Under review as a conference paper at ICLR 2025

A SCALABLE TEMPORAL-SPATIAL FRAMEWORK FOR
TRANSACTION ANOMALY DETECTION IN ETHEREUM
NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

The rapid evolution of the Ethereum network necessitates sophisticated techniques
to ensure its robustness against potential threats and to maintain transparency.
While Graph Neural Networks (GNNs) have pioneered anomaly detection in such
platforms, capturing the intricacies of both spatial and temporal transactional pat-
terns has remained a challenge. This study presents a fusion of Graph Con-
volutional Networks (GCNs) with Temporal Random Walks (TRW) enhanced
by probabilistic sampling to bridge this gap. Our approach, unlike traditional
GCNes, leverages the strengths of TRW to discern complex temporal sequences in
Ethereum transactions, thereby providing a more nuanced transaction anomaly de-
tection mechanism. Extensive evaluations demonstrate that our TRW-GCN frame-
work substantially advances the performance metrics over conventional GCNs in
detecting irregularities such as suspiciously timed transactions, patterns indicative
of token pump and dump schemes, or anomalous behavior in smart contract exe-
cutions over time. As baseline algorithms for comparison, common unsupervised
methods such as Isolation Forest, One-Class SVM, and DBSCAN (as classifier for
TRW-GCN embedding) are employed; finally our novel TRW-GCN plus scoring
method is compared with the state-of-the-art temporal graph attention algorithm.

1 INTRODUCTION

Graph Convolutional Networks (GCNs) have emerged as a transformative tool in the domain of
graph-structured data representation. Their ability to encapsulate both local and global graph struc-
tures has paved the way for their application in diverse fields. However, as the scale and intricacy of
graph data have surged, the efficient training of GCNs has become a paramount concern. Traditional
training paradigms, although effective, are often encumbered by high computational and storage de-
mands, especially when dealing with expansive graphs. The realm of GCN training has witnessed
a burgeoning interest in sampling methods, particularly those rooted in probabilistic frameworks
within graphs. Layer-wise sampling methods have been at the forefront of prior advancements.
Chen et al. (2018) in their work on FastGCN championed the cause of probabilistic sampling on in-
dependent nodes. Their approach was further nuanced by Huang et al. (2018) which introduced the
concept of layer-dependent sampling, thereby adding another dimension to the sampling process.

While traditional GCNs have shown remarkable potential in handling static graph structures, their
application to dynamic graphs introduces new challenges and opportunities. In order to extend
GCNs to dynamic graphs, it is crucial to understand how learning on dynamic graphs works, which
is a relatively recent area of research. There have been studies which investigate discrete-time graphs
represented as a sequence of graph snapshots (Yu et al., 2019; Sankar et al., 2020; Pareja et al., 2019;
Yu et al., 2018), also several continuous-time approaches have been presented (Xu et al., 2020;
Trivedi et al., 2019; Kumar et al., 2019; Ma et al., 2018; Nguyen et al., 2018; Bastas et al., 2019;
Rossi et al., 2020), where continous dynamic graphs means that edges can appear at any time (Rossi
et al., 2020). Liu et al. (2023) mentioned that most temporal graph learning methods model current
interactions by combining historical information over time, however, such methods merely consider
the first-order temporal information. To solve this issue, they proposed extracting both temporal
and structural information to learn more informative node representations. In our ablation study, we
focus mainly on TGAT by Xu et al. (2020) which has proved superior in performance.

Under review as a conference paper at ICLR 2025

Also, the topic of anomaly detection in Blockchain has received considerable attention. For example,
in Ethereum, the unexpected appearance of particular subgraphs has implied newly emerging mal-
ware (Xu and Livshits 2019). Anomaly detection in blockchain transaction networks is an emerging
area of research in the cryptocurrency community (Lee et al. 2022). Wu et al. (2020) investigated
phishing detection in blockchain network using unsupervised learning algorithms. Ofori-Boateng
et al. (2021) have also discussed topological anomaly detection in multilayer blockchain networks.
Given that the Ethereum network witnesses dynamically evolving transaction patterns, it becomes
imperative to account for the temporal sequences and correlations of transactions. While some litera-
ture has touched upon temporal networks, there is a conspicuous absence of comprehensive research
that deeply integrates TRW with GCNSs, and probabilistic sampling, especially within the blockchain
environment. Furthermore, the specific challenge of anomaly and transaction burst detection in the
Ethereum network, which has massive implications for network security and fraud detection, has
not been extensively explored using these combined methodologies. As Ethereum continues to
grow and evolve, addressing such gap with an appropriate methodology becomes increasingly cru-
cial to ensure the security, scalability, and robustness of the network. This study addresses the
pressing challenge of detecting time-sensitive anomalies within Ethereum blockchain transactions.
We propose a novel approach, designed to provide both the spatial and temporal dynamics inherent
in Ethereum transaction data. Our research offers several contributions:

Enhanced Anomaly Detection with TRW : Our model leverages TRW in tandem with GCN to im-
prove anomaly detection effectiveness. By integrating temporal patterns, our approach can identify
irregularities such as suspiciously timed transactions, patterns indicative of token *pump and dump’
schemes, or anomalous behavior in smart contract executions over time.

Efficiency in Sampling Representative Nodes: Given the substantial size and continuous growth
of the Ethereum blockchain, efficient sampling methods are essential. Our GCN, trained with TRW
nodes, provides a solution that balances accuracy with computational efficiency.

Detecting Patterns Leading to Sophisticated Attacks: Decentralized networks are vulnerable to
sophisticated attacks, particularly those that exploit timing vulnerabilities such as front-running at-
tacks. Our proposed GCN with TRW integration aims to detect complex patterns such as MEV
bots, rapid buying or selling of assets, or others which are activities that can exhibit time-sensitive
anomalies; manual inspection is then necessary for further investigation of the attack.

2 MODEL DESIGN

GCNs are a pivotal neural network architecture crafted specifically for graph-structured data.
Through the use of graph convolutional layers, we seamlessly aggregate information from neigh-
boring nodes and edges to refine node embeddings. In enhancing this mechanism, we incorporate
probabilistic sampling, which proves particularly adept in analyzing the vast Ethereum network.
The incorporation of Temporal Random Walks (TRW) adds a rich layer to this framework. TRW
captures the temporal sequences in Ethereum transactions and not only focuses on nodes’ spatial
prominence but also considers the transactional chronology. Here, 'time’ is conceptualized based
on the sequence and timestamps of Ethereum transactions, leading to a dynamically evolving, time-
sensitive representation of the network.

Here, graph is represented as G = (V, E), where V is the set of nodes (vertices) and E is the set
of edges connecting the nodes. Each node v; in the graph is associated with a feature vector Fj,
and I' € RIVI*4 represents a feature matrix of size 4. Aggregation is a process to combine the
feature vectors of neighboring nodes using an adjacency matrix A to capture graph connectivity. To
enable information propagation across multiple layers, the graph convolution operation is performed
iteratively through multiple graph convolutional layers (GCLs). The output of one layer serves as
the input to the next layer, allowing the propagation of information through the network. The node
representations are updated layer by layer, allowing information from neighbors and their neighbors
to be incorporated into the node features. The parameters W' are learned during the training process
to optimize the model’s performance on a specific graph-based task. GCNs often consist of multiple
layers, where each layer iteratively updates the node representations:

hgl) = Activation (W(Z)Aggfegate (hgl_l)lj € N(Z)>) M

Under review as a conference paper at ICLR 2025

Here, hgl)is the representation of node i at layer /, and hVis the representation of neighboring

node j at the previous layer (I-1). The final layer is usually followed by a global pooling operation to
obtain the graph-level representation. The pooled representation is then used to make predictions.

2.1 INCORPORATING TRW INTO GCN

The TRW-enhanced GCN creates a multidimensional representation that captures both the structural
intricacies and time-evolving patterns of transactions. Such an approach requires meticulous math-
ematical modeling to substantiate its efficacy, and exploring the depths of this amalgamation can
reveal further insights into the temporal rhythms of the Ethereum network.

Temporal Random Walk (TRW)

Given a node i, the probability Pij of moving to a neighboring node j can be represented as:
wij

>k Wik

where wj; is the weight of the edge between node i and j, and the denominator is the sum of weights
of all edges from node i. In a TRW, transition probabilities take into account temporal factors. Let’s
define the temporal transition matrix 7 where each entry T;; indicates the transition probability from
node i to node j based on temporal factors.

By = @)

Ty = ax A + (1 —a) x f(t) 3)

Where: A;; is the original adjacency matrix’s entry for nodes i and j. « is a weighting parameter.
¢ ! g jacency y J- ¢ weighting p £
fij is a function of the temporal difference between node i and node j. Given this temporal transition

matrix 7, a normalized form T can be used for a GCN layer:

T=D;'T 4)

Where Dy is the diagonal degree matrix of 7. To incorporate the TRW’s temporal information into
the GCN, we can modify the original GCN operation using 7" :

R+ — & (ﬁ;;f‘ﬁT_Qh(l)W(l)> (5)

2.2 EFFECT ON ANOMALY DETECTION

The embeddings from a GCN (post TRW influence) should be more sensitive to recent behaviors
and patterns. When these embeddings are passed to a classifier, clustering and scoring algorithms
like DBSCAN, OCSVM, ISOLATION FOREST, and LOF, anomalies that are based on recent or
time-sensitive behaviors are more likely to stand out. In our work, the term “anomaly” refers to
patterns that are statistically uncommon or divergent from the norm based on the features learned
by our model. These uncommon patterns, while not definitively erroneous, are of interest because
they deviate from typical behavior. In the context of Ethereum transactions, such deviations could
potentially indicate suspicious activities, novel transaction patterns, or transaction bursts.

While we here provide insight and a mathematical proof, the true value of TRW in improving GCN
for anomaly detection is empirical. We would need to compare the performance of GCN with and
without TRW on a temporal dataset to see tangible benefits (see section 3.5 and appendix C). Here
is how temporal weights are applied:
1. Node Features are weighted by time: When updating the node features through the matrix
multiplication, nodes that are temporally closer influence each other more, allowing recent
patterns to be highlighted.

2. Temporal Relationships are captured: The modified node features inherently capture tem-
poral relationships because they aggregate features from temporally relevant neighbors.

3. Higher Sensitivity to recent anomalies: With temporal weighting, anomalies that have oc-
curred recently will be more pronounced in the node feature space.

Under review as a conference paper at ICLR 2025

Theorem 1: Enhancement in effectiveness of anomaly detection using GCN through TRW
Integration.

Proof.

At a fundamental level, anomaly detection is the task of distinguishing outliers from normal data
points in a given feature space. If we have an anomaly score function s : R* — R, we can detect
anomalies by: s(v) > 6 Where 6 is a threshold, and v is a vector in the feature space.

A GCN produces node embeddings (or features) by aggregating information from a node’s neighbors
in the graph. Let’s express this aggregation for a single node using a simple form of a GCN layer:

W =g S wal) ©)

J
jeNeighbors(i)

Where ;") is the feature of node i at layer /, and W is the weight matrix.

Incorporating TRW: With a temporal random walk, the aggregation process is influenced by time,
so the aggregation becomes:

ht = & S mwal! (7)
jeNeighbors(i)

Where Tj; is the temporal transition probability from node j to node i. Let’s assume a node with an
anomaly will have a different feature vector from the nodes without anomalies. For simplicity, let’s
use the Euclidean distance as the anomaly score: s(v) = ||lv — || where u is the mean vector of
all node features. Given a temporal anomaly (an anomaly that’s influenced by recent events), using
TRW will result in a modified feature vector for the anomalous node. Let’s consider two scenarios:

1. GCN without TRW: For an anomalous node n, its feature vector is: h,, = o (Z j Whj)

2. GCN with TRW: For the same anomalous node #, it becomes: k], = o (Z i Tnj Whj)

If the anomaly is temporally influenced, then k!, should be significantly different from &,, due to the
weights introduced by T,; (see appendix A for weight cancellation). In the context of our anomaly
score function: s(h]) — s(h,) > & where 0 is a value indicating the sensitivity of the temporal
context; we will use this later in our scoring method. If the anomaly is truly temporally influenced,
this difference will be significant, and thus, the GCN with TRW will have a higher likelihood
of detecting the anomaly. From the linear algebra perspective, the effect of TRW on a GCN for
anomaly detection is evident in how node features are aggregated. The temporal weights (from 75;)
make the GCN more sensitive to temporal influences, making it more adept at detecting anomalies.

Theorem 2: TRW sampling maintains higher temporal consistency than traditional random walk
sampling.

The TRW framework introduces a model where the transition probabilities between nodes in a graph
are temporally adjusted. The probability of transitioning from node i at time t to node j at time t+1,
denoted as P;j(;,141), is influenced by temporal proximity. This stands in contrast to traditional
random walks, where transition probabilities are solely based on the static adjacency matrix of the
graph. We define Trrw (%) as the transition matrix for TRW at time t, with each entry T;;(t) repre-
senting the probability of transitioning from node i to node j at time t. Conversely, Trw represents the
transition matrix for a traditional random walk, with constant transition probabilities over time. We
measure temporal consistency by examining the variation in transition probabilities over time, with
TRW expected to exhibit lower variation due to its emphasis on temporal proximity. We continue
the proof in appendix B.

Theorem 3: Improvement of GCN performance with probabilistic sampling in the context of ran-
dom walk sampling.
see appendix C for the complete analytical proof.

Under review as a conference paper at ICLR 2025

3 EMPIRICAL ANALYSIS

GCN s have achieved state-of-the-art performance in various image recognition problems due to their
ability to automatically learn hierarchical features from raw data. Here, we combine it with TRW to
make embedding in the Ethereum network. We run the models on a MacBook Pro equipped with an
Intel Core 19 processor, featuring 8 cores, speed of up to 4.8 GHz, and 30 GB of RAM.

3.1 DATASETS AND EXTRACTING NODE FEATURES

Creating a complete transaction graph for all Ethereum blocks would be a computationally intensive
task, as it would involve processing and storing a large amount of data. However, in the supplemen-
tal material we provide the code to generate a transaction history graph for a range of blocks. We
further need to incorporate spatial and temporal Node Features to capture temporal aspects more
explicitly:

incoming_value_variance: Variance of the transaction values received by the node. This metric
quantifies the spread or dispersion of incoming transaction amounts, providing insight into the con-
sistency or variability of funds received. outgoing_value_variance: Variance of the transaction
values sent by the node. activity_rate: The activity rate of a node represents the total number of
transactions (both incoming and outgoing) divided by the duration (in terms of blocks). It indi-
cates the frequency of interactions involving the node over a specific period. change_in_activity:
The change in activity refers to the difference in the number of transactions of the current block
compared to the previous block for a given node. This metric captures fluctuations or deviations
in transaction behavior over consecutive blocks. time_since_last: Time since the last transaction
involving the node, measured as the difference between the current block number and the block
number of the node’s most recent transaction. It provides insights into the recency of activity as-
sociated with the node. tx_volume: Total transaction volume associated with the node, calculated
as the sum of incoming and outgoing transaction values. This metric represents the overall mag-
nitude of financial transactions involving the node. frequent large transfers: Indicator variable
identifying addresses engaged in frequent and large transfers. Nodes meeting specific thresholds
for both transaction frequency and volume are flagged. gas_price: Additional feature relevant for
MEV detection, representing the gas price paid for transactions. Gas price fluctuations can signal
potential MEV activities such as frontrunning or transaction ordering strategies. token_swaps: An-
other feature for MEV detection, indicating involvement in token swaps or trades on decentralized
exchanges (DEXs). Analysis of token swap transactions can reveal arbitrage opportunities or ma-
nipulative behavior by MEV bots. smart_contract_interactions: Feature identifying transactions
interacting with known DeFi protocols or smart contracts. MEV bots may exploit vulnerabilities or
manipulate protocol behaviors.

3.2 TRW-GCN COMBINED METHOD TO DETECT ANOMALIES

To apply graph convolutional layers to the blockchain data for aggregating information from neigh-
boring nodes and edges, we’ll use the PyTorch Geometric library. This library is specifically de-
signed for graph-based data and includes various graph neural network layers, including graph con-
volutional layers. Note that training and testing a graph neural network on Ethereum dataset would
require significant computational resources, as currently, the Ethereum network possesses about 20
million blocks, which are connected over the Ethereum network, and we provide the transaction
history graph within a specified block range.

In Algorithm 1, we intend to compare the anomaly detection of full- and sub-graphs (sampling us-
ing TRW). The graph convolution operation combines the features of neighboring nodes to update
the representation of a given node. As node features, we input the 10 features indicated in 3.1
as vector representation; considering 20 hidden layers, 100 epochs, 1r=0.01, num_ walks=10,
and walk_length=100, the resulting output vector aggregates information from all neighboring
nodes. By using the nodes from TRW for training, the GCN will be more attuned to the time-
dependent behaviors, leading to better detection of sudden spikes in transaction volume or unusual
contract interactions that occur in quick succession. In our experiments, we employ TRW to sample
nodes from the entire graph, ensuring that the graph’s integrity is maintained. Here’s how it can be
done:

Under review as a conference paper at ICLR 2025

Algorithm 1: TRW- GCN combined method to
detect anomalies

Algorithm 2: A Score-based anomaly detection
associated with time-dependent behaviors

Steps:

1. Load and Preprocess the graph G.

2. Node feature extraction for each node

v; € V: Construct a node feature matrix

F € RV where each row F; corresponds

to f(’Ul)

3. Convert graph to adjacency matrix A €

RIVIXIVI

4. Instantiate two GCN models M7 rw and M

with parameters in_channels, hidden_channels,

out_channels.

5. Temporal Random Walk (TRW) for k = 1 to

num_walks: Aggregate all walks in a set W =
num-walks

6.1C 1Training using sampled-graphs: Train

Mrrw or M using node features Fx and ad-

jacency matrix An.

7. Anomaly Detection: Apply DBSCAN, One-

Class SVM, IsoForest, and LOF on embed-

dings from the trained GCN model M to obtain

Steps:

1. Graph Preprocessing: G' = G(V, E) where
E has node attributes.

2. Node Feature Extraction: X =
[z1,22,...,2,] forn € V.

Adjacency Matrix A from G’.

3. GCN Model: GCNModel with lay-
ers: in_channels — hidden_channels —
out_channels.

4. Temporal Random Walk:
TRW(G', start, length) returns walk W
and timestamps 7.

5. Node Sampling via TRW: All_ Walks =
(o TRW (G, random_node, walk _length).

i=1

6. Node Frequency Computation: freq(v) =

ccurrences of v in All_Walk:

(:Tlax[zz‘::uire‘:lcesi‘:lAll,\x}:ill(s forv € V

7. Anomaly Score Computation: S(v) =

(emb (V) gyest — 1 (emb(v))) .
C‘,Ee;nbm) x freq(v) where emb is

the node embedding, p is the mean, and o is
the standard deviation; where anomalous nodes

anomaly labels. v are where S(v) > threshold.

1. Perform TRWs to Sample Nodes for Training: The TRWs provide sequences of nodes
representing paths through the Ethereum network graph. Nodes appearing frequently in
these walks are often involved in recent temporal interactions.

2. Train the GCN with the Sampled Nodes: Instead of using the entire Ethereum network
graph for training, use nodes sampled from the TRWs. This approach tailors the GCN to
recognize patterns from the most temporally active parts of the Ethereum network.

Using the GCN with TRW combined method, one can achieve 1) anomalies Detected, 2) Training
Efficiency, and 3) Quality of Embedding. The integration of TRW with GCNs offers a novel ap-
proach for generating embedding that capture both spatial and temporal patterns within the Ethereum
network. These embedding are vital for understanding the underlying transaction dynamics and for
effectively detecting anomalous activities. To evaluate the potential of the TRW-GCN methodology,
we employ four distinct machine learning techniques: DBSCAN, SVM, Isolation Forest (IsoFor-
est), and Local Outlier Factor (LOF). Wu et al. (2020) indicated that they have obtained more than
500 million Ethereum addresses and 3.8 billion transaction records. However, only 1259 addresses
are labeled as phishing addresses collected from EtherScamDB, which implies an extreme data im-
balance as the biggest obstacle for phishing detection, therefore they used unsupervised learning
detection method. We similarly use unsupervised learning for detection in our GCN-TRW algo-
rithm.

The extensive use of these four diverse techniques allows us to validate the efficacy of the TRW-
GCN framework. The high anomaly detection rates in Figure 1 by clustering methods underscores
the importance of algorithm selection. As observed in Figure 1, these techniques seem to be sensitive
to the embedding generated by TRW-GCN, as the number of anomalies vary significantly with and
without TRW. It’s essential to note that high detection doesn’t necessarily imply high precision; it
might indicate a higher false positive rate in the ML methods, clustering methods like dbscan in
particular, as also shown in Table 1. Nevertheless, Figure 1 vividly showcases the superiority of the
TRW-GCN combined approach over traditional GCN with higher anomaly detection. The enhanced
detection capabilities can be attributed to the TRW’s ability to encapsulate temporal sequences and
correlations of transactions. It is more interesting to find out which node feature mainly contributes
to anomaly detection, we show it in Figure 2. As illustrated by different colors, the feature 3-
6 namely activity_rate, change_in_activity, time_since_last (mainly the temporal features) are the
drivers of frequent anomalies (with dark blue colors), while tx_volume and frequent_large_transfers
(with green colors) also produce anomalies but less frequently. Although we have obtained good
insights into the method effectiveness to detect time-dependent patterns and features, but we should
look for more precise and less prone to error detection method.

6

Under review as a conference paper at ICLR 2025

Feature Distribution of Anomalous Nodes

Comparison of Anomaly Detection using GCN with TRW and without TRW.

600 W Feature 0
uuuuu mmm Feature 1
Feature 2
v 500 Feature 3
Feature 4
400 Feature 5
- ., . ..) . .) 3 Flature 6
& & & & & & & & g 300 Feature 7
s\w g‘” PO & & & & g Feature 8
’ d § B E § i

0@3 (ﬁ? &d}é e§7c e & & Feature 9

& Ki & & & & 200

& & BN
&
Methods
100
Figure 1: A comparison of 4 detection models S TE 5o e 50

Feature Value (normalized)

namely dbscan, svm, isoforest and lof between
full-graph and sub-graph with TRW sampling

in 1000 blocks which include 83252 nodes, and Figure 2: Feature distribution where Blue and
101403 edges. Green colors: activity_rate, change_in_activity,

and times_since_last show highest frequencies.

Table 1: Comparison of Precision/Recall/F-score of 4 methods with/out-TRW

Method Prec.(w-T) | Recall(w-T) | F-score(w-T) | Prec.(o-T) | Recall(o-T) | F-score(o-T)
DBSCAN 0.497 0.758 0.600 0.450 0.75 0.600
SVM 0.499 0.636 0.599 0.450 0.601 0.546
IsoForest 0.515 0.051 0.093 0.512 0.051 0.093
LOF 0.487 0.049 0.088 0.470 0.047 0.087

3.3 SCORE-BASED ANOMALY PATTERN

As seen in Table 1, the 4 methods provide relatively low precision (we do not obtain the precision
by one-class SVM reported in Wu et al. 2020) and While traditional methods compute anomaly
scores based on the relative position or density of data points in the feature space, we need a method
to be more focused on temporal dynamics, tracking the evolution of each node’s embedding over
time and weighing it by the node’s frequency in the graph. To adapt the code to pick up anomalous
patterns associated with time-dependent behaviors, the algorithm should be equipped to recognize
such patterns. First augment the node features to capture recent activity, with time features as ex-
plained in dataset section. After obtaining node embedding from the GCN, compute the anomaly
score for each node based on its temporal behavior. The simplest way to achieve this is by com-
puting the standard deviation of the node’s feature over time and checking if the latest data point
deviates significantly from its mean.

In the integrated code, Algorithm 2, we altered the node features to capture recent activity. After
training the GCN and obtaining the embedding, we then compute an anomaly score based on how
much the recent transaction volume (the latest day in our case) deviates from the mean. We then use
a visualization function to display nodes with an anomaly score beyond a certain threshold (in this
case, we’ve used a z-score threshold of 2.0 which represents roughly 95% confidence).

'0x7: 739dF2C! 2488D'
'0xdAC17F958D2ee523a2206206994597C13D831ec7"
'0X6F F4B917bF
'0xC02aaA39b223FE8DOAOeSC4F27eADI083C756Cc2"
'0x1202d011913A150f69f6A19DF447A0CfDI551054"
"0xC 7 3¢58575ac’
'0x32400084C286CF3E17€7B677€a9583e60a000324"
12E6507cEOE87ch'
'0x974CaA5949682CdAOAD2bbe82983419A2ECCA00
'0xaBEA9132b05A70803a4E85094fD0e1800777fBEF"
'0x3fC91A3afd70395Cd496C647d5a6CCIDAB2b7FAD'
1811CEC 08D300C
'0x077D360f1 1C26c9be7CAAL"
'0x50031875a787377AA2a879Ae578827C59f2C9c25"
7 fd351887Ac"

Figure 3: Anomaly detection in (left) 100 blocks with 6 features, (middle) 100 blocks with 10
features, (right) the anomalous addresses where the time-sensitive associated ones are hashed green.

Under review as a conference paper at ICLR 2025

In Figure 3, black points represent the vast majority of nodes in the Ethereum network dataset. They
signify regular non-anomalous Ethereum addresses. Cluster of points inside and around the blue cir-
cle represent groupings of Ethereum addresses or contracts that have had frequent interactions with
each other. The density or proximity of points to each other indicates how closely those addresses
or contracts are related. Red points would represent the nodes that have been flagged as anoma-
lous based on their recent behavior. The code identifies them by computing an anomaly score, and
those exceeding a threshold are colored red. In the left graph, there are just 20 nodes detected as
anomaly in 100 blocks where we used 6 structural features in our detection algorithm, while in the
right graph, we used 10 features to detect anomalies in the same 100 blocks, and 12 more suspicious
addresses are detected, hashed in green. This signifies the importance of temporal feature selection,
as by adding 4 temporal features we would be able to detect missing anomalies. We checked these
addresses in Ether explorer website https://etherscan.io , and found the corresponding labels such as
MEYV Bot, Metamask: Swap, Uniswap, Wrapped Ether, Rollbit, Blur: Bidding, which are mainly
time-sensitive transactions or contracts, see next section for further explanation on what is normal
versus anomaly. In Table 2, we explain the types of detected anomalies.

Table 2: Some types of detected anomalies
Detected anomalous patterns Explanation
MEV Bot (Miner Extractable Value) like ——— | MEV strategies can affect the fairness and ef-
0x6F1cDbBb4d53d226CF4B917bF768B94acbAB6168 | ficiency of the Ethereum network, and certain
MEYV activities may be considered harmful.
Uniswap (users to swap various ERC-20 tokens) like | Uniswap smart contracts facilitate decentralized
0x3fC91A3afd70395Cd496C647d5a6CCID4B2b7FAD,| token swaps and are not inherently anomalous;

and Metamask Swap router like —— | Large-scale token swaps on Uniswap could be
0x881D40237659C251811CEC9¢364ef91dCO8D300C | used for trading strategies or liquidity provi-
sion.

Flashloan (borrowing a large sum of tokens and repay- | Detecting flash loans typically involves moni-
ing the loan within the same block. or Blur: Bidding | toring for transactions with large token volumes
0x0000000000A39bb272e79075ade125fd351887Ac and analyzing their timing and patterns.

3.4 NORMAL VERSUS ANOMALY, BASELINE ALGORITHM, ALGORITHM COMPLEXITY, AND
THE GROUND TRUTH

In Ethereum, what may be considered normal or anomalous behavior can vary depending on various
factors such as market conditions, network activity, and the specific use cases of different addresses
or smart contracts. Time-sensitive irregularities in Ethereum transactions refer to anomalies that oc-
cur within specific time frames or exhibit patterns that are indicative of immediate or rapid actions.
These irregularities may include instances of rapid buying or selling of assets, front-running other
traders, MEV activities, flash loan exploits, or token swaps executed within short time intervals.
Identifying these irregularities requires analyzing transactional data in real-time or within narrow
time windows to capture anomalous behaviors as they occur. See Table 3 for a list of time-sensitive
items in Ethereum network including transactions, contracts, and platform activities. Our objective
is to identify such instances. These transactions represent potential threats to the integrity and fair-
ness of the Ethereum network, necessitating further investigation and scrutiny. Upon identifying
suspicious transactions, our approach advocates for thorough investigation and validation. This in-
volves cross-referencing transaction details with external sources such as Etherscan.io in Table 2,
and employing manual review processes to assess the legitimacy of the flagged activities.

Similar to the papers by Wu et al. (2020), Feng et al. (2023), and Zhang et al. (2023), as baseline al-
gorithms for comparison, common unsupervised methods such as Isolation Forest, One-Class SVM,
and DBSCAN are employed. Evaluation metrics, including precision, recall, F1 score in Table 1 are
utilized to assess the performance of the proposed method using training and test data. However,
clustering methods seem to report many false positives, and we do not also obtain the precision
reported by Wu et al. (2020). The study further introduces a statistically-based scoring method to
identify anomalous nodes. The scoring function employs different z-score thresholds of 1.0, 1.5,
and 2.0 (95% confidence level), and on average it produces the precision of 80%. Furthermore, we
compare the results obtained from our scoring method with the ground truth on etherscan.io, pro-
viding a case-by-case evaluation of some detected time-sensitive anomalies in Table 2; all detected
anomalies are re-affirmed with manual inspection.

Under review as a conference paper at ICLR 2025

Table 3: some time sensitive items on Ethereum network and their definitions

Time sensitive | Definitions

items

MEYV Bot MEV refers to the additional profit that miners can extract from the Ethereum net-
work by reordering, censoring, or including transactions in blocks. The timing of
transactions and block mining can affect the potential profit extracted by MEV bots.

Metamask: Swap | Uniswap is a decentralized exchange (DEX) protocol on Ethereum, and swaps con-

Uniswap ducted through MetaMask can be time-sensitive, especially considering the volatil-
ity of cryptocurrency prices and liquidity on Uniswap.

Flashloan Flash loans are uncollateralized loans that must be borrowed and repaid within a
single transaction block. These loans are often used for arbitrage, liquidations, or
other trading strategies that require rapid execution.

Wrapped Ether | Wrapped Ether (WETH) is an Ethereum token pegged to the value of Ether (ETH).

(WETH) Transactions involving WETH can be time-sensitive, especially if they’re related to
trading, liquidity provision, or token swaps.

Rollbit Rollbit is a cryptocurrency trading platform, and transactions conducted on the plat-
form can be time-sensitive, particularly in the context of trading activities, order
executions, and market conditions.

Token Launches | Token launches and airdrops often have predefined distribution schedules or time-

and Airdrops frames during which users can claim or receive tokens. Missing these deadlines
may result in loss of opportunities or benefits.

Smart Contract Ex- | Exploiting vulnerabilities in smart contracts often requires precise timing to execute

ploits malicious transactions before vulnerabilities are patched or mitigated.

We further compare the TRW-GCN model against the state-of-the-art TGAT method, and during our
experiments with TGAT, we encountered significant computational and performance challenges.
TGAT is designed to leverage temporal information and attention mechanisms to capture the dy-
namic nature of graphs. Despite this sophisticated approach, we observed that TGAT resulted in
higher computational costs, primarily due to its multi-head attention mechanism, which involves
multiple passes of matrix multiplications and attention score computations. Furthermore, TGAT’s
reliance on temporal edge attributes added another layer of complexity, further increasing the com-
putational burden. Despite TGAT’s advanced capabilities, the accuracy of the model in the Ethereum
network was found to be as high as 65%, significantly lower than the average of 80% we already
achieved with the TRW-GCN embedding plus the scoring classifier. One possible reason for this
discrepancy could be the sensitivity of TGAT to the quality and scale of temporal data which is quite
a challenge in the Ethereum networks (see the supplemental material to process Ethereum data for
TGAT). Furthermore, using blockchain addresses as users in TGAT make its essential indexing very
difficult, whereas TRW seems to be working far better in such networks.

To accurately determine the complexity of TRW-GCN, it is essential to integrate the complexi-
ties of both the TRW and the GCN components. The complexity of the TRW involves initiating
walks from nodes and stepping through neighbors up to a specified length, which can be quantified
as O(WxLExDlogD), where W represents the number of walks, LE the length of each walk, and
D the average degree of nodes. The GCN complexity involves aggregating features from neigh-
boring nodes and applying transformations through learnable parameters across L layers. The ag-
gregation complexity is proportional to the number of edges E, and the transformation involves
matrix multiplications depending on the number of features F and hidden units H, resulting in
O(Lx(E+NxFxH)). When combining these two aspects, the overall complexity of TRW-GCN is
expressed as O(WXLExDlogD+Lx(E+NxFxH)). The dominant complexity terms typically relate to
E and N, particularly in dense graphs or when handling high-dimensional feature transformations.
See further the proof in appendix D. As seen in the TRW-GCN complexity graph, Figure 4, GCN
complexity scaling with graph size is far more than the TRW complexity.

3.5 How TRW IMPACTS ON GCN PERFORMANCE AS COMPARED TO TRADITIONAL RW

Let’s delve into empirical justification on why TRW sampling could enhance the performance of
GCNs, especially in temporal networks like Ethereum. For a detailed mathematical proof on the
probabilistic sampling in GCN, you are invited to read appendix C. One issue with traditional ran-
dom walks is the potential for creating “jumps” between temporally distant nodes, breaking the

Under review as a conference paper at ICLR 2025

1e6 TRW-GCN Complexity Scaling with Graph Size

254 o *- 2

N
o

=
o)

—8— GCN Complexity
—— TRW Complexity
—e— TRW-GCN Combined Complexity

Combined Complexity
=
o

o
«

0.0 1

500 750 1000 1250 1500 1750 2000 2250 2500
Number of Nodes in Subgraph

Figure 4: TRW-GCN complexity graph, where GCN complexity scaling with graph size is far more
than TRW.

temporal consistency. GCNs rely on the local aggregation of information, and since TRW promotes
smoother temporal signals, GCNs can potentially learn better node representations. Temporal con-
sistency ensures that the sequences are logically and temporally ordered. This can be crucial for
predicting future events or understanding time-evolving patterns, making GCNs more reliable. We
compare different GCN models (including graphSAGE and graph attention network GAT model) for
fullgraph, and sampled-graph with traditional and temporal random walk in Figure 5. Although one
sees little difference between the accuracy of the fullgraph and the sampled-graph in graphSAGE
and GAT models, one can see that traditional random walk and temporal random walk improve GCN
accuracy, where TRW shows even further improvement than the traditional random walk.

Comparison of Model Accuracy Across Datasets

1.0 WEm Original
s rw_sampled
mm trw_sampled

0.8 4

0.24

0.0-
GraphSAGE
Model

Figure 5: Comparison of accuracy of three GCN models between fullgraph, traditional RW and
TRW-based on sampled graph in 100 blocks.

4 CONCLUSION

The evolution and complexity of the Ethereum network has heightened the urgency for temporal
anomaly detection methods. Through our research, we’ve demonstrated that the convergence of
GCNs and TRW offers a solution to this challenge. This fusion has enabled us to delve deeper into
the intricate spatial-temporal patterns of Ethereum transactions, offering a refined lens for anomaly
detection. We have shown the methodology usefulness by expressing and proving three distinct
theorems, full empirical analysis and evaluation. While this approach is used to obtain the em-
bedding, we have compared different clustering and scoring methods to obtain highest precision in
anomaly detection, and verified with the ground truth found on etherscan.io. Furthermore, we have
demonstrated the model that TRW-GCN improves anomaly detection, and proved how probabilistic
sampling improves GCN performance.

10

Under review as a conference paper at ICLR 2025

REFERENCES

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Bastas, N., Semertzidis, T., Axenopoulos, A., and Daras, P. evolve2vec: Learning net-

work representations using temporal unfolding. In International Conference on Multimedia
Modeling, pp. 447-458. Springer, 2019.

. Chen, J., Ma, T., and Xiao, C., “Fastgcn: Fast learning with graph convolutional networks

via importance sampling,” in International Conference on Learning Representations, 2018.

. Chiang, W.L. Liu, X., Si, S., Li, Y., Bengio, S., and Hsieh, C.J., “Cluster-gcn: An effi-

cient algorithm for training deep and large graph convolutional networks,” in Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining,pp. 257-266, 2019.

. Feng, Z., Li, Y., and Ma, X. ”Blockchain-oriented approach for detecting cyber-attack

transactions,” Financial Innovation 9:81, 2023.

. Huang, W., Zhang, T., Rong, Y., and Huang, J., “Adaptive sampling towards fast graph

representation learning,” Advances in Neural Information Processing Systems, vol. 31, pp.
4558-4567, 2018.

. Kumar, S., Zhang, X., and Leskovec, J. Predicting dynamic embedding trajectory in tem-

poral interaction networks. In KDD ’19, pp. 1269-1278, 2019. ISBN 9781450362016.
doi: 10.1145/3292500.3330895. URL https://doi.org/10.1145/3292500.3330895.

. Li, S., Gou, G, Liu, C., Hou, C., Li, Z., Xiong, G., "Ttagn: temporal transaction aggrega-

tion graph network for ethereum phishing scams detection,” In: Proceedings of the ACM
Web conference 2022. WWW ’22. Association for Computing Machinery, New York, NY,
USA, pp. 661-669, 2022.

. Liu, M., Liang, K., Xiao, B., Zhou, S., Tu, W., Liu, Y., Yang, X., and Liu, X., ”Self-

Supervised Temporal Graph learning with Temporal and Structural Intensity Alignment”,
2023, available: https://arxiv.org/abs/2302.07491.

. Ma, Y., Guo, Z., Ren, Z., Zhao, E., Tang, J., and Yin, D. Streaming graph neural networks.

arXiv:1810.10627, 2018.

Nguyen, G.H., Lee, J.B., Rossi, R.A., Ahmed, N.K., Koh, E., and Kim, S. Dynamic net-
work embeddings: From random walks to temporal random walks. In 2018 IEEE Interna-
tional Conference on Big Data, pp. 1085-1092, 2018.

Ofori-Boateng, D., Dominguez, S., Akcora, C., Kantarcioglu, M., and Gel, Y. R., "Topo-
logical Anomaly Detection in Dynamic Multilayer Blockchain Networks”, ECML PKDD
2021: Machine Learning and Knowledge Discovery in Databases. Research Track pp
788-804.

Pareja, A., Domeniconi, G., Chen, J., Ma, T., Suzumura, T., Kanezashi, H., Kaler, T., and
Leisersen, C.E. Evolvegen: Evolving graph convolutional networks for dynamic graphs.
arXiv:1902.10191, 2019.

Rossi, E., Chamberlain, B., Frasca, F., Eynard, D., Monti, F., and Bronstein, M. Temporal
Graph Networks for Deep Learning on Dynamic Graphs. ICLR2020.

Sankar, A., Wu, Y., Gou, L., Zhang, W., and Yang, H. Deep neural representation learning
on dynamic graphs via self-attention networks. In WSDM, pp. 519-527, 2020.

Trivedi, R., Farajtabar, M., Biswal, P., and Zha, H. Dyrep: Learning representations over
dynamic graphs. In ICLR, 2019. URL https://openreview.net/forum?id=HyePrhR5KX.
Wu, J., Yuan, Q., Lin, D., You, W., Chen, W., Chen, C., and Zheng, Z., "Who Are the
Phishers? Phishing Scam Detection on Ethereum via Network Embedding”, 2020, IEEE
TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, available:
https://arxiv.org/abs/1911.09259.

Xu, D., Ruan, C., Korpeoglu, E., Kumar, S., and Achan, K. Induc-
tive representation learning on temporal graphs. In ICLR, 2020. URL
https://openreview.net/forum?id=rJeW1yHYwH.

Xu, K., Li, J., Zhang, M. Du, S. S., Kawarabayashi, K.i. and Jegelka, S. “What can neural
networks reason about?” arXiv preprint arXiv:1905.13211, 2019.

11

Under review as a conference paper at ICLR 2025

19.

20.

21.

22.

Yu, B., Li, M., Zhang, J., and Zhu, Z. 3d graph convolutional networks with temporal
graphs: A spatial information free framework for traffic forecasting. arXiv:1903.00919,
2019.

Zhang, W., Wei, L., Cheung, S-C, Liu, Y., Li, S., Liu, L., and Lyu, M.R., "Combatting
Front-Running in Smart Contracts: Attack Mining, Benchmark Construction and Vulnera-
bility Detector Evaluation,” 2023, https://arxiv.org/pdf/2212.12110.

Zhu, Y., Li, H,, Liao, Y., Wang, B., Guan, Z., Liu, H., and Cai, D. What to dovnext:
Modeling user behaviors by time-lstm. In IJCAI, volume 17, pp. 3602-3608, 2017.

Zou, D., Hu, Z., Wang, Y., Jiang, S., Sun, Y., and Gu, Q., “Layer-dependent importance
sampling for training deep and large graph convolutional networks,” Advances in neural
information processing systems, 2019.

12

Under review as a conference paper at ICLR 2025

A WEIGHT CANCELLATION IN THEOREM 1

In the topic of anomaly detection, particularly in systems where temporal factors play a crucial role,
the design and behavior of the transformation matrix 7, ; are of paramount importance. This section
delves into the potential challenges posed by weight cancellation within 7;,; and its consequential
impact on the detection of temporally influenced anomalies (given in our first Theorem). We explore
the nuances of how such weight cancellations can diminish the efficacy of anomaly detection and
propose strategies to mitigate these issues. Additionally, we underscore the importance of empirical
analysis in validating the robustness and reliability of our anomaly detection methodology under
various scenarios. Let us first render our definitions:

Vector Spaces

Let R™ be the vector space of interest. Define h,, € R™ as a feature vector in the absence of tem-
poral influence. Let T},; € R™*™ be a transformation matrix encoding temporal weights. Define
h), = T,,jhy, where h], € R™ is the transformed feature vector under temporal influence.

Assume T, ; has entries ¢;; where ¢, 7 = 1,2,...,m.

DIFFERENCE MEASUREMENT

We use the Euclidean norm to quantify the difference: ||h], — hy||2. This norm is given by
m

> (Ml = hni)? (8)

=1

17, = Bnll2 =

where h/ . and h,,; are the components of A/, and h.,, respectively.

EXPRESSION OF h], IN TERMS OF T},; AND h,,
hl, = Ty;hy, implies

i = Y tijhn;)
for each 1.

NORM CALCULATION

Compute the norm ||h], — h,||2 as follows:

2

1Py = Balla = | D\ D tighng = s

i=1 \j=1

This equation represents the Euclidean norm of the difference between the transformed feature vec-
tor k!, and the original feature vector h,.

CONDITIONS FOR SIGNIFICANT DIFFERENCE

Given: h, = T, ;h,, and ||h], — hy||2 > €, for some threshold € > 0.

2

For ||}, = |2 > €, it must hold that > | > " t;;hn; — hyi | > €%,

i=1 \j=1

13

Under review as a conference paper at ICLR 2025

This inequality implies that, for at least one ¢, the inner sum Z;”:l tijhn; — hyn; must be non-
negligible. Therefore, the weights in 7T},; must be such that they do not merely scale h,,; but rather
significantly alter the distribution of h,,. Scaling would imply a uniform change across all compo-
nents of h,, , which might not be sufficient to meet the inequality condition. Instead, the transforma-
tion must significantly alter the distribution of h,,. This could mean changing the relative magnitudes
of its components, modifying their relationships, or introducing non-linear changes. Such alterations
are necessary for effectively differentiating between normal and anomalous states, especially in the
context of anomaly detection where temporal influences are considered.

SCENARIOS LEADING TO WEIGHT CANCELLATION

Scenario Analysis:
Consider the case where T;,; has symmetric properties or specific patterns that lead to cancellation.

For instance, if T},; is such that ¢;; = t;; for all 4, j, and h,, has symmetric properties, then

m
Z t;;hny; could approach hy,; for all 4. (10)
j=1
Additionally, if T;,; contains complementary weights, such as some ¢;; and ¢;;, summing to zero,
and h,; and h,, are similar, cancellation could occur.

Analysis of T',; Properties for Cancellation

To further understand how 7, ; might lead to weight cancellation:

* Consider the spectral properties of 75, ;. If T;,; has eigenvalues close to 1, then it acts close
to an identity matrix on certain vectors.

* If T’,; has orthogonal rows or columns, it might preserve the magnitude of h,, under certain
conditions, leading to minimal change in h/,.

* If the entries of T}, ; are structured such that they negate each other when applied to h,,, this
could lead to a scenario where h), & h.,.

In scenarios where the weights in the transformation matrix 7},; cancel each other out, this can
significantly impact the detection of temporally influenced anomalies. To mitigate these issues,
several strategies can be employed:

Regularization: Introducing regularization is a good practice in preventing extreme weight values,
which can be beneficial in any anomaly detection system, including Ethereum network analysis.

Weight Initialization and Optimization: Carefully initializing the weights in T',; and employing
robust optimization techniques can ensure that the weights evolve in a manner that minimizes the
risk of cancellation. This can be particularly important in Ethereum network anomaly detection.

Spectral Analysis: Performing spectral analysis of Ty;j to understand its eigenvalues and eigen-
vectors can provide insights into how the matrix behaves and identify potential scenarios where
cancellation might occur. Adjustments can then be made accordingly.

Ensemble Methods: Using ensemble methods is a robust strategy in anomaly detection, as it re-
duces reliance on any single transformation. In the context of Ethereum network anomalies, ensem-
ble methods can enhance the reliability of detection by combining multiple models or transforma-
tions.

B TRW SAMPLING MAINTAINS HIGHER TEMPORAL CONSISTENCY

Theorem 2: TRW sampling maintains higher temporal consistency than traditional random walk
sampling.

Definitions and Assumptions:
* In TRW, the probability of transitioning from node ¢ at time ¢ to node j at time ¢ 4 1 is

given by P;;(¢t,t + 1), which is higher for temporally closer nodes.

14

Under review as a conference paper at ICLR 2025

* In a traditional random walk, the transition probability F;; is independent of time and is
based solely on the adjacency matrix of the graph.

* Let Trrw(t) be the transition matrix for TRW at time ¢, where each entry 7, () represents
the probability of transitioning from node ¢ to node j at time ¢.

* Let Trw be the transition matrix for a traditional random walk, where each entry Tj; is
constant over time.

» Temporal consistency can be quantified by the variation in the transition probabilities over
time. For TRW, this variation is expected to be lower than for traditional random walks, as
TRW emphasizes temporal proximity.

Proof:

Consider the difference in transition probabilities between two consecutive time steps in TRW:
| Trrw(t + 1) — Trrw(¢)]|. This norm is expected to be small, indicating high temporal consis-
tency.

For a traditional random walk, the transition probabilities do not change over time: ||Trw (¢t + 1) —
Trw(t)|| = 0. However, this does not imply temporal consistency, as it does not account for the
temporal nature of the data.

Now we do comparison:

* To demonstrate higher temporal consistency in TRW, one can show that the variation in
transition probabilities in TRW is more aligned with the temporal dynamics of the data
compared to traditional random walk. This can be done by analyzing the correlation be-
tween Trrw (t) and the actual temporal sequence of events in the data.

» Trrw(t) aligns more closely with the temporal sequence of events than Ty and temporal
consistency is better captured by a model that adjusts its transition probabilities based on
the temporal proximity of events. Therefore, TRW is expected to maintain higher temporal
consistency than traditional random walk sampling.

C IMPROVEMENT OF GCN PERFORMANCE WITH PROBABILISTIC SAMPLING

Theorem 3: Improvement of GCN performance with probabilistic sampling in the context of ran-
dom walk sampling.

Providing a comprehensive mathematical proof on the theorem on improvement of GCN perfor-
mance through probabilistic sampling in the context of analyzing the Ethereum network, even in a
simplified scenario, is a complex task that requires careful consideration and detailed mathematical
derivations.

Consider a simplified Ethereum transaction graph with N accounts (nodes), and M transactions
(edges) between them. We aim to prove the performance improvement of a GCN using probabilistic
sampling for the task of predicting account behaviors.

Assumptions:

1. Nodes (accounts) have features represented by vectors in a feature matrix X.
2. The adjacency matrix A represents transaction relationships between accounts.
3. Binary labels Y indicate specific account behaviors.

Proof.

C.1 DEFINE THE GRAPH LAPLACIAN

Start with the definition of the normalized graph Laplacian L = I — D=2 AD~=, where D is the
diagonal degree matrix and A is the adjacency matrix.

15

Under review as a conference paper at ICLR 2025

C.2 TRADITIONAL GCN PERFORMANCE

Derive the eigenvalues and eigenvectors of the Laplacian matrix L and show their significance in
capturing graph structure. Derive the performance of a GCN trained on the full graph using these
eigenvalues and eigenvectors:

Step 1: Deriving Eigenvalues and Eigenvectors of the Laplacian matrix L

Given the normalized graph Laplacian matrix L, let A be an eigenvalue of L and v be the corre-
sponding eigenvector. We have L, = \,. Solving for A and v, we get:

D 3AD Zv = (1 -\ (11)
AD 2y = (1-A)D?v (12)

This equation implies that D~ 3AD zisa symmetric matrix that is diagonalized by the eigenvectors
v with corresponding eigenvalues 1 — A. The eigenvectors and eigenvalues of L capture the graph’s
structural information. Larger eigenvalues correspond to well-connected clusters of nodes in the
graph, while smaller eigenvalues correspond to isolated groups or individual nodes.

Step 2: Deriving GCN Performance Using Eigenvalues and Eigenvectors

Now let’s consider a scenario where we’re using a GCN to predict node labels (such as predicting
high-value transactions) on the full graph. The GCN’s propagation rule can be written as:

D = f(AROW W) (13)

where () is the node embedding matrix at layer [, f is an activation function, and A=D"3AD" 3.
is the symmetrically normalized adjacency matrix, and W) is the weight matrix at layer 1. The key
insight is that if we stack multiple GCN layers, the propagation rule becomes:

L) = fARE-DWED) = f(Af(ARE-DW L=y (L=D) (14)

We can simplify this as:

L-1
hE) = f (A(l)h(O)W(O) H WU)) (15)

=1
Using the spectral graph theory, we know that AD captures information about the graph’s structure
up to L-length paths. The eigenvalues and eigenvectors of A() indicate the influence of different
sampled-graphs of length L on the node embeddings. Larger eigenvalues correspond to more signif-
icant graph structures that can impact the quality of learned embeddings. By leveraging the spectral
insights, GCNs can focus their learning on graph structures that matter the most for the given task. In
the case of probabilistic sampling, the convergence of eigenvalues signifies that the sampled graph
retains essential structural information from the full graph. This implies that by training GCNs on

Agampled, We are effectively capturing the key graph structures necessary for accurate predictions.
This incorporation of spectral properties aligns the GCN’s learning process with the inherent char-
acteristics of the graph, resulting in improved performance. The embeddings learned by the GCN on
the sampled graph become more indicative of the full graph’s properties as the sample size increases,
enabling more accurate predictions or more efficient training convergence.

C.3 PROBABILISTIC SAMPLING APPROACH

In this step, we’ll introduce a probabilistic sampling strategy to select a subset of nodes and their
associated transactions. This strategy aims to prioritize nodes with certain characteristics or prop-
erties, such as high transaction activity or potential involvement in high-value transactions. Assign
a probability p; to each node i based on certain characteristics. For example, nodes with higher
transaction activity, larger balances, or more connections might be assigned higher probabilities.
For each node i, perform a random sampling with probability p; to determine whether the node is
included in the sampled subset. Consider a graph with NV nodes represented as N = {1,2,..., N}.
Each node i has associated characteristics described by a feature vector X; = [X; 1, X, 2, ..., Xi k],
where K is the number of characteristics. Define the probability p; for node ¢ as a function of its

16

Under review as a conference paper at ICLR 2025

feature vector X;: p; = f(X;). Here, f(-) is a function that captures how the characteristics of node
i are transformed into a probability. The specific form of f(-) depends on the characteristics and the
desired probabilistic behavior. For example, f(X;) could be defined as a linear combination of the
elements in X;:

K
Di = ijXi,j (16)
i—1

Where w; are weights associated with each characteristic. The weights w; can be used to empha-
size or downplay the importance of specific characteristics in determining the probability. After
obtaining p; values for all nodes, normalize them to ensure they sum up to 1:

P
N
> i=1Pj

Use the normalized probabilities pyormalized t0 perform probabilistic sampling. Nodes with higher
normalized probabilities are more likely to be included in the sampled subset, capturing the char-
acteristics of interest. The specific form of f(-) and the choice of weights w; depend on the nature
of the characteristics and the goals of the analysis. This approach allows for targeted sampling of
nodes that exhibit desired characteristics in a graph.

a7

Pnormalized =

C.4 GRAPH LAPLACIAN FOR SAMPLE GRAPH

Given the sampled adjacency matrix Asampled’ we want to derive the graph Laplacian isampled for the
sampled graph. The graph Laplacian ﬁsampled is given by:

A _1 ~ A1
— 2 2
Lsampled =1I- Dsamp1edAsamplestampled (18)

Where ﬁsampled is the diagonal degree matrix of the sampled graph, where each entry dii corresponds
to the degree of node i in the sampled graph, and Agampleq is the sampled adjacency matrix.

Nsampled

di; = Z Asampled,ij (19)

j=1

The modified Laplacian captures the structural properties of the sampled graph and is essential for
understanding its graph-based properties.

C.5 EIGENVALUE ANALYSIS AND CONVERGENCE

We derived
~ A1 ~ A1
— 7T _ 2 2
L sampled — I D sampledASﬂmple‘iD sampled (20)

as the normalized graph Laplacian for the sampled graph. Let \; be the i-th eigenvalue of isampled
and 9; be the corresponding eigenvector. We have

Lampiea®s = i Q1)

The goal is to compare the eigenvalues of L with the eigenvalues of ﬁsampled and show convergence
under certain conditions.

Theoretical Argument:
As the sample size Ngmplea approaches the total number of nodes NV in the original graph, Lgampled
converges to L. This implies that the eigenvalues of f)sampled converge to the eigenvalues of L.

1. Step-wise convergence:
For simplicity, we’ll denote the entries of Esampled as isampled(i, j) and the entries of L as

1(, 7). To prove the convergence, we need to show that Zsampled(i, J) = 1(4,7) as Namplea —
N for all 7 and j.

17

Under review as a conference paper at ICLR 2025

2. Eigenvalue convergence:

Once establishing that each entry of [A/sampled converges to the corresponding entry of L, one
can use this result to prove the convergence of eigenvalues. Eigenvalues are solutions to the
characteristic equation of the matrix, which depends on its entries. If all entries of ﬁsampled
converge to those of L, the characteristic equations of both matrices will be similar.

Stochastic Convergence: The convergence argument relies on the concept of stochastic conver-
gence. As the sample size becomes large, the sampled graph’s properties approach those of the
original graph. This includes the behavior of the eigenvalues.

Graph Structure Alignment: The convergence occurs when the sampled subset of nodes is rep-
resentative enough of the entire graph. This means that the sampled graph captures the structural
characteristics that contribute to the eigenvalues of L. Under the assumption of sufficient repre-
sentativeness and with a large enough sample size, the eigenvalues of L sampled converge to the
eigenvalues of L.

C.6 CONVERGENCE OF GCN EMBEDDINGS

Recall that the graph convolutional operation can be expressed as
D = f(AROWO) (22)

The spectral properties of A and L are determined by the eigenvalues. As shown in the previous
steps, as the sample size increases, the eigenvalues of ﬁsampled converge to those of L. Graph con-
volutional layers rely on the eigenvectors and eigenvalues of A. The graph convolution operation
AROW O involves these spectral properties.

Convergence of GCN Layers: Because the eigenvalues of Aand L are converging, the impact of
multiple graph convolutional layers on h and hgamples becomes increasingly similar as the sample
size increases.

1. Layer-by-layer impact:
As we stack multiple graph convolutional layers, each layer applies the graph convolution
operation sequentially. This means that the impact of each layer depends on the eigenvalues
of A.

2. Convergence influence:

As the eigenvalues of A converge to those of L due to the increasing sample size, the be-
havior of the graph convolutional layers on h and hgampiea becomes increasingly similar.
The convergence of eigenvalues indicates that the structural characteristics of the sampled
graph are aligning with those of the original graph. The graph convolutional layers are sen-
sitive to these structural properties, and as the structural properties become more aligned,
the impact of these layers on embeddings h and hgampieq Will also become more aligned.

Since the top eigenvectors correspond to the major variations in the graph, as the spectral properties
converge, the embeddings h and hsampieq 1€arned by the GCN should increasingly align in terms of
the top eigenvectors. As the eigenvalues of the Laplacian matrices converge, the behavior of the
graph convolution operation and the resulting embeddings in both the original and sampled graphs
becomes more similar. This implies that the embeddings learned by a GCN on the sampled graph
Nsampled Will converge to the embeddings learned on the full graph h.

C.7 IMPACT OF EIGENVECTOR ALIGNMENT ON GCN PERFORMANCE

Recall that the eigenvalues and eigenvectors of the Laplacian matrix capture the graph’s structural
properties. Eigenvectors corresponding to larger eigenvalues capture important patterns and varia-
tions in the graph.

GCN Performance Analysis:

18

Under review as a conference paper at ICLR 2025

1. Predictive Power of Eigenvectors: The alignment of top eigenvectors suggests that the
information captured by these eigenvectors is consistent between the original and sampled
graphs.

2. Prediction Task: If the prediction task relies on features that align with the graph’s struc-
tural patterns, then the embeddings learned on the sampled graph will capture similar pat-
terns as those on the full graph.

3. Performance Convergence: As the embeddings hgmpled approach h in terms of the top
eigenvectors, the predictive performance of the GCN on the sampled graph should approach
the performance on the full graph. The alignment of top eigenvectors implies that the
information encoded in the embeddings learned by a GCN on the sampled graph converges
to that of the embeddings learned on the full graph. This suggests that as hgampiea cOnverges
to h, the predictive performance of the GCN on the sampled graph should approach that on
the full graph, assuming the prediction task is influenced by the graph’s structural patterns
captured by these eigenvectors. However, the precise impact will depend on the nature of
the graph, the quality of the sampling strategy, and the specific prediction task. To prove
the improvement of GCN performance with probabilistic sampling, consider the following
steps:

(a) Original Graph Performance (Without Sampling): Let F be the performance mea-
sure (e.g., accuracy) of the GCN trained and evaluated on the full graph G using em-
beddings h, denoted as Ejy.

(b) Sampled Graph Performance (With Probabilistic Sampling): Now, consider the
performance of the GCN trained and evaluated on the sampled graph Gampiea Using
embeddings Ngampled, denoted as Egampled-

(c) Improved Performance: Egnpeq > Efun indicates an improvement in performance
due to probabilistic sampling.

 Utilize the previously shown argument: As the sample size increases, the embed-
dings hsamplea cOnverge to h in terms of top eigenvectors.

* With the alignment of top eigenvectors and the graph convolutional layers’ con-
vergence, the learned embeddings become more similar.

* The improved alignment of embeddings captures more relevant structural infor-
mation, potentially leading to improved prediction accuracy or other performance
metrics.

By leveraging the convergence of embeddings and the improved alignment of top eigenvectors
through probabilistic sampling, we can argue that the performance of the GCN on the sampled graph
Gampled is expected to be better (higher accuracy, faster convergence, etc.) than on the full graph G.
This proof highlights the positive impact of probabilistic sampling on enhancing the performance of
GCNs in analyzing complex graphs like the Ethereum network.

D COMPLEXITY ANALYSIS OF TRW-GCN

To properly calculate and explain the complexity of a Temporal Random Walk Graph Convolutional
Network (TRW-GCN) system, it’s crucial to factor in both the GCN and the TRW parts in a cohesive
manner. This combination entails not only the graph convolutions but also the dynamic aspect
introduced by temporal random walks. Here’s a refined approach to describing and computing the
combined complexity.

* Dependence on Graph Size: The complexity shows linear dependence on the number of
edges E and nodes IV, with an additional logarithmic factor related to the maximum node
degree D.

* Scalability: The method scales well with larger graphs, though high-degree nodes d can
introduce additional complexity due to the sorting step in TRW.

GCN COMPLEXITY

The complexity of GCN operations is primarily influenced by the number of nodes /N and edges E
in the graph. The two main steps in a GCN layer are feature propagation and aggregation.

19

Under review as a conference paper at ICLR 2025

* Feature Propagation: Each node aggregates features from its neighbors, which involves
accessing the adjacency matrix and node feature matrix. This step takes O(F) time since
each edge defines a neighbor relationship that needs to be processed.

* Feature Transformation: Multiplying the node feature matrix by a weight matrix. This
stepis O(N - F'- H) where F is the number of input features and H is the number of output
features.

For a GCN with L layers, the overall complexity is:
OL-(E+N-F-H))

TRW COMPLEXITY

The complexity of a temporal random walk depends on the length of the walk W and the number of
walks R. For each step in the walk, the algorithm looks at the neighbors of the current node.

 Walk Initialization: Starting a walk from a random node, which is O(1).

* Neighbor Selection: Sorting the neighbors by timestamp and selecting the next node. The
worst-case complexity for sorting neighbors is O(D log D, where D is the average degree
of nodes.

For a walk of length W, the complexity is:
O(R-W - Dlog D)
ANOMALY SCORE COMPUTATION COMPLEXITY

The computation of anomaly scores involves calculating the mean and standard deviation of node
embeddings, followed by the z-score calculation.

* Mean and Standard Deviation Calculation: For NV nodes, each with an embedding of
size H, thisis O(N - H).

* Z-Score Calculation: For N nodes, this is O(N).

Overall, the complexity is:
O(N - H)

Combining the complexities of all components:

* GCN Complexity: O(L- (E+ N - F - H))
* TRW Complexity: O(R- W - Dlog D)
* Anomaly Score Computation: O(N - H)

Assuming F', H, L, R, and W are constants, the overall complexity simplifies to:

O(E+ N -DlogD)

20

	Introduction
	Model Design
	Incorporating TRW into GCN
	Effect on Anomaly Detection

	Empirical Analysis
	Datasets and Extracting Node Features
	TRW-GCN combined method to detect anomalies
	Score-based anomaly pattern
	Normal versus Anomaly, Baseline algorithm, Algorithm complexity, and the Ground truth
	How TRW impacts on GCN performance as compared to traditional RW

	Conclusion
	Weight Cancellation in Theorem 1
	TRW sampling maintains higher temporal consistency
	Improvement of GCN performance with probabilistic sampling
	Define the graph Laplacian
	Traditional GCN performance
	Probabilistic Sampling Approach
	Graph Laplacian for sample graph
	Eigenvalue analysis and convergence
	Convergence of GCN embeddings
	Impact of Eigenvector Alignment on GCN Performance

	Complexity Analysis of TRW-GCN

