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ABSTRACT

The rapid evolution of the Ethereum network necessitates sophisticated techniques
to ensure its robustness against potential threats and to maintain transparency.
While Graph Neural Networks (GNNs) have pioneered anomaly detection in such
platforms, capturing the intricacies of both spatial and temporal transactional pat-
terns has remained a challenge. This study presents a fusion of Graph Con-
volutional Networks (GCNs) with Temporal Random Walks (TRW) enhanced
by probabilistic sampling to bridge this gap. Our approach, unlike traditional
GCNs, leverages the strengths of TRW to discern complex temporal sequences in
Ethereum transactions, thereby providing a more nuanced transaction anomaly de-
tection mechanism. Extensive evaluations demonstrate that our TRW-GCN frame-
work substantially advances the performance metrics over conventional GCNs in
detecting irregularities such as suspiciously timed transactions, patterns indicative
of token pump and dump schemes, or anomalous behavior in smart contract exe-
cutions over time. As baseline algorithms for comparison, common unsupervised
methods such as Isolation Forest, One-Class SVM, and DBSCAN (as classifier for
TRW-GCN embedding) are employed; finally our novel TRW-GCN plus scoring
method is compared with the state-of-the-art temporal graph attention algorithm.

1 INTRODUCTION

Graph Convolutional Networks (GCNs) have emerged as a transformative tool in the domain of
graph-structured data representation. Their ability to encapsulate both local and global graph struc-
tures has paved the way for their application in diverse fields. However, as the scale and intricacy of
graph data have surged, the efficient training of GCNs has become a paramount concern. Traditional
training paradigms, although effective, are often encumbered by high computational and storage de-
mands, especially when dealing with expansive graphs. The realm of GCN training has witnessed
a burgeoning interest in sampling methods, particularly those rooted in probabilistic frameworks
within graphs. Layer-wise sampling methods have been at the forefront of prior advancements.
Chen et al. (2018) in their work on FastGCN championed the cause of probabilistic sampling on in-
dependent nodes. Their approach was further nuanced by Huang et al. (2018) which introduced the
concept of layer-dependent sampling, thereby adding another dimension to the sampling process.

While traditional GCNs have shown remarkable potential in handling static graph structures, their
application to dynamic graphs introduces new challenges and opportunities. In order to extend
GCNs to dynamic graphs, it is crucial to understand how learning on dynamic graphs works, which
is a relatively recent area of research. There have been studies which investigate discrete-time graphs
represented as a sequence of graph snapshots (Yu et al., 2019; Sankar et al., 2020; Pareja et al., 2019;
Yu et al., 2018), also several continuous-time approaches have been presented (Xu et al., 2020;
Trivedi et al., 2019; Kumar et al., 2019; Ma et al., 2018; Nguyen et al., 2018; Bastas et al., 2019;
Rossi et al., 2020), where continous dynamic graphs means that edges can appear at any time (Rossi
et al., 2020). Liu et al. (2023) mentioned that most temporal graph learning methods model current
interactions by combining historical information over time, however, such methods merely consider
the first-order temporal information. To solve this issue, they proposed extracting both temporal
and structural information to learn more informative node representations. In our ablation study, we
focus mainly on TGAT by Xu et al. (2020) which has proved superior in performance.
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Also, the topic of anomaly detection in Blockchain has received considerable attention. For example,
in Ethereum, the unexpected appearance of particular subgraphs has implied newly emerging mal-
ware (Xu and Livshits 2019). Anomaly detection in blockchain transaction networks is an emerging
area of research in the cryptocurrency community (Lee et al. 2022). Wu et al. (2020) investigated
phishing detection in blockchain network using unsupervised learning algorithms. Ofori-Boateng
et al. (2021) have also discussed topological anomaly detection in multilayer blockchain networks.
Given that the Ethereum network witnesses dynamically evolving transaction patterns, it becomes
imperative to account for the temporal sequences and correlations of transactions. While some litera-
ture has touched upon temporal networks, there is a conspicuous absence of comprehensive research
that deeply integrates TRW with GCNs, and probabilistic sampling, especially within the blockchain
environment. Furthermore, the specific challenge of anomaly and transaction burst detection in the
Ethereum network, which has massive implications for network security and fraud detection, has
not been extensively explored using these combined methodologies. As Ethereum continues to
grow and evolve, addressing such gap with an appropriate methodology becomes increasingly cru-
cial to ensure the security, scalability, and robustness of the network. This study addresses the
pressing challenge of detecting time-sensitive anomalies within Ethereum blockchain transactions.
We propose a novel approach, designed to provide both the spatial and temporal dynamics inherent
in Ethereum transaction data. Our research offers several contributions:

Enhanced Anomaly Detection with TRW : Our model leverages TRW in tandem with GCN to im-
prove anomaly detection effectiveness. By integrating temporal patterns, our approach can identify
irregularities such as suspiciously timed transactions, patterns indicative of token ’pump and dump’
schemes, or anomalous behavior in smart contract executions over time.

Efficiency in Sampling Representative Nodes: Given the substantial size and continuous growth
of the Ethereum blockchain, efficient sampling methods are essential. Our GCN, trained with TRW
nodes, provides a solution that balances accuracy with computational efficiency.

Detecting Patterns Leading to Sophisticated Attacks: Decentralized networks are vulnerable to
sophisticated attacks, particularly those that exploit timing vulnerabilities such as front-running at-
tacks. Our proposed GCN with TRW integration aims to detect complex patterns such as MEV
bots, rapid buying or selling of assets, or others which are activities that can exhibit time-sensitive
anomalies; manual inspection is then necessary for further investigation of the attack.

2 MODEL DESIGN

GCNs are a pivotal neural network architecture crafted specifically for graph-structured data.
Through the use of graph convolutional layers, we seamlessly aggregate information from neigh-
boring nodes and edges to refine node embeddings. In enhancing this mechanism, we incorporate
probabilistic sampling, which proves particularly adept in analyzing the vast Ethereum network.
The incorporation of Temporal Random Walks (TRW) adds a rich layer to this framework. TRW
captures the temporal sequences in Ethereum transactions and not only focuses on nodes’ spatial
prominence but also considers the transactional chronology. Here, ’time’ is conceptualized based
on the sequence and timestamps of Ethereum transactions, leading to a dynamically evolving, time-
sensitive representation of the network.

Here, graph is represented as G = (V, E), where V is the set of nodes (vertices) and E is the set
of edges connecting the nodes. Each node vi in the graph is associated with a feature vector Fi,
and F ∈ R|V |×4 represents a feature matrix of size 4. Aggregation is a process to combine the
feature vectors of neighboring nodes using an adjacency matrix A to capture graph connectivity. To
enable information propagation across multiple layers, the graph convolution operation is performed
iteratively through multiple graph convolutional layers (GCLs). The output of one layer serves as
the input to the next layer, allowing the propagation of information through the network. The node
representations are updated layer by layer, allowing information from neighbors and their neighbors
to be incorporated into the node features. The parameters Wl are learned during the training process
to optimize the model’s performance on a specific graph-based task. GCNs often consist of multiple
layers, where each layer iteratively updates the node representations:

h
(l)
i = Activation

(
W (l)Aggregate

(
h
(l−1)
j |j ∈ N(i)

))
(1)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Here, h(l)
i is the representation of node i at layer l, and h

(l−1)
j is the representation of neighboring

node j at the previous layer (l-1). The final layer is usually followed by a global pooling operation to
obtain the graph-level representation. The pooled representation is then used to make predictions.

2.1 INCORPORATING TRW INTO GCN

The TRW-enhanced GCN creates a multidimensional representation that captures both the structural
intricacies and time-evolving patterns of transactions. Such an approach requires meticulous math-
ematical modeling to substantiate its efficacy, and exploring the depths of this amalgamation can
reveal further insights into the temporal rhythms of the Ethereum network.

Temporal Random Walk (TRW)

Given a node i, the probability Pij of moving to a neighboring node j can be represented as:

Pij =
ωij∑
k ωik

(2)

where ωij is the weight of the edge between node i and j, and the denominator is the sum of weights
of all edges from node i. In a TRW, transition probabilities take into account temporal factors. Let’s
define the temporal transition matrix T where each entry Tij indicates the transition probability from
node i to node j based on temporal factors.

Tij = α×Aij + (1− α)× f(tij) (3)

Where: Aij is the original adjacency matrix’s entry for nodes i and j. α is a weighting parameter.
fij is a function of the temporal difference between node i and node j. Given this temporal transition
matrix T, a normalized form T̃ can be used for a GCN layer:

T̃ = D̃−1
T T (4)

Where D̃T is the diagonal degree matrix of T. To incorporate the TRW’s temporal information into
the GCN, we can modify the original GCN operation using T̃ :

h(l+1) = σ

(
D̃

− 1
2

T T̃ D̃T

− 1
2h(l)W (l)

)
(5)

2.2 EFFECT ON ANOMALY DETECTION

The embeddings from a GCN (post TRW influence) should be more sensitive to recent behaviors
and patterns. When these embeddings are passed to a classifier, clustering and scoring algorithms
like DBSCAN, OCSVM, ISOLATION FOREST, and LOF, anomalies that are based on recent or
time-sensitive behaviors are more likely to stand out. In our work, the term ”anomaly” refers to
patterns that are statistically uncommon or divergent from the norm based on the features learned
by our model. These uncommon patterns, while not definitively erroneous, are of interest because
they deviate from typical behavior. In the context of Ethereum transactions, such deviations could
potentially indicate suspicious activities, novel transaction patterns, or transaction bursts.

While we here provide insight and a mathematical proof, the true value of TRW in improving GCN
for anomaly detection is empirical. We would need to compare the performance of GCN with and
without TRW on a temporal dataset to see tangible benefits (see section 3.5 and appendix C). Here
is how temporal weights are applied:

1. Node Features are weighted by time: When updating the node features through the matrix
multiplication, nodes that are temporally closer influence each other more, allowing recent
patterns to be highlighted.

2. Temporal Relationships are captured: The modified node features inherently capture tem-
poral relationships because they aggregate features from temporally relevant neighbors.

3. Higher Sensitivity to recent anomalies: With temporal weighting, anomalies that have oc-
curred recently will be more pronounced in the node feature space.
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Theorem 1: Enhancement in effectiveness of anomaly detection using GCN through TRW
Integration.

Proof.
At a fundamental level, anomaly detection is the task of distinguishing outliers from normal data
points in a given feature space. If we have an anomaly score function s : Rd → R, we can detect
anomalies by: s(v) > θ Where θ is a threshold, and v is a vector in the feature space.

A GCN produces node embeddings (or features) by aggregating information from a node’s neighbors
in the graph. Let’s express this aggregation for a single node using a simple form of a GCN layer:

h
(l+1)
i = σ

 ∑
jϵNeighbors(i)

Wh
(l)
j

 (6)

Where hi
(l) is the feature of node i at layer l, and W is the weight matrix.

Incorporating TRW: With a temporal random walk, the aggregation process is influenced by time,
so the aggregation becomes:

h
(l+1)
i = σ

 ∑
jϵNeighbors(i)

TijWh
(l)
j

 (7)

Where Tij is the temporal transition probability from node j to node i. Let’s assume a node with an
anomaly will have a different feature vector from the nodes without anomalies. For simplicity, let’s
use the Euclidean distance as the anomaly score: s(v) = ∥v − µ∥ where µ is the mean vector of
all node features. Given a temporal anomaly (an anomaly that’s influenced by recent events), using
TRW will result in a modified feature vector for the anomalous node. Let’s consider two scenarios:

1. GCN without TRW: For an anomalous node n, its feature vector is: hn = σ
(∑

j Whj

)
2. GCN with TRW: For the same anomalous node n, it becomes: h′

n = σ
(∑

j TnjWhj

)
If the anomaly is temporally influenced, then h′

n should be significantly different from hn due to the
weights introduced by Tnj (see appendix A for weight cancellation). In the context of our anomaly
score function: s(h′

n) − s(hn) > δ where δ is a value indicating the sensitivity of the temporal
context; we will use this later in our scoring method. If the anomaly is truly temporally influenced,
this difference will be significant, and thus, the GCN with TRW will have a higher likelihood
of detecting the anomaly. From the linear algebra perspective, the effect of TRW on a GCN for
anomaly detection is evident in how node features are aggregated. The temporal weights (from Tij)
make the GCN more sensitive to temporal influences, making it more adept at detecting anomalies.

Theorem 2: TRW sampling maintains higher temporal consistency than traditional random walk
sampling.
The TRW framework introduces a model where the transition probabilities between nodes in a graph
are temporally adjusted. The probability of transitioning from node i at time t to node j at time t+1,
denoted as Pij(t,t+1), is influenced by temporal proximity. This stands in contrast to traditional
random walks, where transition probabilities are solely based on the static adjacency matrix of the
graph. We define TTRW(t) as the transition matrix for TRW at time t, with each entry Tij(t) repre-
senting the probability of transitioning from node i to node j at time t. Conversely, TRW represents the
transition matrix for a traditional random walk, with constant transition probabilities over time. We
measure temporal consistency by examining the variation in transition probabilities over time, with
TRW expected to exhibit lower variation due to its emphasis on temporal proximity. We continue
the proof in appendix B.

Theorem 3: Improvement of GCN performance with probabilistic sampling in the context of ran-
dom walk sampling.
see appendix C for the complete analytical proof.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3 EMPIRICAL ANALYSIS

GCNs have achieved state-of-the-art performance in various image recognition problems due to their
ability to automatically learn hierarchical features from raw data. Here, we combine it with TRW to
make embedding in the Ethereum network. We run the models on a MacBook Pro equipped with an
Intel Core i9 processor, featuring 8 cores, speed of up to 4.8 GHz, and 30 GB of RAM.

3.1 DATASETS AND EXTRACTING NODE FEATURES

Creating a complete transaction graph for all Ethereum blocks would be a computationally intensive
task, as it would involve processing and storing a large amount of data. However, in the supplemen-
tal material we provide the code to generate a transaction history graph for a range of blocks. We
further need to incorporate spatial and temporal Node Features to capture temporal aspects more
explicitly:
incoming value variance: Variance of the transaction values received by the node. This metric
quantifies the spread or dispersion of incoming transaction amounts, providing insight into the con-
sistency or variability of funds received. outgoing value variance: Variance of the transaction
values sent by the node. activity rate: The activity rate of a node represents the total number of
transactions (both incoming and outgoing) divided by the duration (in terms of blocks). It indi-
cates the frequency of interactions involving the node over a specific period. change in activity:
The change in activity refers to the difference in the number of transactions of the current block
compared to the previous block for a given node. This metric captures fluctuations or deviations
in transaction behavior over consecutive blocks. time since last: Time since the last transaction
involving the node, measured as the difference between the current block number and the block
number of the node’s most recent transaction. It provides insights into the recency of activity as-
sociated with the node. tx volume: Total transaction volume associated with the node, calculated
as the sum of incoming and outgoing transaction values. This metric represents the overall mag-
nitude of financial transactions involving the node. frequent large transfers: Indicator variable
identifying addresses engaged in frequent and large transfers. Nodes meeting specific thresholds
for both transaction frequency and volume are flagged. gas price: Additional feature relevant for
MEV detection, representing the gas price paid for transactions. Gas price fluctuations can signal
potential MEV activities such as frontrunning or transaction ordering strategies. token swaps: An-
other feature for MEV detection, indicating involvement in token swaps or trades on decentralized
exchanges (DEXs). Analysis of token swap transactions can reveal arbitrage opportunities or ma-
nipulative behavior by MEV bots. smart contract interactions: Feature identifying transactions
interacting with known DeFi protocols or smart contracts. MEV bots may exploit vulnerabilities or
manipulate protocol behaviors.

3.2 TRW-GCN COMBINED METHOD TO DETECT ANOMALIES

To apply graph convolutional layers to the blockchain data for aggregating information from neigh-
boring nodes and edges, we’ll use the PyTorch Geometric library. This library is specifically de-
signed for graph-based data and includes various graph neural network layers, including graph con-
volutional layers. Note that training and testing a graph neural network on Ethereum dataset would
require significant computational resources, as currently, the Ethereum network possesses about 20
million blocks, which are connected over the Ethereum network, and we provide the transaction
history graph within a specified block range.
In Algorithm 1, we intend to compare the anomaly detection of full- and sub-graphs (sampling us-
ing TRW). The graph convolution operation combines the features of neighboring nodes to update
the representation of a given node. As node features, we input the 10 features indicated in 3.1
as vector representation; considering 20 hidden layers, 100 epochs, lr=0.01, num walks=10,
and walk length=100, the resulting output vector aggregates information from all neighboring
nodes. By using the nodes from TRW for training, the GCN will be more attuned to the time-
dependent behaviors, leading to better detection of sudden spikes in transaction volume or unusual
contract interactions that occur in quick succession. In our experiments, we employ TRW to sample
nodes from the entire graph, ensuring that the graph’s integrity is maintained. Here’s how it can be
done:
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Algorithm 1: TRW- GCN combined method to
detect anomalies
Steps:
1. Load and Preprocess the graph G.
2. Node feature extraction for each node
vi ∈ V : Construct a node feature matrix
F ∈ R|V |×4 where each row Fi corresponds
to f(vi).
3. Convert graph to adjacency matrix A ∈
R|V |×|V |.
4. Instantiate two GCN models MTRW and M
with parameters in channels, hidden channels,
out channels.
5. Temporal Random Walk (TRW) for k = 1 to
num walks: Aggregate all walks in a set W =⋃num walks

k=1 wk.
6. Training using sampled-graphs: Train
MTRW or M using node features FN and ad-
jacency matrix AN .
7. Anomaly Detection: Apply DBSCAN, One-
Class SVM, IsoForest, and LOF on embed-
dings from the trained GCN model M to obtain
anomaly labels.

Algorithm 2: A Score-based anomaly detection
associated with time-dependent behaviors
Steps:
1. Graph Preprocessing: G′ = G(V,E) where
E has node attributes.
2. Node Feature Extraction: X =
[x1, x2, . . . , xn] for n ∈ V .
Adjacency Matrix A from G′.
3. GCN Model: GCNModel with lay-
ers: in channels → hidden channels →
out channels.
4. Temporal Random Walk:
TRW(G′, start, length) returns walk W
and timestamps T .
5. Node Sampling via TRW: All Walks =⋃num walks

i=1 TRW(G′, random node,walk length).
6. Node Frequency Computation: freq(v) =
occurrences of v in All Walks
max occurrences in All Walk for v ∈ V .

7. Anomaly Score Computation: S(v) =
(emb(v)latest−µ(emb(v)))

σ(emb(v)) × freq(v) where emb is
the node embedding, µ is the mean, and σ is
the standard deviation; where anomalous nodes
v are where S(v) > threshold.

1. Perform TRWs to Sample Nodes for Training: The TRWs provide sequences of nodes
representing paths through the Ethereum network graph. Nodes appearing frequently in
these walks are often involved in recent temporal interactions.

2. Train the GCN with the Sampled Nodes: Instead of using the entire Ethereum network
graph for training, use nodes sampled from the TRWs. This approach tailors the GCN to
recognize patterns from the most temporally active parts of the Ethereum network.

Using the GCN with TRW combined method, one can achieve 1) anomalies Detected, 2) Training
Efficiency, and 3) Quality of Embedding. The integration of TRW with GCNs offers a novel ap-
proach for generating embedding that capture both spatial and temporal patterns within the Ethereum
network. These embedding are vital for understanding the underlying transaction dynamics and for
effectively detecting anomalous activities. To evaluate the potential of the TRW-GCN methodology,
we employ four distinct machine learning techniques: DBSCAN, SVM, Isolation Forest (IsoFor-
est), and Local Outlier Factor (LOF). Wu et al. (2020) indicated that they have obtained more than
500 million Ethereum addresses and 3.8 billion transaction records. However, only 1259 addresses
are labeled as phishing addresses collected from EtherScamDB, which implies an extreme data im-
balance as the biggest obstacle for phishing detection, therefore they used unsupervised learning
detection method. We similarly use unsupervised learning for detection in our GCN-TRW algo-
rithm.

The extensive use of these four diverse techniques allows us to validate the efficacy of the TRW-
GCN framework. The high anomaly detection rates in Figure 1 by clustering methods underscores
the importance of algorithm selection. As observed in Figure 1, these techniques seem to be sensitive
to the embedding generated by TRW-GCN, as the number of anomalies vary significantly with and
without TRW. It’s essential to note that high detection doesn’t necessarily imply high precision; it
might indicate a higher false positive rate in the ML methods, clustering methods like dbscan in
particular, as also shown in Table 1. Nevertheless, Figure 1 vividly showcases the superiority of the
TRW-GCN combined approach over traditional GCN with higher anomaly detection. The enhanced
detection capabilities can be attributed to the TRW’s ability to encapsulate temporal sequences and
correlations of transactions. It is more interesting to find out which node feature mainly contributes
to anomaly detection, we show it in Figure 2. As illustrated by different colors, the feature 3-
6 namely activity rate, change in activity, time since last (mainly the temporal features) are the
drivers of frequent anomalies (with dark blue colors), while tx volume and frequent large transfers
(with green colors) also produce anomalies but less frequently. Although we have obtained good
insights into the method effectiveness to detect time-dependent patterns and features, but we should
look for more precise and less prone to error detection method.
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Figure 1: A comparison of 4 detection models
namely dbscan, svm, isoforest and lof between
full-graph and sub-graph with TRW sampling
in 1000 blocks which include 83252 nodes, and
101403 edges.

Figure 2: Feature distribution where Blue and
Green colors: activity rate, change in activity,
and times since last show highest frequencies.

Table 1: Comparison of Precision/Recall/F-score of 4 methods with/out-TRW
Method Prec.(w-T) Recall(w-T) F-score(w-T) Prec.(o-T) Recall(o-T) F-score(o-T)

DBSCAN 0.497 0.758 0.600 0.450 0.75 0.600
SVM 0.499 0.636 0.599 0.450 0.601 0.546

IsoForest 0.515 0.051 0.093 0.512 0.051 0.093
LOF 0.487 0.049 0.088 0.470 0.047 0.087

3.3 SCORE-BASED ANOMALY PATTERN

As seen in Table 1, the 4 methods provide relatively low precision (we do not obtain the precision
by one-class SVM reported in Wu et al. 2020) and While traditional methods compute anomaly
scores based on the relative position or density of data points in the feature space, we need a method
to be more focused on temporal dynamics, tracking the evolution of each node’s embedding over
time and weighing it by the node’s frequency in the graph. To adapt the code to pick up anomalous
patterns associated with time-dependent behaviors, the algorithm should be equipped to recognize
such patterns. First augment the node features to capture recent activity, with time features as ex-
plained in dataset section. After obtaining node embedding from the GCN, compute the anomaly
score for each node based on its temporal behavior. The simplest way to achieve this is by com-
puting the standard deviation of the node’s feature over time and checking if the latest data point
deviates significantly from its mean.

In the integrated code, Algorithm 2, we altered the node features to capture recent activity. After
training the GCN and obtaining the embedding, we then compute an anomaly score based on how
much the recent transaction volume (the latest day in our case) deviates from the mean. We then use
a visualization function to display nodes with an anomaly score beyond a certain threshold (in this
case, we’ve used a z-score threshold of 2.0 which represents roughly 95% confidence).

Figure 3: Anomaly detection in (left) 100 blocks with 6 features, (middle) 100 blocks with 10
features, (right) the anomalous addresses where the time-sensitive associated ones are hashed green.
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In Figure 3, black points represent the vast majority of nodes in the Ethereum network dataset. They
signify regular non-anomalous Ethereum addresses. Cluster of points inside and around the blue cir-
cle represent groupings of Ethereum addresses or contracts that have had frequent interactions with
each other. The density or proximity of points to each other indicates how closely those addresses
or contracts are related. Red points would represent the nodes that have been flagged as anoma-
lous based on their recent behavior. The code identifies them by computing an anomaly score, and
those exceeding a threshold are colored red. In the left graph, there are just 20 nodes detected as
anomaly in 100 blocks where we used 6 structural features in our detection algorithm, while in the
right graph, we used 10 features to detect anomalies in the same 100 blocks, and 12 more suspicious
addresses are detected, hashed in green. This signifies the importance of temporal feature selection,
as by adding 4 temporal features we would be able to detect missing anomalies. We checked these
addresses in Ether explorer website https://etherscan.io , and found the corresponding labels such as
MEV Bot, Metamask: Swap, Uniswap, Wrapped Ether, Rollbit, Blur: Bidding, which are mainly
time-sensitive transactions or contracts, see next section for further explanation on what is normal
versus anomaly. In Table 2, we explain the types of detected anomalies.

Table 2: Some types of detected anomalies
Detected anomalous patterns Explanation
MEV Bot (Miner Extractable Value) like ————
0x6F1cDbBb4d53d226CF4B917bF768B94acbAB6168

MEV strategies can affect the fairness and ef-
ficiency of the Ethereum network, and certain
MEV activities may be considered harmful.

Uniswap (users to swap various ERC-20 tokens) like
0x3fC91A3afd70395Cd496C647d5a6CC9D4B2b7FAD,
and Metamask Swap router like ——————–
0x881D40237659C251811CEC9c364ef91dC08D300C

Uniswap smart contracts facilitate decentralized
token swaps and are not inherently anomalous;
Large-scale token swaps on Uniswap could be
used for trading strategies or liquidity provi-
sion.

Flashloan (borrowing a large sum of tokens and repay-
ing the loan within the same block. or Blur: Bidding
0x0000000000A39bb272e79075ade125fd351887Ac

Detecting flash loans typically involves moni-
toring for transactions with large token volumes
and analyzing their timing and patterns.

3.4 NORMAL VERSUS ANOMALY, BASELINE ALGORITHM, ALGORITHM COMPLEXITY, AND
THE GROUND TRUTH

In Ethereum, what may be considered normal or anomalous behavior can vary depending on various
factors such as market conditions, network activity, and the specific use cases of different addresses
or smart contracts. Time-sensitive irregularities in Ethereum transactions refer to anomalies that oc-
cur within specific time frames or exhibit patterns that are indicative of immediate or rapid actions.
These irregularities may include instances of rapid buying or selling of assets, front-running other
traders, MEV activities, flash loan exploits, or token swaps executed within short time intervals.
Identifying these irregularities requires analyzing transactional data in real-time or within narrow
time windows to capture anomalous behaviors as they occur. See Table 3 for a list of time-sensitive
items in Ethereum network including transactions, contracts, and platform activities. Our objective
is to identify such instances. These transactions represent potential threats to the integrity and fair-
ness of the Ethereum network, necessitating further investigation and scrutiny. Upon identifying
suspicious transactions, our approach advocates for thorough investigation and validation. This in-
volves cross-referencing transaction details with external sources such as Etherscan.io in Table 2,
and employing manual review processes to assess the legitimacy of the flagged activities.

Similar to the papers by Wu et al. (2020), Feng et al. (2023), and Zhang et al. (2023), as baseline al-
gorithms for comparison, common unsupervised methods such as Isolation Forest, One-Class SVM,
and DBSCAN are employed. Evaluation metrics, including precision, recall, F1 score in Table 1 are
utilized to assess the performance of the proposed method using training and test data. However,
clustering methods seem to report many false positives, and we do not also obtain the precision
reported by Wu et al. (2020). The study further introduces a statistically-based scoring method to
identify anomalous nodes. The scoring function employs different z-score thresholds of 1.0, 1.5,
and 2.0 (95% confidence level), and on average it produces the precision of 80%. Furthermore, we
compare the results obtained from our scoring method with the ground truth on etherscan.io, pro-
viding a case-by-case evaluation of some detected time-sensitive anomalies in Table 2; all detected
anomalies are re-affirmed with manual inspection.
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Table 3: some time sensitive items on Ethereum network and their definitions
Time sensitive
items

Definitions

MEV Bot MEV refers to the additional profit that miners can extract from the Ethereum net-
work by reordering, censoring, or including transactions in blocks. The timing of
transactions and block mining can affect the potential profit extracted by MEV bots.

Metamask: Swap
Uniswap

Uniswap is a decentralized exchange (DEX) protocol on Ethereum, and swaps con-
ducted through MetaMask can be time-sensitive, especially considering the volatil-
ity of cryptocurrency prices and liquidity on Uniswap.

Flashloan Flash loans are uncollateralized loans that must be borrowed and repaid within a
single transaction block. These loans are often used for arbitrage, liquidations, or
other trading strategies that require rapid execution.

Wrapped Ether
(WETH)

Wrapped Ether (WETH) is an Ethereum token pegged to the value of Ether (ETH).
Transactions involving WETH can be time-sensitive, especially if they’re related to
trading, liquidity provision, or token swaps.

Rollbit Rollbit is a cryptocurrency trading platform, and transactions conducted on the plat-
form can be time-sensitive, particularly in the context of trading activities, order
executions, and market conditions.

Token Launches
and Airdrops

Token launches and airdrops often have predefined distribution schedules or time-
frames during which users can claim or receive tokens. Missing these deadlines
may result in loss of opportunities or benefits.

Smart Contract Ex-
ploits

Exploiting vulnerabilities in smart contracts often requires precise timing to execute
malicious transactions before vulnerabilities are patched or mitigated.

We further compare the TRW-GCN model against the state-of-the-art TGAT method, and during our
experiments with TGAT, we encountered significant computational and performance challenges.
TGAT is designed to leverage temporal information and attention mechanisms to capture the dy-
namic nature of graphs. Despite this sophisticated approach, we observed that TGAT resulted in
higher computational costs, primarily due to its multi-head attention mechanism, which involves
multiple passes of matrix multiplications and attention score computations. Furthermore, TGAT’s
reliance on temporal edge attributes added another layer of complexity, further increasing the com-
putational burden. Despite TGAT’s advanced capabilities, the accuracy of the model in the Ethereum
network was found to be as high as 65%, significantly lower than the average of 80% we already
achieved with the TRW-GCN embedding plus the scoring classifier. One possible reason for this
discrepancy could be the sensitivity of TGAT to the quality and scale of temporal data which is quite
a challenge in the Ethereum networks (see the supplemental material to process Ethereum data for
TGAT). Furthermore, using blockchain addresses as users in TGAT make its essential indexing very
difficult, whereas TRW seems to be working far better in such networks.

To accurately determine the complexity of TRW-GCN, it is essential to integrate the complexi-
ties of both the TRW and the GCN components. The complexity of the TRW involves initiating
walks from nodes and stepping through neighbors up to a specified length, which can be quantified
as O(W×LE×DlogD), where W represents the number of walks, LE the length of each walk, and
D the average degree of nodes. The GCN complexity involves aggregating features from neigh-
boring nodes and applying transformations through learnable parameters across L layers. The ag-
gregation complexity is proportional to the number of edges E, and the transformation involves
matrix multiplications depending on the number of features F and hidden units H, resulting in
O(L×(E+N×F×H)). When combining these two aspects, the overall complexity of TRW-GCN is
expressed as O(W×LE×DlogD+L×(E+N×F×H)). The dominant complexity terms typically relate to
E and N, particularly in dense graphs or when handling high-dimensional feature transformations.
See further the proof in appendix D. As seen in the TRW-GCN complexity graph, Figure 4, GCN
complexity scaling with graph size is far more than the TRW complexity.

3.5 HOW TRW IMPACTS ON GCN PERFORMANCE AS COMPARED TO TRADITIONAL RW

Let’s delve into empirical justification on why TRW sampling could enhance the performance of
GCNs, especially in temporal networks like Ethereum. For a detailed mathematical proof on the
probabilistic sampling in GCN, you are invited to read appendix C. One issue with traditional ran-
dom walks is the potential for creating ”jumps” between temporally distant nodes, breaking the

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 4: TRW-GCN complexity graph, where GCN complexity scaling with graph size is far more
than TRW.

temporal consistency. GCNs rely on the local aggregation of information, and since TRW promotes
smoother temporal signals, GCNs can potentially learn better node representations. Temporal con-
sistency ensures that the sequences are logically and temporally ordered. This can be crucial for
predicting future events or understanding time-evolving patterns, making GCNs more reliable. We
compare different GCN models (including graphSAGE and graph attention network GAT model) for
fullgraph, and sampled-graph with traditional and temporal random walk in Figure 5. Although one
sees little difference between the accuracy of the fullgraph and the sampled-graph in graphSAGE
and GAT models, one can see that traditional random walk and temporal random walk improve GCN
accuracy, where TRW shows even further improvement than the traditional random walk.

Figure 5: Comparison of accuracy of three GCN models between fullgraph, traditional RW and
TRW-based on sampled graph in 100 blocks.

4 CONCLUSION

The evolution and complexity of the Ethereum network has heightened the urgency for temporal
anomaly detection methods. Through our research, we’ve demonstrated that the convergence of
GCNs and TRW offers a solution to this challenge. This fusion has enabled us to delve deeper into
the intricate spatial-temporal patterns of Ethereum transactions, offering a refined lens for anomaly
detection. We have shown the methodology usefulness by expressing and proving three distinct
theorems, full empirical analysis and evaluation. While this approach is used to obtain the em-
bedding, we have compared different clustering and scoring methods to obtain highest precision in
anomaly detection, and verified with the ground truth found on etherscan.io. Furthermore, we have
demonstrated the model that TRW-GCN improves anomaly detection, and proved how probabilistic
sampling improves GCN performance.
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A WEIGHT CANCELLATION IN THEOREM 1

In the topic of anomaly detection, particularly in systems where temporal factors play a crucial role,
the design and behavior of the transformation matrix Tnj are of paramount importance. This section
delves into the potential challenges posed by weight cancellation within Tnj and its consequential
impact on the detection of temporally influenced anomalies (given in our first Theorem). We explore
the nuances of how such weight cancellations can diminish the efficacy of anomaly detection and
propose strategies to mitigate these issues. Additionally, we underscore the importance of empirical
analysis in validating the robustness and reliability of our anomaly detection methodology under
various scenarios. Let us first render our definitions:

Vector Spaces

Let Rm be the vector space of interest. Define hn ∈ Rm as a feature vector in the absence of tem-
poral influence. Let Tnj ∈ Rm×m be a transformation matrix encoding temporal weights. Define
h′
n = Tnjhn, where h′

n ∈ Rm is the transformed feature vector under temporal influence.

Assume Tnj has entries tij where i, j = 1, 2, . . . ,m.

DIFFERENCE MEASUREMENT

We use the Euclidean norm to quantify the difference: ||h′
n − hn||2. This norm is given by

||h′
n − hn||2 =

√√√√ m∑
i=1

(h′
ni − hni)2 (8)

where h′
ni and hni are the components of h′

n and hn, respectively.

EXPRESSION OF h′
n IN TERMS OF Tnj AND hn

h′
n = Tnjhn implies

h′
ni =

m∑
j=1

tijhnj (9)

for each i.

NORM CALCULATION

Compute the norm ||h′
n − hn||2 as follows:

||h′
n − hn||2 =

√√√√√ m∑
i=1

 m∑
j=1

tijhnj − hni

2

.

This equation represents the Euclidean norm of the difference between the transformed feature vec-
tor h′

n and the original feature vector hn.

CONDITIONS FOR SIGNIFICANT DIFFERENCE

Given: h′
n = Tnjhn and ||h′

n − hn||2 > ϵ, for some threshold ϵ > 0.

For ||h′
n − hn||2 > ϵ, it must hold that

m∑
i=1

 m∑
j=1

tijhnj − hni

2

> ϵ2.
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This inequality implies that, for at least one i, the inner sum
∑m

j=1 tijhnj − hni must be non-
negligible. Therefore, the weights in Tnj must be such that they do not merely scale hni but rather
significantly alter the distribution of hn. Scaling would imply a uniform change across all compo-
nents of hn , which might not be sufficient to meet the inequality condition. Instead, the transforma-
tion must significantly alter the distribution of hn. This could mean changing the relative magnitudes
of its components, modifying their relationships, or introducing non-linear changes. Such alterations
are necessary for effectively differentiating between normal and anomalous states, especially in the
context of anomaly detection where temporal influences are considered.

SCENARIOS LEADING TO WEIGHT CANCELLATION

Scenario Analysis:

Consider the case where Tnj has symmetric properties or specific patterns that lead to cancellation.

For instance, if Tnj is such that tij = tji for all i, j, and hn has symmetric properties, then
m∑
j=1

tijhnj could approach hni for all i. (10)

Additionally, if Tnj contains complementary weights, such as some tij and tik summing to zero,
and hnj and hnk are similar, cancellation could occur.

Analysis of Tnj Properties for Cancellation

To further understand how Tnj might lead to weight cancellation:

• Consider the spectral properties of Tnj . If Tnj has eigenvalues close to 1, then it acts close
to an identity matrix on certain vectors.

• If Tnj has orthogonal rows or columns, it might preserve the magnitude of hn under certain
conditions, leading to minimal change in h′

n.
• If the entries of Tnj are structured such that they negate each other when applied to hn, this

could lead to a scenario where h′
n ≈ hn.

In scenarios where the weights in the transformation matrix Tnj cancel each other out, this can
significantly impact the detection of temporally influenced anomalies. To mitigate these issues,
several strategies can be employed:

Regularization: Introducing regularization is a good practice in preventing extreme weight values,
which can be beneficial in any anomaly detection system, including Ethereum network analysis.

Weight Initialization and Optimization: Carefully initializing the weights in Tnj and employing
robust optimization techniques can ensure that the weights evolve in a manner that minimizes the
risk of cancellation. This can be particularly important in Ethereum network anomaly detection.

Spectral Analysis: Performing spectral analysis of Tnj to understand its eigenvalues and eigen-
vectors can provide insights into how the matrix behaves and identify potential scenarios where
cancellation might occur. Adjustments can then be made accordingly.

Ensemble Methods: Using ensemble methods is a robust strategy in anomaly detection, as it re-
duces reliance on any single transformation. In the context of Ethereum network anomalies, ensem-
ble methods can enhance the reliability of detection by combining multiple models or transforma-
tions.

B TRW SAMPLING MAINTAINS HIGHER TEMPORAL CONSISTENCY

Theorem 2: TRW sampling maintains higher temporal consistency than traditional random walk
sampling.

Definitions and Assumptions:
• In TRW, the probability of transitioning from node i at time t to node j at time t + 1 is

given by Pij(t, t+ 1), which is higher for temporally closer nodes.

14
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• In a traditional random walk, the transition probability Pij is independent of time and is
based solely on the adjacency matrix of the graph.

• Let TTRW(t) be the transition matrix for TRW at time t, where each entry Tij(t) represents
the probability of transitioning from node i to node j at time t.

• Let TRW be the transition matrix for a traditional random walk, where each entry Tij is
constant over time.

• Temporal consistency can be quantified by the variation in the transition probabilities over
time. For TRW, this variation is expected to be lower than for traditional random walks, as
TRW emphasizes temporal proximity.

Proof:

Consider the difference in transition probabilities between two consecutive time steps in TRW:
∥TTRW(t + 1) − TTRW(t)∥. This norm is expected to be small, indicating high temporal consis-
tency.

For a traditional random walk, the transition probabilities do not change over time: ∥TRW(t + 1) −
TRW(t)∥ = 0. However, this does not imply temporal consistency, as it does not account for the
temporal nature of the data.

Now we do comparison:

• To demonstrate higher temporal consistency in TRW, one can show that the variation in
transition probabilities in TRW is more aligned with the temporal dynamics of the data
compared to traditional random walk. This can be done by analyzing the correlation be-
tween TTRW(t) and the actual temporal sequence of events in the data.

• TTRW(t) aligns more closely with the temporal sequence of events than TRW and temporal
consistency is better captured by a model that adjusts its transition probabilities based on
the temporal proximity of events. Therefore, TRW is expected to maintain higher temporal
consistency than traditional random walk sampling.

C IMPROVEMENT OF GCN PERFORMANCE WITH PROBABILISTIC SAMPLING

Theorem 3: Improvement of GCN performance with probabilistic sampling in the context of ran-
dom walk sampling.

Providing a comprehensive mathematical proof on the theorem on improvement of GCN perfor-
mance through probabilistic sampling in the context of analyzing the Ethereum network, even in a
simplified scenario, is a complex task that requires careful consideration and detailed mathematical
derivations.

Consider a simplified Ethereum transaction graph with N accounts (nodes), and M transactions
(edges) between them. We aim to prove the performance improvement of a GCN using probabilistic
sampling for the task of predicting account behaviors.

Assumptions:
1. Nodes (accounts) have features represented by vectors in a feature matrix X.
2. The adjacency matrix A represents transaction relationships between accounts.
3. Binary labels Y indicate specific account behaviors.

Proof.

C.1 DEFINE THE GRAPH LAPLACIAN

Start with the definition of the normalized graph Laplacian L = I − D− 1
2AD− 1

2 , where D is the
diagonal degree matrix and A is the adjacency matrix.
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C.2 TRADITIONAL GCN PERFORMANCE

Derive the eigenvalues and eigenvectors of the Laplacian matrix L and show their significance in
capturing graph structure. Derive the performance of a GCN trained on the full graph using these
eigenvalues and eigenvectors:

Step 1: Deriving Eigenvalues and Eigenvectors of the Laplacian matrix L

Given the normalized graph Laplacian matrix L, let λ be an eigenvalue of L and v be the corre-
sponding eigenvector. We have Lv = λv . Solving for λ and v, we get:

D− 1
2AD− 1

2 v = (1− λ)v (11)

AD− 1
2 v = (1− λ)D

1
2 v (12)

This equation implies that D− 1
2AD− 1

2 is a symmetric matrix that is diagonalized by the eigenvectors
v with corresponding eigenvalues 1− λ. The eigenvectors and eigenvalues of L capture the graph’s
structural information. Larger eigenvalues correspond to well-connected clusters of nodes in the
graph, while smaller eigenvalues correspond to isolated groups or individual nodes.

Step 2: Deriving GCN Performance Using Eigenvalues and Eigenvectors

Now let’s consider a scenario where we’re using a GCN to predict node labels (such as predicting
high-value transactions) on the full graph. The GCN’s propagation rule can be written as:

h(l+1) = f(Âh(l)W (l)) (13)

where h(l) is the node embedding matrix at layer l, f is an activation function, and Â = D− 1
2AD− 1

2 .
is the symmetrically normalized adjacency matrix, and W (l) is the weight matrix at layer l. The key
insight is that if we stack multiple GCN layers, the propagation rule becomes:

h(L) = f(Âh(L−1)W (L−1)) = f(Âf(Âh(L−2)W (L−2))W (L−1)). . . (14)

We can simplify this as:

h(L) = f

(
Â(l)h(0)W (0)

L−1∏
l=1

W (l)

)
(15)

Using the spectral graph theory, we know that Â(l) captures information about the graph’s structure
up to L-length paths. The eigenvalues and eigenvectors of Â(l) indicate the influence of different
sampled-graphs of length L on the node embeddings. Larger eigenvalues correspond to more signif-
icant graph structures that can impact the quality of learned embeddings. By leveraging the spectral
insights, GCNs can focus their learning on graph structures that matter the most for the given task. In
the case of probabilistic sampling, the convergence of eigenvalues signifies that the sampled graph
retains essential structural information from the full graph. This implies that by training GCNs on
Âsampled, we are effectively capturing the key graph structures necessary for accurate predictions.
This incorporation of spectral properties aligns the GCN’s learning process with the inherent char-
acteristics of the graph, resulting in improved performance. The embeddings learned by the GCN on
the sampled graph become more indicative of the full graph’s properties as the sample size increases,
enabling more accurate predictions or more efficient training convergence.

C.3 PROBABILISTIC SAMPLING APPROACH

In this step, we’ll introduce a probabilistic sampling strategy to select a subset of nodes and their
associated transactions. This strategy aims to prioritize nodes with certain characteristics or prop-
erties, such as high transaction activity or potential involvement in high-value transactions. Assign
a probability pi to each node i based on certain characteristics. For example, nodes with higher
transaction activity, larger balances, or more connections might be assigned higher probabilities.
For each node i, perform a random sampling with probability pi to determine whether the node is
included in the sampled subset. Consider a graph with N nodes represented as N = {1, 2, . . . , N}.
Each node i has associated characteristics described by a feature vector Xi = [Xi,1, Xi,2, . . . , Xi,k],
where K is the number of characteristics. Define the probability pi for node i as a function of its

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

feature vector Xi: pi = f(Xi). Here, f(·) is a function that captures how the characteristics of node
i are transformed into a probability. The specific form of f(·) depends on the characteristics and the
desired probabilistic behavior. For example, f(Xi) could be defined as a linear combination of the
elements in Xi:

pi =

K∑
j=1

ωjXi,j (16)

Where ωj are weights associated with each characteristic. The weights ωj can be used to empha-
size or downplay the importance of specific characteristics in determining the probability. After
obtaining pi values for all nodes, normalize them to ensure they sum up to 1:

pnormalized =
pi∑N
j=1 pj

(17)

Use the normalized probabilities pnormalized to perform probabilistic sampling. Nodes with higher
normalized probabilities are more likely to be included in the sampled subset, capturing the char-
acteristics of interest. The specific form of f(·) and the choice of weights ωj depend on the nature
of the characteristics and the goals of the analysis. This approach allows for targeted sampling of
nodes that exhibit desired characteristics in a graph.

C.4 GRAPH LAPLACIAN FOR SAMPLE GRAPH

Given the sampled adjacency matrix Âsampled, we want to derive the graph Laplacian L̂sampled for the
sampled graph. The graph Laplacian L̂sampled is given by:

L̂sampled = I − D̂
− 1

2

sampledÂsampledD̂
− 1

2

sampled (18)

Where D̂sampled is the diagonal degree matrix of the sampled graph, where each entry dii corresponds
to the degree of node i in the sampled graph, and Âsampled is the sampled adjacency matrix.

dii =

Nsampled∑
j=1

Âsampled,ij (19)

The modified Laplacian captures the structural properties of the sampled graph and is essential for
understanding its graph-based properties.

C.5 EIGENVALUE ANALYSIS AND CONVERGENCE

We derived
L̂sampled = I − D̂

− 1
2

sampledÂsampledD̂
− 1

2

sampled (20)

as the normalized graph Laplacian for the sampled graph. Let λ̂i be the i-th eigenvalue of L̂sampled
and v̂i be the corresponding eigenvector. We have

L̂sampledv̂i = λ̂iv̂i (21)

The goal is to compare the eigenvalues of L with the eigenvalues of L̂sampled and show convergence
under certain conditions.

Theoretical Argument:
As the sample size Nsampled approaches the total number of nodes N in the original graph, L̂sampled

converges to L. This implies that the eigenvalues of L̂sampled converge to the eigenvalues of L.

1. Step-wise convergence:
For simplicity, we’ll denote the entries of L̂sampled as l̂sampled(i, j) and the entries of L as
l(i, j). To prove the convergence, we need to show that l̂sampled(i, j) → l(i, j) as Nsampled →
N for all i and j.
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2. Eigenvalue convergence:
Once establishing that each entry of L̂sampled converges to the corresponding entry of L, one
can use this result to prove the convergence of eigenvalues. Eigenvalues are solutions to the
characteristic equation of the matrix, which depends on its entries. If all entries of L̂sampled
converge to those of L, the characteristic equations of both matrices will be similar.

Stochastic Convergence: The convergence argument relies on the concept of stochastic conver-
gence. As the sample size becomes large, the sampled graph’s properties approach those of the
original graph. This includes the behavior of the eigenvalues.

Graph Structure Alignment: The convergence occurs when the sampled subset of nodes is rep-
resentative enough of the entire graph. This means that the sampled graph captures the structural
characteristics that contribute to the eigenvalues of L. Under the assumption of sufficient repre-
sentativeness and with a large enough sample size, the eigenvalues of Lˆsampled converge to the
eigenvalues of L.

C.6 CONVERGENCE OF GCN EMBEDDINGS

Recall that the graph convolutional operation can be expressed as

h(l+1) = f(Âh(l)W (l)) (22)

The spectral properties of Â and L are determined by the eigenvalues. As shown in the previous
steps, as the sample size increases, the eigenvalues of L̂sampled converge to those of L. Graph con-
volutional layers rely on the eigenvectors and eigenvalues of Â. The graph convolution operation
Âh(l)W (l) involves these spectral properties.

Convergence of GCN Layers: Because the eigenvalues of Â and L are converging, the impact of
multiple graph convolutional layers on h and hsampled becomes increasingly similar as the sample
size increases.

1. Layer-by-layer impact:
As we stack multiple graph convolutional layers, each layer applies the graph convolution
operation sequentially. This means that the impact of each layer depends on the eigenvalues
of Â.

2. Convergence influence:
As the eigenvalues of Â converge to those of L due to the increasing sample size, the be-
havior of the graph convolutional layers on h and hsampled becomes increasingly similar.
The convergence of eigenvalues indicates that the structural characteristics of the sampled
graph are aligning with those of the original graph. The graph convolutional layers are sen-
sitive to these structural properties, and as the structural properties become more aligned,
the impact of these layers on embeddings h and hsampled will also become more aligned.

Since the top eigenvectors correspond to the major variations in the graph, as the spectral properties
converge, the embeddings h and hsampled learned by the GCN should increasingly align in terms of
the top eigenvectors. As the eigenvalues of the Laplacian matrices converge, the behavior of the
graph convolution operation and the resulting embeddings in both the original and sampled graphs
becomes more similar. This implies that the embeddings learned by a GCN on the sampled graph
hsampled will converge to the embeddings learned on the full graph h.

C.7 IMPACT OF EIGENVECTOR ALIGNMENT ON GCN PERFORMANCE

Recall that the eigenvalues and eigenvectors of the Laplacian matrix capture the graph’s structural
properties. Eigenvectors corresponding to larger eigenvalues capture important patterns and varia-
tions in the graph.

GCN Performance Analysis:
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1. Predictive Power of Eigenvectors: The alignment of top eigenvectors suggests that the
information captured by these eigenvectors is consistent between the original and sampled
graphs.

2. Prediction Task: If the prediction task relies on features that align with the graph’s struc-
tural patterns, then the embeddings learned on the sampled graph will capture similar pat-
terns as those on the full graph.

3. Performance Convergence: As the embeddings hsampled approach h in terms of the top
eigenvectors, the predictive performance of the GCN on the sampled graph should approach
the performance on the full graph. The alignment of top eigenvectors implies that the
information encoded in the embeddings learned by a GCN on the sampled graph converges
to that of the embeddings learned on the full graph. This suggests that as hsampled converges
to h, the predictive performance of the GCN on the sampled graph should approach that on
the full graph, assuming the prediction task is influenced by the graph’s structural patterns
captured by these eigenvectors. However, the precise impact will depend on the nature of
the graph, the quality of the sampling strategy, and the specific prediction task. To prove
the improvement of GCN performance with probabilistic sampling, consider the following
steps:
(a) Original Graph Performance (Without Sampling): Let E be the performance mea-

sure (e.g., accuracy) of the GCN trained and evaluated on the full graph G using em-
beddings h, denoted as Efull.

(b) Sampled Graph Performance (With Probabilistic Sampling): Now, consider the
performance of the GCN trained and evaluated on the sampled graph Gsampled using
embeddings hsampled, denoted as Esampled.

(c) Improved Performance: Esampled > Efull indicates an improvement in performance
due to probabilistic sampling.

• Utilize the previously shown argument: As the sample size increases, the embed-
dings hsampled converge to h in terms of top eigenvectors.

• With the alignment of top eigenvectors and the graph convolutional layers’ con-
vergence, the learned embeddings become more similar.

• The improved alignment of embeddings captures more relevant structural infor-
mation, potentially leading to improved prediction accuracy or other performance
metrics.

By leveraging the convergence of embeddings and the improved alignment of top eigenvectors
through probabilistic sampling, we can argue that the performance of the GCN on the sampled graph
Gsampled is expected to be better (higher accuracy, faster convergence, etc.) than on the full graph G.
This proof highlights the positive impact of probabilistic sampling on enhancing the performance of
GCNs in analyzing complex graphs like the Ethereum network.

D COMPLEXITY ANALYSIS OF TRW-GCN

To properly calculate and explain the complexity of a Temporal Random Walk Graph Convolutional
Network (TRW-GCN) system, it’s crucial to factor in both the GCN and the TRW parts in a cohesive
manner. This combination entails not only the graph convolutions but also the dynamic aspect
introduced by temporal random walks. Here’s a refined approach to describing and computing the
combined complexity.

• Dependence on Graph Size: The complexity shows linear dependence on the number of
edges E and nodes N , with an additional logarithmic factor related to the maximum node
degree D.

• Scalability: The method scales well with larger graphs, though high-degree nodes d can
introduce additional complexity due to the sorting step in TRW.

GCN COMPLEXITY

The complexity of GCN operations is primarily influenced by the number of nodes N and edges E
in the graph. The two main steps in a GCN layer are feature propagation and aggregation.
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• Feature Propagation: Each node aggregates features from its neighbors, which involves
accessing the adjacency matrix and node feature matrix. This step takes O(E) time since
each edge defines a neighbor relationship that needs to be processed.

• Feature Transformation: Multiplying the node feature matrix by a weight matrix. This
step is O(N ·F ·H) where F is the number of input features and H is the number of output
features.

For a GCN with L layers, the overall complexity is:

O(L · (E +N · F ·H))

TRW COMPLEXITY

The complexity of a temporal random walk depends on the length of the walk W and the number of
walks R. For each step in the walk, the algorithm looks at the neighbors of the current node.

• Walk Initialization: Starting a walk from a random node, which is O(1).
• Neighbor Selection: Sorting the neighbors by timestamp and selecting the next node. The

worst-case complexity for sorting neighbors is O(D logD, where D is the average degree
of nodes.

For a walk of length W , the complexity is:

O(R ·W ·D logD)

ANOMALY SCORE COMPUTATION COMPLEXITY

The computation of anomaly scores involves calculating the mean and standard deviation of node
embeddings, followed by the z-score calculation.

• Mean and Standard Deviation Calculation: For N nodes, each with an embedding of
size H , this is O(N ·H).

• Z-Score Calculation: For N nodes, this is O(N).

Overall, the complexity is:
O(N ·H)

Combining the complexities of all components:

• GCN Complexity: O(L · (E +N · F ·H))

• TRW Complexity: O(R ·W ·D logD)

• Anomaly Score Computation: O(N ·H)

Assuming F , H , L, R, and W are constants, the overall complexity simplifies to:

O(E +N ·D logD)
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