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ABSTRACT

Environment augmentation methods have gained some success in overcoming
the out-of-distribution (OOD) generalization challenge in Graph Neural Networks
(GNNs). Yet, there exists a challenging trade-off in the augmentation: On one hand,
it requires the generated graphs as diverse as possible to extrapolate to unseen
environments. On the other hand, it requires the generated graphs to preserve
the invariant substructures causally related to the targets. Existing approaches
have proposed various environment augmentation strategies to enrich spurious
patterns for OOD generalization. However, we argue that these methods remain
limited in diversity and precision of the generated environments for two reasons: i)
the deterministic nature of the graph composition strategy used for environment
augmentation may limit the diversity of the generated environments, and ii) the
presence of spurious correlations may lead to the exclusion of invariant subgraphs
and reduce the precision of the generated environments. To address this trade-off,
we propose a novel paradigm that accurately identifies spurious subgraphs, and
an environment augmentation strategy called spurious subgraph diversification,
which extrapolates to maximally diversified spurious subgraphs by randomizing
the spurious subgraph generation, while preserving the invariant substructures. Our
method is theoretically sound and demonstrates strong empirical performance on
both synthetic and real-world datasets, outperforming the second-best method by
up to 24.19% across 17 baseline methods, underscoring its superiority in graph
OOD generalization.

1 INTRODUCTION

GNNs (Kipf & Welling, 2017; Xu et al., 2019; Veličković et al., 2017) have demonstrated exceptional
performance in learning from graph-structured data across diverse fields (Qiu et al., 2018; Wu et al.,
2022b; Yu et al., 2018; Zhang et al., 2022c). However, it generally assumes that the training and test
graphs are independently drawn from the identical distribution, which often fails in many real-world
graph applications (Hu et al., 2020; Huang et al., 2021; Ji et al., 2022; Koh et al., 2021). Such
distribution shifts can drastically undermine the generalization capabilities of GNNs, hindering their
applicability in practical situations.

To address the OOD generalization challenge, recent studies have explored data augmentation
methods across various domains (Shorten & Khoshgoftaar, 2019; Yao et al., 2022; Park et al., 2022;
Kong et al., 2022; Han et al., 2022). In the context of graph data, graph data augmentation (GDA)
methods such as DropEdge (Rong et al., 2019), FLAG (Kong et al., 2022), and M-Mixup (Wang
et al., 2021) perturb graph features or structures to enlarge the training distribution to facilitate
generalization on unseen environments. However, GDA methods are prone to perturbing stable
features or patterns that are critical for the predictive task, potentially limitting their effectiveness for
OOD generalization. Inspired by causality (Peters et al., 2016) and invariant learning (Arjovsky et al.,
2020; Krueger et al., 2021), recent studies have proposed environment augmentation methods (Wu
et al., 2022c; Liu et al., 2022; Sui et al., 2023; Li et al., 2024) that generate environment-sensitive
substructures while preserving invariant patterns. The goal is to capture stable features by learning
equipredictive encoders across different environments. A key condition for the success of these
methods lies in the diversity and precision of the generated environments, represented by spurious
subgraph patterns that capture rich environmental variations (Sui et al., 2023; Li et al., 2024). Notably,
DIR (Wu et al., 2022c) and GREA (Liu et al., 2022) perform input-level and latent-level augmentation

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

respectively to create diverse environments. However, these methods rely on interpolation paradigms,
which limit the diversity of the generated environments. In addition, some other studies explore
environment extrapolation to generate rich spurious patterns for unseen environments, utilizing
adversarial augmentation (Sui et al., 2023), and linear extrapolation in graph space (Li et al., 2024).

Despite these advancements, we argue that the diversity and precision of the generated environments
in existing methods remain limited for two reasons. First, most of these methods adopt closed-
form combination strategies (See Appendix G for details) to composite invariant and spurious
subgraphs (Wu et al., 2022c; Liu et al., 2022; Sui et al., 2023; Li et al., 2024). This paradigm
inherently constrain the diversity of the generated spurious patterns due to their deterministic nature.
Second, the presence of spurious correlations can lead to the incorrect exclusion of (a portion of)
invariant subgraphs during environment augmentation, thereby reducing the precision of the generated
environments. This raises our research question:

How can we generate high-quality spurious patterns in terms of diversity and precision to enhance
OOD generalization for graph data?

To address this challenge, we propose a novel learning framework, which differs from previous
environment augmentation methods. Specifically, our approach builds on the theoretical results in
Prop. 2 that, under mild assumptions (Assumption 1 and 2), edges in the invariant subgraphs tend to
exhibit higher predicted probabilities in the learnable data transformation compared to spurious edges.
Therefore a) to identify edges from spurious subgraphs accurately, we utilize the bottom K% of edges
with the lowest predicted probabilities as estimated spurious edges, and the subsequent diversification
process operates exclusively on these edges, ensuring the invariant subgraphs unaffected. b) To
address the diversity issue of generated environments, we propose spurious subgraph diversification,
an effective environment extrapolation strategy that maximally randomize the generation of spurious
subgraphs to encourage diversity of the generated environments. We additionally propose a graph
size constraint to prune spurious edges and reduce the candidate space for spurious subgraphs to be
generated, achieving more effective environment extrapolation. Our contributions can be summarized
as follows:

• Novel Framework. We propose iSSD, a novel learning framework that: i) identifies
spurious subgraphs accurately, ensuring that invariant patterns remain unaffected during
augmentation; and ii) maximally randomizes the generation of spurious subgraphs within
a reduced search space with Spurious Subgraph Diversification for effective environment
extrapolation and OOD generalization.

• Theoretical Guarantee. We provide theoretical analysis showing that a) The proposed
graph size constraint provably enhances OOD generalization by tightening the OOD gen-
eralization bound (Theorem 3.1); b) Spurious subgraph diversification provably enhances
OOD generalization by identifying the true invariant subgraphs (Theorem 4.2).

• Strong empirical performance. We conduct experiments on both synthetic datasets and
real-world datasets, compare against 17 baselines, our method outperform the second-best
method by up to 24.19%, highlighting the superiority of our proposed method.

2 PRELIMINARY

Notation. Throughout this work, an undirected graph G with n nodes and m edges is denoted by
G := {V, E}, where V is the node set and E denotes the edge set. G is also represented by the
adjacency matrix A and node feature matrix X ∈ Rn×D with D feature dimensions. We use Gc and
Gs to denote invariant subgraph and spurious subgraph. Ĝc and Ĝs denote the estimated invariant
and spurious subgraph. t(·) refers to a (learnable) data augmentation function, G̃ ∼ t(G) represents
G̃ is sampled from t(G), for simplicity, we may use t(G) to denote a graph sampled from t(G), e.g.,
H(Y | t(G)). We use [K] :=

{
1, 2, · · · ,K

}
to denote a index set, w to denote a vector, and W as a

matrix respectively. Finally, a random variable is denoted as W , a set is denoted using W . A more
complete set of notations is presented in Appendix A.

OOD Generalization. In this work we consider the problem of graph classification under various
forms of distribution shifts in hidden environments. Given a set of graph datasets G = {Ge}e∈Etr⊆Eall

,
a GNN model f = ρ ◦ h, comprises an encoder h: Rn×n ×Rn×D → RF that learns a representation
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hG for each graph G, followed by a downstream classifier ρ : RF → Y to predict the label
ŶG = ρ(hG). In addition, a learnable data transformation function t: Rn×n → Rn×n is employed to
generate a graph with only structural modifications. The objective of OOD generalization is to learn
an optimal composite function f ◦ t that can simultaneously learn diverse and useful representations
from ERM and identify invariant subgraph Gc to improve OOD generalizability.
Assumption 1. Given a graph G ∈ G, there exists a stable subgraph Gc for every class label
y, satisfying: a) ∀e, e′ ∈ Etr, P e (Y | Gc) = P e′ (Y | Gc); b) The target Y can be expressed as
Y = f∗ (Gc) + ϵ, where ϵ ⊥⊥ G represents random noise, and ⊥⊥ indicates statistical independence.

Assumption 1 has been widely adopted in previous graph invariant learning literature (Yang et al.,
2022; Li et al., 2022b;a; Wu et al., 2022a;c; Liu et al., 2022; Chen et al., 2022). This assumption
posits that a subgraph pattern Gc is not only stably associated with the target label Y across different
environments but also retains sufficient predictive power for accurately determining Y .
Assumption 2. The mutual information between the invariant subgraph Gc and the target label Y is
greater than that between the spurious subgraph Gs and Y , i.e., I(Gc;Y ) > I(Gs;Y ).

Assumption 2 naturally follows from Assumption 1, implying that Gc is both more stable and more
predictive of Y compared to Gs. Assumption 2 is also consistent with many real-world applications,
such as molecular property prediction, where specific motifs within a molecule are crucial for
determining key properties like solubility, reactivity, or toxicity. These motifs, analogous to Gc,
exhibit strong and stable relationships with the target properties across different environments.

3 THEORETICAL MOTIVATION

Our goal is to learn the conditional probability P(Y | Gc) for OOD generalization, which can be
expressed as follows:

P(Y | Gc) =
∑
Gs

P(Y,Gs | Gc) =
∑
Gs

P(Y | Gc, Gs)P(Gs) = EGs [P(Y | Gc, Gs)]. (1)

The second equality in Eqn. 1 requires that Gs ⊥⊥ Gc, which is achievable by diversifying Gs (Sec. 4),
thus making it uninformative to Gc. Eqn. 1 implies that to accurately learn P(Y | Gc), we need to
marginalize over all possible patterns from spurious subgraphs Gs, which also aligns with effective
environment extrapolation tackled in previous studies (Li et al., 2024; Sui et al., 2023). Consequently,
obtaining a diverse set of spurious patterns is essential for learning P(Y | Gc) accurately. To address
this challenge, we first propose learnable data augmentation, which is necessary and widely adopted
in previous graph invariant learning methods (Wu et al., 2022c; Sui et al., 2023; Chen et al., 2022;
Miao et al., 2022) for learning spurious subgraph patterns, as defined in below:
Definition 1. (Learnable Data Transformation) Consider a graph G ∈ G and let Tθ denote a family
of data transformations parameterized by θ ∈ Θ. A specific transformation t(·) ∈ Tθ is referred to as
a learnable data transformation, which produces a modified structural representation of the graph
G, while ensuring that sim(t(G), G) < δ, where sim(·, ·) denotes the similarity function and δ is a
positive scalar to avoid trivial solutions.

Next, we define spurious subgraph diversification, which will utilized in the following section.

Definition 2. (Spurious Subgraph Diversification) Let G̃ be the sampled structural view from t(G),
G̃ consists of invariant subgraph G̃c and spurious subgraph G̃s, i.e., G̃ = G̃c∪G̃s, spurious subgraph
diversification aims to achieve the following goal:

max
θ

H(G̃s), s.t., min H(G̃c). (2)

Building upon Def. 1, we propose a lower bound of the mutual information I(G;Y ) as the objective:

Theorem 3.1. Let G̃ ∼ t(G) be a structural view sampled from t(G), the following inequality holds:

I(G;Y ) ≥ −λH(Y | f(G̃)) + (1− λ)H(G̃)− (1− λ)H(G̃ | Y ),∀λ ∈ (0, 1). (3)
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We prove Theorem 3.1 in Appendix E.1. The lower bound in Eqn. 3 can be viewed as a reflection of
Eqn. 1 from an information-theoretic perspective. Minimizing H(Y | G̃) is equivalent to maximizing
P(Y | Gc, Gs), and maximizing the Shannon entropy H(G̃) improves the diversity of the sampled
subgraph from t(G). However, directly diversifying H(G̃) may hurt the OOD generalization ability
as Gc is also diversified. To strike a balance between OOD generalizability and the enrichment of
spurious patterns, we propose spurious subgraph diversification, as defined in Def. 2.

To highlight the advantages of Spurious Subgraph Diversification, we present the following proposi-
tion:

Proposition 1. Spurious subgraph diversification (Eqn. 2) simultaneously enhances OOD generaliz-
ability through preserving Gc, and facilitates diversification of spurious subgraphs.

Prop. 1 demonstrates that by employing spurious subgraph diversification, t(·) is able to generate
enriched spurious patterns while preserving Gc, thereby better estimating P(Y | Gc). Next we will
introduce our proposed method, building upon the theoretical motivations.

4 PROPOSED FRAMEWORK

In this section, we present our proposed framework iSSD, which is grounded in the theoretical
motivations discussed previously.

Learnable Data Transformation. We begin with the introduction of the learnable data transformation
function. We adopt learnable edge dropping as the class of data transformation Tθ. The rationale
behind employing edge dropping stems from our presumed data generating process that there exists
an invariant subgraph Gc that is causally related to the target label Y . By employing a learnable
edge dropping function t(·), t(·) will tend to retain Gc, and discard Gs, as implied in Proposition 2.
Following previous studies (Miao et al., 2022; Luo et al., 2020; Ying et al., 2019), we model each
edge eij ∼ Bernoulli(pij) independently which is parameterized by pij . The probability of the
graph G is factorized over all the edges, i.e., P (G) =

∏
eij∈E pij . To parameterize Tθ, we employ a

GNN model to derive the node representation for each node v, followed by an MLP to obtain the
logits wij as following:

hv = GNN(v | G), v ∈ V,
wij = σ (MLP (hi,hj ,hi∥hj)) , eij ∈ E , (4)

here ∥ denotes the concatenation operator. To ensure the sampling process from wij is differentiable
and facilitate gradient-based optimization, we leverage the Gumbel-Softmax reparameterization
trick (Maddison et al., 2016) and Straight-Through (ST) estimator (Bengio et al., 2013), which is
applied as follows:

pij = σ ((log ϵ− log(1− ϵ) + ωij) /τ) , ϵ ∼ U(0, 1),
Ãij = 1− sg(pij) + pij ,

(5)

here Ã denotes the sampled adjacency matrix, τ is the temperature, sg(·) denotes the stop-gradient
operator, and U(0, 1) denotes the uniform distribution. In Eqn. 5, we first calculate the parameter
pij for each edge eij , we then sample edges according to Bernoulli(pij), for the sampled edge eij ,
the ST trick (second line of Eqn. 5) ensures Ãij remain binary yet differentiable for gradient-based
optimization. We then take t(G) and Y as inputs to the GNN model f(·) to compute the cross-entropy
loss LGT as follows:

LGT = −EG
∑
k∈C

Yk log (f(t(G))k) , (6)

where Yk denotes the ground-truth label k for graph G, and f(t(G))k is the predicted probability for
class k of graph G.

Graph size constraint. To enforce the constraint sim(t(G), G) < δ, which helps avoid trivial
solutions, we introduce a regularization term Le which encourages a graph size distinction between
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t(G) and G:

Le = EG

(∑
(i,j)∈E Ãij

|E|
− η

)2

, (7)

where η is a hyper-parameter that controls the budget for the total number of edges pruned by t(·).
Next we show that Le will prune edges from spurious subgraph, while preserving the invariant
subgraph when sampled from t(G).
Proposition 2. Under Assumption 2, the size constraint loss Le, when acting as a regularizer for
LGT , will prune edges from the spurious subgraph Gs, while preserving the invariant subgraph Gc.

Prop. 2 demonstrates that by enforcing graph size constraint, Le will only prune spurious edges,
thus making the size of Gs, i.e., |Gs|, to be smaller. Next we show that Le provably improves OOD
generalization ability by shrinking |Gs|.
Theorem 4.1. Let l((xi, xj , y,G); θ) denote the 0-1 loss function for predicting whether edge eij
presents in graph G using t(·), and

L(θ;D) :=
1

n

∑
(xi,xj ,y,G)∼D

l((xi, xj , y,G); θ),∀eij ∈ E .

L(θ;S) :=
1

n

∑
(xi,xj ,y,G)∼S

l((xi, xj , y,G); θ),∀eij ∈ E .
(8)

where D and S represent the training and test set distributions, respectively,c is a constant, and n
denotes the sample size. Then, with probability at least 1− δ and ∀θ ∈ Θ, we have:

|L(θ;D)− L(θ;S)| ≤ 2(c|Gs|+ 1)

√
ln(4|Θ|)− ln(δ)

2n
. (9)

We prove Theorem 4.1 in Appendix E.3. Theorem 4.1 establishes an OOD generalization bound
that incorporates |Gs| due to domain shifts. When |Gs| = 0, Eqn. 9 reduces to the traditional
in-distribution generalization bound. From Theorem 4.1, we demonstrate that Le enhances the OOD
generalization bound by reducing the size of Gs and tightens the generalization bound. Reducing
the size of Gs can also help decrease the candidate space of Gs, thereby facilitating the subsequent
process of spurious subgraph diversification to marginalize over all possible spurious patterns and
effectively extrapolate to unseen environments, further enhancing the OOD generalization ability.

Spurious Subgraph Diversification. Building upon Def. 2, spurious subgraph diversification aims
to generate diversified spurious patterns and identify the invariant subgraph Gc. However, it is
challenging to distinguish between Gc and Gs in t(G). Nonetheless, using the results from Prop. 2,
it is likely that edges from Gc will exhibit a higher predicted probability using t(·) than edges in Gs.
Based on this insight, to accurately identify spurious subgraphs and preserve Gc in the subsequent
diversification, we sort wij ∈ E and consider the lowest K% of edges as Ĝs (denoted as Es). We
then align the distribution of these edges as closely as possible to a uniform distribution to diversify
the spurious subgraphs. Specifically, we employ the total variation distance to enforce the following
regularization:

Ldiv = EG
1

|Es|
∑

eij∈Es

TV (eij ,U) = EG
1

|Es|
∑

eij∈Es

|w̄ij − 0.5| , (10)

where eij ∼ Bernoulli(pij), w̄ij denotes the normalized probability of the logits wij , TV(·, ·)
denotes the total variation distance, and U denotes a uniform distribution. The goal of Ldiv is to
increase uncertainty of sampling eij ∈ Es, thereby enhancing the diversity of the spurious subgraphs,
meanwhile, the invariant subgraph Gc in each graph G is preserved, as demonstrated in Prop. 2. The
overall objective is formulated in below:

L = LGT + λ1Le + λ2Ldiv, (11)

here λi, i ∈
{
1, 2
}

are hyperparameters that balance the contribution of each component to the overall
objective. Next we present the following main theorem to demonstrate that t∗(G) after optimizing
the loss object L in Eqn. 11 will correctly identify Gc, thus achieve graph OOD generalization under
distribution shifts.

5
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Theorem 4.2. Let Θ∗ = arg infΘ L(Θ), where Θ∗ = {ρ∗(·), h∗(·), t∗(·)}. For any graph G with
target label y ∈ Y , we have Gc ≈ EG[t

∗(G)], i.e., optimizing the objective function L(Θ) will lead
to the optimal learnable data transformation function t∗(·). Consequently, sampling from t∗(G)
in expectation will retain only the invariant subgraph Gc, which remains stable and sufficiently
predictive for the target label y.

The proof of Theorem 4.2 is provided in Appendix E.4. It is important to note that while Prop. 2
highlights the inclusion of the invariant subgraph Gc, it does not eliminate the possibility of retaining
spurious edges, which may affect the method’s effectiveness. However, Theorem 4.2 demonstrates
that it is able to retain only Gc by sampling from t∗(G). Intuitively, the diversification process
reinforces the edges in Gc, as t∗(G) consistently includes Gc, while simultaneously weakening the
spurious edges due to the spurious edge pruning and diversification process. This approach ensures
the identification of invariant subgraph Gc, and generalization capability of our proposed method.

5 DISCUSSION

Although adopting a learnable data transformation function, or a subgraph selector t(·) is not a
novel concept in the literature, our study provides a new perspective on how to utilize t(·) for
identifying the invariant subgraph Gc for OOD generalization on graphs. Specifically, in previous
works such as Li et al. (2022b); Wu et al. (2022c), the learned subgraph is utilized for environment
inference and environment generation respectively to learn an equipredictive classifier for OOD
generalization; In Miao et al. (2022), t(·) is employed to identify Gc based on the information
bottleneck principle (Tishby & Zaslavsky, 2015). Chen et al. (2022) leverages t(·) to identify
Gc through supervised contrastive learning, while Sui et al. (2023) uses the learned subgraph for
distribution perturbation to enhance model robustness; In Gui et al. (2023), t(·) is utilized to isolate
Gc under the regularization conditions Gc ⊥⊥ E and Gs ⊥⊥ Y , where the environments E are
assumed observable. Lu et al. (2024) utlizes subgraph selector to extract graph rationals, followed
by generating virtual samples by perturbing these substructures using Extreme Value Theory (Haan
& Ferreira, 2006). In Jia et al. (2024), the subgraph selector is utilized to separate invariant and
spurious subgraphs, followed by invariant mixup and environmental mixup to augment the training
distribution. In contrast, our approach is fundamentally different from all previous works in how to
utilize t(·) to identify invariant subgraphs. By leveraging spurious subgraph diversification with graph
size constraint, our method is able to marginalizing over diversified (enriched) spurious patterns,
effectively extrapolate to unseen environments, and identifies Gc using t∗(·) for OOD generalization.

6 RELATED WORK

Invariant learning. Recently, there has been growing attention on the graph-level representations
under distribution shifts from the perspective of invariant learning. Some works focus on environment
inference (Yang et al., 2022; Li et al., 2022b) or augmentation strategies (Wu et al., 2022c; Liu et al.,
2022; Zhuang et al., 2023; Sui et al., 2023; Li et al., 2024). Another line of works employs alternative
strategies to identify Gc without tackling the hidden environment labels (Chen et al., 2022; 2023a;
Miao et al., 2022; Yu et al., 2021; 2020), Most of these works assume a causal data generating process
that assumes the existence of an invariant subgraph Gc causally related to the target label Y , which
remains invariant across different distribution shifts. In this work, we also adopt this assumption, and
our approach aims to generate diversified environments without affecting the invariant substructures.

Graph data augmentation. Recent studies (Rong et al., 2019; Wang et al., 2021; Han et al., 2022)
have introduced various graph data augmentation methods to enhance the performance of semi-
supervised node classification tasks. Despite these advancements, these methods mainly focus on
improving performance within the training distribution and do not directly target OOD data. Inspired
by causality (Peters et al., 2016) and invariant learning principles (Arjovsky et al., 2020; Kreuzer
et al., 2021), recent works have shifted focus towards environment augmentation, operating both at
the input level (Wu et al., 2022c) and latent level (Liu et al., 2022), to generate interpolated (Wu et al.,
2022c; Liu et al., 2022; Zhuang et al., 2023) or extrapolated environments (Sui et al., 2023; Li et al.,
2024), which typically rely on masking matrices produced by subgraph selectors. Meanwhile, our
study introduces spurious subgraph diversification, which enriches the generated spurious patterns,
allowing our method to extrapolate to unseen environments more effectively, and capture the stable
relationship P(Y | Gc) more accurately.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

7 EXPERIMENTS

In this section, we evaluate the effectiveness of iSSD on both synthetic datasets and real-world
datasets, and answer the following research questions.

• (RQ1) How does our method perform compared with SOTA baselines?
• (RQ2) How do the individual components and hyperparameters in iSSD affect the overall

performance?
• (RQ3) Can the optimal learnable data transformation function t∗(G) correctly identify Gc?
• (RQ4) Do edges in Gc predicted by t(·) exhibit higher probability scores than edges in Gs?
• (RQ5) How do different GNN architectures impact the OOD performance?

More experimental results including hyperparameter analysis and visualizations are presented in
Appendix H.

7.1 EXPERIMENTAL SETUP

Datasets. We adopt GOOD datasets (Gui et al., 2022), OGBG-Molbbbp datasets (Hu et al., 2020;
Wu et al., 2018), and DrugOOD datasets (Ji et al., 2022) to comprehensively evaluate the OOD
generalization performance of our proposed framework. More details on these datasets are provided
in Appendix H.

Baselines. Besides ERM (Vapnik, 1995), we compare our method against four lines of OOD baselines:
(1) OOD algorithms on Euclidean data, including IRM (Arjovsky et al., 2020), VREx (Krueger
et al., 2021), and GroupDRO (Sagawa et al., 2019); (2) Diverse feature learning methods, including
RSC (Huang et al., 2020), and DivCLS (Teney et al., 2022). (3) graph-specific OOD algorithms,
including DIR (Wu et al., 2022c), GSAT (Miao et al., 2022), GREA (Liu et al., 2022), DisC (Fan
et al., 2022), CIGA (Chen et al., 2022), and AIA (Sui et al., 2023); and (4) graph data augmentation
methods, including DropEdge (Rong et al., 2019), G-Mixup (Han et al., 2022), FLAG (Kong et al.,
2022), and LiSA (Yu et al., 2023). Details of the baseline setup are provided in Appendix H.2.

Evaluation. We report the ROC-AUC score for GOOD-HIV, OGBG-Molbbbp, and DrugOOD
datasets, where the tasks are binary classification. For GOOD-Motif, we use accuracy as the
evaluation metric. We run experiments 4 times with different random seeds, select models based on
the validation performance, and report the mean and standard deviations on the test set.

Table 1: Performance on synthetic and real-world datasets. Numbers in bold indicate the best
performance, while the underlined numbers indicate the second best performance.

Method GOODMotif GOODHIV EC50 OGBG-Molbbbp

base size scaffold size scaffold size assay scaffold size

ERM 68.66±4.25 51.74±2.88 69.58±2.51 59.94±2.37 62.77±2.14 61.03±1.88 64.93±6.25 68.10±1.68 78.29±3.76

IRM 70.65±4.17 51.41±3.78 67.97±1.84 59.00±2.92 63.96±3.21 62.47±1.15 72.27±3.41 67.22±1.15 77.56±2.48

GroupDRO 68.24±8.92 51.95±5.86 70.64±2.57 58.98±2.16 64.13±1.81 59.06±1.50 70.52±3.38 66.47±2.39 79.27±2.43

VREx 71.47±6.69 52.67±5.54 70.77±2.84 58.53±2.88 64.23±1.76 63.54±1.03 68.23±3.19 68.74±1.03 78.76±2.37

RSC 46.12±3.76 51.70±5.47 69.16±3.23 61.17±0.74 64.82±2.10 63.38±1.16 74.76±1.96 69.01±2.84 78.07±3.89

DivCLS 54.24±8.22 41.01±1.98 69.17±3.62 61.59±2.23 64.31±2.16 63.89±1.51 74.79±4.64 68.04±3.27 77.62±1.90

DropEdge 45.08±4.46 45.63±4.61 70.78±1.38 58.53±1.26 63.91±2.56 61.93±1.41 73.79±4.06 66.49±1.55 78.32±3.44

G-Mixup 59.66±7.03 52.81±6.73 70.01±2.52 59.34±2.43 61.90±2.08 61.06±1.74 69.28±1.36 67.44±1.62 78.55±4.16

FLAG 61.12±5.39 51.66±4.14 68.45±2.30 60.59±2.95 64.98±0.87 64.28±0.54 74.91±1.18 67.69±2.36 79.26±2.26

LiSA 54.59±4.81 53.46±3.41 70.38±1.45 52.36±3.73 62.60±3.62 60.96±1.07 69.73±0.62 68.11±0.52 78.62±3.74

DIR 62.07±8.75 52.27±4.56 68.07±2.29 58.08±2.31 63.91±2.92 61.91±3.92 66.13±3.01 66.86±2.25 76.40±4.43

DisC 51.08±3.08 50.39±1.15 68.07±1.75 58.76±0.91 59.10±5.69 57.64±1.57 61.94±7.76 67.12±2.11 56.59±10.09

CAL 65.63±4.29 51.18±5.60 67.37±3.61 57.95±2.24 65.03±1.12 60.92±2.02 74.93±5.12 68.06±2.60 79.50±4.81

GREA 56.74±9.23 54.13±10.02 67.79±2.56 60.71±2.20 64.67±1.43 62.17±1.78 71.12±1.87 69.72±1.66 77.34±3.52

GSAT 62.80±11.41 53.20±8.35 68.66±1.35 58.06±1.98 65.12±1.07 61.90±2.12 74.77±4.31 66.78±1.45 75.63±3.83

CIGA 66.43±11.31 49.14±8.34 69.40±2.39 59.55±2.56 65.42±1.53 64.47±0.73 74.94±1.91 64.92±2.09 65.98±3.31

AIA 73.64±5.15 55.85±7.98 71.15±1.81 61.64±3.37 64.71±0.50 63.43±1.35 76.01±1.18 70.79±1.53 81.03±5.15

iSSD 91.48±0.40 66.53±8.55 71.84±0.61 64.99±1.63 67.56±0.34 65.46±0.88 78.01±0.42 70.32±1.73 81.59±5.35

7.2 EXPERIMENTAL RESULTS

In this section, we report the main results on both synthetic and real-world datasets.
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Synthetic datasets. The GOOD-Motif datasets fully align with our assumptions, making them a
suitable benchmark for evaluating the effectiveness of our proposed framework iSSD. Our approach
outperforms second-best method AIA by 24.19% and 19.13% in Motif-Base and Motif-Size datasets
respectively. This demonstrates the excellent environment extrapolation capability of iSSD, utilizing
spurious subgraph diversification to generate randomized spurious edges. While diverse feature
learning methods such as RSC (Huang et al., 2020) and DivCLS (Teney et al., 2022) achieve strong
performance on real-world datasets, their performance is suboptimal on the GOOD-Motif datasets.
This may be because these methods attempt to learn diverse features, while in GOOD-Motif datasets
only one invariant subgraph is causally related to the target, potentially leading them to capture
patterns in Gs that are not generalizable. In contrast, our method employs spurious subgraph
diversification to generate enriched negative feedbacks, thereby weakening spurious patterns and
enabling the model to effectively focus on the causal patterns. Notably, the in-distribution performance
of ERM on Motif-Base dataset is 92.60% (Gui et al., 2022), while our approach achieves a comparable
result of 91.48%, further demonstrating the superiority of iSSD in learning domain-invariant features.

Real-world datasets. In real-world datasets, which present more complex and realistic distribution
shifts, many graph OOD algorithms exhibit instability, occasionally underperforming ERM. In
contrast, by effectively incorporating environment augmentation strategy with graph size constraint,
our approach consistently achieves stable and superior performance across a diverse set of distribution
shifts, and outperform the second-best method by an average of 2.38% in 7 real-world datasets.

7.3 ABLATION STUDY

In this section, we evaluate the impact of Le and Ldiv using the GOODMotif and GOODHIV
datasets by setting λ1 = 0 or λ2 = 0 in Eqn. 11 to observe the impacts on model performance.

Motif-Base Motif-Size HIV-Sca HIV-Size
30

40
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iSSD w/o e w/o div

Figure 1: Ablation study on Le and Ldiv .

As illustrated in Figure 1, removing either Le or Ldiv
leads to a significant drop in test performance across
all datasets, and a larger variance. The removal of Le

results in a more pronounced decline, as this regular-
ization is crucial for t∗(G) to prune spurious edges
and reduce the candidate space for the spurious edges
to be diversified. However, even with Le, some spuri-
ous edges may still persist within t∗(G), potentially
hindering the model’s OOD generalization ability.
By employing both Le and Ldiv, iSSD effectively
covers all possible spurious patterns and extrapolate
to unseen environments, and achieve superior OOD
generalization performance across all four datasets.

7.4 HYPER-PARAMETER SENSITIVITY

We study the impact of hyperparameter sensitivity on the edge budget η in Le

and the K% edges with the lowest probability for Ldiv. Additionally, we investi-
gate the effects of varying the penalty weights for Le and Ldiv (i.e., λ1 and λ2).

HIV-size

Figure 2: Hyperparameter sensitivity.

As illustrated in Figure 2, an unsuitable choice of η
can negatively impact test performance, e.g., in the
GOOD-Motif dataset with base split, setting η = 0.5
may prune too many edges, potentially corrupting Gc

and consequently reducing test performance. How-
ever, with a suitable η, test performance remains sta-
ble across different values of K. Notably, a larger
K (e.g., K = 90) consistently leads to optimal per-
formance, highlighting the effectiveness of spurious
subgraph diversification. Readers may raise concerns
that a large value of K could also corrupt the invariant
substructure Gc, seemingly contradicting the optimal
test performance observed at K = 90. This discrep-
ancy arises because the penalty weight λ2 for Ldiv is
smaller than λ1, reducing its impact on Gc. As shown

8
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in Figure 2, when λ2 ∈ {1, 10}, test performance de-
clines dramatically for ∀K ∈ {50, 70, 90}, supporting our analysis above. Regarding real-world
datasets, such as GOODHIV-size and other datasets in Appendix H.3, the test OOD performance
demonstrates stability across various hyperparameters, underscoring the robustness of our algorithm.

7.5 IN-DEPTH ANALYSIS

Motif-base Motif-size

(a). Visualizations on learned subgraph by t∗(·), where blue nodes are
ground-truth nodes in Gc, and red nodes are ground-truth nodes in Gs.
The highlighted blue edges are top-K edges predicted by t∗(·), where K
is the number of ground-truth causal edges.
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Motif-size-test (area = 0.74)

(b). The ROC-AUC curve for
predicted edges and ground-truth
edges on GOODMotif-base and
GOODMotif-size datasets.

Figure 3: Empirical visualization and analysis on t∗(·).

Can t∗(·) identify Gc? To verify whether t∗(·) can indeed identify Gc, we conduct experiments
using GOOD-Motif datasets with both base and size splits. These synthetic datasets are suitable for
this analysis as they provide ground-truth labels for edges and nodes that are causally related to the
targets. First, we collect the predicted probability score and target label for each edge from t∗(·) for
correctly predicted samples and plot the ROC-AUC curve for both the validation and test sets across
the two datasets. As illustrated in Figure 3(b), the AUC scores for both datasets exhibit high values,
demonstrating that t∗(·) accurately identifies Gc, which is consistent with the theoretical insights
provided in Theorem 4.2. Figure 3(a) illustrates some visualization results using t∗(·), demonstrating
that t∗(·) correctly identify causal edges from Gc. More visualization results for the identified edges
using t∗(·) are provided in Appendix H.3.

Motif-base Motif-size

Figure 4: Avg. probability and ranking of edges in
Gc for every training epoch.

Do edges in Gc exhibit a higher probability
than edges in Gs? We assess the probability
scores and ranking of edges in Gc compared
to those in Gs using the GOOD-Motif datasets.
Specifically, we plot the average probability and
ranking of edges in Gc over the first 40 epochs
(excluding the first 10 epochs for ERM pretrain-
ing), using the ground-truth edge labels. As
shown in Figure 4, for both the Motif-base and
Motif-size datasets, the causal edges in Gc ex-
hibit high probability scores, ranking among the top 50% in both datasets. This confirms the validity
of using the lowest K% probability edges to preserve the invariant subgraphs.

How do different GNN encoders affect the model performance? We examine the
effect of using different GNN encoders, specifically GCN (Kipf & Welling, 2017) and
GIN (Xu et al., 2018), with the same hidden dimensions and number of layers as h(·).
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Figure 5: Test performance with
different GNN encoders.

As illustrated in Figure 5, across all four datasets, employing
GIN as the feature encoder leads to a increase in test perfor-
mance. This is likely due to GIN’s higher expressivity than
GCN (Xu et al., 2018), being as powerful as the 1-WL test (Le-
man & Weisfeiler, 1968), which allows it to generate more
distinguishable features compared to GCN. These enhanced
features benefits the optimization of t(·), thereby improving the
identification of Gc for OOD generalization. This also high-
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lights another advantage of iSSD: utilizing a GNN encoder with
enhanced expressivity may further facilitate OOD generaliza-
tion by more accurately identifying Gc through t(·), which also
provides intrinsic interpretability.

8 CONCLUSION

In this work, we focus on the trade-off between generating diverse environments and preserving
invariant substructures. To overcome the limitations in existing studies, we proposed spurious sub-
graph diversification, which maximally randomize the generation of spurious subgraphs to encourage
diversity of the generated environments, along with a graph size constraint to reduce the search space
of spurious subgraphs for more effective environment extrapolation. Our theoretical analysis and
extensive experiments on both synthetic and real-world datasets demonstrate the superiority of our
approach for graph OOD generalization.
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APPENDIX

A NOTATIONS

We present a set of notations used throughout our paper for clarity. Below are the main notations
along with their definitions.

Table 2: Notation Table

Symbols Definitions
G Set of graph datasets
Etr Set of environments used for training
Eall Set of all possible environments
G An undirected graph with node set V and edge set E
V Node set of graph G
E Edge set of graph G
A Adjacency matrix of graph G
X Node feature matrix of graph G
D Feature dimension of node features in X

Gc Invariant subgraph of G
Gs Spurious subgraph of G
Ĝc Estimated invariant subgraph
Ĝs Estimated spurious subgraph
|G| The number of edges in graph G.
E Environmental variable affecting S
Y Target label variable

[K] Index set {1, 2, · · · ,K}
w A vector
W A matrix
W A random variable
W A set

f = ρ ◦ h A GNN model comprising encoder h(·) and classifier ρ(·)
t(·) Learnable data transformation function for structural modifications

G̃ ∼ t(·) A view sampled from t(·), e.g., G̃ ∼ t(·). We may use t(G) to denote a sampled view
from G via t(·), e.g., I(G; t(G))

hv Representation of node v ∈ V of graph G

B MORE BACKGROUND AND PRELIMINARIES

Graph Neural Networks. In this work, we adopt message-passing GNNs for graph classification
due to their expressiveness. Given a simple and undirected graph G = (A,X) with n nodes
and m edges, where A ∈ {0, 1}n×n is the adjacency matrix, and X ∈ Rn×d is the node feature
matrix with d feature dimensions, the graph encoder h : G → Rh aims to learn a meaningful
graph-level representation hG, and the classifier ρ : Rh → Y is used to predict the graph label
ŶG = ρ(hG). To obtain the graph representation hG, the representation h

(l)
v of each node v in a

graph G is iteratively updated by aggregating information from its neighbors N (v). For the l-th layer,
the updated representation is obtained via an AGGREGATE operation followed by an UPDATE
operation:

m(l)
v = AGGREGATE(l)

({
h(l−1)
u : u ∈ N (v)

})
, (12)

h(l)
v = UPDATE(l)

(
h(l−1)
v ,m(l)

v

)
, (13)
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where h
(0)
v = xv is the initial node feature of node v in graph G. Then GNNs employ a READOUT

function to aggregate the final layer node features
{
h
(L)
v : v ∈ V

}
into a graph-level representation

hG:

hG = READOUT
({

h(L)
v : v ∈ V

})
. (14)

C ADDITIONAL RELATED WORK

OOD Generalization. OOD generalization is a critical challenge in machine learning, where models
trained on a specific data distribution often fail to generalize well to unseen distributions. Several
approaches have been proposed to address this issue, including domain generalization, distributional
robustness optimization (DRO), and invariance learning. Domain generalization aims to learn features
that are invariant across different domains or environments. Previous studies, such as Ganin et al.
(2016); Sun & Saenko (2016); Li et al. (2018); Dou et al. (2019), regularize the learned features to be
domain-invariant. DRO methods focus on training models to perform robust against the worst-case
scenarios among diverse data groups. Namkoong & Duchi (2016); Hu et al. (2018); Sagawa et al.
(2019) regularize models to be robust to mild distributional perturbations of the training distributions,
expecting the models to perform well in unseen test environments. Building upon this, Liu et al.
(2022) Zhang et al. (2022b) and Yao et al. (2022) propose advanced strategies to improve robustness
by assuming that models trained with ERM have a strong reliance on spurious features. Invariance
learning leverages the theory of causality Peters et al. (2016); Pearl (2009) and introduces causal
invariance to the learned representations. The Independent Causal Mechanism (ICM) assumption in
causality states that the conditional distribution of each variable given its causes does not inform or
influence other conditional distributions. Despite changes to the intervened variables, the conditional
distribution of intervened variables and the target variable remains invariant. Arjovsky et al. (2020)
proposes the framework of Invariant Risk Minimization (IRM) that allows the adoption of causal
invariance in deep neural networks, inspiring various invariant learning works such as Parascandolo
et al. (2020); Mahajan et al. (2021); Wald et al. (2021); Ahuja et al. (2020; 2021). These works
aim to discard spurious signals while keeping causally invariant signals. However, most of these
methods require explicit environment partitions within the dataset, which is often impractical in
real-world scenarios. To address this limitation, EIIL (Creager et al., 2021) and Heterogeneous Risk
Minimization (HRM) (Liu et al., 2021) propose methods for invariance learning without explicit
environment partitions.

OOD Generalization on Graphs. Recently, there has been a growing interest in learning graph-
level representations that are robust under distribution shifts, particularly from the perspective of
invariant learning. MoleOOD (Yang et al., 2022) and GIL (Li et al., 2022b) propose to infer
environmental labels to assist in identifying invariant substructures within graphs. DIR (Wu et al.,
2022c), GREA (Liu et al., 2022) and iMoLD (Zhuang et al., 2023) employ environment augmentation
techniques to facilitate the learning of invariant graph-level representations. These methods typically
rely on the explicit manipulation of unobserved environmental variables to achieve generalization
across unseen distributions. AIA (Sui et al., 2023) employs an adversarial augmenter to explore OOD
data by generating new environments while maintaining stable feature consistency. To circumvent the
need for environmental inference or augmentation, CIGA (Chen et al., 2022) and GALA (Chen et al.,
2023a) utilizes supervised contrastive learning to identify invariant subgraphs based on the assumption
that samples sharing the same label exhibit similar invariant subgraphs. LECI (Gui et al., 2023)
and G-Splice (Li et al., 2023) assume the availability of environment labels, and study environment
exploitation strategies for graph OOD generalization. LECI (Gui et al., 2023) proposes to learn
a causal subgraph selector by jointly optimizing label and environment causal independence, and
G-Splice (Li et al., 2023) studies graph and feature space extrapolation for environment augmentation,
which maintains causal validity. On the other hand, some works do not utilize the invariance principle
for graph OOD generalization. DisC (Fan et al., 2022) initially learns a biased graph representation
and subsequently focuses on unbiased graphs to discover invariant subgraphs. GSAT (Miao et al.,
2022) utilizes information bottleneck principle (Tishby & Zaslavsky, 2015) to learn a minimal
sufficient subgraph for GNN explainability, which is shown to be generalizable under distribution
shifts. OOD-GNN (Li et al., 2022a) proposes to learn disentangled graph representation by computing
global weights of all data. iSSD also holds significant potential for node-level and link-level OOD
generalization. For example, iSSD could be extended by diversifying the K-hop subgraphs for each

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

node to mitigate spurious correlations. Given the rich node features typically available in node-level
and link-level tasks, further diversification of node features could serve as an enhanced augmentation
strategy. Similarly, constraining the size of ego-networks and adjusting the information density of
node features could improve generalization performance in these tasks, which presents promising
future directions.

Diverse feature learning. Recent studies have shown that ERM tends to encourage models to learn
the simplest predictive features (Hermann & Lampinen, 2020; Kalimeris et al., 2019; Neyshabur
et al., 2014; Pezeshki et al., 2021). This simplicity bias causes the models to rely on simple (spurious)
but non-causal features, ignoring more complex patterns that might be equally predictive. To address
this challenge, RSC (Huang et al., 2020) employs a self-challenging mechanism to force the model to
learn diverse patterns by discarding dominant features, while DivCLS (Teney et al., 2022) constructs
diverse features by training a collection of classifiers with diversity regularization. Additionally,
Zhang et al. (2022a); Chen et al. (2023b) adopt DRO to iteratively explore new features. These works
primarily focus on Euclidean data and take a model-centric approach, whereas our proposed method
is a data-centric approach specifically designed for graph data, which generates diverse negative
feedbacks (spurious subgraphs), from which causal features can be identified.

D ALGORITHMIC PSEUDOCODE

In this section, we provide the pseudocode of our proposed framework iSSD. Our codes will be
made publicly available.

Algorithm 1 The proposed method

Input: Graph dataset G, epochs E, learning rates η, hyperparameters λ1, λ2

Output: Optimized GNN model f∗ = ρ∗ ◦ h∗, and the learnable data transformation function
t∗(·).
Initialize: GNN encoder h(·), classifier ρ(·), and the learnable data transformation t(·).
for epoch e = 1 to E do

for each minibatch B ∈ G do
Calculate wij using Eqn. 4 for each graph G ∈ B
Calculate Le using Eqn. 7
Calculate Ldiv using Eqn. 10
Sample t(G) using the learnable data transformation t(·) for each G ∈ B
Calculate cross-entropy loss LGT using Eqn. 6 with t(G)
Compute the total loss L = LGT + λ1Le + λ2Ldiv

Perform backpropagation to update the parameters of h(·), ρ(·), and t(·)
end for

end for

E PROOFS OF THEORETICAL RESULTS

E.1 PROOF OF THEOREM 3.1

Proof. We begin by decomposing the mutual information I(G;Y ) as λI(G;Y ) + (1− λ)I(G;Y ).
For the first term, denote G̃ ∼ t(G), the following inequalities hold:

I(G;Y ) ≥ I(G̃;Y ) ≥ I(f(G̃);Y ) = H(Y )−H(Y | f(G̃)). (15)

The first and second inequalities leverage the data processing inequality (Cover & Thomas, 2006).
Considering the Markov chain G → G̃ → f(G̃) → Y , the mutual information I(G̃, Y ) cannot
exceed I(G;Y ). Similarly, the transformation f(·), which is constrained by the 1 Weisfeiler-Lehman
test, might not distinguish certain isomorphic substructures. This results in I(f(G̃);Y ) potentially
being lower than I(G̃;Y ) due to reduced distinguishability of these substructures.

For the second term, we can derive the following inequality:
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I(G;Y ) ≥ I(G̃;Y ) = H(G̃)−H(G̃ | Y ). (16)

By combining Eqn. 15 and Eqn. 16, we get:

I(G;Y ) ≥ −λH(Y | f(G̃)) + (1− λ)H(G̃)− (1− λ)H(G̃ | Y ). (17)

We thus conclude the proof for Theorem 3.1.

E.2 PROOF OF PROPOSITION 2

Proof. We begin by expanding the cross-entropy loss LGT as:

LGT = −EG

[
logP(Y | f(G̃))

]
, (18)

where G̃ ∼ t(G). Supposing that |G̃| > |Gc|, which can be controlled by the hyperparameter η
in Eqn. 7, further assume that G̃ does not include the invariant subgraph Gc. Let a subgraph g be
substracted from G̃ and |g| = |Gc|, we then define a new subgraph G′ = G̃ \ g, and we add Gc to G′

to form the new graph G′ ∪Gc.

Under Assumption 1, we know that the invariant subgraph Gc holds sufficient predictive power to Y ,
and Gc is more informative to Y than Gs (Assumption 2), therefore including Gc will always make
the prediction more certain, i.e.,

P(Y | f(G′ ∪Gc)) > P(Y | f(G′ ∪ g)),∀g ⊆ G̃, (19)

As a result, LGT will become smaller. Therefore, we conclude that under the graph size regularization
imposed by Le, the optimal solution G̃ ∼ t(G) will always include the invariant subgraph Gc, while
pruning edges from the spurious subgraph Gs.

E.3 PROOF OF THEOREM 4.1

Proof. We first formally define the notations in our proof. Let l((xi, xj , y,G); θ) denotes the 0-1
loss for the edge eij being presented in graph G, and

L(θ;D) :=
1

n

∑
(xi,xj ,y,G)∼D

l ((xi, xj , y,G) ; θ) ,

L(θ;S) :=
1

n

∑
(xi,xj ,y,G)∼S

l ((xi, xj , y,G) ; θ) ,

(20)

where D and S are training and test distribution, n represents the sample size. Furthermore,

Lc(θ;D) =
1

n

∑
(xi,xj ,y,G)∼D

l((xi, xj , y,Gc) ; θ),∀eij ∈ Gc.

Ls(θ;D) =
1

n

∑
(xi,xj ,y,G)∼D

l ((xi, xj , y,Gs) ; θ) ,∀eij ∈ Gs.

(21)

and Lc(θ;D), Lc(θ;S) can be similarly defined. Lc(θ;S) and Lc(θ;D) will be identically dis-
tributed given Assumption 1 that Gc is stable across different environments, while Ls(θ;D),
Ls(θ;S) will be distributed differently due to Gs. We also assume that: ED[l((xi, xj , y,Gc) ; θ)] =
ES [l((xi, xj , y,Gc) ; θ)], as Gc is stable in training and test environments. Finally, we assume:
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Ls(θ;D) := c |Gs|Lc(θ;D), (22)

which implies that Ls(θ; ·) will be proportional to the size of Gs, when |Gs| = 0 the loss term
Ls(θ;D) = 0 ,and the loss mainly arises from the in-distribution loss Lc(θ;D). Similarly we can
define for Ls(θ;S).

|L(θ;D)− L(θ;S)| = |L(θ;D)− L(θ;S)| (23)
= |Lc(θ;D) + Ls(θ;D)− Lc(θ;S)− Ls(θ;S)| (24)
= |Lc(θ;D)− Lc(θ;S) + Ls(θ;D)− Ls(θ;S)| (25)
≤ |Lc(θ;D)− Lc(θ;S)|+ |Ls(θ;D)− Ls(θ;S)| (26)
= |Lc(θ;D)− Lc(θ;S)|+ c |Gs| |Lc(θ;D)− Lc(θ;S)| . (27)
= (c |Gs|+ 1) |Lc(θ;D)− Lc(θ;S)| . (28)

As in Eqn. 28, Lc(θ; ·) follows the same distribution regardless of the data distributions D or S due
to the stability of Gc across different domains, and for any θ ∈ Θ, l((xi, xj , y,Gc) is bounded in the
range [0, 1], we have:

|Lc(θ;D)− Lc(θ;S)| = |Lc(θ;D)− E [Lc(θ;D)] + E [Lc(θ;S)]− Lc(θ;S)| (29)
≤ |Lc(θ;D)− E [Lc(θ;D)]|+ |E [Lc(θ;S)]− Lc(θ;S)| (30)
≤ |Lc(θ;D)− E [Lc(θ;D)]|+ |E [Lc(θ;S)]− Lc(θ;S)| . (31)

For each term, we can apply Hoeffding’s Inequality:

P (|E [Lc(θ;D)]− Lc(θ;D)| ≥ ϵ) ≤ 2 exp
(
−2ϵ2n

)
, (32)

P (|E [Lc(θ;D)]− Lc(θ;D)| ≥ ϵ for any θ ∈ Θ) ≤
∑
θ∈Θ

2 exp
(
−2ϵ2n

)
, (33)

thus for the first term |E [Lc(θ;D)]− Lc(θ;D)|, we have

P (∃θ ∈ Θ such that |E [Lc(θ;D)]− Lc(θ;D)| ≥ ϵ) ≤ 2|Θ| exp
(
−2ϵ2n

)
. (34)

Similarly, for the second term |E [Lc(θ;S)]− Lc(θ;S)|, we have

P (∃θ ∈ Θ such that |E [Lc(θ;S)]− Lc(θ;S)| ≥ ϵ) ≤ 2|Θ| exp
(
−2ϵ2n

)
. (35)

To upper bound Eqn. 31 with probability 1 − δ, for both terms |E [Lc(θ;D)]− Lc(θ;D)| and
|E [Lc(θ;S)]− Lc(θ;S)|, we set the right hand side of Eqn. 34 and Eqn. 35 as δ/2, that is,

2|Θ| exp
(
−2ϵ2n

)
=

δ

2
⇒ δ = 4|Θ| exp

(
−2ϵ2n

)
. (36)

Therefore, we conclude that with probability at least 1− δ, we have

|Lc(θ;D)− Lc(θ;S)| ≤ 2

√
ln(4|Θ|)− ln(δ)

2n
. (37)

Finally, we get:

|L(θ;D)− L(θ;S)| ≤ 2(c|Gs|+ 1)

√
ln(4|Θ|)− ln(δ)

2n
. (38)
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E.4 PROOF OF THEOREM 4.2

Proof. Our proof consists of the following steps.

Step 1. We start by decomposing E[t∗(G)] into two components: the invariant subgraph Gc and a
partially retained spurious subgraph GP

s .

E[t∗(G)] = E
[
Gc +GP

s

]
= E [Gc] + E

[
GP

s

]
= Gc + E

[
GP

s

] (39)

In Eqn. 39, E [Gc] = Gc is due to that for any given label y, Gc is a constant according to Assump-
tion 1, while GP

s is a random variable.

Step 2. We then model GP
s as a set of independent edges, and calculate the expected total edge

weights of Gc and GP
s respectively. First, we define Wc as the sum of binary random variables

corresponding to the edges in Gc. Each edge eij in Gc is associated with a Bernoulli random variable
Xij such that:

Wc =
∑

eij∈Gc

Xij . (40)

Similarly, we define WP
s as the sum of binary random variables corresponding to the edges in GP

s .
Each edge eij in GP

s is associated with a Bernoulli random variable X ′
ij such that:

WP
s =

∑
eij∈GP

s

X ′
ij . (41)

Wc and WP
s are denoted as random r.v. for the total edge weights of Gc and GP

s .

Step 3. We then calculate the expected edge weights E[Wc] and E[WP
s ] as following.

E[Wc] = E[
∑

eij∈Gc

Xij ] =
∑

eij∈Gc

E[Xij ] = |Gc| , (42)

E[WP
s ] = E[

∑
eij∈GP

s

X ′
ij ] =

∑
eij∈GP

s

E[X ′
ij ] =

|GP
s |
2

=
η|E| − |Gc|

2
. (43)

Here η|E| is the total edge number limits due to Le. In Eqn. 42, E[Xij ] = 1,∀eij ∈ Gc is
due to that P(Xij) = 1, as t∗(G) always include Gc using the results from Prop. 2; In Eqn. 43,
E[X ′

ij ] =
1
2 ,∀eij ∈ GP

s , due to that P(X ′
ij) =

1
2 enforced by the diversification regularization Ldiv .

Therefore, given a suitable η that prunes spurious edges from Gs, 2|Gc| ≫ η|E| − |Gc|, i.e.,
E[t∗(G)] will be dominated by Gc in terms of edge probability mass, therefore, we conclude that
Gc ≈ E[t∗(G)].

F COMPLEXITY ANALYSIS

Time Complexity. The time complexity is O(CkmF ), where k is the number of GNN layers, m is
the total number of edges in graph G, and F is the feature dimensions. Compared to ERM, iSSD
incurs an additional constant C > 1, as it uses a GNN model t(·) for edge selection, and another
GNN encoder h(·) for learning feature representations. However, C is a small constant, hence the
time cost is on par with standard ERM.
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Space Complexity. The space complexity for iSSD is O(C ′|B|mkF ), where |B| denotes the batch
size. The constant C ′ > 1 is due to the additional data transformation t(·). As C ′ is also a small
integer, the space complexity of iSSD is also on par with standard ERM.

G MORE DISCUSSIONS ON GRAPH COMPOSITION STRATEGIES

Existing methods (Li et al., 2024; Sui et al., 2023; Wu et al., 2022c; Liu et al., 2022) typically adopt
an additive formulation to compose the estimated invariant and spurious subgraphs, employing a
model-based (e.g., GNN) subgraph selector. For example, DIR (Wu et al., 2022c) uses the following
formulation for graph composition:

Ec̃ = Topr(M⊙A), Es̃ = Top1−r((1−M)⊙A), (44)

where A denotes the adjacency matrix, M denotes the learnable masking matrix, Ec̃ and Es̃ represent
the edge sets of c̃ and s̃, respectively. Topr(·) selects the top K edges, where K = r× |E|, and r is a
hyper-parameter. Similarly, GREA (Liu et al., 2022) adopts an additive approach using node masking
matrices to distinguish between invariant and spurious nodes.

h(r) = 1⊤
N · (m×H), h(e) = 1⊤

N · ((1N −m)×H) , (45)

where m is the node masking matrix learned by a GNN encoder, H is the node representations
derived from another GNN encoder, 1N is an N -dimensional column vector with all entries equal
to 1, and h(r) and h(e) ∈ Rd are the representation vectors of the rationale subgraph g(r) and the
environment subgraph g(e) respectively. AIA (Sui et al., 2023) also adopts a similar form for graph
augmentation, where the augmented graph is formulated as:

M̃ = (1a −Ma
sta )⊙Ma

adv +Ma
sta , (46)

where Msta represents the masking matrix for stable patterns, and Madv represents masking matrix
for adversarial perturbations for spurious patterns.

All the above methods utilize closed-form graph composition strategies with learnable masking
matrices. This can limit the diversity of the generated environments, due to model bias and restricted
composition form. To address these challenges, we propose spurious subgraph diversification to
maximally randomize the generation of spurious subgraphs to encourage diversity of the generated
environments, which eliminates the use of masking matrices and closed-form composition strategies.

H MORE DETAILS ABOUT EXPERIMENTS

H.1 DATASETS DETAILS

In our experimental setup, we utilize four datasets: GOOD-HIV, GOOD-Motif, OGBG-MolBBBP,
and DrugOOD. The statistics of the datasets are illustrated in Table 3.

GOOD-HIV is a molecular dataset derived from the MoleculeNet (Wu et al., 2018) benchmark,
where the primary task is to predict the ability of molecules to inhibit HIV replication. The molecular
structures are represented as graphs, with nodes as atoms and edges as chemical bonds. Following
Gui et al. (2022), We adopt the covariate shift split, which refers to changes in the input distribution
between training and testing datasets while maintaining the same conditional distribution of labels
given inputs. This setup ensures that the model must generalize to unseen molecular structures that
differ in these domain features from those seen during training. We focus on the Bemis-Murcko
scaffold (Bemis & Murcko, 1996) and the number of nodes in the molecular graph as two domain
features to evaluate our method.

GOOD-Motif is a synthetic dataset designed to test structure shifts. Each graph in this dataset is
created by combining a base graph and a motif, with the motif solely determining the label. The base
graph type and the size are selected as domain features to introduce covariate shifts. By generating
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different base graphs such as wheels, trees, or ladders, the dataset challenges the model’s ability to
generalize to new graph structures not seen during training. We employ the covariate shift split, where
these domain features vary between training and testing datasets, reflecting real-world scenarios
where underlying graph structures may change.

OGBG-Molbbbp is a real-world molecular dataset included in the Open Graph Benchmark (Hu
et al., 2020). This dataset focuses on predicting the blood-brain barrier penetration of molecules, a
critical property in drug discovery. The molecular graphs are detailed, with nodes representing atoms
and edges representing bonds. Following Sui et al. (2023), we create scaffold shift and graph size
shift to evaluate our method. Similarly to Gui et al. (2022), the Bemis-Murcko scaffold (Bemis &
Murcko, 1996) and the number of nodes in the molecular graph are used as domain features to create
scaffold shift and size shift respectively.

DrugOOD (Ji et al., 2022) is designed for OOD challenges in AI-aided drug discovery. This
benchmark offers three environment-splitting strategies: Assay, Scaffold, and Size. In our study,
we adopt the EC50 measurement. Consequently, this setup results in three distinct datasets, each
focusing on a binary classification task for predicting drug-target binding affinity.

Table 3: Details about the datasets used in our experiments.

DATASETS Split # TRAINING # VALIDATION # TESTING # CLASSES METRICS

GOOD-HIV Scaffold 24682 4113 4108 2 ROC-AUC
Size 26169 4112 3961 2 ROC-AUC

GOOD-Motif Base 18000 3000 3000 3 ACC
Size 18000 3000 3000 3 ACC

OGBG-Molbbbp Scaffold 1631 204 204 2 ROC-AUC
Size 1633 203 203 2 ROC-AUC

EC50
Assay 4978 2761 2725 2 ROC-AUC

Scaffold 2743 2723 2762 2 ROC-AUC
Size 5189 2495 2505 2 ROC-AUC

H.2 DETAILED EXPERIMENT SETTING

GNN Encoder. For GOOD-Motif datasets, we utilize a 4-layer GIN (Xu et al., 2018) without Virtual
Nodes (Gilmer et al., 2017), with a hidden dimension of 300; For GOOD-HIV datasets, we employ a
4-layer GIN without Virtual Nodes, and with a hidden dimension of 128; For the OGBG-Molbbbp
dataset, we adopt a 4-layer GIN with Virtual Nodes, and the dimensions of hidden layers is 64; For
the DrugOOD datasets, we use a 4-layer GIN without Virtual Nodes. All GNN backbones adopt sum
pooling for graph readout.

Training and Validation. By default, we use Adam optimizer (Kingma & Ba, 2014) with a learning
rate of 1e− 3 and a batch size of 64 for all experiments. For DrugOOD, GOOD-Motif and GOOD-
HIV datasets, our method is pretrained for 10 epochs with ERM, and for other datasets, we do
not use ERM pretraining. We employ an early stopping of 10 epochs according to the validation
performance for DrugOOD datasets and GOOD-Motif datasets, and do not employ early stopping for
other datasets. Test accuracy or ROC-AUC is obtained according to the best validation performance
for all experiments. All experiments are run with 4 different random seeds, the mean and standard
deviation are reported using the 4 runs of experiments.

Baseline setup and hyperparameters. In our experiments, for the GOOD and OGBG-Molbbbp
datasets, the results of ERM, IRM, GroupDRO, and VREx are reported from Gui et al. (2022),
while the results for DropEdge, DIR, GSAT, CIGA, GREA, FLAG, G-Mixup and AIA on GOOD
and OGBG datasets are reported from Sui et al. (2023). To ensure fairness, we adopt the same
GIN backbone architecture as reported in Sui et al. (2023). For the EC50 datasets and the diverse
feature learning methods (RSC (Huang et al., 2020) and DivCLS (Teney et al., 2022)), we conduct
experiments using the provided source codes from the baseline methods. The hyperparameter search
is detailed as follows.

For IRM and VREx, the weight of the penalty loss is searched over {1e − 1, 1, 1e1, 1e2}. For
GroupDRO, the step size is searched over {1.0, 1e − 1, 1e − 2}. The causal subgraph ratio for
DIR is searched across {1e− 2, 1e− 1, 0.2, 0.4, 0.6}. For RSC, the masking ratio is searched over
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Table 4: Experimental results on SPMotif datasets with 2 invariant subgraphs in each graph.

Method SPMotif (#Gc = 2)

b = 0.40 b = 0.60 b = 0.90

ERM 53.48±3.31 52.59±4.61 56.76±8.06

IRM 52.47±3.63 55.62±7.90 48.66±2.33

VRex 49.68±8.66 48.89±4.79 47.97±2.61

GSAT 59.34±7.96 58.43±10.64 55.68±3.18

GREA 64.87±5.76 67.66±6.29 59.40±10.26

CIGA 69.74±6.81 71.19±2.46 65.83±10.41

AIA 71.61±2.09 72.01±2.13 58.14±4.21

iSSD 70.41±7.53 74.61±3.17 66.75±4.33

{0.2, 0.3, 0.4}. For DivCLS, the number of classifciation headers is searhched over {5, 10, 20},
and the penalty weight of the diversification loss is searched over {1e − 1, 1e − 2, 1e − 3}. For
DropEdge, the edge masking ratio is seached over: {0.1, 0.2, 0.3}. For GREA, the weight of the
penalty loss is tuned over {1e − 2, 1e − 1, 1.0}, and the causal subgraph size ratio is tuned over
{0.05, 0.1, 0.2, 0.3, 0.5}. For GSAT, the causal graph size ratio is searched over {0.3, 0.5, 0.7}. For
CIGA, the contrastive loss and hinge loss weights are searched over {0.5, 1.0, 2.0, 4.0, 8.0}. For DisC,
we search over q in the GCE loss: {0.5, 0.7, 0.9}. For LiSA, the loss penalty weights are searched
over:{1, 1e− 1, 1e− 2, 1e− 3}. For G-Mixup, the augmented ratio is tuned over {0.15, 0.25, 0.5}.
For FLAG, the ascending steps are set to 3 as recommended in the paper, and the step size is searched
over {1e−3, 1e−2, 1e−1}. For AIA, the stable feature ratio is searched over {0.1, 0.3, 0.5, 0.7, 0.9},
and the adversarial penalty weight is searched over {0.01, 0.1, 0.2, 0.5, 1.0, 3.0, 5.0}.

Hyperparameter search for iSSD. For iSSD, the edge budget η in Le is searched over:
{0.5, 0.75, 0.85}; K for the K% edges with lowest probability score for diversification is
searched over:{50, 70, 90}; λ1, λ2 for balancing Le and Ldiv are searched over: {10, 40} and
{1e − 1, 1e − 2, 1e − 3} respectively. The learnable data transformation function t(·) is searched
over {GIN,GCN}, with the number of layers: {2, 3, 4}.

H.3 MORE EXPERIMENTAL RESULTS

We provide more experiment details regarding: (1) Experiment results when there are multiple
invariant substructures in a graph. (2) Effectiveness of iSSD in handling concept shift. (3) Experiment
results for more application domains. (4) Ablation study on ERM pretraining. (5) The capability
of iSSD of identifying spurious edges. (6) Hyperparameter sensitivity analysis on GOODHIV
scaffold, OGBG-Molbbbp, and EC50 assay datasets, in Figure 6. (7) More visualization results on
GOOD-Motif base and GOOD-Motif size in Figure 7 8.

Model performance for graphs with multiple invariant subgraphs. While Assumption 1 assumes
the existence of a single invariant substructure causally related to each target label, many real-world
graph applications (Hu et al., 2020; Gui et al., 2022) may contain multiple such invariant subgraphs.
However, Assumption 1 can be reformulated to accommodate multiple Gc without compromising
the validity of our assumptions and theoretical results. Specifically, suppose there are K invariant
subgraphs, denoted as Gc,i for i ∈ [K]. For any specific Gc,i, the spurious subgraph G′

s can be
redefined as G′

s = Gs ∪ {Gc,j | j ̸= i}. Given this redefinition, and under the presence of Gs,
our assumption I(Gc,i;Y ) > I(G′

s;Y ) holds for any i ∈ [K]. Consequently, the assumptions
and theoretical results presented in this work remain valid, even when multiple Gc exist within the
datasets. To further support our claim, we curated a dataset based on SPMotif (Wu et al., 2022c),
where in the train/valid/test datasets, two invariant substructures are attached to the spurious subgraph.
Our method performs effectively under this scenario, as shown in Table 4.

Effectiveness of iSSD in handling concept shift. Intuitively, diversifying spurious subgraphs helps
weaken the spurious correlations in the training data, thereby facilitating OOD generalization. To
evaluate whether iSSD can indeed facilitate OOD generalization for datasets with concept shift, we
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perform experiments on SPMotif datasets and GOOD-HIV dataset with size shift. The results are
illustrated in Table 5.

Table 5: Model performance on datasets with concept shift.

Method SPMotif GOODHIV-Size

b=0.40 b=0.60 concept

ERM 59.42±2.63 60.45±5.21 63.26
IRM 59.89±4.87 58.10±4.86 59.90
Vrex 61.16±3.06 56.88±1.19 60.23

DisC 57.03±10.42 51.28±9.46 72.69±1.64

GSAT 64.49±1.60 61.27±1.42 56.76±7.16

GREA 62.08±4.63 59.07±5.94 60.07±5.40

CIGA 65.23±3.58 62.17±2.28 73.62±0.86

AIA 65.11±2.47 59.46±6.23 74.21±1.81

iSSD 67.78±3.98 65.50±3.53 79.50±1.57

The results of ERM, IRM and VRex for GOODHIV-size are obtained from Gui et al. (2022). As
shown in the table, our method achieves the best test performance, indicating that iSSD effectively
handles concept shift through spurious subgraph diversification with graph size constraints.

Experiment results on more application domains. To further evaluate the effectiveness of iSSD
across different application domains, we conduct experiments on GOOD-CMNIST (Gui et al., 2022)
and Graph-Twitter (Socher et al., 2013; Yuan et al., 2022) datasets.

Table 6: Test performance on GOOD-CMNIST and Graph-Twitter datasets.

Method CMNIST Graph-Twitter

ERM 28.60±1.87 60.47±2.24

IRM 27.83±2.13 56.93±0.99

Vrex 28.48±2.87 57.54±0.93

DisC 24.99±1.78 48.61±8.86

GSAT 28.17±1.26 60.96±1.18

GREA 29.02±3.26 59.47±2.09

CIGA 32.22±2.67 62.31±1.63

AIA 36.37±4.44 61.10±0.47

iSSD 33.89±1.65 63.37±0.76

As demonstrated in Table 6, iSSD also achieves superior performance in application domains beyond
molecular applications, indicating its superior OOD performance and broad applicability.

Ablation study on ERM pretraining. We conduct ablation study across 5 datasets without using
ERM pretraining. The results are presented in Table 7. As illustrated, incorporating ERM pretraining
improves OOD performance in most cases, as the GNN encoder is able to learn useful representations
before incorporating Le and Ldiv to train t(·). Intuitively, this facilitates the optimization of t(·),
therefore improving the test performance.

Table 7: Ablation study on test datasets.

Motif-basis Motif-size EC50-Assay EC50-Sca HIV-size

w/ pretrain 91.48±0.40 66.53±8.55 78.01±0.42 67.56±1.63 64.99±1.63

wo/ pretrain 91.04±0.76 61.48±8.29 76.58±2.14 66.19±1.56 65.46±1.85

The capability of iSSD of identifying spurious edges. To verify the ability of iSSD to identify
spurious edges while preserving critical edges in Gc, we conduct experiments and provide empirical
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results on Recall@K and Precision@K on GOODMotif datasets. As illustrated in Table 8, iSSD
is able to identify a subset of spurious edges with precision higher than 90% across all datasets,
even with K = 50, indicating that iSSD can preserve Gc in the augmented graph samples, therefore
improve the quality of generated graph samples.

Table 8: Recall@K and Precision@K for Motif-base and Motif-size datasets.

K% Motif-base Motif-size

Recall Precision Recall Precision

10% 0.1467 1.0000 0.0963 0.9199
20% 0.3076 0.9831 0.2023 0.9602
30% 0.4556 0.9465 0.3093 0.9735
40% 0.6056 0.9374 0.4153 0.9801
50% 0.7356 0.9017 0.5243 0.9841

H.4 SOFTWARE AND HARDWARE

We run all the experiments using PyTorch (Paszke et al., 2019) (version: 2.1.2) and PyTorch Geomet-
ric (Fey & Lenssen, 2019) (version: 2.4.0) on Linux servers with RTX 4090 and CUDA 11.8.
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(a). Hyperparameter sensitivity on GOODHIV scaffold.

(b). Hyperparameter sensitivity on OGBG-Molbbbp size.

(c). Hyperparameter sensitivity on EC50 assay.

Figure 6: Hyperparameter sensitivity analysis across different datasets.
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Figure 7: More visualization results on Motif-base dataset. The blue nodes are ground-truth nodes
in Gc, and red nodes are ground-truth nodes in Gs. The highlighted blue edges are top-K edges
predicted by t∗(·), where K is the number of ground-truth causal edges in a graph.
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Figure 8: More visualization results on Motif-size dataset. The blue nodes are ground-truth nodes
in Gc, and red nodes are ground-truth nodes in Gs. The highlighted blue edges are top-K edges
predicted by t∗(·), where K is the number of ground-truth causal edges in a graph.
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