and strong models. Intuitively, a stronger model is
capable of representing a downstream task D(f∗) more ac-
curately and efficiently. We formalize such “accuracy” and
“complexity” through the notions of intrinsic dimensions
and FT approximation errors, as introduced below.

Consider two pretrained models, a weak model ϕw and a
strong model ϕs, that output features X → Rd:

Assumption 2.1 (Sub-gaussian features). For x ∼ D, as-
sume both ϕw(x) and ϕs(x) are zero-mean sub-gaussian
random vectors with E[ϕw(x)] = E[ϕs(x)] = 0d, and
E[ϕw(x)ϕw(x)⊤] = Σw, E[ϕs(x)ϕs(x)⊤] = Σs.

Approximation errors measure the model capacity from the
“accuracy” perspective: how accurately can the downstream
task D(f∗) be represented by the pretrained features of ϕs
and ϕw over the population.

Definition 2.2 (FT approximation error). Given D(f∗), let
the FT approximation errors of ϕs and ϕw be

ρs = min
θ∈Rd

Ex∼D
[
(ϕs(x)

⊤θ − f∗(x))
2
]
,

ρw = min
θ∈Rd

Ex∼D
[
(ϕw(x)

⊤θ − f∗(x))
2
]
,
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such that ρs, ρw ∈ [0, 1] (given Prx∼D[|f∗(x)| ⩽ 1] = 1
by assumption). We assume both ρs and ρw are small
compared to label noise: ρs + ρw ≪ σ2; while the
stronger model ϕs has a lower FT approximation error:
ρs < ρw. Further, with respect to a sample size n,
let ρs(n) = EX∼Dn [∥ϕs(X)ϕs(X)†f∗(X) − f∗(X)∥22]
and ρw(n) = EX∼Dn [∥ϕw(X)ϕw(X)†f∗(X)− f∗(X)∥22],
where ϕs(X) and ϕw(X) are n × d feature matrices; and
f∗(X) ∈ Rn is a vector of the noiseless ground truth labels.

Notice that FT approximation error is different from approx-
imation error of the full model. Precisely, Definition 2.2
quantifies the approximation error of finetuning the pre-
trained model, whose dynamics (Wei et al., 2022; Malladi
et al., 2023) fall in the kernel regime (Jacot et al., 2018).
Since feature learning is limited in the kernel regime (Wood-
worth et al., 2020), a low FT approximation error requires
the pretrained features ϕs and ϕw to provide an expressive
set of features for the downstream task D(f∗).

In addition to “accuracy”, a strong model ought to be able
to represent a downstream task concisely. We quantify
such “complexity” through intrinsic dimension – the mini-
mum dimension of a feature subspace that can represent the
downstream task D(f∗) accurately. In light of the ubiqui-
tous observations on low intrinsic dimensions of FT (Agha-
janyan et al., 2021), we introduce a common assumption for
FT (Xia et al., 2024; Dong et al., 2024c) that the pretrained
features of ϕs, ϕw are concentrated in low-dimensional sub-
spaces, as formalized below.

Definition 2.3 (Intrinsic dimensions). Let ds = rank(Σs)
and dw = rank(Σw) be the intrinsic dimensions of ϕs and
ϕw. Assume low intrinsic dimensions1: ds, dw ≪ d.

Moreover, Aghajanyan et al. (2021) observed that the
stronger pretrained models tend to have lower intrinsic di-
mensions, i.e. we often have ds < dw in practice.

Beyond the absolute notion of model capacity in terms of
intrinsic dimensions and FT approximation errors, we intro-
duce a relative measure for the similarity between weak and
strong models – the correlation dimension characterizing the
overlap between feature subspaces of ϕs and ϕw.

Definition 2.4 (Correlation dimension). Consider spectral
decompositions Σs = VsΛsV

⊤
s and Σw = VwΛwV

⊤
w ,

where Λs ∈ Rds×ds and Λw ∈ Rdw×dw are diagonal ma-
trices with positive eigenvalues in decreasing order; while

1 In practice, Σs and Σw usually admit fast-decaying eigen-
values, but not exactly low-rank. In this more realistic case, ridge
regression with suitable choices of regularization hyperparameters
intuitively performs “soft” truncation of the small singular values,
effectively leading to low intrinsic dimensions ds, dw ≪ d. For
conciseness of the main message, we focus on the ideal case of
exactly low-rank Σs and Σw in the main text, while deferring the
ridge regression analysis for general Σs and Σw to Appendix C.

Vs ∈ Rd×ds and Vw ∈ Rd×dw consist of the correspond-
ing orthonormal eigenvectors. Let ds∧w =

∥∥V⊤
s Vw

∥∥2
F

be
the correlation dimension between ϕs and ϕw such that
0 ⩽ ds∧w ⩽ min {ds, dw}.

Remark 2.5 (Extension to general FT). While we focus on
learning D(f∗) via linear probing over ϕw and ϕs, since
the finetuning dynamics fall approximately in the kernel
regime (Wei et al., 2022; Malladi et al., 2023), the linear
probing analysis naturally extends to general FT. Precisely,
let fw(·|0d) : X → R and fs(·|0d) : X → R be the pre-
trained weak and strong models, where d is the number of
finetunable parameters. By denoting ϕw(x) = ∇θfw(x|0d)
and ϕs(x) = ∇θfs(x|0d), the general FT process effec-
tively reduces to linear probing over ϕw and ϕs.

2.2. W2S and supervised finetuning
With the task D(f∗) and models ϕs, ϕw specified, we are
ready to formalize the data and algorithms for FT.

We consider two sample sets drawn i.i.d. from D(f∗): a
small labeled set S̃ = {(x̃i, ỹi)|i ∈ [n]} ∼ D(f∗)n and a
large sample set S = {(xi, yi)|i ∈ [N ]} ∼ D(f∗)N where
the labels yi are inaccessible, denoting the unlabeled part as
Sx = {xi|i ∈ [N ]}. The goal is to learn a function f : X →
R using S̃ and Sx that generalizes well to D(f∗).

For S̃, let Φ̃w = [ϕw(x̃1), ..., ϕw(x̃n)]
⊤, Φ̃s =

[ϕs(x̃1), ..., ϕs(x̃n)]
⊤ ∈ Rn×d be the weak and strong fea-

tures with associated labels ỹ = [ỹ1, . . . , ỹn]
⊤ ∈ Rn. Anal-

ogously for S, let Φw = [ϕw(x1), . . . , ϕw(xN )]⊤, Φs =
[ϕs(x1), . . . , ϕs(xN )]⊤ ∈ RN×d be the weak and strong
features with unknown labels y = [y1, . . . , yN ]⊤ ∈ RN .
For conciseness of notations, we introduce a mild regularity
assumption on the ranks of these feature matrices.

Assumption 2.6 (Sufficient finetuning data). Assume S̃ and
S are sufficiently large such that rank(Φ̃w) = rank(Φw) =

dw and rank(Φ̃s) = rank(Φs) = ds almost surely2.

Given regularization hyperparameters αw, αw2s, αs, αc >
0, we consider the following FT algorithms:

(a) Weak teacher model fw(x) = ϕw(x)
⊤θw is super-

visedly finetuned over S̃:

θw = argmin
θ∈Rd

1

n

∥∥∥Φ̃wθ − ỹ
∥∥∥2
2
+ αw ∥θ∥22 . (2)

(b) W2S model fw2s(x) = ϕs(x)
⊤θw2s is finetuned over

the strong feature ϕs through Sx and their pseudo-

2Assuming distributions of ϕw(x) and ϕs(x) are absolutely
continuous with respect to the Lebesgue measure, for any n ⩾ dw
and n ⩾ ds, rank(Φ̃w) = rank(Φw) = dw and rank(Φ̃s) =
rank(Φs) = ds almost surely (Vershynin, 2018, §3.3.1).
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labels generated by the weak teacher model:

θw2s = argmin
θ∈Rd

1

N
∥Φsθ −Φwθw∥22 + αw2s ∥θ∥22

(3)

(c) Strong SFT model fs(x) = ϕs(x)
⊤θs is a strong

baseline where the strong feature ϕs is supervisedly
finetuned over the small labeled set S̃ directly:

θs = argmin
θ∈Rd

1

n

∥∥∥Φ̃sθ − ỹ
∥∥∥2
2
+ αs ∥θ∥22 . (4)

(d) Strong ceiling model fc(x) = ϕs(x)
⊤θc is a refer-

ence for the ceiling performance where ϕs is super-
visedly finetuned over S ∪ S̃, assuming access to the
unknown labels y = [y1, . . . , yN ]⊤:

θc = argmin
θ∈Rd

1

n+N

∥∥∥∥[Φ̃s

Φs

]
θ −

[
ỹ
y

]∥∥∥∥2
2

+ αc ∥θ∥22 .

(5)

Remark 2.7 (Regularization prevents W2S from overfitting).
As pointed out in (Burns et al., 2024), suitable regularization
is crucial to prevent W2S from overfitting the weak teacher.
For overparametrized problems3, even without explicit reg-
ularization, gradient descent implicitly biases toward the
minimum ℓ2-norm solutions in the kernel regime (Wood-
worth et al., 2020), equivalent to solving Equations (2) to (5)
with αw, αw2s, αs, αc → 0. Therefore, we focus on ridge-
less regression here under the idealized intrinsic dimension
assumption in Definition 2.3. In Appendix C, we extend our
analysis to the more general scenario: when Σs,Σw are not
exactly low-rank, a careful choice of αw, αw2s > 0 brings a
W2S generalization bound, Theorem C.4, that conveys the
same message as Theorem 3.1 in the ridgeless case.

2.3. Metrics for W2S performance
In addition to the absolute generalization error of W2S,
ER(fw2s), we quantify the W2S performance of fw2s rela-
tive to fw, fs, and fc through the following metrics:

(a) Performance gap recovery (PGR) introduced in
(Burns et al., 2024) measures the ratio between ex-
cess risk reductions from the weak teacher fw of the
W2S model fw2s and the strong ceiling model fc:

PGR =
ER(fw)−ER(fw2s)

ER(fw)−ER(fc)
. (6)

3While the feature dimension d can be either larger (over-
parametrized) or smaller (underparametrized) than the sample
sizes n,N, n+N , with the low intrinsic dimensions ds, dw ≪ d,
Equations (2) to (5) are always underdetermined.

In practice, ER(fw2s) typically falls between ER(fc)
and ER(fw) (Burns et al., 2024). Therefore, it usually
holds that 0 ⩽ PGR ⩽ 1. A higher PGR indicates
better W2S generalization: the W2S model fw2s can
recover more of the excess risk gap between the weak
teacher fw and the strong ceiling model fc.

(b) Outperforming ratio (OPR) compares excess risks of
the strong baseline fs and the W2S model fw2s:

OPR = ER(fs)/ER(fw2s). (7)

A higher OPR implies better W2S generalization:
fw2s outperforms fs when OPR > 1. This metric
could be of interest in practice when the labeled sam-
ples S̃ are limited – if OPR < 1, SFT the strong
model over S̃ would be a better choice than W2S both
in terms of generalization and computational efficiency.

3. Main results
In this section, we first analyze the generalization errors of
W2S and its reference models in Section 3.1. Then in Sec-
tion 3.2, we conduct a case study on the W2S performance
in terms of the metrics introduced in Section 2.3.

3.1. Generalization errors
We start with the W2S model fw2s(x) = ϕs(x)

⊤θw2s fine-
tuned as in (2), (3) with both αw, αw2s → 0. For demon-
stration purposes, we consider an idealized Gaussian feature
case in the main text, where the variance of fw2s can be
exactly characterized (instead of upper bounded)4.

Theorem 3.1 (W2S model (formally in B.1)). Assuming
Assumptions 2.1 and 2.6 and ϕw(x) ∼ N (0d,Σw), for n >
dw + 1, ER(fw2s) = Var(fw2s) +Bias(fw2s) satisfies

Var(fw2s) =
σ2

n− dw − 1

(
ds∧w +

ds
N

(dw − ds∧w)

)
,

Bias(fw2s) ⩽
ρw(n)

n
+

ρs(N)

N
⩽ ρw + ρs,

where the inequality for Bias(fw2s) is strict if ρw(n)/n >
0 and ds < dw.

Remark 3.2 (Discrepancy is virtue). Notice that Var(fw2s)
consists of two terms. (a) In the overlapped subspace
Range(Σs)∩Range(Σw) with correlation dimension ds∧w,
the variance σ2ds∧w/(n − dw − 1) mimics that of the
weak teacher, where more pseudo-labels N fail to re-
duce the variance. (b) Whereas variance in the subspace
of discrepancy Range(Σw) \ Range(Σs) takes the form
σ2(ds/N)(dw − ds∧w)/(n− dw − 1), reduced by a factor
of ds/N and vanishing as N grows.

4 The analogous generalization bound holds up to constants for
sub-gaussian features in Assumption 2.1, see Theorem B.2.
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As a reference, we also look into the weak teacher model
fw(x) = ϕw(x)

⊤θw in (2) with αw → 0:

Proposition 3.3 (Weak teacher (B.2)). With Assump-
tions 2.1 and 2.6, ER(fw) = Var(fw) +Bias(fw) has

Var(fw) = σ2 dw
n

, Bias(fw) =
ρw(n)

n
⩽ ρw.

To measure the W2S performance in a relative sense, an-
other two necessary references are the strong SFT base-
line fs(x) = ϕs(x)

⊤θs in (4) and strong ceiling model
fc(x) = ϕs(x)

⊤θc in (5), with both αs, αc → 0:

Corollary 3.4 (Strong SFT and ceiling models). Under
Assumptions 2.1 and 2.6, ER(fs) = Var(fs) +Bias(fs)
and ER(fc) = Var(fc) +Bias(fc) satisfy

Var(fs) = σ2 ds
n
, Bias(fs) =

ρs(n)

n
⩽ ρs,

Var(fc) = σ2 ds
N + n

, Bias(fc) =
ρs(N + n)

N + n
⩽ ρs,

W2S in variance. Assuming ρs + ρw ≪ σ2 (Defini-
tion 2.2), variance dominates the generalization error. Theo-
rem 3.1 and Proposition 3.3 suggest that W2S generalization
occurs in variance, i.e. Var(fw2s) < Var(fw), if

n(1− ds/N) > (dw + 1)dw/(dw − ds∧w),

which holds broadly when n,N are large enough. For exam-
ple, with a low correlation dimension ds∧w < dw,

n > (dw + 1)2/(dw − ds∧w) and N ⩾ (dw + 1)ds

are sufficient. Notice that when ds < dw, ds∧w < dw
always holds because ds∧w ⩽ ds < dw. Meanwhile, with a
lower correlation dimension ds∧w, W2S in variance is more
pronounced and takes place at smaller n.

W2S in bias. Comparing the biases in Theorem 3.1 and
Proposition 3.3, when the strong student has zero FT approx-
imation error ρs = 0, and the FT approximation error of
the weak teacher is non-negligible ρw(n)/n > 0, as long as
the strong student has a lower intrinsic dimension ds < dw,
W2S also enjoys a strictly lower bias than the weak teacher:
Bias(fw2s) < Bias(fw)

5.

3.2. W2S performance: a case study
With the generalization analysis, we are ready to take a
closer look at the W2S performance in terms of PGR and
OPR defined in Section 2.3.

5 Notice that quantifying such advantage of W2S in bias re-
quires further assumptions on the downstream task D(f∗) and the
covariance matrices Σw,Σs, analogous to the settings in (Ildiz
et al., 2024; Wu & Sahai, 2024), which is deviating from our focus
on variance but could be an interesting future direction.

Proposition 3.5 (PGR and OPR lower bounds (B.3)).
Given fw, fw2s, fc, and fs as in Theorem 3.1, Proposi-
tion 3.3, and Corollary 3.4, under Assumptions 2.1 and 2.6,
assuming ϕw(x) ∼ N (0d,Σw)

4, with n = dw + q + 1 for
some constant q ∈ N, we have PGR ⩾

1− n

q

ds∧w + (dw − ds∧w)ds/N

dw
− n

dw

ρw + ρs
σ2

,

and OPR ⩾(
n

q

ds∧w + (dw − ds∧w)ds/N

ds
+

n

ds

ρw + ρs
σ2

)−1

.

We recall from Section 2.3 that the larger PGR and OPR
imply better W2S generalization. Then, a natural question
hinted by Proposition 3.5 is how do the sample sizes n,N
affect the W2S performance? The concrete answers to this
question depend on the relative magnitude of the FT approx-
imation errors and label noise, (ρs + ρw)/σ

2.

Case I: negligible FT approximation error. In the ideal
case where the FT approximation errors are negligible com-
pared to label noise, (ρs + ρw)/σ

2 → 0, Proposition 3.5
suggests better lower bounds for PGR, OPR as n,N in-
crease:

PGR ⩾ 1− n

n− dw − 1

ds∧w + (dw − ds∧w)ds/N

dw
,

OPR ⩾
n− dw − 1

n

ds
ds∧w + (dw − ds∧w)ds/N

.

Depending on ds∧w, we have the following cases:

(a) When ds∧w > 0, with sample sizes n ≳ dw and N ≳
(dw/ds∧w − 1)ds, PGR ⩾ 1 − O(ds∧w/dw) and
OPR ⩾ Ω(ds/ds∧w) imply good W2S performance
if ds∧w ≪ min {ds, dw}.

(b) When ds∧w = 0, a labeled sample size of n ≳
dw leads to PGR ⩾ 1 − O(ds/N) and OPR ⩾
Ω(N/dw), implying good W2S performance when
N ≫ max {dw, ds}.

Case II: small non-negligible FT approximation error.
In a more realistic scenario where 0 < (ρs + ρw)/σ

2 ≪ 1
is small but non-negligible, the trade-off between variance
and bias brings about a non-monotonic scaling of the PGR
and OPR lower bounds with respect to n:

Corollary 3.6 (Non-monotonic scaling w.r.t. n (B.4)). For
conciseness, denote dw2s(N) = ds∧w +(dw − ds∧w)ds/N
and ϱ = (ρw + ρs)/σ

2. Under the same setting as Propo-
sition 3.5, with n = dw + q + 1 for some q ∈ N, the
lower bounds of PGR and OPR are maximized when

6
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q =
√
(dw + 1) dw2s(N)/ϱ, where

PGR ⩾1− d−1
w

(√
dw2s(N) +

√
ϱ (dw + 1)

)2
,

OPR ⩾ds

(√
dw2s(N) +

√
ϱ (dw + 1)

)−2

.

Such non-monotonic scaling for PGR with respect to n
coincides with some empirical observations in (Burns et al.,
2024) on NLP tasks. While the variance of fw2s in Theo-
rem 3.1 decreases monotonically as n grows, so do those of
the reference models fw, fs, and fc. With non-negligible FT
approximation errors, as n increases, the PGR and OPR
lower bounds decrease with the improvements in bias but
increase with the improvements in variance. Therefore, the
optimal n for the lower bounds of PGR and OPR is de-
termined by the trade-off between variance and bias.

Assuming ρs + ρw ≪ σ2 in Definition 2.2, we have ϱ≪ 1.
Again, consider two cases depending on ds∧w:

(a) If ds∧w > 0, we have dw2s(N) ≲ ds∧w when N ≳
(dw/ds∧w − 1)ds, implying large PGR and OPR
when ds∧w ≪ min {ds, dw}.

(b) If ds∧w = 0, we have dw2s(N) = dwds/N , implying
large PGR and OPR when N ≫ max {dw, ds}.

4. Experiments
We conduct experiments to validate the theoretical findings
on both synthetic and real tasks. In this section, we focus on
two illustrative settings: synthetic regression (Section 4.1)
and real-world image regression (Section 4.2). For brevity,
we defer more experiments on image and sentiment classifi-
cation tasks to Appendices E.2 and E.3, respectively.

4.1. Synthetic regression
We start by grounding the theoretical framework introduced
in Section 2 with synthetic regression tasks.

Setup. We concretize the downstream task D(f∗) as a re-
gression problem over Gaussian features. Let f∗ : Rd → R
be a linear function in a high-dimensional feature space
d = 20, 000 of form f∗(x) = x⊤Λ

1/2
∗ θ∗ where Λ∗ =

diag(λ∗
1, · · · , λ∗

d) is a diagonal matrix with a low rank
d∗ = 300 such that λ∗

i = i−1 for i ⩽ d∗ and λ∗
i = 0

otherwise; and θ∗ ∈ Rd is a random unit vector. Every
sample (x, y) ∼ D(f∗) is generated by x ∼ N (0d, Id)
and y = f∗(x) + z with z ∼ N (0, σ2). Given x, the as-
sociated strong and weak features in Assumption 2.1 are
generated by ϕs(x) = Σ

1/2
s x and ϕw(x) = Σ

1/2
w x, with in-

trinsic dimensions ds = 100 and dw = 200 such that Σs =∑ds
i=1 λ

∗
i eie

⊤
i and Σw =

∑dw+ds−ds∧w

i=ds−ds∧w+1 λ
∗
i eie

⊤
i . For all

synthetic experiments, we have ρs + ρw < 0.0004.

In the experiments, we vary ds∧w to control the student-

teacher correlation and σ2 to control the dominance of vari-
ance over bias (characterized by ρs, ρw). Each error bar
reflects the standard deviation over 40 runs.
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Figure 1. Scaling for excess risks on the synthetic regression task
in a variance-dominated regime with a low correlation dimension.
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Figure 2. Scaling for excess risks on the synthetic regression task
in a variance-dominated regime with a high correlation dimension.
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Figure 3. Scaling for excess risks on the synthetic regression task
when the variance is not dominant, σ2 ≈ ρs + ρw.

Scaling for generalization errors. Figures 1 to 3 show
scaling for ER(fw2s) (W2S), ER(fw) (Weak), ER(fs)
(S-Baseline), and ER(fc) (S-Ceiling) with respect to the
sample sizes n,N . The dashes show theoretical predictions
in Theorem 3.1, Proposition 3.3, and Corollary 3.4, consis-
tent with the empirical measurements shown in the solid
lines. In particular, we consider three cases:

• Figure 1: When variance dominates (σ2 = 0.01 ≫
ρw + ρs), with a low correlation dimension ds∧w = 10,
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fw2s outperforms both fw and fs for a moderate n and
a large enough N . However, larger sample sizes do not
necessarily lead to better W2S generalization in a relative
sense. For example, when n keeps increasing, the strong
baseline fs eventually outperforms fw2s.

• Figure 2: When variance dominates, with a high correla-
tion dimension ds∧w = 90, fw2s still generalizes better
than fw but fails to outperform the strong baseline fs.

• Figure 3: When the variance is low (not dominant, e.g.
σ2 = 0.0004 ≈ ρs + ρw), fw2s can fail to outperform fw.
This suggests that variance reduction is a key advantage
of W2S over supervised FT.
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Figure 4. Scaling for PGR and OPR under different ds∧w on
the synthetic regression task in a variance-dominated regime.

Scaling for PGR and OPR. Figure 4 show the scaling
for PGR and OPR with respect to sample sizes n,N in
the variance-dominated regime (with small non-negligible
FT approximation errors), at three different correlation di-
mensions ds∧w = 90, 50, 10. The solid and dashed lines
represent the empirical measurements and lower bounds in
(12), (13), respectively.

• Coinciding with the theoretical predictions in Corol-
lary 3.6 and the performance gaps between W2S and the
references in Figure 1, we observe that the relative W2S
performance in terms of PGR and OPR can degenerate
as n increases, while the larger N generally leads to better
W2S generalization in the relative sense.

• The lower correlation dimension ds∧w leads to higher
PGR and OPR, i.e. larger discrepancy between the
strong and weak features improves W2S generalization.

4.2. UTKFace regression
Beyond the synthetic regression, we investigate W2S on a
real-world image regression task – age estimation on the

UTKFace dataset (Zhang et al., 2017). Each error bar in this
section reflects standard deviation of 10 runs.

Dataset. UTKFace (Aligned & Cropped) (Zhang et al.,
2017) consists of 23, 708 face images with age labels rang-
ing from 0 to 116. We preprocess the images to 224× 224
pixels and split the dataset into training and testing sets of
sizes 20, 000 and 3, 708. Generalization errors are estimated
with the mean squared error (MSE) over the test set.

Linear probing over pretrained features. We fix the
strong student as CLIP ViT-B/32 (Radford et al., 2021)
(CLIP-B32) and vary the weak teacher among the
ResNet series (He et al., 2016) (ResNet18, ResNet34,
ResNet50, ResNet101, ResNet152). We treat the
backbones of these models (excluding the classification lay-
ers) as ϕs, ϕw and finetune them via linear probing. We
use ridge regression with a small fixed regularization hyper-
parameter αw, αw2s, αs, αc = 10−6, close to the machine
epsilon of single precision floating point numbers.

Intrinsic dimension. The intrinsic dimensions dw, ds
are measured based on the empirical covariance matrices
Σw,Σs of the weak and strong features over the entire
dataset (including training and testing). As mentioned in
Footnote 1, these covariances generally have fast-decaying
eigenvalues (but not exactly low-rank) in practice, effec-
tively leading to low intrinsic dimensions under ridge regres-
sion. We estimate such low intrinsic dimensions as the min-
imum rank for the best low-rank approximation of Σw,Σs

with a relative error in trace less than τ = 0.01.

Correlation dimension. The pretrained feature dimen-
sions (or the finetunable parameter counts) of the weak
and strong models can be different in practice (see Ap-
pendix E.1, Table 1). We introduce an estimation for ds∧w
in this case. Consider the (truncated) spectral decompo-
sitions JΣsKds = VsΛsV

⊤
s and JΣwKdw = VwΛwV

⊤
w

of two empirical covariances with different feature dimen-
sions Ds, Dw such that Vs ∈ RDs×ds and Vw ∈ RDw×dw

consists of the top ds, dw orthonormal eigenvectors, respec-
tively. We estimate the correlation dimension ds∧w under
different feature dimensions Ds ̸= Dw by matching the
dimensions through a random unitary matrix (Vershynin,
2018) Γ ∈ RDs×Dw : ds∧w = ∥V⊤

s ΓVw∥2F . This pro-
vides a good estimation for ds∧w because with low intrinsic
dimensions max{ds, dw} ≪ Ds, Dw in practice, mild di-
mension reduction through Γ well preserves the essential
information in Vs,Vw.

Discrepancies lead to better W2S. Figure 5 shows the
scaling of PGR and OPR with respect to the sample sizes
n,N for different weak teachers in the ResNet series with
respect to a fixed student, CLIP-B32. We first observe that
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Figure 5. Scaling for PGR and OPR of different weak teachers
with a fixed strong student on UTKFace. The legends show the
comparison between ds∧w and dw.

the relative W2S performance in terms of PGR and OPR
is closely related to the correlation dimension ds∧w and the
intrinsic dimensions ds, dw.

• When the strong student has a lower intrinsic dimen-
sion than the weak teacher (as widely observed in prac-
tice (Aghajanyan et al., 2021)), i.e. ds < dw, the relative
W2S performance tends to be better than when ds > dw.

• The relative W2S performance tends to be better when
ds∧w/dw is lower, i.e. the larger discrepancy between
weak and strong features leads to better W2S generaliza-
tion.

Meanwhile, both PGR and OPR scale inversely with the
labeled sample size n and exhibit diminishing return with
respect to the increasing pseudolabel size N , consistent with
the theoretical predictions in Corollary 3.6 and the synthetic
experiments in Figure 4.

2500 5000 7500 10000 12500 15000 17500
0.0

0.2

0.4

0.6

0.8
n = 1600

Injected label noise = 0.0
Injected label noise = 5.0
Injected label noise = 10.0
Injected label noise = 20.0

800 1000 1200 1400 1600 1800 2000
0.55

0.60

0.65

0.70

0.75

0.80

PG
R

N = 10000

2500 5000 7500 10000 12500 15000 17500
N

0

1

2

3

800 1000 1200 1400 1600 1800 2000
n

2

4

6

8

10

12

OP
R

Injected label noise = 0.0
Injected label noise = 5.0
Injected label noise = 10.0
Injected label noise = 20.0

dw = 522 (ResNet50), ds = 443 (CLIP-B32), ds w = 301.06

Figure 6. Scaling for PGR and OPR on UTKFace with injected
label noise: yi ← yi + ζi where ζi ∼ N (0, ς2) i.i.d..

Variance reduction is a key advantage of W2S. To in-
vestigate the impact of variance on W2S generalization, we
inject noise to the training label by yi ← yi + ζi where
ζi ∼ N (0, ς2) i.i.d., and ς controls the injected labels noise

level. In Figure 6, we show the scaling for PGR and OPR
with respect to the sample sizes n,N under different noise
levels ς . We observe that the relative W2S performance
in terms of PGR and OPR improves as the noise level ς
increases. This provides empirical evidence that variance
reduction is a key advantage of W2S over supervised FT,
highlighting the importance of understanding the mecha-
nisms of W2S in the variance-dominated regime.

5. Limitations and future directions
In this work, we introduce a theoretical framework for un-
derstanding the mechanism of weak-to-strong (W2S) gener-
alization in the variance-dominated regime where both the
student and teacher have sufficient capacities for the down-
stream task. Leveraging the low intrinsic dimensionality
of finetuning (FT), we characterize model capacities from
three perspectives: FT approximation errors for “accuracy”,
intrinsic dimensions for “complexity”, and student-teacher
correlation for “alignment”. Our analysis shows that W2S
generalization is driven by variance reduction in the discrep-
ancy between the weak teacher and strong student features.
This generalization analysis is followed by a case study on
the relative W2S performance in terms of performance gap
recovery (PGR) and outperforming ratio (OPR). We show
that while larger sample sizes imply better W2S generaliza-
tion in an absolute sense, the relative W2S performance can
degenerate as the sample size increases. Our results provide
theoretical insights into the choice of weak teachers and
sample sizes in W2S pipelines.

An interesting implication of our analysis is that the mech-
anism of W2S may differ as the balance between variance
and bias shifts. In the variance-dominated regime studied in
this work, W2S can benefit from a lower intrinsic dimension
of the strong student due to the resulting variance reduction
in the subspace of discrepancy from the weak teacher. In
contrast, in the bias-dominated regime, the lower approxi-
mation error of the strong student is generally brought by
the larger “capacity” of the strong model corresponding to a
higher intrinsic dimension (Ildiz et al., 2024; Wu & Sahai,
2024). This calls for future studies on unified views and
transitions between the two regimes, which will provide a
more comprehensive understanding of W2S. Toward this
goal, a limitation of our analysis is the quantification of the
advantage of W2S in bias (see Footnote 5), which could be
a promising next step.
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A. Additional related works
Knowledge distillation. Knowledge distillation (KD) (Hinton, 2015; Gou et al., 2021) is closely connected to W2S
generalization regarding the teacher-student setup, while W2S reverts the capacities of teacher and student in KD. In KD, a
strong teacher model guides a weak student model to learn the teacher’s knowledge. In contrast, W2S generalization occurs
when a strong student model surpasses a weak teacher model under weak supervision. Phuong & Lampert (2019); Stanton
et al. (2021); Ojha et al. (2023); Nagarajan et al. (2023); Dong et al. (2024b); Ildiz et al. (2024) conducted rigorous statistical
analyses for the student’s generalization from knowledge distillation. From the analysis perspective, a key difference between
KD and W2S is that W2S is usually analyzed in the context of finetuning since the notions of “weak” and “strong” are built
upon pretraining. This finetuning perspective introduces distinct angles from KD for examining intrinsic dimension (Li
et al., 2018) and student-teacher correlation in W2S.

Self-distillation and self-training. In contrast to W2S, which considers distinct student and teacher models, self-
distillation (Zhang et al., 2019; 2021) and related paradigms such as Born-Again Networks (Furlanello et al., 2018) use the
same or progressively refined architectures to iteratively distill knowledge from a “previous version” of the model. There
have been extensive theoretical analyses toward understanding the mechanism behind self-distillation (Mobahi et al., 2020;
Das & Sanghavi, 2023; Borup & Andersen, 2023; Pareek et al., 2024).

Self-training (Scudder, 1965; Lee et al., 2013) is a closely related method to self-distillation that takes a single model’s
confident predictions to create pseudo-labels for unlabeled data and refines that model iteratively. Wei et al. (2020); Oymak
& Gulcu (2021); Frei et al. (2022) provide theoretical insights into the generalization of self-training. In particular, Wei
et al. (2020) introduced a theoretical framework based on neighborhood expansion, which was later on extended to various
settings of weakly supervised learning, including domain adaptation (Cai et al., 2021), contrastive learning (Shen et al.,
2022; Huang et al., 2021), consistency regularization (Yang et al., 2023; Dong et al., 2023), and recently weak-to-strong
generalization (Lang et al., 2024; Shin et al., 2024).

B. Proofs in Section 3
Lemma B.1. Given the FT approximation errors ρs and ρw in Definition 2.2, we have

ρs(n) ⩽ nρs and ρw(n) ⩽ nρw ∀ n ∈ N.
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Proof of Lemma B.1. Let θ∗ = argminθ∈Rd Ex∼D[(ϕw(x)
⊤θ − f∗(x))

2] such that

Ex∼D[(ϕw(x)
⊤θ∗ − f∗(x))

2] = ρw.

Then, by observing that conditioned on X,

ϕw(X)†f∗(X) = argmin
θ∈Rd

∥ϕw(X)θ − f∗(X)∥22,

we have

ρw(n) = EX∼Dn

[
∥ϕw(X)ϕw(X)†f∗(X)− f∗(X)∥22

]
⩽ EX∼Dn

[
∥ϕw(X)θ∗ − f∗(X)∥22

]
= n EX∼Dn

[
1

n
∥ϕw(X)θ∗ − f∗(X)∥22

]
= n Ex∼D

[
(ϕw(x)

⊤θ∗ − f∗(x))
2
]

= n ρw.

The proof for ρs(n) follows analogously.

B.1. Proof of Theorem 3.1
Theorem B.2 (Formal restatement of Theorem 3.1). Consider fw2s(x) = ϕs(x)

⊤θw2s finetuned as in (2), (3) with both
αw, αw2s → 0. Under Assumptions 2.1 and 2.6, when n ⩾ Ω(dw), the excess risk ER(fw2s) = Var(fw2s) +Bias(fw2s)
satisfies

Bias(fw2s) ⩽
ρw(n)

n
+

ρs(N)

N
⩽ ρw + ρs,

Var(fw2s) ≲
σ2

n

(
ds∧w +

ds
N

(dw − ds∧w)

)
.

In particular, when ρw(n)/n > 0 and ds < dw, the inequality for Bias(fw2s) is strict.

Moreover, when ϕw(x) ∼ N (0d,Σw), for any n > dw + 1, we have

Var(fw2s) =
σ2

n− dw − 1

(
ds∧w +

ds
N

(dw − ds∧w)

)
.

Proof of Theorem 3.1 and Theorem B.2. We first observe that the solution of (2) as αw → 0 is given by

θw = Φ̃†
wỹ = Φ̃†

w(f̃∗ + z̃),

where z̃ ∼ N (0n, σ2In). Meanwhile, the solution of (3) as αw2s → 0 is given by

θw2s = Φ†
sΦwθw = Φ†

sΦwΦ̃
†
w(f̃∗ + z̃).

Then, the excess risk of fw2s can be decomposed into variance and bias as follows:

ER(fw2s) = Ex∼D
[
Efw2s

[
(fw2s(x)− f∗(x))

2
]]

= ESx

[
ES̃

[
1

N
∥Φsθw2s − f∗∥22

]]
= ESx,S̃

[
1

N

∥∥∥(ΦsΦ
†
sΦwΦ̃

†
w f̃∗ − f∗) +ΦsΦ

†
sΦwΦ̃

†
wz̃
∥∥∥2
2

]
=

1

N
ESx,S̃

[∥∥∥ΦsΦ
†
sΦwΦ̃

†
wz̃
∥∥∥2
2

]
︸ ︷︷ ︸

Var(fw2s)

+
1

N
ESx,S̃

[∥∥∥ΦsΦ
†
sΦwΦ̃

†
w f̃∗ − f∗

∥∥∥2
2

]
︸ ︷︷ ︸

Bias(fw2s)

.
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Bias. For the bias term, by observing that Ps = ΦsΦ
†
s is an N ×N orthogonal projection, we can decompose the bias

term as

Bias(fw2s) = ESx,S̃

[
1

N

∥∥∥Ps

(
ΦwΦ̃

†
w f̃∗ − f∗

)∥∥∥2
2

]
+

1

N
ESx

[
∥(IN −Ps) f∗∥22

]
,

where ESx

[
∥(IN −Ps) f∗∥22

]
= ρs(N) by Definition 2.2.

For the first term, we observe that

ESx,S̃

[
1

N

∥∥∥Ps

(
ΦwΦ̃

†
w f̃∗ − f∗

)∥∥∥2
2

]
⩽ ESx,S̃

[
1

N

∥∥∥ΦwΦ̃
†
w f̃∗ − f∗

∥∥∥2
2

]
= EΦ̃†

w f̃∗

[
E(Φw,f∗)

[
1

N

∥∥∥ΦwΦ̃
†
w f̃∗ − f∗

∥∥∥2
2

∣∣∣∣ Φ̃†
w f̃∗

]]
= EΦ̃†

w f̃∗

[
E(Φ̃w ,̃f∗)

[
1

n

∥∥∥Φ̃wΦ̃
†
w f̃∗ − f̃∗

∥∥∥2
2

∣∣∣∣ Φ̃†
w f̃∗

]]
⩽ ES̃

[
1

n

∥∥∥Φ̃wΦ̃
†
w f̃∗ − f̃∗

∥∥∥2
2

]
=

ρw(n)

n
.

Notice that when ρw(n)/n > 0, this inequality is strict if ds < dw, where ΦwΦ̃
†
w f̃∗ − f̃∗ /∈ Range(Φs) almost surely.

Overall, we have

Bias(fw2s) ⩽
ρw(n)

n
+

ρs(N)

N
⩽ ρw + ρs,

where the second inequality follows from Lemma B.1.

Variance. For the variance term, we observe that

Var(fw2s) =
1

N
ESx,S̃

[∥∥∥PsΦwΦ̃
†
wz̃
∥∥∥2
2

]
=

1

N
ESx,S̃

[
tr
(
Φ⊤
wPsΦwΦ̃

†
wz̃z̃

⊤(Φ̃†
w)

⊤
)]

=
σ2

N
ESx,S̃

[
tr
(
Φ⊤
wPsΦw(Φ̃

⊤
wΦ̃w)

†
)]

,

which implies

Var(fw2s) =
σ2

N
tr

(
ESx

[
Σ−1/2
w Φ⊤

wPsΦwΣ
−1/2
w

]
ES̃

[(
Σ−1/2
w Φ̃⊤

wΦ̃wΣ
−1/2
w

)†])
. (8)

Recall the spectral decomposition Σw = VwΛwV
⊤
w . Since Ex∼D[ϕw(x)ϕw(x)

⊤] = Σw, for each x ∼ D, we can write
ϕw(x) = Σ

1/2
w γ, where γ ∈ Rd is an independent random vector that is zero-mean and isotropic (i.e. E[γ] = 0d and

E[γγ⊤] = Id). The same holds for Σs = VsΛsV
⊤
s and ϕs(x) = Σ

1/2
s γ.

Then, for S and S̃ , there exist independent random matrices Γ = [γ1, . . . ,γN ]⊤ ∈ RN×d and Γ̃ = [γ̃1, . . . , γ̃n]
⊤ ∈ Rn×d

consisting of i.i.d. zero-mean isotropic rows such that

ΦwΣ
−1/2
w = ΓΣ1/2

w Σ−1/2
w = ΓVwV

⊤
w ,

Φ̃wΣ
−1/2
w = Γ̃Σ1/2

w Σ−1/2
w = Γ̃VwV

⊤
w ,

ΦsΣ
−1/2
s = ΓΣ1/2

s Σ−1/2
s = ΓVsV

⊤
s ,

Φ̃sΣ
−1/2
s = Γ̃Σ1/2

s Σ−1/2
s = Γ̃VsV

⊤
s .

(9)
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Let Γw = ΓVw ∈ RN×dw and Γ̃w = Γ̃Vw ∈ Rn×dw . We observe that

ES̃

[(
Σ−1/2
w Φ̃⊤

wΦ̃wΣ
−1/2
w

)†]
= ES̃

[(
VwΓ̃

⊤
wΓ̃wV

⊤
w

)†]
= VwES̃

[(
Γ̃⊤
wΓ̃w

)†]
V⊤
w .

Now, we consider the following two cases for the feature distribution of ϕw(x), corresponding to the distribution of Γw and
Γ̃w:

(a) Gaussian features: In Theorem 3.1, assuming ϕw(x) ∼ N (0d,Σw) such that Γ̃w consists of i.i.d. Gaussian rows, we
have γ̃i ∼ N (0dw , Idw). Notice that under the assumption n > dw + 1, rank(Γ̃w) = dw almost surely, and therefore
Γ̃⊤
wΓ̃w is invertible.

Meanwhile, with γ̃i ∼ N (0dw , Idw) for all i ∈ [n], (Γ̃⊤
wΓ̃w) ∼ W(Idw , n) follows the Wishart distribution (Wishart,

1928, Definition 3.4.1) with n degrees of freedom and scale matrix Idw . Therefore, (Γ̃⊤
wΓ̃w)

−1 ∼ W−1(Idw , n)
follows the inverse Wishart distribution (Mardia et al., 2024, §3.8), whose mean takes the form (Mardia et al., 2024,
(3.8.3))

ES̃

[
(Γ̃⊤

wΓ̃w)
†
]
=

1

n− dw − 1
Idw .

Then, we have

ES̃

[(
Σ−1/2
w Φ̃⊤

wΦ̃wΣ
−1/2
w

)†]
=

1

n− dw − 1
VwV

⊤
w .

Therefore, (8) implies

Var(fw2s) =
σ2

N

1

n− dw − 1
tr
(
V⊤
wESx

[
Σ−1/2
w Φ⊤

wPsΦwΣ
−1/2
w

]
Vw

)
=

σ2

N

1

n− dw − 1
tr
(
ESx

[
V⊤
wVwΓ

⊤
wPsΓwV

⊤
wVw

])
=

σ2

N

1

n− dw − 1
tr
(
ESx

[
Γ⊤
wPsΓw

])
.

(10)

Recall that Ps = ΦsΦ
†
s. Let Γs = ΓVs ∈ RN×ds , and we can write

Ps = (ΦsΣ
−1/2
s )(ΦsΣ

−1/2
s )† = (ΓsV

⊤
s )(ΓsV

⊤
s )

† = ΓsΓ
†
s.

Therefore, with Γw = ΓVw and Γs = ΓVs, we can decompose

tr
(
ESx

[
Γ⊤
wPsΓw

])
= ESx

[
tr
(
Γ⊤
wΓsΓ

†
sΓw

)]
= ESx

[
tr
(
V⊤
wVsV

⊤
s VwΓ

⊤
wΓsΓ

†
sΓw

)]
+ ESx

[
tr
(
V⊤
w(Id −VsV

⊤
s )VwΓ

⊤
wΓsΓ

†
sΓw

)]
.

For the first term, since ΓwV
⊤
wVs = ΓVwV

⊤
wVs and Γs = ΓVs, the range of ΓwV⊤

wVs is a subspace of that of Γs
and therefore,

ESx

[
tr
(
V⊤
wVsV

⊤
s VwΓ

⊤
wΓsΓ

†
sΓw

)]
= ESx

[
tr
(
V⊤
s VwΓ

⊤
wΓsΓ

†
sΓwV

⊤
wVs

)]
= ESx

[
tr
(
V⊤
s VwΓ

⊤
wΓwV

⊤
wVs

)]
= tr

(
V⊤
s VwESx

[
Γ⊤
wΓw

]
V⊤
wVs

)
.

Since ESx

[
Γ⊤
wΓw

]
= NIdw , we have

ESx

[
tr
(
V⊤
wVsV

⊤
s VwΓ

⊤
wΓsΓ

†
sΓw

)]
= N tr

(
V⊤
s VwV

⊤
wVs

)
= N

∥∥V⊤
s Vw

∥∥2
F

= Nds∧w.
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For the second term, we first observe that the row space of ΓwV⊤
w(Id −VsV

⊤
s ) is orthogonal to that of Γs = ΓVs,

and therefore, ΓwV⊤
w(Id −VsV

⊤
s ) and Γs are independent, which implies

ESx

[
tr
(
V⊤
w(Id −VsV

⊤
s )VwΓ

⊤
wΓsΓ

†
sΓw

)]
= tr

(
E
[
ΓwV

⊤
w(Id −VsV

⊤
s )VwΓ

⊤
w

]
E
[
ΓsΓ

†
s

])
.

Since Γ consists of independent isotropic rows, so do Γs = ΓVs ∈ RN×ds and Γw = ΓVw ∈ RN×dw , which implies

E
[
ΓsΓ

†
s

]
=

ds
N

IN and E
[
Γ⊤
wΓw

]
= N Idw .

Then, we have

ESx

[
tr
(
V⊤
w(Id −VsV

⊤
s )VwΓ

⊤
wΓsΓ

†
sΓw

)]
= tr

(
E
[
ΓwV

⊤
w(Id −VsV

⊤
s )VwΓ

⊤
w

]
E
[
ΓsΓ

†
s

])
=

ds
N

tr
(
E
[
ΓwV

⊤
w(Id −VsV

⊤
s )VwΓ

⊤
w

])
=

ds
N

tr
(
V⊤
w(Id −VsV

⊤
s )VwE

[
Γ⊤
wΓw

])
=

ds
N

N tr
(
V⊤
w(Id −VsV

⊤
s )Vw

)
= ds(dw − ds∧w).

Combining the two terms, we have

tr
(
ESx

[
Γ⊤
wPsΓw

])
= Nds∧w + ds(dw − ds∧w).

Then, by (10), the variance is exactly characterized by

Var(fw2s) =
σ2

N

Nds∧w + ds(dw − ds∧w)

n− dw − 1

=
σ2

n− dw − 1

(
ds∧w +

ds
N

(dw − ds∧w)

)
.

(b) Sub-gaussian features: Relaxing the Gaussian feature assumption, when Γ̃w consists of i.i.d. sub-gaussian random
vectors that are zero-mean and isotropic (i.e. E[γ̃i] = 0dw and E[γ̃iγ̃⊤

i ] = Idw ), with n ⩾ Ω(dw), Lemma B.3 implies
that

ES̃

[
(Γ̃⊤

wΓ̃w)
†
]
≼ O

(
1

n

)
Idw ,

and therefore,

ES̃

[(
Σ−1/2
w Φ̃⊤

wΦ̃wΣ
−1/2
w

)†]
≼ O

(
1

n

)
VwV

⊤
w .

Then, via an analogous argument as (10), (8) implies that

Var(fw2s) ⩽
σ2

N
O

(
1

n

)
tr
(
ESx

[
Γ⊤
wPsΓw

])
. (11)

We observe that in the analysis of the Gaussian feature case, the characterization

tr
(
ESx

[
Γ⊤
wPsΓw

])
= (N − ds)ds∧w + dsdw

does not involve the Gaussianity of Γ and therefore holds for general subgaussian features. This leads to an upper
bound on the variance:

Var(fw2s) ⩽
σ2

N
O

(
1

n

)
(Nds∧w + ds(dw − ds∧w))

≲
σ2

n

(
ds∧w +

ds
N

(dw − ds∧w)

)
.
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Lemma B.3 (Adapting (Vershynin, 2010) Theorem 5.39). Let Γ̃w = [γ̃1, . . . , γ̃n]
⊤ be an n × dw matrix whose rows

γ̃1, . . . , γ̃n consist of i.i.d. sub-gaussian random vectors that are zero-mean and isotropic (i.e. E[γ̃i] = 0dw and E[γ̃iγ̃⊤
i ] =

Idw ). When n ⩾ Ω(dw), we have

E
[∥∥∥∥(Γ̃⊤

wΓ̃w

)†∥∥∥∥
2

]
⩽ O

(
1

n

)
,

where Ω(·) and O(·) suppresses constants that depend only on the sub-gaussian norm ∥γ̃i∥ψ2
=

supv∈Sdw−1 supp⩾1(E[|γ̃⊤
i v|p])1/p/

√
p, independent of n, dw.

Proof of Lemma B.3. Let σmin(Γ̃
⊤
wΓ̃w) be the smallest singular value of Γ̃⊤

wΓ̃w. Leveraging (Vershynin, 2010) Theorem
5.39, we notice that for n ⩾ Ω(dw), there exist constants c1, c2 > 0 that depend only on the sub-gaussian norm ∥γ̃i∥ψ2

such that

Pr

[
σmin(Γ̃

⊤
wΓ̃w) <

(√
n− c1

√
dw − t

)2]
⩽ exp

(
−c2t2

)
.

Therefore, we have

Pr

[
1

σmin(Γ̃⊤
wΓ̃w)

> t

]
⩽ exp

−c2(√n− c1
√

dw −
√

1

t

)2
 .

Notice that for any non-negative random variable Z with a cumulative density function FZ(z),

E [Z] =

∫ ∞

0

zdFZ(z) = −
∫ ∞

0

zd (1− FZ(z))

= [z (1− FZ(z))]
∞
0 +

∫ ∞

0

(1− FZ(z)) dz

=

∫ ∞

0

Pr [Z > z] dz.

Therefore, we have

E

[
1

σmin(Γ̃⊤
wΓ̃w)

]
⩽
∫ ∞

0

exp

−c2(√n− c1
√
dw −

√
1

t

)2
 dt.

Let t0 = 1/
(√

n− c1
√
dw
)2

such that
√
n− c1

√
dw −

√
1
t = 0 and

∫ t0

0

exp

−c2(√n− c1
√
dw −

√
1

t

)2
 dt ⩽ t0
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Then, we have

E

[
1

σmin(Γ̃⊤
wΓ̃w)

]
⩽
∫ ∞

0

exp

−c2(√n− c1
√
dw −

√
1

t

)2
 dt

⩽ t0 +

∫ ∞

t0

exp

−c2(√n− c1
√
dw −

√
1

t

)2
 dt

= t0 + 2

∫ √
n−c1

√
dw

0

exp
(
−c2u2

) (√
n− c1

√
dw − u

)−3

du

= t0 +
2(√

n− c1
√
dw
)2 ∫ 1

0

exp

(
−c2

(√
n− c1

√
dw

)2
u2

)
(1− u)

−3
du

=
1(√

n− c1
√
dw
)2 +

2(√
n− c1

√
dw
)2 (∫ 1

0

exp
(
−Ω

(
u2
))

(1− u)
−3

du

)

= O

(
1(√

n− c1
√
dw
)2
)
.

When n ⩾ Ω(dw), we have
√
n− c1

√
dw ⩾ Ω(

√
n), and therefore ,

E
[∥∥∥∥(Γ̃⊤

wΓ̃w

)†∥∥∥∥
2

]
⩽ E

[
1

σmin(Γ̃⊤
wΓ̃w)

]
⩽ O

(
1

n

)
.

B.2. Proof of Proposition 3.3 and Corollary 3.4
Proof of Proposition 3.3 and Corollary 3.4. The excess risk of the finetuned weak teacher fw(x) = ϕw(x)

⊤θw can be
expressed as

ER(fw) = Ex∼D
[
Efw

[
(fw(x)− f∗(x))

2
]]

= ES̃

[
1

n

∥∥∥Φ̃wθw − f̃∗

∥∥∥2
2

]
,

where f̃∗ = [f∗(x̃1), . . . , f∗(x̃n)]
⊤ ∈ Rn; and we recall that Φ̃w = [ϕw(x̃1), . . . , ϕw(x̃n)]

⊤. Notice that the randomness of
θw comes from the SFT samples S̃ ∼ D(f∗)n.

Observe that the solution of (2) as αw → 0 is given by θw = Φ̃†
wỹ, where ỹ = f̃∗ + z̃ is the noisy label vector with

z̃ ∼ N (0n, σ2In). Therefore, with the randomness over S̃ ∼ D(f∗)n, we have

ER(fw) = E
[
1

n

∥∥∥Φ̃wΦ̃
†
wỹ − f̃∗

∥∥∥2
2

]
= E

[
1

n

∥∥∥Φ̃wΦ̃
†
wz̃+

(
Φ̃wΦ̃

†
w f̃∗ − f̃∗

)∥∥∥2
2

]
= E

[
1

n

∥∥∥Φ̃wΦ̃
†
wz̃
∥∥∥2
2

]
︸ ︷︷ ︸

Var(fw)

+E
[
1

n

∥∥∥Φ̃wΦ̃
†
w f̃∗ − f̃∗

∥∥∥2
2

]
︸ ︷︷ ︸

Bias(fw)

.

For bias, by the definition of finetuning capacity (see Definition 2.2), we have

Bias(fw) =
1

n
E
[∥∥∥Φ̃wΦ̃

†
w f̃∗ − f̃∗

∥∥∥2
2

]
=

ρw(n)

n
.
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We observe that Bias(fw) ⩽ ρw by Lemma B.1. Notice that Lemma B.1 also implies Bias(fs) = ρs(n)/n ⩽ ρs.

For variance, we observe that

Var(fw) =
1

n
E
[∥∥∥Φ̃wΦ̃

†
wz̃
∥∥∥2
2

]
=

1

n
E
[
tr
(
Φ̃wΦ̃

†
wz̃z̃

⊤
)]

=
σ2

n
E
[
tr
(
Φ̃wΦ̃

†
w

)]
.

By Assumption 2.6, since rank(Φ̃w) = dw almost surely, we have

Var(fw) =
σ2

n
E
[
tr
(
Φ̃wΦ̃

†
w

)]
=

σ2dw
n

.

B.3. Proof of Proposition 3.5
Proof of Proposition 3.5. Noticing that with rank(Φ̃w) = dw and rank(Φ̃s) = rank(Φs) = ds almost surely, the excess
risks of fw, fs, fc are characterized exactly in Proposition 3.3 and Corollary 3.4, and ER(fw2s) is upper bounded by
Theorem 3.1. Therefore, by directly plugging in the excess risks to the definitions of PGR and OPR, we have

PGR =
ER(fw)−ER(fw2s)

ER(fw)−ER(fc)

⩾

(
σ2 dw

n
+

ρw(n)

n
− σ2

n− dw − 1

(
ds∧w +

ds
N

(dw − ds∧w)

)
−
(
ρw(n)

n
+

ρs(N)

N

))
(
σ2 dw

n
+

ρw(n)

n
− σ2 ds

N + n
− ρs(N + n)

N + n

)−1

⩾

(
σ2 dw

n
− σ2 ds∧w + (dw − ds∧w)ds/N

n− dw − 1
− ρs(N)

N

)/(
σ2 dw

n
+

ρw(n)

n

)
,

⩾

(
σ2 dw

n
− σ2 ds∧w + (dw − ds∧w)ds/N

n− dw − 1
− ρs

)/(
σ2 dw

n
+ ρw

)
,

(12)

and

OPR =
ER(fs)

ER(fw2s)

⩾

(
σ2 ds

n
+

ρs(n)

n

)/(
σ2 ds∧w + (dw − ds∧w)ds/N

n− dw − 1
+

(
ρw(n)

n
+

ρs(N)

N

))
⩾σ2 ds

n

/(
σ2 ds∧w + (dw − ds∧w)ds/N

n− dw − 1
+ ρw + ρs

)
.

(13)

When taking n = dw + q + 1 for some small constant q ∈ N, we observe that

PGR ⩾

(
σ2 dw

n
− σ2 ds∧w + (dw − ds∧w)ds/N

n− dw − 1
− ρs

)/(
σ2 dw

n
+ ρw

)
⩾

(
dw

dw + q + 1
− ds∧w

q
− ds

N

dw − ds∧w
q

− ρs
σ2

)/( dw
dw + q + 1

+
ρw
σ2

)
⩾

(
dw

dw + q + 1
− ds∧w

q
− ds

N

dw − ds∧w
q

− ρs
σ2
− ρw

σ2

)/( dw
dw + q + 1

+
ρw
σ2
− ρw

σ2

)
= 1− n

dw

(
ds∧w
q

+
ds
N

dw − ds∧w
q

+
ρw + ρs

σ2

)
= 1− n

q

ds∧w + (dw − ds∧w)ds/N

dw
− n

dw

ρw + ρs
σ2

,

21



Discrepancies are Virtue: Weak-to-Strong Generalization through Lens of Intrinsic Dimension

and

OPR ⩾ σ2 ds
n

/(
σ2 ds∧w + (dw − ds∧w)ds/N

n− dw − 1
+ ρw + ρs

)
=

ds
n

/(ds∧w + (dw − ds∧w)ds/N

q
+

ρw + ρs
σ2

)
=

(
n

q

ds∧w + (dw − ds∧w)ds/N

ds
+

n

ds

ρw + ρs
σ2

)−1

.

B.4. Proof of Corollary 3.6
Proof of Corollary 3.6. Recall the notations introduced for conciseness:

dw2s(N) = ds∧w + (dw − ds∧w)
ds
N

, ϱ =
ρw + ρs

σ2
.

Then, the lower bounds for PGR and OPR in Proposition 3.5 can be expressed in terms of dw2s(N) and ϱ as

PGR ⩾ 1− dw2s(N)

dw
− dw + 1

dw
ϱ− dw + 1

dw

dw2s(N)

q
− q

ϱ

dw
,

and

OPR ⩾

(
dw2s(N)

ds
+

dw + 1

ds
ϱ+

dw2s(N)

ds

dw + 1

q
+ q

ϱ

ds

)−1

.

Both lower bounds are maximized when the last two terms in the expressions that involve q are minimized, which is achieved
when q =

√
(dw + 1) dw2s(N)/ϱ. Substituting the optimal q back into the expressions yields the best lower bounds for

PGR and OPR:

PGR ⩾1− dw2s(N)

dw
− ϱ

dw + 1

dw
− 2

√
ϱ
dw + 1

dw

dw2s(N)

dw

=1−

√dw2s(N)

dw
+

√
ϱ
dw + 1

dw

2

,

and

OPR ⩾

dw2s(N)

ds
+ ϱ

dw + 1

ds
+ 2

√
ϱ
dw + 1

ds

dw2s(N)

ds

−1

=

√dw2s(N)

ds
+

√
ϱ
dw + 1

ds

−2

.

C. Ridge regression analysis
In this section, we investigate the more realistic scenario where the weak and strong feature covariances are not exactly
low-rank but admit a small number of dominating eigenvalues.

Concretely, we consider the same data distribution (x, y) ∼ D(f∗) with y = f∗(x) + z for some independent Gaussian
label noise z ∼ N (0, σ2) and an unknown ground truth function f∗ : X → R as in Section 2. Under the same sub-gaussian
feature assumption as in Assumption 2.1, we adapt Definitions 2.3 and 2.4 to the ridge regression setting as follows.
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Assumption C.1 (Data distribution). Let ϕs : X → Rd and ϕw : X → Rd be the strong and weak pretrained models that
take x ∼ D and output pretrained features ϕs(x), ϕw(x) ∈ Rd, respectively.

(i) Ground truth: Assume f∗ can be expressed as a linear function over an unknown ground truth feature ϕ∗ : X → Rd
such that f∗(·) = ϕ∗(·)⊤θ∗ for some fixed θ∗ ∈ Rd.

(ii) Sub-gaussian features (Assumption 2.1): Let ϕw(x), ϕs(x), ϕ∗(x) be zero-mean sub-gaussian random vectors with
E[ϕw(x)] = E[ϕs(x)] = E[ϕ∗(x)] = 0d, and

E[ϕw(x)ϕw(x)⊤] = Σw, E[ϕs(x)ϕs(x)⊤] = Σs, E[ϕ∗(x)ϕ∗(x)
⊤] = Σ∗.

For conciseness, we assume without loss of generality that these features are roughly normalized, i.e., ∥Σw∥2 ≍ 1,
∥Σs∥2 ≍ 1, and ∥Σ∗∥2 ≍ 1.

(iii) Low intrinsic dimension: Let Σs and Σw both be positive-definite with spectral decompositions Σs = VsΛsV
⊤
s

and Σw = VwΛwV
⊤
w , where Λs,Λw ∈ Rd×d are diagonal matrices with positive eigenvalues in decreasing order;

while Vs ∈ Rd×d and Vw ∈ Rd×d are orthogonal matrices consisting of the corresponding orthonormal eigenvectors.
The low intrinsic dimension of FT implies that Λs = diag(λs1, · · · , λsd) and Λw = diag(λw1 , · · · , λwd ) consist of a
few dominating eigenvalues, while the rest of the eigenvalues are negligible, i.e., there exist ds, dw ≪ d such that∑
i>ds

λsi ≪ tr(Σs) and
∑
i>dw

λwi ≪ tr(Σw). Here,

tr(Σs) ≲ ds and tr(Σw) ≲ dw

effectively measure the intrinsic dimensions of ϕs and ϕw.

Remark C.2 (Weak-strong similarity). In place of correlation dimension (Definition 2.4) in the ridgeless setting, for the ridge
regression analysis, we measure the similarity between the weak and strong models directly through tr(ΣsΣw). Notice that

tr(ΣsΣw) ⩽ min {tr(Σs) ∥Σw∥2 , tr(Σw) ∥Σs∥2} ≲ min {tr(Σs), tr(Σw)} .

In particular, when Σs and Σw admit low intrinsic dimensions, tr(ΣsΣw) can be much smaller than min {tr(Σs), tr(Σw)}
if their eigenvectors corresponding to the dominating eigenvalues are almost orthogonal.

Remark C.3 (FT approximation errors). It is worth noting that under the ground truth and positive-definite covariance
assumptions in Assumption C.1(i, iii), the FT approximation errors in Definition 2.2 satisfy

ρs = min
θ∈Rd

Ex∼D
[
(ϕs(x)

⊤θ − f∗(x))
2
]
= 0 (when θ = Σ−1

s Σ∗θ∗),

ρw = min
θ∈Rd

Ex∼D
[
(ϕw(x)

⊤θ − f∗(x))
2
]
= 0 (when θ = Σ−1

w Σ∗θ∗).
(14)

In place of Definition 2.2, with positive-definite covariances in Assumption C.1, we measure the alignment between the
ground truth feature ϕ∗ and the weak/strong feature ϕw, ϕs through

ϱs = ∥Σ−1/2
s Σ

1/2
∗ θ∗∥22, ϱw = ∥Σ−1/2

w Σ
1/2
∗ θ∗∥22.

Intuitively, for Σs and Σw with a few dominating eigenvalues (Assumption C.1(iii)), ϱs and ϱw are small if the eigensubspace
associated with non-negligible eigenvalues of Σ∗ is fully covered by the eigensubspaces associated with the dominating
eigenvalues of Σs and Σw, respectively.

The W2S FT under ridge regression consists of two steps.

(a) First, the weak teacher fw(x) = ϕw(x)
⊤θw is supervisedly finetuned over S̃:

θw = argmin
θ∈Rd

1

n

∥∥∥Φ̃wθ − ỹ
∥∥∥2
2
+ αw ∥θ∥22 , αw > 0. (15)

(b) Then, the W2S model fw2s(x) = ϕs(x)
⊤θw2s is finetuned over the strong feature ϕs through the unlabeled samples

Sx and their pseudo-labels generated by the weak teacher model:

θw2s = argmin
θ∈Rd

1

N
∥Φsθ −Φwθw∥22 + αw2s ∥θ∥22 , αw2s > 0. (16)
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Theorem C.4 (W2S under ridge regression). Let ϱw =
∥∥∥Σ−1/2

w Σ
1/2
∗ θ∗

∥∥∥2
2

and ϱs =
∥∥∥Σ−1/2

s Σ
1/2
∗ θ∗

∥∥∥2
2
. Under

Assumption C.1, the generalization error of W2S FT via ridge regression with fixed αw, αw2s > 0, ER(fw2s) =
Var(fw2s) +Bias(fw2s), is upper bounded by

Var(fw2s) ⩽
σ2 tr (ΣsΣw)

4(αwn)(αw2sN)
, Bias(fw2s) ⩽ αwϱw + αw2sϱs.

In particular, when taking

αw =

(
σ2 tr (ΣsΣw)

4nN

ϱs
ϱ2w

)1/3

, αw2s =

(
σ2 tr (ΣsΣw)

4nN

ϱw
ϱ2s

)1/3

,

the excess risk of W2S FT is upper bounded by

ER(fw2s) ⩽ 3

(
σ2 tr (ΣsΣw)

4nN
ϱsϱw

)1/3

.

Theorem C.4 conveys a similar high-level intuition as in Theorem 3.1 regarding the effect of the weak-strong similarity on
the generalization error of W2S FT. In particular, the larger discrepancy between ϕs and ϕw (corresponding to the smaller
tr (ΣsΣw)) leads to lower variance and therefore better W2S generalization.

Meanwhile, a key difference in W2S between the ridge and ridgeless settings (Theorem C.4 versus Theorem 3.1) is that
the FT approximation errors in Theorem C.4, reflected by ϱs = ∥Σ−1/2

s Σ
1/2
∗ θ∗∥22 and ϱw = ∥Σ−1/2

w Σ
1/2
∗ θ∗∥22, can be

compensated by larger sample sizes n,N and directly affect the sample complexity:

nN ≍ σ2 tr (ΣsΣw) ϱsϱw.

Such difference is a result of optimizing the regularization hyperparameters αw, αw2s in ridge regression that control the
variance-bias tradeoff.

Proof of Theorem C.4. We first formalize some useful facts on the features and labels as in (9). In particular, the sub-gaussian
assumption in Assumption C.1(ii) implies that for each x ∼ D, the corresponding strong/weak feature ϕs(x), ϕw(x) ∈ Rd,
and the ground truth f∗(x) ∈ R are simultaneously characterized by an independent subgaussian random vector γ ∈ Rd
with E[γ] = 0d and E[γγ⊤] = Id, i.e.,

ϕs(x) = Σ1/2
s γ, ϕw(x) = Σ1/2

w γ, f∗(x) = ϕ∗(x)
⊤θ∗ = γ⊤Σ

1/2
∗ θ∗.

Then, for S and S̃ , there exist independent random matrices Γ = [γ1, . . . ,γN ]⊤ ∈ RN×d and Γ̃ = [γ̃1, . . . , γ̃n]
⊤ ∈ Rn×d

consisting of i.i.d. zero-mean isotropic rows such that

Φs = ΓΣ1/2
s = ΓsΛ

1/2
s V⊤

s ,

Φw = ΓΣ1/2
w = ΓwΛ

1/2
w V⊤

w ,

y = f∗ + z, f∗ = ΓΣ
1/2
∗ θ∗, z ∼ N (0N , σ2IN ),

Φ̃w = Γ̃Σ1/2
w = Γ̃wΛ

1/2
w V⊤

w ,

ỹ = f̃∗ + z̃, f̃∗ = Γ̃Σ
1/2
∗ θ∗, z̃ ∼ N (0n, σ2In),

(17)

where Γs = ΓVs, Γw = ΓVw, and Γ̃w = Γ̃Vw.

Variance-bias decomposition. Recall that the excess risk of W2S generalization ER(fw2s) can be decomposed into the
variance and bias terms:

Var(fw2s) = Ex∼D

[
ESx,S̃

[
(fw2s(x)− ESx,S̃ [fw2s(x)])

2
]]

,

Bias(f) = Ex∼D

[
(ESx,S̃ [fw2s(x)]− f∗(x))

2
]
.
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With αw > 0, (15) yields a weak teacher model fw(x) = ϕw(x)
⊤θw with

θw =
(
Φ̃⊤
wΦ̃w + αwnId

)−1

Φ̃⊤
w

(
f̃8 + z̃

)
.

Then, the W2S model fw2s(x) = ϕs(x)
⊤θw2s is given by (16) with αw2s > 0:

θw2s =
(
Φ⊤
s Φs + αw2sNId

)−1
Φ⊤
s Φwθw

=
(
Φ⊤
s Φs + αw2sNId

)−1
Φ⊤
s Φw

(
Φ̃⊤
wΦ̃w + αwnId

)−1

Φ̃⊤
w

(
f̃∗ + z̃

)
,

which implies

ESx,S̃ [θw2s] =
(
Φ⊤
s Φs + αw2sNId

)−1
Φ⊤
s Φw

(
Φ̃⊤
wΦ̃w + αwnId

)−1

Φ̃⊤
w f̃∗.

Then, we can concretize the variance and bias terms as:

Var(fw2s) = Ex∼D

[
ESx,S̃

[
(fw2s(x)− ESx,S̃ [fw2s(x)])

2
]]

=ESx,S̃

[∥∥∥∥Σ1/2
s

(
Φ⊤
s Φs + αw2sNId

)−1
Φ⊤
s Φw

(
Φ̃⊤
wΦ̃w + αwnId

)−1

Φ̃⊤
w z̃

∥∥∥∥2
2

]
,

(18)

and

Bias(fw2s) = Ex∼D

[
(ESx,S̃ [fw2s(x)]− f∗(x))

2
]

=ESx,S̃

[
1

N

∥∥∥∥Φs

(
Φ⊤
s Φs + αw2sNId

)−1
Φ⊤
s Φw

(
Φ̃⊤
wΦ̃w + αwnId

)−1

Φ̃⊤
w f̃∗ − f∗

∥∥∥∥2
2

]
.

(19)

Now, we are ready to upper-bound the variance and bias terms separately.

Variance. Denote ζ = Λ
1/2
w V⊤

w

(
Φ̃⊤
wΦ̃w + αwnId

)−1

Φ̃⊤
w z̃ ∈ Rd, whose randomness comes from S̃ only, independent

of Sx. Then, the variance term (18) can be expressed as

Var(fw2s) = ESx,S̃

[∥∥∥Σ1/2
s

(
Φ⊤
s Φs + αw2sNId

)−1
Φ⊤
s Φwζ

∥∥∥2
2

]
=tr

(
ESs

(
Γ⊤
wΦs

(
Φ⊤
s Φs + αw2sNId

)−1
Σs

(
Φ⊤
s Φs + αw2sNId

)−1
Φ⊤
s Γw

)
ES̃
[
ζζ⊤])

=tr
(
ESs

(
Γ⊤
wΓs

(
Γ⊤
s Γs + αw2sNΛ−1

s

)−1 (
Γ⊤
s Γs + αw2sNΛ−1

s

)−1
Γ⊤
s Γw

)
ES̃
[
ζζ⊤])

=tr
(
ESs

(
V⊤
wΓ

⊤Γ
(
Γ⊤Γ+ αw2sNΣ−1

s

)−2
Γ⊤ΓVw

)
ES̃
[
ζζ⊤])

=tr
(
ESs

(
Γ⊤Γ

(
Γ⊤Γ+ αw2sNΣ−1

s

)−2
Γ⊤Γ

)
ES̃
[
Vwζζ

⊤V⊤
w

])
.

Notice that
(
Γ⊤Γ+ αw2sNΣ−1

s

)2 ⪰ αw2sN
(
Γ⊤ΓΣ−1

s +Σ−1
s Γ⊤Γ

)
. Since matrix inversion is convex, a Jensen-type

inequality implies that

Γ⊤Γ
(
Γ⊤Γ+ αw2sNΣ−1

s

)−2
Γ⊤Γ

⪯Γ⊤Γ
(
αw2sN

(
Γ⊤ΓΣ−1

s +Σ−1
s Γ⊤Γ

))†
Γ⊤Γ

=
1

2αw2sN
Γ⊤Γ

(
1

2

(
Γ⊤ΓΣ−1

s +Σ−1
s Γ⊤Γ

))†

Γ⊤Γ

⪯ 1

4αw2sN

(
Γ⊤ΓΣs +ΣsΓ

⊤Γ
)
.
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Therefore,

ESs

(
Γ⊤Γ

(
Γ⊤Γ+ αw2sNΣ−1

s

)−2
Γ⊤Γ

)
⪯ 1

4αw2sN
ESs

[
Γ⊤ΓΣs +ΣsΓ

⊤Γ
]
=

1

2αw2sN
Σs.

Meanwhile, we observe that

ES̃
[
Vwζζ

⊤V⊤
w

]
=ES̃

[
Σ1/2
w

(
Φ̃⊤
wΦ̃w + αwnId

)−1

Φ̃⊤
w z̃z̃

⊤Φ̃w

(
Φ̃⊤
wΦ̃w + αwnId

)−1

Σ1/2
w

]
=σ2ES̃

[
Σ1/2
w

(
Φ̃⊤
wΦ̃w + αwnId

)−1

Φ̃⊤
wΦ̃w

(
Φ̃⊤
wΦ̃w + αwnId

)−1

Σ1/2
w

]
,

where (
Φ̃⊤
wΦ̃w + αwnId

)−1

Φ̃⊤
wΦ̃w

(
Φ̃⊤
wΦ̃w + αwnId

)−1

⪯ 1

2αwn
Id.

Therefore, we have

ES̃
[
Vwζζ

⊤V⊤
w

]
⪯σ2ES̃

[
Σ1/2
w

(
1

2αwn
Id

)
Σ1/2
w

]
=

σ2

2αwn
Σw.

Overall, the variance of fw2s can be upper bounded as

Var(fw2s) = tr
(
ESs

(
Γ⊤Γ

(
Γ⊤Γ+ αw2sNΣ−1

s

)−2
Γ⊤Γ

)
ES̃
[
Vwζζ

⊤V⊤
w

])
⩽

σ2 tr (ΣsΣw)

4(αwn)(αw2sN)
.

(20)

Bias. Let ξ = Σ
1/2
w

(
Φ̃⊤
wΦ̃w + αwnId

)−1

Φ̃⊤
w f̃∗ ∈ Rd, whose randomness comes from S̃ only, independent of Sx.

Recall from (19), the bias term (19) can be decomposed as

Bias(fw2s) = ESx,S̃

[
1

N

∥∥∥∥Φs

(
Φ⊤
s Φs + αw2sNId

)−1
Φ⊤
s Φw

(
Φ̃⊤
wΦ̃w + αwnId

)−1

Φ̃⊤
w f̃∗ − f∗

∥∥∥∥2
2

]

= ESx,S̃

[
1

N

(∥∥∥Φs

(
Φ⊤
s Φs + αw2sNId

)−1
Φ⊤
s Γξ −ΦsΦ

†
sf∗

∥∥∥2
2
+
∥∥(IN −ΦsΦ

†
s

)
f∗
∥∥2
2

)]
,

where by Lemma B.1 and (14)

ESx

[
1

N

∥∥(IN −ΦsΦ
†
s

)
f∗
∥∥2
2

]
=

ρs(N)

N
⩽ ρs = 0.

Therefore, with ξ = Σ
1/2
w

(
Φ̃⊤
wΦ̃w + αwnId

)−1

Φ̃⊤
w f̃∗, we have

Bias(fw2s) = ESx,S̃

[
1

N

∥∥∥Φs

(
Φ⊤
s Φs + αw2sNId

)−1
Φ⊤
s Γξ −ΦsΦ

†
sf∗

∥∥∥2
2

]
.

Recall that f∗ = ΓΣ
1/2
∗ θ∗ and Φs = ΓΣ

1/2
s = ΓsΛ

1/2
s V⊤

s . Then, we can express the bias term as

Bias(fw2s) =ESx,S̃

[
1

N

∥∥∥Γ (Γ⊤Γ+ αw2sNΣ−1
s

)−1
Γ⊤Γξ − ΓΓ†f∗

∥∥∥2
2

]
=ESx,S̃

[
1

N

∥∥∥ΓΣ1/2
∗ θ∗ − Γ

(
Γ⊤Γ+ αw2sNΣ−1

s

)−1
Γ⊤Γξ

∥∥∥2
2

]
=ESx,S̃

[
1

N

∥∥∥Γ(Σ1/2
∗ θ∗ − ξ

)
+ Γ

(
Id −

(
Γ⊤Γ+ αw2sNΣ−1

s

)−1
Γ⊤Γ

)
ξ
∥∥∥2
2

]
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By the Woodbury matrix identity, we have

Id −
(
Γ⊤Γ+ αw2sNΣ−1

s

)−1
Γ⊤Γ =

(
Id +

1

αw2sN
ΣsΓ

⊤Γ

)−1

. (21)

Therefore, we have

Bias(fw2s) = ESx,S̃

[
1

N

∥∥∥Γ(Σ1/2
∗ θ∗ − ξ

)
︸ ︷︷ ︸

Term A

+Γ

(
Id +

1

αw2sN
ΣsΓ

⊤Γ

)−1

ξ︸ ︷︷ ︸
Term B

∥∥∥2
2

]
. (22)

For Term A, notice that ξ = Σ
1/2
w

(
Φ̃⊤
wΦ̃w + αwnId

)−1

Φ̃⊤
w f̃∗ implies

Σ
1/2
∗ θ∗ − ξ =Σ

1/2
∗ θ∗ −Σ1/2

w

(
Φ̃⊤
wΦ̃w + αwnId

)−1

Φ̃⊤
w f̃∗

=Σ
1/2
∗ θ∗ −

(
Γ̃⊤Γ̃+ αwnΣ

−1
w

)−1

Γ̃⊤Γ̃Σ
1/2
∗ θ∗

=

(
Id −

(
Γ̃⊤Γ̃+ αwnΣ

−1
w

)−1

Γ̃⊤Γ̃

)
Σ

1/2
∗ θ∗

=

(
Id +

1

αwn
ΣwΓ̃

⊤Γ̃

)−1

Σ
1/2
∗ θ∗,

where the last equality follows from Woodbury matrix identity as in (21). Therefore,

ESx,S̃

[
1

N

∥∥∥Γ(Σ1/2
∗ θ∗ − ξ

)∥∥∥2
2

]
=ES̃

[
1

n

∥∥∥Γ̃(Σ1/2
∗ θ∗ − ξ

)∥∥∥2
2

]

=ES̃

 1

n

∥∥∥∥∥Γ̃
(
Id +

1

αwn
ΣwΓ̃

⊤Γ̃

)−1

Σ
1/2
∗ θ∗

∥∥∥∥∥
2

2

 .

Since (
Id +

1

αwn
ΣwΓ̃

⊤Γ̃

)−1

Γ̃⊤Γ̃

(
Id +

1

αwn
ΣwΓ̃

⊤Γ̃

)−1

⪯ αwn

2
Σ−1
w ,

we have

ESx,S̃

[
1

N

∥∥∥Γ(Σ1/2
∗ θ∗ − ξ

)∥∥∥2
2

]
⩽
1

n
tr
(αwn

2
Σ−1
w Σ

1/2
∗ θ∗θ

⊤
∗ Σ

1/2
∗

)
=
αw
2

∥∥∥Σ−1/2
w Σ

1/2
∗ θ∗

∥∥∥2
2
.

(23)

For Term B, leveraging Woodbury matrix identity as in (21), we notice that

ESx,S̃

 1

N

∥∥∥∥∥Γ
(
Id +

1

αw2sN
ΣsΓ

⊤Γ

)−1

ξ

∥∥∥∥∥
2

2

 ⩽ ESx,S̃

[
1

N
tr

(
αw2sN

2
Σ−1
s ξξ⊤

)]

=
αw2s

2
ESx,S̃

[∥∥∥∥Σ−1/2
s Σ1/2

w

(
Φ̃⊤
wΦ̃w + αwnId

)−1

Φ̃⊤
w f̃∗

∥∥∥∥2
2

]

=
αw2s

2
ESx,S̃

[∥∥∥∥Σ−1/2
s

(
Γ̃⊤Γ̃+ αwnΣ

−1
w

)−1

Γ̃⊤Γ̃Σ
1/2
∗ θ∗

∥∥∥∥2
2

]
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Since
(
Γ̃⊤Γ̃+ αwnΣ

−1
w

)−1

Γ̃⊤Γ̃ ⪯ Id, we know that

ESx,S̃

 1

N

∥∥∥∥∥Γ
(
Id +

1

αw2sN
ΣsΓ

⊤Γ

)−1

ξ

∥∥∥∥∥
2

2

 ⩽
αw2s

2

∥∥∥Σ−1/2
s Σ

1/2
∗ θ∗

∥∥∥2
2
. (24)

Combining (22), (23), and (24), we can upper bound the bias term as

Bias(fw2s) = ESx,S̃

[
1

N

∥∥∥Γ(Σ1/2
∗ θ∗ − ξ

)
︸ ︷︷ ︸

Term A

+Γ

(
Id +

1

αw2sN
ΣsΓ

⊤Γ

)−1

ξ︸ ︷︷ ︸
Term B

∥∥∥2
2

]

⩽2ESx,S̃

[
1

N

∥∥∥Γ(Σ1/2
∗ θ∗ − ξ

)∥∥∥2
2

]
+ 2ESx,S̃

 1

N

∥∥∥∥∥Γ
(
Id +

1

αw2sN
ΣsΓ

⊤Γ

)−1

ξ

∥∥∥∥∥
2

2


⩽αw

∥∥∥Σ−1/2
w Σ

1/2
∗ θ∗

∥∥∥2
2
+ αw2s

∥∥∥Σ−1/2
s Σ

1/2
∗ θ∗

∥∥∥2
2
.

(25)

Variance-bias tradeoff. Overall, by (20) and (25), we have

Var(fw2s) ⩽
σ2 tr (ΣsΣw)

4(αwn)(αw2sN)
,

Bias(fw2s) ⩽ αw

∥∥∥Σ−1/2
w Σ

1/2
∗ θ∗

∥∥∥2
2
+ αw2s

∥∥∥Σ−1/2
s Σ

1/2
∗ θ∗

∥∥∥2
2
.

The upper bound the excess risk ER(fw2s) = Var(fw2s) +Bias(fw2s) is minimized by taking

αw =

σ2 tr (ΣsΣw)

4nN

∥∥∥Σ−1/2
s Σ

1/2
∗ θ∗

∥∥∥2
2∥∥∥Σ−1/2

w Σ
1/2
∗ θ∗

∥∥∥4
2


1/3

, αw2s =

σ2 tr (ΣsΣw)

4nN

∥∥∥Σ−1/2
w Σ

1/2
∗ θ∗

∥∥∥2
2∥∥∥Σ−1/2

s Σ
1/2
∗ θ∗

∥∥∥4
2


1/3

,

which leads to the optimal upper bound for the excess risk:

ER(fw2s) ⩽ 3

(
σ2 tr (ΣsΣw)

4nN

∥∥∥Σ−1/2
s Σ

1/2
∗ θ∗

∥∥∥2
2

∥∥∥Σ−1/2
w Σ

1/2
∗ θ∗

∥∥∥2
2

)1/3

.

D. Canonical angles
In this section, we review the concept of canonical angles between two subspaces that connect the formal definition of
the correlation dimension ds∧w =

∥∥V⊤
s Vw

∥∥2
F

in Definition 2.4 to the intuitive notion of the alignment between the

corresponding subspaces Vs and Vw in the introduction:
∑

cos(∠(Vs,Vw)) =
∥∥V⊤

s Vw

∥∥2
F

.

Definition D.1 (Canonical angles (Golub & Van Loan, 2013), adapting from (Dong et al., 2024a)). Let Vs,Vw ⊆ Rd be
two subspaces with dimensions dim (Vs) = ds and dim (Vw) = dw (assuming dw ⩾ ds without loss of generality). The
canonical angles ∠ (Vs,Vw) = diag (ν1, . . . , νds) are ds angles that jointly measure the alignment between Vs and Vw,
defined recursively as follows:

ui,vi ≜ argmax u∗
ivi

s.t. ui ∈
(
Vs \ span {uι}i−1

ι=1

)
∩ Sd−1,

vi ∈
(
Vw \ span {vι}i−1

ι=1

)
∩ Sd−1

cos(νi) = u∗
ivi ∀ i = 1, . . . , k,
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such that 0 ⩽ ν1 ⩽ . . . ⩽ νk ⩽ π/2.

Given two subspaces Vs,Vw ⊆ Rd, let Vs ∈ Rd×ds and Vw ∈ Rd×dw be the matrices whose columns form orthonormal
bases for Vs and Vw, respectively. Then, the canonical angles ∠(Vs,Vw) are determined by the singular values of
V⊤
s Vw (Björck & Golub, 1973, §3):

cos(∠i(Vs,Vw)) = σi(V
⊤
s Vw) ∀ i = 1, . . . , ds,

where σi(V
⊤
s Vw) denotes the i-th singular value of V⊤

s Vw.

In particular, since Vs,Vw consist of orthonormal columns, the singular values of V⊤
s Vw fall in [0, 1], and therefore,

ds∧w =
∑

cos(∠(Vs,Vw)) =
∥∥V⊤

s Vw

∥∥2
F
∈ [0,min {ds, dw}].

E. Additional experiments
E.1. Additional experiments and details on UTKFace regression
This section provides some additional details and results for the UTKFace regression experiments in Section 4.2.
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Figure 7. Scaling for MSE on UTKFace with CLIP-B32 as the strong student and ResNet18 as the weak teacher

We summarize the relevant dimensionality in Table 1. We observe the following:

• The intrinsic dimensions of the pretrained features are significantly smaller than the ambiance feature dimensions, which
is consistent with our theoretical analysis and the empirical observations in (Aghajanyan et al., 2021).

• The correlation dimensions ds∧w are considerably smaller than the corresponding intrinsic dimensions, indicating that the
subspaces spanned by the weak and strong features are not aligned in practice. As shown in Section 4.2, such discrepancies
in the weak and strong features facilitate W2S generalization.

For reference, we provide the scaling for MSE losses of three representative teacher-student pairs in Figures 7 to 9.

• It is worth highlighting that while the MSE loss of fw2s monotonically decreases with respect to both sample sizes n,N ,
the different rates of convergence compared to fw, fs, and fc lead to the distinct scaling behavior of the relative W2S
performance (PGR and OPR) with respect to n versus N in Figures 5 and 6.

• When the strong student has a lower intrinsic dimension than the weak teacher (cf. Figure 7 versus Figures 8 and 9),
ds < dw, the W2S model fw2s tends to achieve better generalization in terms of the test MSE. This is consistent with our
analysis in Section 3.1.

• When ds < dw, the W2S model fw2s tends to achieve (slightly) better generalization for (slightly) smaller correlation
dimension ds∧w (cf. Figure 8 versus Figure 9), again coinciding with our analysis in Section 3.1.
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Figure 8. Scaling for MSE on UTKFace with CLIP-B32 as the strong student and ResNet50 as the weak teacher
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Figure 9. Scaling for MSE on UTKFace with CLIP-B32 as the strong student and ResNet152 as the weak teacher

Table 1. Summary of the pretrained feature dimensions, along with the intrinsic dimensions ds, dw and correlation dimensions ds∧w (with
respect to the strong student CLIP-B32) computed over the entire UTKFace dataset (including training and testing).

Pretrained Model Feature Dimension Intrinsic Dimension (τ = 0.01) Correlation Dimension

ResNet18 512 194 167.64
ResNet34 512 150 129.97
ResNet50 2048 522 301.06
ResNet101 2048 615 354.52
ResNet152 2048 589 339.90

CLIP-B32 768 443 ×

• W2S generalization generally happens (i.e. fw2s is able to outperform fw) with sufficiently large sample sizes n,N .
However, as the labeled sample size n increases, the test MSE of fw2s converges slower than that of the strong baseline
and ceiling models, fs and fc, leading to the inverse scaling for PGR and OPR with respect to n in Figures 5 and 6.
When n is too large, the W2S model fw2s may not be able to achieve better generalization than the strong baseline fs.
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E.2. Experiments on image classification
Dataset. ColoredMNIST (Arjovsky et al., 2019) consists of groups of different colors and reassign the label to be binary
(digits 0-4 vs 5-9). We pool together the groups to form one dataset. The choice is to bring diversity to the feature space
with additional color features and thus potential feature discrepancies. We hold out a test set of 7000 samples and use the
rest 63000 samples for training.

Linear probing over pretrained features. We fix a strong student as DINOv2-s14 (Oquab et al., 2024) and vary the
weak teacher among the ResNet-d series and ResNet series (ResNet18D, ResNet34D, ResNet101, ResNet152) (He et al.,
2019; 2016). We replace ResNet18 and ResNet34 used in Section 4.2 to experiment on weak models with similar intrinsic
dimensions but different correlation dimensions. We treat the backbone of the models (excluding the classification layer)
as ϕs and ϕw and finetune them via linear probing. We train the models with cross-entropy loss and AdamW optimizer.
We tune the training hyperparameters of weak and strong models using a validation set and train them for 800 steps with a
learning rate 1e-3 and weight decay 1e-6.

Table 2. Summary of the pretrained feature dimensions, along with the intrinsic dimensions ds, dw and correlation dimensions ds∧w (with
respect to the strong student DINOv2-S14) computed over the entire ColoredMNIST dataset (including training and testing).

Pretrained Model Feature Dimension Intrinsic Dimension (τ = 0.01) Correlation Dimension

ResNet-18-D 512 117 6.23
ResNet-34-D 512 127 7.07
ResNet101 2048 121 1.74
ResNet152 2048 128 1.88

DINOv2-S14 384 28 ×

Figure 10. Scaling for PGR and OPR of different weak teachers with a fixed strong student on ColoredMNIST.

Discrepancies lead to better W2S. Figure 10 shows the scaling of PGR and OPR with respect to the sample sizes
n,N for different weak teachers in the ResNet series with respect to a fixed student, CLIP-B32. As in Section 4.2, we
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Figure 11. Scaling for PGR and OPR of W2S on ColoredMNIST with injected label noise.

observe that with similar intrinsic dimensions ds, dw, W2S achieves better relative performance in terms of PGR and
OPR when the correlation dimension ds∧w is smaller.

Variance reduction is a key advantage of W2S. We inject noise to the labels of the original ColoredMNIST training
samples by randomly flipping the ground truth labels with probability ς ∈ [0, 1] (following (Arjovsky et al., 2019)).
Figure 11 shows the scaling of PGR and OPR with respect to n and N when taking DINOv2-S14 as the strong
student and ResNet101 as the weak teacher. We observe that the larger artificial label noise ς leads to higher PGR and
OPR.

E.3. Experiments on sentiment classification
Dataset. The Stanford Sentiment Treebank (Socher et al., 2013) is a corpus with fully labeled parse trees that allows for a
complete analysis of the compositional effects of sentiment in language. The corpus is based on the dataset introduced by
Pang & Lee (2005) and consists of 11,855 single sentences extracted from movie reviews. It was parsed with the Stanford
parser and includes a total of 215,154 unique phrases from those parse trees, each annotated by 3 human judges. We conduct
binary classification experiments on full sentences (negative or somewhat negative versus somewhat positive or positive,
with neutral sentences discarded), the so-called SST-2 dataset, and split the dataset into training and testing sets of sizes
63000 and 4349. Generalization errors are estimated with the 0-1 loss over the test set.

Full finetuning. We fix the strong student as Electra-base-discriminator (Clark et al., 2020) and vary the weak teacher
among the Bert series (Turc et al., 2019) (Bert-Tiny, Bert-Mini, Bert-Small, Bert-Medium). With manageable model sizes,
we conduct full finetuning experiments following the setup in (Burns et al., 2024). We use the standard cross-entropy loss for
supervised finetuning. When training strong students on weak labels (W2S), we use the confidence-weighted loss proposed
by (Burns et al., 2024), which is suggested to be able to improve weak-to-strong generalization on many NLP tasks. All
training is conducted via Adam optimizers (Kingma & Ba, 2014) with a learning rate of 5e-5, a cosine learning rate schedule,
and 40 warmup steps. We train for 3 epochs, which is sufficient for the train and validation losses to stabilize.
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Intrinsic dimension. The intrinsic dimensions dw, ds are measured based on the Structure-Aware Intrinsic Dimension
(SAID) method proposed by (Aghajanyan et al., 2021). We first train the full models on the whole training set, and then
train the models with only d trainable parameters based on SAID transformation. The dw or ds are the smallest number of
parameters under SAID that is necessary to retain 90% accuracy of the full models. Here, the 90% accuracy is a common
threshold used to estimate intrinsic dimensions in the literature (Li et al., 2018).

Figure 12. Scaling for PGR and OPR of different weak teachers with a fixed strong student on SST-2.

Correlation Dimension. Let Ds, Dw ∈ N be the finetunable parameter counts of the strong and weak models, respectively.
For full FT whose dynamics fall in the kernel regime, as explained in Remark 2.5, the strong and weak “features” become
the gradients6, Φs = ∇θfs(X|θ(0)s ) ∈ RN×Ds and Φw = ∇θfw(X|θ(0)w ) ∈ RN×Dw , of the respective models at the
pretrained initialization, θ(0)s ∈ RDs and θ

(0)
w ∈ RDw .

A practical challenge is that Ds, Dw, N are all huge for full FT on most NLP tasks, making it infeasible to compute the
Ds ×Ds and Dw ×Dw Gram matrices and their spectral decompositions. As a remedy, we leverage the significantly lower
intrinsic dimensions ds ≪ Ds, dw ≪ Dw (see Table 2) to accelerate estimation of ds∧w via sketching (Halko et al., 2011;
Woodruff et al., 2014).

(i) We first reduce both Ds, Dw to the same lower dimension D = 0.01min{Ds, Dw} (with D ≫ max{ds, dw}) by
subsampling columns of Φs,Φw (uniformly for efficiency, or adaptively via sketching-based interpolative decomposi-
tion (Dong & Martinsson, 2023) when affordable) to obtain Φ′

s,Φ
′
w ∈ RN×D.

(ii) Then, we use randomized rangefinder (Halko et al., 2011, Algorithm 4.1) to approximate the first ds, dw right singular
vectors, Vs ∈ RD×ds and Vw ∈ RD×dw , of Φ′

s,Φ
′
w. Taking the evaluation of Vs as an example, we draw a Gaussian

random matrix Gs ∈ Rds×D and compute the orthornormalization Vs = ortho(Φ′⊤
s Gs) via QR decomposition.

6Notice that fs, fw are scalar-valued functions for binary classification tasks like SST-2, and thus the gradients∇θfs and∇θfw are
row vectors. For multi-class classification tasks where fs, fw output vectors of logits, a common heuristic to keep Φs,Φw as matrices of
manageable sizes (in constrast to tensors) is to replace gradients of the models,∇θfs and∇θfw, with gradients of MSE losses at the
pretrained initialization. The gradients of MSE can be viewed as a weighted sum of the model gradients for each class.
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Figure 13. Scaling for PGR and OPR of W2S on SST-2 with injected label noise.

(iii) Finally, we compute the correlation dimension ds∧w =
∥∥V⊤

s Vw

∥∥2
F

.

Table 3. Summary of finetunable parameter counts Ds, Dw, intrinsic dimensions ds, dw, and correlation dimensions ds∧w (with respect
to the strong student Electra) computed over the entire SST-2 dataset (including training and testing).

Pretrained Model Ds, Dw Intrinsic Dimension (τ = 0.01) Correlation Dimension

Bert-Tiny 4.4M 7000 81.13
Bert-Mini 11.2M 8500 38.67
Bert-Small 28.8M 8000 26.19
Bert-Medium 41.4M 4000 8.52

Electra 109.5M 700 ×

Discrepancies lead to better W2S. Figure 12 shows the scaling of PGR and OPR with respect to n and N for different
ds∧w. As in Section 4.2 and Appendix E.2, we observe the better relative W2S performance in terms of PGR and OPR
when ds∧w/dw is smaller.

Variance reduction is a key advantage of W2S. We inject noise to the labels of training samples by randomly flipping
labels with probability ς = 0, 0.1, 0.2, 0.3. Figure 13 shows the scaling of PGR and OPR with respect to n and N when
taking Electra as the strong student and Bert-Medium as the weak teacher. We observe that the larger artificial label
noise ς leads to higher PGR and OPR.

34


	Introduction
	Related works
	Notations

	Problem setup
	Measures for model capacity
	W2S and supervised finetuning
	Metrics for W2S performance

	Main results
	Generalization errors
	W2S performance: a case study

	Experiments
	Synthetic regression
	UTKFace regression

	Limitations and future directions
	 Appendix
	Additional related works
	Proofs in sec:singletaskft
	Proof of thm:w2sft
	Proof of pro:sftweak and cor:sftstrong
	Proof of cor:pgr
	Proof of cor:nonmonotonicscaling

	Ridge regression analysis
	Canonical angles
	Additional experiments
	Additional experiments and details on UTKFace regression
	Experiments on image classification
	Experiments on sentiment classification



