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Abstract

Current approaches to learning cooperative multi-agent behaviors assume rela-
tively restrictive settings. In standard fully cooperative multi-agent reinforcement
learning, the learning algorithm controls all agents in the scenario, while in ad
hoc teamwork, the learning algorithm usually assumes control over only a single
agent in the scenario. However, many cooperative settings in the real world are
much less restrictive. For example, in an autonomous driving scenario, a company
might train its cars with the same learning algorithm, yet once on the road, these
cars must cooperate with cars from another company. Towards expanding the
class of scenarios that cooperative learning methods may optimally address, we
introduce N -agent ad hoc teamwork (NAHT), where a set of autonomous agents
must interact and cooperate with dynamically varying numbers and types of team-
mates. This paper formalizes the problem, and proposes the Policy Optimization
with Agent Modelling (POAM) algorithm. POAM is a policy gradient, multi-agent
reinforcement learning approach to the NAHT problem that enables adaptation to
diverse teammate behaviors by learning representations of teammate behaviors.
Empirical evaluation on tasks from the multi-agent particle environment and Star-
Craft II shows that POAM improves cooperative task returns compared to baseline
approaches, and enables out-of-distribution generalization to unseen teammates.

1 Introduction

Advances in multi-agent reinforcement learning (MARL) [3] have enabled agents to learn solutions
to various problems in zero-sum games, social dilemmas, adversarial team games, and cooperative
tasks [37, 8, 19, 21, 33]. Within MARL, cooperative multi-agent reinforcement learning (CMARL)
is a paradigm for learning agent teams that solve a common task via interaction with each other and
the environment [22, 28, 46]. Recent CMARL methods have been able to learn impressive examples
of cooperative behavior from scratch in controlled settings, where all agents are controlled by the
same learning algorithm [33, 38, 4]. A related paradigm for learning cooperative behavior is ad hoc
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Figure 1: Left: CMARL algorithms assume full control over all M agents in a cooperative scenario.
Center: AHT algorithms assume that only a single agent is controlled by the learning algorithm,
while the other M − 1 agents are uncontrolled and can have a diverse, unknown set of behaviors.
Right: NAHT, the paradigm proposed by this paper, assumes that a potentially varying N agents are
controlled by the learning algorithm, while the remaining M −N agents are uncontrolled.

teamwork (AHT). In contrast to CMARL, the objective of AHT is to create a single agent policy that
can collaborate with previously unknown teammates to solve a common task [27, 39].

While a large and impressive body of work on CMARL and AHT exists, the current literature has
largely examined scenarios in which either complete control over all agents is assumed, or only
a single agent is adapted for cooperation [33, 38, 21, 4, 15]. Even learning methods for handling
cooperative tasks in open multiagent systems [46], which encompass one of the most challenging
settings where agents may enter or leave the system anytime, either operate assuming full control
over all agents [17, 23] or only a single adaptive agent [31, 18, 32].

However, real-world collaborative scenarios—e.g. search-and-rescue, or robot fleets for warehouses—
might demand agent subteams that are able to collaborate with unfamiliar teammates that follow
different coordination conventions. Towards producing agent teams that are more flexible and
applicable to realistic cooperative scenarios, this paper formalizes the problem setting of N -agent ad
hoc teamwork (NAHT), in which a set of autonomous agents must interact with an uncontrolled
set of teammates to perform a cooperative task. When there is only a single ad hoc agent, NAHT
is equivalent to AHT. On the other hand, when all ad hoc agents are jointly trained by the same
algorithm and there are no uncontrolled teammates, NAHT is equivalent to CMARL. Thus, the
proposed problem setting generalizes both CMARL and AHT.

Drawing from ideas in both CMARL and AHT, we introduce Policy Optimization with Agent
Modelling (POAM). POAM is a policy-gradient based approach for learning cooperative multi-agent
team behaviors, in the presence of varying numbers and types of teammate behaviors. It consists
of (1) an agent modeling network that generates a vector characterizing teammate behaviors, and
(2) an independent actor-critic architecture, which conditions on the learned teammate vectors to
enable adaptation to a variety of potential teammate behaviors. Empirical evaluation on multi-agent
particle environment (MPE) and StarCraft II tasks shows that POAM learns to coordinate with a
changing number of teammates of various types, with higher competency than CMARL, AHT, and
naive NAHT baseline approaches. An evaluation with out-of-distribution teammates also reveals that
POAM’s agent modeling module improves generalization to out-of-distribution teammates, compared
to baselines without agent modeling.

2 Background and Notation

The NAHT problem is formulated within the framework of Decentralized Partially Observable
Markov Decision Processes, or Dec-POMDPs [7]. A Dec-POMDP consists of M agents, a state
space S, action space A, per-agent observation spaces Oi, transition function T : S × A 7→ ∆(S)
2, common reward function r : S × A 7→ ∆(R) (thus defining a cooperative task), discount factor
γ ∈ [0, 1] and horizon T ∈ Z, which represents the maximum length of an interaction, or episode.
Each agent observes the environment via its observation function, Oi : S ×A 7→ ∆(Oi). The state
space is factored such that S = S1 × · · · × SM , where Si for i ∈ {1 · · ·M} corresponds to the state
space for agent i. The action space is defined analogously. Denoting Hi as its space of localized
observation and action histories, agent i acts according to a policy, πi : Hi 7→ ∆(Ai). The notation
−i represents all agents other than agent i, and is applied throughout the paper to the mathematical

2∆(S) denotes the space of probability distributions over set S.
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objects introduced above. For example, the notation O−i refers to the cross product of the observation
space of all agents other than i. In the following, we overload r to refer to both the reward function,
and the task defined by that reward function, whereas rt denotes the reward at time step t.

3 NAHT Problem Formulation

Drawing from the goals of MARL and AHT [39], the goal of N -agent ad hoc teamwork is to create a
set of autonomous agents that are able to efficiently collaborate with both known and unknown
teammates to maximize return on a task. The goal is formalized below.

Let C denote a set of ad hoc agents. If the policies of the agents in C are generated by an algorithm,
we say that the algorithm controls agents in C. Since our intention is to develop algorithms for
generating the policies of agents in C, we refer to agents in C as controlled. Let U denote a set of
uncontrolled agents, which we define as all agents in the environment not included in C.3 Following
Stone et al., we assume that agents in U are not adversarially minimizing the objective of agents in C.

We model an open system of interaction, in which a random selection of M agents from sets C and U
must coordinate to perform task r. For illustration, consider a warehouse staffed by robots developed
by companies A and B, where there is a box-lifting task that requires three robots to accomplish. If
Company A’s robots are controlled agents (corresponding to C), then some robots from Company A
could collaborate with robots from Company B (corresponding to U ) to accomplish the task, rather
than requiring that all three robots come exclusively from A or B. Motivated thus, we introduce
a team sampling procedure X(U,C). At the beginning of each episode, X samples a team of M
agents by first sampling N < M , then sampling N agents from the set C and M −N agents from U .
We restrict consideration to teams containing at least one controlled agent, i.e N ≥ 1. We consider X
a problem parameter that is not under the control of any algorithm for generating ad hoc teammates,
analogous to the transition function of the underlying Dec-POMDP. A more explicit definition of X
is provided in Appendix A.1.

Without loss of generality, let C(θ) = {πθ
i (.|s)}Ni=1 denote a set of M controlled agent policies

parameterized by θ, such that a learning algorithm might optimize for θ. Let the π(M) indicate a
team of M agents and π(M) ∼ X(U,C) indicate sampling such a team from U and C via the team
sampling procedure. The objective of the NAHT problem is to find parameters θ, such that C(θ)
maximizes the expected return in the presence of teammates from U :

max
θ

(
Eπ(M)∼X(U,C(θ))

[
T∑

t=0

γtrt

])
. (1)

Challenges of the NAHT problem include: (1) coordinating with potentially unknown teammates
(generalization), and (2) coping with a varying number of uncontrolled teammates (openness).

4 The Need for Dedicated NAHT Algorithms

Having introduced the NAHT problem, a natural question to consider is whether AHT solutions
may optimally address NAHT problems. If so, then there would be little need to consider the
NAHT problem setting. For instance, a simple yet reasonable approach consists of directly using an
AHT policy to control as many agents as required in an NAHT scenario. This section illustrate the
limitations of the aforementioned approach by giving a concrete example of a matrix game where
(1) an AHT policy that is learned in the AHT (N = 1) scenario is unlikely to do well in an NAHT
scenario where N = 2, and (2) even an optimal AHT policy is suboptimal in the N = 2 setting.

Define the following simple game for M agents: at each turn, each agent ai picks one bit bi ∈ {0, 1};
at the end of each turn, all the bits are summed s =

∑
i bi. The team wins if the sum of the chosen

bits is exactly 1. We denote the probability of winning by P (s = 1). Suppose the uncontrolled agents

3The original AHT problem statement used the terms “known” and “unknown” agents. However, it is
common for modern AHT learning methods to assume some knowledge about the “unknown” teammates during
training [27]. Thus, we instead employ the terms controlled and uncontrolled.
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follow a policy that independently selects 1 with probability p = 1
M .4 In the following, we consider

the three agent case, M = 3, for simplicity.

In the AHT problem setting, a learning algorithm assumes control of only a single agent. Let paht
denote the probability with which the AHT agent selects 1. Given the aforementioned team of
uncontrolled agents, we show that any value of paht results in the same probability of winning, which
occurs because the probability of winning, P (s = 1) = 4

9 , is independent of paht (Lemma A.2).

Next, consider an NAHT scenario where a learning algorithm must define the actions of two out of
three agents. Suppose that the same AHT policy is used to control both agents: both agents select 1
with probability paht. Above, we demonstrated that an AHT algorithm trained in the N = 1 scenario
could result in learning any paht. However, in the N = 2 setting, we show that the optimal AHT
policy paht =

1
3 and the winning probability for this policy is P (s = 1) = 4

9 (Lemma A.3).

Finally, we show there exists an NAHT policy that controls both agents and obtains a higher winning
probability. Consider the policy where one controlled agent always plays 0, while the other plays 1
with probability pnaht. Lemma A.4 shows that the optimal pnaht = 1, and the probability of winning
P (s = 1) = 2

3 > 4
9 . Thus, we have exhibited an NAHT scenario where an AHT policy that is optimal

when N = 1, performs worse than a simple NAHT joint policy in the N = 2 setting. Empirical
validation of the prior results are provided in Appendix A.5.1.

5 Policy Optimization with Agent Modeling (POAM)

Team Policy

POAM

  decoderencoder  
target

Agent Modeling Network

Policy  Network Value Network

Figure 2: POAM trains a single policy network πθp ,
which characterizes the behavior of all controlled agents
(green), while uncontrolled agents (yellow) are drawn
from U . Data from both controlled and uncontrolled
agents is used to train the value network, V θc

i while the
policy is trained on data from the controlled agents only.
The policy and value function are both conditioned on a
learned team embedding vector, eti.

This section describes the proposed Pol-
icy Optimization with Agent Modeling
(POAM) method, which trains a collection
of NAHT agents that can adaptively deal
with different collections of unknown team-
mates. POAM relies on an agent model-
ing network to initially build an embedding
vector characterizing teammates encoun-
tered during an interaction. Adaptive agent
policies that can maximize the controlled
agents’ returns are then learned by train-
ing a policy conditioned on the environ-
ment observation and team embedding vec-
tor. To enable controlling a varying num-
ber of agents while learning in a sample-
efficient manner, POAM adopts the inde-
pendent learning framework with full pa-
rameter sharing. The training processes for
agent modeling and policy networks are de-
scribed in Sections 5.1 and 5.2 respectively,
while an illustration of how POAM trains
NAHT agents is provided in Figure 2.

5.1 Agent Modeling Network

Designing adaptive policies that enable
NAHT agents to achieve optimal returns against any team of uncontrolled agents drawn from
some set U , requires information on the encountered team’s unknown behavior. However, in the
absence of prior knowledge about uncontrolled teammates’ policies, local observations from a single
timestep may not contain sufficient information regarding the encountered team. To circumvent
this lack of information, POAM’s agent modeling network plays a crucial role in providing team
embedding vectors that characterize the observed behavior of teammates in the encountered team.

We identify two main criteria for desirable team embedding vectors. First, team embedding vec-
tors should identify information regarding the unknown state and behavior of other agents in the
environment (both controlled and uncontrolled). Second, team embedding vectors should ideally

4Lemma A.1 shows that p = 1
M

is the optimal value of p for a team composed of such agents.
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be computable from the sequence of local observations and actions of the team. Fulfilling both
requirements provides an agent with useful information for decision-making in NAHT problems,
even under partial observability.

For each controlled agent, POAM produces informative team embedding vectors by training a
model with an encoder-decoder architecture, illustrated by red components in Figure 2. For ease
of presentation, the encoder-decoder models for controlled agent i will be referred to without the
index i. The encoder, f enc

θe : Hi 7→ Rn, is parameterized by θe and processes the modeling agent’s
history of local observations and actions up to timestep t, ht

i = {oki , a
k−1
i }tk=1, to compute a team

embedding vector of dimension n, eti ∈ Rn that characterizes the modeled agents. This reliance on
local observations helps ensure that the agent modeling network can operate without having access to
the environment state that is unavailable under partial observability. The team embedding vector is
decoded by two decoder networks: the observation decoder, f dec

θo : Rn 7→ O−i and the action decoder,
f dec
θa : Rn 7→ ∆(A−i). The decoder networks are respectively trained to predict the observations

and actions of all other agents on the team at timestep t, (ot−i, a
t
−i), to encourage eti to contain

relevant information for the current NAHT agent’s decision-making process. While the observation
decoder directly predicts the observed −i observations, the action decoder predicts the parameters of
a probability distribution over the −i agents’ actions, p(at−i; f

dec
θa (f enc

θe (ht
i))), where an appropriate

distribution for p should be selected by the system designer.

Concretely, agent i’s encoder-decoder model is trained to minimize a maximum likelihood loss
over all teammates’ observations and actions, given its own local observations and actions. As
the experimental setting in this paper considers continuous observations and discrete actions, the
observation loss is a mean squared error loss, while the action loss is the negative log likelihood of
the −i agents’ actions, under the Categorical distribution.

Lθe,θo,θa(ht
i, o

t
−i, a

t
−i) =

(
||f dec

θo (f enc
θe (ht

i))− ot−i||2 − log(p(at−i; f
dec
θa (f enc

θe (ht
i))))

)
. (2)

5.2 Policy and Value Networks

POAM relies on an actor-critic approach to train agent policies, where the policy and critic are both
conditioned on the teammate embedding described in Section 5.1.

The policy network of agent i, πθp

i : Hi ×Rn 7→ ∆(Ai), is parameterized by θp, and uses the NAHT
agent’s local observation, oti, and the team embedding from the encoder network, eti, to compute a
policy followed by the NAHT agents. Conditioning the policy network on eti allows an NAHT agent
to change its behaviour based on the inferred characteristics of encountered agents. When training the
policy network, we also rely on a value (or critic) network, V θc

i : Hi × Rn 7→ R, parameterized by
θc, which measures the expected returns given ht

i, and eti. The value network serves as a baseline to
reduce the variance of the gradient updates, while conditioning on the learned teammate embeddings
for similar reasons to the policy.

POAM then trains the policy and value networks using an approach based on the Independent PPO
algorithm [45] (IPPO). IPPO is selected as the base MARL algorithm for two reasons. First, using
an independent MARL method circumvents the need to deal with the changing number of agents
resulting from environment openness. Second, IPPO has been demonstrated to be effective on various
MARL tasks. To improve learning efficiency and enable information sharing between agents, full
parameter sharing is employed for all neural networks. POAM trains the value network to produce
accurate state value estimates by minimizing the following loss function:

Lθc(ht
i) =

1

2

(
V θc

i (ht
i, f

enc
θe (ht

i))− V̂i
t
)2

, (3)

where V̂i
t

is the TD(λ) return. The policy network is analogously trained to minimize the PPO loss
function [35], but where the policy additionally conditions on the team embeddings.

Leveraging data from uncontrolled agents In the NAHT setting, we assume access to the joint
observations and actions generated by the current team deployed in the environment at training
time only, where the team consists of a mix of controlled and uncontrolled agents. This assumption
provides an opportunity to learn useful cooperative behaviors more quickly, by bootstrapping based
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on transitions from the initially more competent, uncontrolled teammate policies, as also observed by
Rahman et al. [31].

POAM leverages data from both controlled and uncontrolled agents to train the value network—in
effect, treating the uncontrolled agents as exploration policies. Note that this aspect of POAM is
a significant departure from PPO, which is a fully on-policy algorithm. Since the policy update is
highly sensitive to off-policy data, only data from the controlled agents is used to train the policy
network.

6 Experiments and Results

This section presents an empirical evaluation of POAM and baseline approaches across different
NAHT problems. We investigate three questions and foreshadow the conclusions:

Q1: Does POAM learn to cope with uncontrolled teammates with higher sample efficiency and
asymptotic return than baselines? (Usually)
Q2: Does POAM improve generalization to previously unseen and out-of-distribution teammates,
compared to baselines? (Yes)
Q3: Can we verify that the two key ideas of POAM—agent modelling and use of data from
uncontrolled agents—work as desired and contribute positively towards POAM’s performance? (Yes)

Full implementation details, including hyperparameter values and additional empirical results, appear
in the Appendix. Our code is available at https://github.com/carolinewang01/naht.

6.1 Experimental Design

In the following, we summarize the experimental design, including the particular NAHT problem
instance, training procedure, experimental domain, and baselines. Details on evaluation metrics are
provided in Appendix A.3.3.

A Practical Instantiation of NAHT Similarly to AHT, the NAHT problem can be parameterized
by the amount of knowledge that controlled agents have about uncontrolled agents, and whether
uncontrolled agents can adapt to the behavior of controlled agents [5]. Furthermore, as a direct result
of the fact that an NAHT algorithm may control more than a single agent, the NAHT problem may
also be parameterized by whether the controlled agents are homogeneous, whether they can com-
municate, and what the team sampling procedure is. While the fully general problem setting allows
for heterogeneous, communicating, controlled agents that have no knowledge of the uncontrolled
agents, as a first step, this paper focuses on a special case of the NAHT problem, where agents are
homogeneous, non-communicating, may learn about uncontrolled agents via interaction, and where
the team sampling procedure consists of a uniform random sampling scheme from U and C (see
Appendix A.3.1 for details). This case is designed primarily to assess whether controlled subteams
may outperform independent controlled agents, when cooperating with multiple types of uncontrolled
agents. We leave consideration of broader NAHT scenarios for future work.

Generating Uncontrolled Teammates To generate a set of uncontrolled teammates U , the follow-
ing MARL algorithms are used to train agent teams: VDN [41], QMIX [33], IQL [42], IPPO, and
MAPPO [45]. We verify that the generated team behaviors are diverse by checking that (1) teams
trained by the same algorithm learn non-compatible coordination conventions, and (2) teams trained
by different algorithms also learn non-compatible coordination conventions (Appendix A.5.2). The
emergence of diverse teammate behaviors from training agents using different MARL algorithms
under different seeds aligns with the findings from Strouse et al. [40].

Let Utrain denote the set of uncontrolled teammates used to train all (N)AHT methods. Utrain

consists of five teams, where each individual team is trained via VDN, QMIX, IQL, IPPO and
MAPPO, respectively. Utest consists of a set of holdout teams trained via the same MARL algorithms,
but that have not been seen during training. The experimental results reported in Sections 6.2 and 6.4
are computed with respect to Utrain only, while the experimental results in Section 6.3 use Utest.

Experimental Domains Experiments are conducted on a predator-prey mpe-pp task implemented
within the multi-agent particle environment [24], and the 5v6, 8v9, 10v11, 3s5z tasks from the
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Figure 3: POAM consistently improves over the baselines of IPPO-NAHT, POAM-AHT, and the best
naive MARL baseline in all tasks, in either sample efficiency or asymptotic return.

StarCraft Multi-Agent Challenge (SMAC) benchmark [34]. On the mpe-pp task, three predators
must cooperatively pursue a pretrained prey agent. The team receives a reward of +1 per time step
that two or more predators collide with the prey. On the SMAC tasks, a team of allied agents must
defeat a team of enemy agents controlled by the game server. For each task, the first number in the
task name indicates the number of allied agents, while the second indicates the number of enemy
agents. The team is rewarded for defeating enemies, with a large bonus for defeating all enemies.
See Appendix A.3.2 for full details.

Baselines As NAHT is a new problem proposed by this paper, there are no prior algorithms that are
directly designed for the NAHT problem. Therefore, we construct three baselines to contextualize
the performance of POAM. All methods employ full parameter sharing [30].

• Naive MARL: various well-known MARL algorithms are considered, including both independent
and centralized training with decentralized execution algorithms [14]. The algorithms evaluated
here include IQL [10], VDN [41], QMIX [33], IPPO, and MAPPO [45]. The MARL baselines are
trained in self-play and then evaluated in the NAHT setting. In the following, only the performance
of the best naive MARL baseline is reported.

• Independent PPO in the NAHT setting (IPPO-NAHT): IPPO is a policy gradient MARL algorithm
that directly generalizes PPO [35] to the multi-agent setting. It was found to be surprisingly effective
on a variety of MARL benchmarks [45]. In contrast to the naive MARL baselines, IPPO-NAHT
is trained using the NAHT training scheme presented in Section 6.1. The variant considered here
employs full parameter sharing, where the actor is trained on data only from controlled agents,
but the critic is trained using data from both controlled and uncontrolled agents. The latter detail
is a key algorithmic feature which POAM also employs, but is an extension from the most naive
version of PPO (see Section 6.4). IPPO can be considered an ablation of POAM, where the agent
modeling module is removed.

• POAM in the AHT setting (POAM-AHT): As considered in Section 4, a natural baseline approach
to the NAHT problem is to use AHT algorithms that train only a single controlled agent, and copy
these policies as many times as needed in the NAHT setting. To evaluate the intuition that AHT
policies do not suffice for the NAHT problem setting, we consider an AHT version of POAM
that is trained identically to POAM, but where the number of controlled agents is always one
(N = 1) during training. Note that POAM-AHT is equivalent to the AHT algorithm introduced
by Papoudakis et al. [29], LIAM.

6.2 Main Results

This section addresses Q1—that is, whether POAM learns to cope with uncontrolled teammates with
greater sample efficiency or asymptotic returns, compared to baselines. Figure 3 shows the learning
curves of POAM and IPPO-NAHT, and the test returns achieved by the best naive MARL baseline
and POAM-AHT, on all tasks.5 All learning curves consist of the mean test returns across five trials,
while the shaded regions reflect the 95% confidence intervals.

We find that for all tasks, POAM outperforms baselines in terms of asymptotic return for three out
of five tasks (mpe-pp, 5v6, 3s5z). For all tasks, POAM’s initial sample efficiency is similar to
that of IPPO-NAHT for the first few million steps of training, after which POAM displays higher
return. We attribute the initial similarity in sample efficiency to the initial cost incurred by learning
team embedding vectors, which once learned, improves learning efficiency. IPPO-NAHT, which

5See the Appendix for tables providing the performances of all naive MARL methods, across all tasks.
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can be viewed as an ablation of POAM with no agent modeling, is the next best performing method.
Although IPPO-NAHT has generally poorer sample efficiency than POAM, the method converges to
approximately the same returns on two out of five tasks (8v9 and 10v11). While the agent modeling
module of POAM provides team embedding vectors to the policy learning process, the embeddings
are themselves produced from each agent’s own observation. Since no additional information is
provided to POAM agents, it is unsurprising that IPPO-NAHT can converge to similar solutions as
POAM, given enough training steps.

ippo iql mappo qmix vdn
Target Algorithms
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Figure 4: Test returns achieved by
POAM and IPPO-NAHT, when
paired with out-of-distribution
teammates. POAM has improved
generalization to OOD teammates,
compared with IPPO-NAHT.

Finally, while the best naive MARL baseline and POAM-AHT
learn good solutions on some tasks, neither method consistently
performs well across all tasks. Overall, POAM discovers the
most consistently performant policies compared to baseline
methods, in a relatively sample-efficient manner. We conclude
that (1) agent modeling improves learning efficiency, and (2)
direct duplication of AHT-trained policies is less effective than
methods that co-train agents for NAHT.

6.3 Out of Distribution Generalization

The AHT literature commonly assumes that uncontrolled team-
mates of interest may be interacted directly with during training
[29, 6, 31]; experiments in the prior section were conducted
under this assumption. However, in realistic scenarios, it may
be challenging to enumerate all teammates likely to be encoun-
tered in the wild. This section examines the effectiveness of
POAM under a true NAHT evaluation scenario, where POAM
agents must coordinate with teammates that were not available
at training time and are out-of-distribution (OOD) (Q2). Here, OOD teammates are created by running
MARL algorithms with different random seeds than those used to generate train-time teammates.

Figures 4 and 10 show the mean and 95% confidence intervals of the test return achieved by POAM,
compared to IPPO-NAHT, when the algorithm in question is paired with previously unseen seeds
of IPPO, IQL, MAPPO, QMIX, and VDN. For each type of teammate, the performance of IPPO-
NAHT/POAM against the exact teammates seen during training is shown as the in-distribution
baseline. Both POAM and IPPO-NAHT consistently exhibit reduced performance against the OOD
teammates, compared to their respective in-distribution performances. In three out of five tasks
(mpe, 5v6, 3s5z), POAM has a significantly higher return than IPPO-NAHT, while the remaining
two tasks exhibit a smaller improvement. In Appendix A.5.3, similar findings are presented with
an alternative OOD teammate generation strategy, where the set of five MARL algorithms used to
generate uncontrolled teammates (IPPO, IQL, MAPPO, QMIX, VDN) are divided into train/test sets.

6.4 A Closer Look at POAM

Two key aspects of POAM are the teammate modeling module, and the use of data from uncontrolled
agents to train the critic (Q3). We study the impact of both aspects on POAM’s sample efficiency,
focusing on the mpe-pp and 5v6 tasks. Results on 5v6 may be found in Appendix A.4.

Teammate modeling performance In the NAHT training/evaluation setting, a new set of team-
mates is sampled at the beginning of each episode. Therefore, an important subtask for a competent
NAHT agent is to rapidly model the distribution and type of teammates at the beginning of the episode,
to enable the policy to exploit that knowledge as the episode progresses. This task is especially
challenging in the presence of partial observability (a property of the SMAC tasks). To address the
above challenges, POAM employs a recurrent encoder, which encodes the POAM agent’s history
of observations and actions to an embedding vector, and a (non-recurrent) decoder network, which
predicts the egocentric observations and action distribution for all teammates.
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Figure 5: Evolution of a POAM agent’s within-
episode mean squared error (left) and within-episode
probability of actions of modeled teammates (right),
over the course of training on mpe-pp.

A natural question then, is whether the
learned teammate embedding vectors actu-
ally improve over the course of an episode.
Figures 5 and 8 depict the within-episode
mean squared error (MSE) of the observa-
tion predicted by the decoder, and the within-
episode probability of the action actually
taken by the modeled teammates, according
to the decoder’s modeled action distribution.
Each curve corresponds to a different training
checkpoint of a single run.

For both tasks, we observe that the average
MSE decreases over the course of training,
while the average probability of the taken
actions increases. For later training check-
points, we observe that the average MSE ac-
tually decreases within an episode, while the
average probability increases, reflecting the

increased confidence of the agent modelling module as more data is observed about teammates. Thus,
we conclude that POAM is able to cope with the challenges introduced by the sampled teammates
and partial observability, to learn accurate teammate models.

Impact of data from non-controlled agents Recall that both POAM and IPPO-NAHT update the
value network using data from both the controlled and uncontrolled agents. As Figures 6 and 9 show,
this algorithmic feature results in a significant performance gain over training using on-policy data
only, for both POAM and IPPO-NAHT.

7 Related Works
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Figure 6: Learning curves of
POAM and IPPO-NAHT, where
the value network is trained w/w.o.
uncontrolled agents’ data (UCD).

This section summarizes literature in areas most closely related
to NAHT, namely, ad hoc teamwork, zero-shot coordination,
evaluation of cooperative capabilities, agent modeling, and
CMARL.

Ad Hoc Teamwork & Zero-Shot Coordination. Prior works
in ad hoc teamwork [39] and zero-shot coordination (ZSC) [16]
explored methods to design adaptive agents that can optimally
collaborate with unknown teammates. While they both highly
resemble the NAHT problem, existing methods for AHT [31,
27] and ZSC [16, 25] have been limited to single-agent control
scenarios. We argue that direct, naive applications of AHT and
ZSC techniques to our problem of interest are ineffective—see
the discussion in Section 4 and results in Section 6.

Recent research in AHT and ZSC utilizes neural networks to
improve agent collaboration within various team configurations.
These recent works mostly focus on two approaches. The first approach trains the agent to adapt
to unknown teammates by characterizing teammates’ behavior as fixed-length vectors using neural
networks and learning a policy network conditioned on these vectors [31, 29, 47]. The second
designs teammate policies that maximize the agent’s performance when collaborating with diverse
teammates [25, 31]. Our work builds on the first category, extending it to control multiple agents
amid the existence of unknown teammates. While this also offers a potential path for robust NAHT
agents, designing teammate policies for training will be kept as future work.

Evaluating Agents’ Cooperative Capabilities. Beyond training agents to collaborate with team-
mates having unknown policies, researchers have developed environments and metrics to assess
cooperative abilities. The Melting Pot suite [20, 1] mostly evaluates controlled agents’ ability to
maximize utilitarian welfare against unknown agents. However, this evaluation suite focuses on
mixed-motive games where agents may have conflicting goals. This contrasts with our work’s scope
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of fully cooperative settings, where all agents share the same reward function. MacAlpine et al. [26]
also explored alternative metrics to measure agents’ cooperative capabilities while disentangling the
effects of their overall skills in drop-in RoboSoccer.

Agent Modeling. Agent modeling enables agents to characterize other agents based on their
actions [2]. Such characterizations could attempt to directly infer modeled agents’ actions, goals [13],
or policies [29]. The modeled attributes have been used in cooperative, competitive, and general sum
settings to inform update rules [11, 36] or to directly inform decision making [29]. POAM relies on
agent modeling to provide important teammate information for decision-making when collaborating
with unknown teammates.

Cooperative MARL (CMARL). CMARL explores algorithms for training agent teams on fully
cooperative tasks. Some existing methods focus on credit assignment and decentralized control [12,
33]. Other works in CMARL also leverage parameter sharing and role assignment (e.g., [9, 44]) to
decide an optimal division of labor between agents. However, these techniques assume control over
all existing agents during training and evaluation, which limits their effectiveness in settings with
unseen or uncontrolled teammates, as shown in prior work [43, 16, 31].

8 Conclusion

This paper proposes and formulates the problem of N -agent ad hoc teamwork (NAHT), a generaliza-
tion of both AHT and MARL. It further proposes a multi-agent reinforcement learning algorithm
to train NAHT agents called POAM, and develops a procedure to train and evaluate NAHT agents.
POAM is a policy gradient approach that uses an encoder-decoder architecture to perform teammate
modeling, and leverages data from uncontrolled agents for policy optimization. Empirical validation
on MPE and StarCraft II tasks shows that POAM consistently improves over baseline methods that
naively apply existing MARL and AHT approaches, in terms of sample efficiency, asymptotic return,
and generalization to out-of-distribution teammates.

Limitations and Future Work. This paper addresses a special case of the NAHT problem, with
homogeneous and non-communicating agents. POAM, which employs full parameter sharing, may
not perform well in settings with heterogeneous agents, or in settings that require highly differentiated
roles. POAM also does not leverage centralized state information or allow communication between
controlled agents. Incorporating this information might enable learning improved NAHT policies.
Further, POAM’s actor update is purely on-policy, and therefore cannot leverage data generated
by uncontrolled agents. Future work might consider employing off-policy methods to exploit the
uncontrolled agent data. In addition to the directions suggested by POAM’s limitations, algorithmic
ideas from AHT, such as diversity-based teammate generation [25] and teammate-model-based
planning methods [6], also suggest rich avenues for future work. Having introduced the NAHT
problem in this work, we hope the community explores the many potential directions to design even
better NAHT algorithms by considering advances in MARL, AHT, and agent modeling.
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A Appendix

A.1 An Example of the Team Sampling Procedure

Let g(k, µ, s) represent a function for randomly selecting k elements from a generic set µ, conditioned
on a state s ∈ S . For instance, g might be the distribution, Multinomial(k, |µ|,ϕ(s)), for selecting k
elements with replacement from the set µ, parameterized by the state-dependent probability logits
ϕ(s) ∈ [0, 1]|µ|. Allowing g to depend on an initial state enriches the representable open interactions.
Returning to our robot warehouse example, a state-dependent g might enable us to model that robots
suitable for heavy loads are more likely to be present near the loading dock area. Similarly, if the time
is included in the state, we would be able to model dynamic characteristics, e.g. that certain types
of robots are only available during regular working hours, when humans are available to supervise.
Of course, in simple cases, g might be state-independent. For s ∈ S, X is a sampling procedure
parameterized by the tuple (s,M,U,C,ϕM , gU , gC), where ϕM ∈ [0, 1]M represents the logits of a
categorical distribution:

1. Sample an integer N from Cat(ϕM ).
2. Sample N controlled agents via gU from U .
3. Sample M −N uncontrolled agents via gC from C.

Note that the agent sampling functions gU , gC could employ sampling with replacement to model
scenarios where two robots may use the same policy, or sampling without replacement for scenarios
where that is not possible (e.g. if all robots are heterogeneous).

A.2 Further Discussion of the Motivating Example

This section provides proofs for claims in Section 4, and further discussion in support of the motivating
example.

Lemma A.1. For a team of M agents independently and identically selecting actions with probability
p, the p that maximizes the probability of winning is p = 1

M .

Proof. The probability of winning, P (s = 1) may be computed as follows:

P (s = 1) = M ∗ P (agent i chooses 1 and i− choose 0) = Mp(1− p)M−1.

We wish to analytically compute the global maxima of this expression with respect to p, by considering
the boundary points p ∈ {0, 1} and the zeros of the first derivative.

Clearly, if all agents select 1 with probability 0, the team cannot win; thus, p = 0 is not a maxima.
Similarly, if all agents select 1 with probability 1, the team also never wins; thus, p = 1 is also not a
maxima. Next, we compute the derivative of P (s = 1):

d[P (s = 1)]

dp
= M [(1− p)M−1 − (M − 1)p(1− p)M−2]

= M [(1− p)M−2[(1− p)− (M − 1)p]].

The zeros of the above expression occur at p = 0 and p = 1
M . For p = 1

M , note that P (s = 1) =

(M−1
M )M−1 > 0; thus, p = 1

M must be the global maximum.

Lemma A.2. In a team of three agents consisting of two uncontrolled agents who select 1 with
probability p = 1

3 , and one controlled ad hoc agent who selects 1 with probability paht, the probability
of winning is P (s = 1) = 4

9 .

Proof. Let su denote the sum of the bits chosen by the two uncontrolled agents, and baht denote the
bit value chosen by the controlled agent. The probability of winning can be computed by partitioning
the winning outcomes by whether su = 1 and the ad hoc agent selects 0, or whether the ad hoc agent
selects 1 and both uncontrolled agents select 0, su = 0.
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P (s = 1) = P (su = 1 ∧ baht = 0) + P (su = 0 ∧ baht = 1)

= 2 · 1
3
· 2
3
·
(
1− paht

)
+ paht

(
2

3
· 2
3

)
=

4

9
− 4

9
· paht +

4

9
· paht

=
4

9
.

Lemma A.3. In a team of three agents where two ad hoc agents select 1 with probability paht and
the remaining uncontrolled agent selects 1 with probability 1

3 , the maximizing paht =
1
3 and the

corresponding winning probability is P (s = 1) = 4
9 .

Proof. Let saht denote the sum of the bits chosen by the two ad hoc agents, and bu denote the bit
value chosen by the uncontrolled agent. The probability of winning may be directly computed as
follows:

P (s = 1) = P (saht = 1 ∧ au = 0) + P (saht = 0 ∧ au = 1)

= 2 · paht · (1− paht) ·
2

3
+ (1− paht)

2 · 1
3

= (1− paht)

[
4

3
paht +

1

3
(1− paht)

]
= (1− paht)

(
1

3
+ paht

)
.

To determine the maximizing value, we compute P (s = 1) at the boundary points paht ∈ {0, 1} and
at the zeros of the derivative of P (s = 1). Note that for paht = 0, P (s = 1) = 1

3 , while for paht = 1,
P (s = 1) = 0.

The derivative of the analytic expression of P (s = 1) with respect to paht is:

d[P (s = 1)]

dpaht
= (1− paht)−

(
1

3
+ paht

)
=

2

3
− 2paht. (4)

The zeros of the above expression occur at paht =
1
3 , which corresponds to P (s = 1) = 4

9 .

Lemma A.4. In a team of three agents where one agent always selects 0, one agent selects 1 with
probability 1

3 , and the last agent selects 1 with probability pnaht, the optimal pnaht = 1 and results in
a winning probability of P (s = 1) = 2

3 .

Proof. Since one of the two controlled agents always plays 0, the game effectively becomes a
two-player game instead.

Let au denote the action selected by the uncontrolled agent, and let anaht denote the action of the
controlled agent. The probability of winning may be directly computed as follows:

P (s = 1) = P (au = 1 ∧ anaht = 0) + P (au = 0 ∧ anaht = 1)

=
1

3
· (1− pnaht) +

2

3
· pnaht

=
1

3
+

1

3
· pnaht.

It is clear that pnaht = 1 maximizes P (s = 1), and the corresponding value of P (s = 1) = 2
3 .

A.3 Experiment Details

A.3.1 Team Sampling Procedure Used in Experiments
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Figure 7: A practical instantiation of the
NAHT problem.

Recall that U and C denote the sets of uncontrolled and
controlled agent policies, respectively, while M denotes
the team size for the task, and N the number of agents
sampled from C. The experiments in the following con-
sider an Xtrain consisting of sampling N uniformly from
{1, · · · ,M − 1}, sampling N agents from C and M −N
agents from U in a uniform fashion (Figure 7). The
sampling procedure takes place at the beginning of each
episode to select a team, which is then deployed in the
environment. Data generated by the deployed team (e.g.
joint observations, joint actions, and rewards) are returned
to the learning algorithm. See Appendix A.3.3 for further
details on the evaluation procedure.

A.3.2 Experimental Domains

MPE Predator Prey The MPE environment [24] (re-
leased under the MIT License) is a setting where particle
agents interact within a bounded 2D plane, equipped with
a discrete action space and continuous observation space.
The observation space is 16-dimensional, and contains the
agents’ own position and velocity, relative positions/velocities of all other agents, landmarks, and
prey. The action space consists of five discrete actions, corresponding to the four cardinal movement
directions and a no-op action. The observation range is normalized to [−1, 1], while the discrete
action space is one-hot encoded.

The predator-prey task (mpe-pp) is a custom task implemented by the authors of this paper within
the fork of the MPE environment released by Papoudakis et al. [30] (MIT License). In this task, three
predators must cooperatively pursue a pre-trained prey agent. We use the pre-trained prey policy
provided by the ePymarl MARL framework. The prey policy was originally trained by Papoudakis
et al. [30], by using the MADDPG MARL algorithm to train both predator and prey agents for 25M
steps, and generally attempts to escape approaching predators. The team receives a reward of 1 if two
or more predators collide with the prey at a single time step, and no reward if only a single agent
collides with the prey. A shaping reward consisting of 0.01 times the ℓ2 distance between each agents
in the team and the prey is provided as well. Since the prey policy is pre-trained and fixed, note
that our predator-prey task is a fully cooperative task from the perspective of the predator (learning)
agents. The maximum episode length is 100 time steps.

SMAC SMAC [34] (released under the MIT License) features a set of cooperative tasks, where
a team of allied agents must defeat a team of enemy agents controlled by the game server. It is a
partially observable domain with a continuous state space and discrete action space. For each agent,
the observation space is continuous, and consists of features about itself, enemy, and allied agents
within some radius. The action space is discrete, and allows an agent to choose an enemy to attack,
a direction to move in, or to not perform any action. As the number of allies and enemies varies
between tasks, the dimensionality of the observation and action spaces is particular to each task. The
observation space is normalized to be between [−1, 1], while the action space is one-hot encoded. The
maximum number of time steps per episode is also task specific, although early termination occurs if
all enemies are defeated. At each time step, the team receives a shaped reward corresponding to the
damage dealt, and bonuses of 10 and 200 points for killing an enemy and winning the scenario by
defeating all enemies. The reward is scaled such that the maximal return achievable in each task is 20.

The SMAC tasks considered in this paper are described in more detail below:

• 5v6: stands for 5m vs 6m, five allied Marines versus six enemy Marines.

• 8v9: stands for 8m vs 9m, eight allied Marines versus nine enemy Marines.

• 10v11: stands for 10m vs 11m, ten allied Marines versus eleven enemy Marines.

• 3s5z: stands for 3s vs 5z, three allied Stalkers versus five enemy Zealots.
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A.3.3 Evaluation Details

This section provides details on how mixed teams are evaluated in the NAHT setting, and how
cross-play scores, and self-play scores, and uncertainty measures are computed.

M − N score. Given a set of controlled agents C, and a set of uncontrolled agents U , the goal
of the M − N score is to quantify the performance when these two teams must cooperate within
the NAHT scenario. The M −N score is computed in a deterministic and exhaustive fashion, by
iterating over all possible values of N . Let N be the number of agents sampled from set C, such that
N < M . For N ∈ {1, · · · ,M − 1}, construct the joint policy π(M) by selecting N agents uniformly
from C and M −N agents from U . Evaluate the resultant team on the task for E episodes. This
results in (M − 1) ∗ E episode returns, which is averaged to form the M −N score.

Cross-play scores. The cross-play scores reported in this paper are the average returns of teams
generated by algorithm A, when coordinating with those generated by B. To compute the cross-play
score, we first train multiple teams (by varying the seed) via both algorithms A and B. Next, the
M − N score is computed for random pairings of teams (seeds) from A and B, following the
procedure specified above. Summary statistics can be computed over the set of all such NAHT
returns.

For example: each algorithm (VDN, QMIX, IQL, MAPPO, IPPO) is run k times with different seeds,
to generate k teams of agents that may act as uncontrolled teammates. For each pair of algorithms,
we sample a subset of the possible seed pairs, and evaluate the teams that result from merging said
seed pairs. If VDN and QMIX have seeds 1 2, and 3, the cross-play evaluation might consider the
seed pairings (VDN 1, QMIX 2), (VDN 2, QMIX 3), (VDN 3, QMIX 1). Given a pair of seeds (e.g.
(VDN 1), (QMIX 2)), the M −N cross-play score is computed as the average return generated by
sweeping N ∈ {1, · · · ,M − 1} and evaluating the merged team that consists of selecting N agents
from the first team, and M −N agents for E episodes. In our experiments, E = 128, and k = 5.

Self-play scores. The self-play scores reported in this paper are model self-play score, rather than
algorithm self-play score [3]. The reason for this is that we are interested in the performance of
agents when paired with known teammates.

Measuring uncertainty Means and 95% confidence intervals are computed over all team/seed
pairings considered for any given scores, as we treat each M − N evaluation as an independent
trial. For most experiments, five seed pairs are considered, where seeds are paired to ensure that all
seeds participate in at least one evaluation. This ensures that the computational cost of the evaluation
remains linear in N , rather than quadratic. However, note that for the OOD experiments presented in
Section 6.3, we consider all possible seed pairings for the most comprehensive evaluation.

A.3.4 Algorithm Implementation

The experiments in this paper use algorithm implementations from the ePyMARL codebase [30]
(released under the Apache License). The value-based methods are used without modification (i.e.
IQL, VDN, QMIX), but we implement our version of policy gradient methods (IPPO, MAPPO),
based on the implementation of Yu et al. [45].

Parameter Sharing. All methods employ recurrent actors and critics, with full parameter sharing,
i.e. all agents are controlled by the same policy, where the agent id is input to the actor and critic
networks, to allow behavioral differentiation between agents. For POAM, which also maintains
encoder-decoder networks for agent modeling, parameter sharing is used for the encoder and decoder
networks, to improve training sample efficiency. Further, POAM’s decoder, which predicts observa-
tions and actions for all −i agents, employs parameter sharing across agent predictions, to prevent
the target dimensionality from scaling with the number of teammates.

Optimizer and Neural Architecture. The Adam optimizer is applied for all networks involved.
For policy gradient methods, the policy architecture is two fully connected layers, followed by an
RNN (GRU) layer, followed by an output layer. Each layer has 64 neurons with ReLU activation
units, and employs layer normalization. The critic architecture is the same as the policy architecture.
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The value-based methods employ the same architecture, except that there is only a single fully
connected layer before the RNN layers, and layer normalization is not used, following the ePyMARL
implementation. Please consult the codebase for full implementation details.

Algorithm Buffer size Epochs Minibatches Entropy Clip Clip value
loss

IPPO 128, 256, 512 1, 4, 10 1, 3 0.01, 0.03,
0.05

0.01, 0.05, 0.1 no, yes

MAPPO 64, 128, 256 4, 10 1, 3 0.01, 0.03,
0.05, 0.07

0.05, 0.1, 0.2 no, yes

Table 1: Hyperparameters evaluated for the policy gradient algorithms. Selected values are bolded

Hyperparameters. For the value-based methods, default hyperparameters are used. We tune the
hyperparameters of the policy gradient methods on the 5v6 task, and apply those parameters directly
to the remaining SMAC tasks. The hyperparameters considered for policy gradient algorithms are
given in Table 1. POAM adopts the same hyperparameters as IPPO where applicable. We also tuned
additional hyperparameters specific to POAM (Table 2).

Task Algorithm ED epochs ED Minibatches ED LR
5v6 POAM 1, 5, 10 1, 2 0.0005, 0.005

mpe-pp POAM 1, 5 1, 2 0.0005, 0.001

Table 2: Additional hyperparameters evaluated for POAM; note that ED stands for encoder-decoder.
Selected values are bolded.

A.4 Supplemental Figures

This section contains additional figures referenced by the main paper. Please see Section 6 for the
corresponding analysis and discussion.
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Figure 8: Evolution of the within-episode mean squared
error (left) and probability of actions that were actually
taken by modeled teammates (right), computed by the
POAM agent over the course of training, on the 5v6
task. The agent modeling performance improves over
the course of an episode, as more data about teammate
behavior is observed.
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Figure 9: Learning curves of
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uncontrolled agents’ data (UCD) on
5v6.

A.5 Supplemental Analysis

The following subsections contains secondary analysis and results, intended to support the primary
analysis of the main paper. For all results, the mean and 95% confidence interval over five trials is
reported. All reported returns are test returns.
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Figure 10: Returns achieved by POAM and IPPO-NAHT, when paired with out-of-distribution
teammates. POAM shows improved generalization to OOD teammates, as compared to IPPO-NAHT,
across all StarCraft tasks. For each type of teammate, the performance of IPPO-NAHT/POAM
against the exact teammate seen during training is shown as the in-distribution baseline.

A.5.1 The Need for Dedicated NAHT Algorithms - Empirical Evidence

Section 4 argues theoretically that with a population of uncontrolled teammates that select one with
probability 1/3 and zero otherwise, an optimal policy learned in the AHT setting would not be
optimal in the NAHT setting. Here, we present experiments on the three agent bit matrix game that
empirically verify the theory. Let N denote the number of controlled agents. The episode length is
25, and the observation for each agent consists of the agent index and the joint action at the previous
time step. The team reward at each time step is 3 ∗ 1∑

i bi=1.

The optimal expected return in the N = 1 (AHT) setting is 33.333 (derived from Lemma A.3),
and in the N = 2 (NAHT) setting is 50.0 (derived from Lemma A.4). The methods compared are
POAM-AHT and POAM. Table 3 shows the expected returns achieved by POAM and POAM-AHT
on the N = 1 and N = 2 scenarios. Since any policy is optimal in the N = 1 case, as expected,
both methods achieve near-optimal returns. In the N = 2 case, as expected, POAM outperforms
POAM-AHT by a large margin, achieving a near-optimal return of 48.858± 1.092.

N=1 (AHT) N=2 (NAHT)
POAM-AHT 33.441 ± 0.511 22.5 ± 8.250

POAM 33.483 ± 0.485 48.858 ± 1.092

Table 3: Returns of POAM-AHT versus POAM on the three agent bit matrix game, in the N=1 (AHT)
and N=2 (NAHT) setting. POAM and POAM-AHT both achieve the optimal return for the N = 1
case, but POAM has a much higher return on the N = 2 case.

A.5.2 Validating the Existence of Coordination Conventions

The experimental procedure detailed in Section 6.1 generates diverse teammates in SMAC and
MPE by using MARL algorithms to train multiple teams of agents. Two underlying assumptions of
the procedure are that (1) teams trained by the same algorithm learn non-compatible coordination
conventions, and (2) teams trained by different algorithms are not compatible. Both points are
experimentally verified in this section.

Self-play with MARL algorithms. For the tasks under consideration, teams trained using the same
MARL algorithm, but different seeds, can converge to distinct coordination conventions. Figure 11
demonstrates this by depicting the return of teams trained together (matched seeds) versus those of
teams that were not trained together (mismatched seeds), across all naive MARL algorithms (IPPO,
IQL, MAPPO, QMIX, VDN) and tasks considered. Overall, the returns of the teams that were trained
together are higher than those not trained together.

The general phenomenon has been previously observed and exploited by prior works in ad hoc
teamwork [40]. This paper takes advantage of this to generate a set of diverse teammates for the
StarCraft II experiments. We select tasks where the effect is significant, to ensure that there are
distinct coordination behaviors for POAM to model. Tasks that were considered but subsequently
ruled out for this reason include 3m vs 3m, 8m vs 8m, 6h vs 8z, and the MPE Spread task.
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Figure 11: Agent teams that were trained together using the same algorithm (matched seeds) have
higher returns than teams that were not trained together but were trained with the same algorithm
(mismatched seeds).

Table 4: Cross-play results for the mpe-pp task.

Table 5: Cross-play results for the 5v6 task.

Table 6: Cross-play results for the 8m task.

Table 7: Cross-play results for the 3s5z task.

Cross-play with MARL algorithms Tables 4, 5, 6, 7, and 8 display the full cross-play results for
all MARL algorithms and POAM-AHT, on all tasks. Note that the tables are reflected across the
diagonal axis for viewing ease. The values on the off-diagonal (i.e., where the two algorithms are
not the same) are the cross-play score, while the values shown on the diagonal are self-play scores,
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Table 8: Cross-play results for the 10v11 task.

computed as described in App. A.3.3. The cross-play and self-play scores displayed are means
and 95% confidence intervals. The rightmost column reflects the row average and 95% confidence
interval of the cross-play (XP) scores corresponding to the test set of VDN, QMIX, IQL, IPPO, and
MAPPO, excluding the self-play score. Thus, the rightmost column reflects how well on average the
row MARL/AHT algorithm can generalize to the test set used throughout this paper.

Overall, we find that MARL algorithms perform significantly better in self-play than cross-play. We
note that there are a few exceptions (e.g., IPPO vs QMIX on 8m), and that the cross-play and self-play
scores are much closer on 10v11, but overall the trend is consistent across tasks.

A.5.3 Generalization to Unseen Teammate Types

As discussed and experimentally verified in Section A.5.2, diverse coordination conventions in
StarCraft and MPE Predator Prey can be generated by (1) running the same MARL algorithm with
various random seeds, or (2) running various MARL algorithms. In Section 6.3, the out-of-distribution
(OOD) teammates considered were generated by running MARL algorithms with different random
seeds than those used to generate train-time teammates—in other words, generating diverse and
unseen teammates using the first procedure specified above.
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Figure 12: Returns achieved by POAM and IPPO-NAHT, when trained on MAPPO, QMIX, and IQL,
and tested on IPPO, VDN.

Here, we generate OOD teammates using the second procedure. More precisely, the five MARL
algorithms used to generate teammates may be divided into train/test sets. Figure 12 shows the results
of such an experiment, where POAM and IPPO-NAHT are trained with MAPPO, QMIX, and IQL
teammates, and tested with agents from IPPO and VDN. Similar to the results presented in Section
6.3, we find that POAM generally outperforms IPPO-NAHT for the unseen teammate types for all
tasks.

A.5.4 Modeling Controlled and Uncontrolled Agents

POAM’s encoder-decoder (ED) models both controlled and uncontrolled agents. Since the controlled
agents are updated during the training process, the encoder-decoder must deal with a “moving target".
Thus, in principle, the problem of modeling the controlled agents is more challenging than modeling
uncontrolled agents.

Fig. 13 shows the probability of predicting the correct action for the uncontrolled agents and controlled
agents separately, on the mpe-pp task. Note that the action probabilities shown in Fig. 5 (right) of the
main paper would be the average of the two plots shown in Fig. 13.
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Figure 13: Loss of POAM’s encoder-decoder on the mpe-pp task, separated by uncontrolled (left)
and controlled agents (right).

For uncontrolled agents (Fig. 13, left), we observe that the accuracy of action predictions for the
uncontrolled agents increases much more consistently as training goes on, and is higher than that for
the controlled agents. As expected, the ED is able to model the uncontrolled agents more easily than
the nonstationary controlled agents.

A.5.5 Performance as a Function of the Number of Controlled Agents

To provide more insight on how an NAHT team’s performance changes as the number of controlled
agents increases, Figure 14 displays the mean test returns of POAM and POAM-AHT as a function
of the number of controlled agents, where the evaluation returns are averaged across five types of
uncontrolled teammates: QMIX, VDN, IQL, MAPPO, and IPPO. Note that the self-play returns
of POAM and POAM-AHT (i.e. where the number of controlled agents is maximal) are shown as
horizontal lines, while the performances at N = 0 correspond to the averaged self-play returns of the
five uncontrolled team types.

Recall that POAM-AHT was trained on the N = 1 scenario only, while POAM is trained on the
full NAHT setting. As expected, POAM outperforms POAM-AHT for all values of N > 1, while
for N = 1, the methods perform similarly. POAM-AHT’s performance declines as the number of
controlled agents increases, which likely occurs because the evaluation setting becomes further from
the training setting as N increases.
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Figure 14: Comparing the performance of POAM versus POAM-AHT, as the number of controlled
agents varies. POAM and POAM-AHT agents are evaluated with the following set of uncontrolled
agents: QMIX, VDN, IQL, MAPPO, IPPO.

A.6 Computing Infrastructure

All value-based algorithms (e.g. QMIX, VDN, IQL) were run without parallelizing environments,
while policy gradient algorithms were run with parallelized environments. All methods were trained
for 20M steps on all tasks. Each run took between 12-48 hours of compute, and used less than 2gB of
GPU memory. Runs were parallelized to use computational resources efficiently. The servers used
for our experiments ran Ubuntu 20.04 with the following configurations:
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• Intel Xeon CPU E5-2630 v4; Nvidia Titan V GPU.
• Intel Xeon CPU E5-2698 v4; Nvidia Tesla V100-SXM2 GPU.
• Intel Xeon Gold 6342 CPU; Nvidia A40 GPU.
• Intel Xeon Gold 6342 CPU; Nvidia A100 Gpu.

24



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Claims and contributions made in the paper are summarized in the abstract
and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed throughout the paper and once more in the conclusion
(Section 8).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The paper does not present theoretical results; however, some mathematical
statements are made in Section 4, and corresponding proofs are provided in Appendix A.2.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The only contributions of the paper for which reproducibility is a concern
is the proposed algorithm and experiments. We give an overview of the most important
implementation details within the paper, including details on hyperparameters, architecture,
optimizers, and original code that our methods are based on.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The codebase is included with the submission and will be released upon
publication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All training and evaluation details are specified in the main paper or in the
Appendix. The code base is released for additional implementation concerns.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Statistical significance measures are provided in the form of 95% confidence
intervals for the learning curves, and standard error bars for the OOD evaluation plot
and cross-play matrix scores. The specific protocol to compute the evaluation means and
standard errors is explained and justified in Section A.3.3.
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• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Machine types used to run the experiments are fully specified. Time and GPU
memory required to run all experiments are also specified.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This paper does not involve research on human subjects, use data from humans,
or rely on copyrighted data. Social impact: this paper motivates, proposes, and formalizes a
new research problem within cooperative MARL. Thus, this paper constitutes fundamental
research that is relatively removed from real world situations, and is therefore unlikely to
cause direct social impact. Impact mitigation: most of the suggested measures do not apply
to this paper, except for the ones related to reproducibility. This paper conforms with the
reproducibility guidelines suggested within the checklist.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper does not involve research on human subjects, data from humans,
or foundation models. It also does not consider generative models, or technologies with
proximal impact on society. The algorithms released and arguments made are in support of
fundamental research in MARL and AHT.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
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to particular applications, let alone deployments. However, if there is a direct path to
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: As explained above, this paper does not examine foundation models, pro-
prietary or scraped datasets. All data used in the paper was generated via the methods
considered in the paper. All experiments were performed on simulation benchmarks that are
widely used within the CMARL community.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]
Justification: The only asset used by this work is the simulation environments and the code
base which this project is based on. All have been cited, with licenses mentioned, in the
Appendix. All licenses allow creative reuse, modification, and re-distribution.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code base is released along with the submission and includes documenta-
tion.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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