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ABSTRACT

Traditional face recognition (FR) algorithms often rely merely on margin-based
softmax loss functions. However, due to varied image hardness in datasets, these
models often falter when dealing with low-quality images. To address this issue,
we introduce SMAFace, an innovative FR algorithm that enhances performance
by incorporating sample mining into conventional margin-based methods. At its
core, SMAFace focuses on prioritizing information-dense samples, namely hard
samples or easy samples, which present more distinctive features. In this study,
we employ a probability-driven mining strategy, enabling the model to adeptly
navigate hard samples, thereby bolstering its robustness and adaptability. The
mathematical evaluation and empirical tests of SMAFace indicate its effective-
ness. Moreover, experimental results reveal that our approach surpasses the state-
of-the-art (SoTA) on four renowned datasets (CPLFW, VGG2-FP, IJB-B and Tiny-
Face), highlighting its potential and efficiency.

1 INTRODUCTION

FR constitutes a pivotal task within the realm of computer vision. Metric learning is an effective
approach for face recognition and forms the foundation of cosine similarity methods(Sun et al.,
2014; Taigman et al., 2014). The quality of face images largely depends on various factors such as
brightness, contrast, clarity and noise. For high-quality face images, despite some exhibiting varia-
tions in illumination, pose and expression, the task of FR can still be accomplished. However, when
faced with low-quality images, such as those impaired by noise or low resolution, the recognition
task becomes quite challenging. Traditional FR algorithms usually adopt a margin-based softmax
loss function for classification merely, but their performance in dealing with low-quality images is
subpar. This is caused by noise and other disturbance factors, which make it difficult for the model
to acquire useful features.

In this context, we propose a novel FR algorithm that considers both margin function and sample
mining to improve the performance of FR models. The initial step in this direction is to find an
effective proxy of image quality (Terhörst et al., 2020; Boutros et al., 2023; Long Chai et al., 2023).
We use the feature norm as an approximate proxy of image quality, thereby allowing for an accurate
assessment of image quality during the training process and enabling subsequent model optimization
based on this.

Sample mining is an effective strategy for enhancing the performance of deep neural networks. This
strategy focuses on samples that are rich in information, as they provide more effective discrimina-
tory features. In this paper, we introduce a mining-based strategy by probability to help the model
better adapt to hard samples, thereby enhancing the model’s robustness and generalization capabili-
ties (see Figure 1).

We define a parameter called the scaling term. Its fundamental source lies in the partial derivatives
of the backpropagation process, namely stochastic gradient descent (SGD). This is not an unfamiliar
concept; rather, it is a crucial and widely acknowledged element. We subjected it to a brief mathe-
matical analysis, subsequently demonstrating that the handling perspective of hard and easy samples
can indeed yield the intended effects. We also engaged in visualizing its operations, enabling us to
readily discern the underlying concept of SMAFace.
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Figure 1: FR based-mining algorithm by probability.

To validate the effectiveness of our proposed new loss function and mining strategy, we performed
experiments on multiple datasets and compared our method with other approaches from recent years.
The experimental results indicate that our method has achieved significant performance improve-
ments, demonstrating excellent efficacy and potential.

In summary, our main contributions include:

• We introduce a mining-based loss function by probability to enhance the model’s robust-
ness and generalization capabilities.

• We propose a parameter referred to as the scaling term to analyze the nature of the model,
derived from a series of mathematical derivations to serve as a metric of measurement.

• We visualize its values through heatmap representations, which facilitate a more effective
understanding of the differences among various methods.

• We validate the effectiveness of our method through experiments on multiple datasets. The
results show that our method has a significant performance advantage in the task of FR.

2 RELATED WORK

Margin-based Loss Function The cross-entropy loss for sample xi can be represented as

LCE(xi) = − log
exp(W:,yi

zi + byi
)∑C

j=1 exp(W:,jzj + bj)
,

where yi stands for the index of the ground truth(GT) label and zi ∈ Rd is the feature input for xi

which belongs to the yth
i class. W:,j denotes the jth column of the final fully connected layer weight

matrix, W ∈ Rd×C , and bj represents the corresponding bias term, with C denoting the number of
classes.

The introduction of cosine similarity has revolutionized FR approaches. To make classification more
effective and in line with the characteristics of FR, Liu et al. (2017); Wang et al. (2017) employed
a normalized softmax method, setting the bias term to 0. During training, they normalized zi and
scaled it with s. The modified formulation becomes

LCE(xi) = − log
exp(s · cos θyi

)∑C
j=1 exp(s cos θj)

,

where θj is the angle between zi and W:,j . Subsequent research (Deng et al., 2019a; Wang et al.,
2018; Liu et al., 2017) adopted this approach and introduced a margin to decrease the intra-class
distance. Generally, it can be expressed as

LCE(xi) = − log
exp(f(θyi

;m))

exp(f(θyi
;m)) +

∑C
j ̸=yi

exp(s cos θj)
, (1)
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where f(θyi
;m) denotes the margin function and m is a constant hyperparameter representing the

margin. SphereFace(Liu et al., 2017), CosFace(Wang et al., 2018) and ArcFace(Deng et al., 2019a)
each proposed a unique margin function to enhance clarity in feature space discrimination. In the
equations mentioned above, SphereFace employs the function f(θyi

;m) = s cos (mθyi
), CosFace

utilizes the function f(θyi
;m) = s (cos (θyi

)−m), while ArcFace adopts the function f(θyi
;m) =

s cos (θyi
+m). The design of these formulas fully considers the distance between classes and the

distribution of features, enabling the model to better recognize and differentiate faces.

Adaptive Loss Functions The design of adaptive loss functions, due to their characteristics of
self-adjustment according to the process and effect of learning, brings new possibilities for the train-
ing and optimization of deep learning models. Among them, the proposal of the AdaCos(Zhang
et al., 2019) resolves the cumbersome and inefficient process of parameter tuning. The AdaCos
builds upon the CosFace approach and further introduces a new method that automatically modifies
the margin, and scales hyperparameters m and s values with training iterations. AdaCos observes
that when the s value is too small, even though the angular margin θ(i, yi) between target i and
its class center is sufficiently small, the probability of it being classified as a positive instance is
relatively low. Conversely, when the s value is too large, even if the angular margin θ(i, yi) between
target i and its class center is still relatively large, its probability of being classified as a positive
instance may approach 1. Based on some theoretical derivations, AdaCos proposes a method for
updating adaptive parameters from a mathematical perspective.

AdaptiveFace(Liu et al., 2019) has proposed an AdaM-Softmax loss, which is modified based on
CosFace. As training progresses, AdaM-Softmax will give larger margins to poor classes and
smaller margins to rich classes. This strategy fully considers the characteristics of the training set
and helps improve the overall performance of the model.

CurricularFace(Huang et al., 2020b) is also an adaptive loss function, which gradually increases
in difficulty as the training progresses. Its concept is easier to comprehend than the previous two
approaches, encapsulated in a single sentence. However, it is similarly ingeniously constructed and
its solidness is on par with them.

Loss Functions for Low-Quality Images In the handling of loss functions for low-quality images,
MagFace(Meng et al., 2021) has introduced an adaptive mechanism that draws relatively easy sam-
ples closer to class centers of a larger magnitude while pushing more hard samples away from the
center, reducing their magnitude in the process. This mechanism enables the learning of intra-class
feature distribution with a good structure. Specifically, the loss function of MagFace is expressed as
follows

LMagFace = − log
es cos(θyi+m(ai))

es cos(θyi+m(ai)) +
∑

j ̸=yi
es cos(θj)

+ λgg (ai) .

In this equation, ai represents the scale of the non-normalized facial features of samples i, m(ai) de-
notes the scale-aware angular margin for the positive samples i, which is monotonically increasing,
and g(ai) is a regularizer designed as a monotonically increasing convex function. The parame-
ters m(ai) and g(ai) jointly emphasize the orientation and scale of face embedding, and λg is a
parameter used to balance these two parameters.

Although MagFace introduces the concept of scale, it does not further introduce the concept of
feature norms. Feature norms, bearing many similarities to scale, were first proposed for FR in
AdaFace(Kim et al., 2022). MagFace emphasizes easy samples for higher quality samples, as it
aims to place high-quality easy samples in the central region and both low-quality easy samples
and high-quality hard samples in the peripheral region. Conversely, AdaFace values high-quality
samples of any difficulty.

To address the common issue of data uncertainty in FR, probabilistic face representation learning is
one way to solve this problem, with the latest method being Spherical Confidence Learning (Li et al.,
2021), also known as SCF-ArcFace. It theoretically demonstrates that concentration values can be
interpreted as measures of confidence, and it does not require independent Gaussian assumptions or
paired training. Compared to the maximization of the expected mutual likelihood score in PFE(Shi
& Jain, 2019), this framework minimizes the KL divergence between the spherical Dirac delta and
r-radius vMF, which is then translated into the minimization of cross-entropy. This method takes
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advantage of the properties of the Dirac delta function to transform the loss function, thereby forming
the latent prior expectation on the sphere and effectively introducing probability to FR.

Improving from misclassified samples (Wang et al., 2020) is a viable approach. Notably, distil-
lation techniques have also been used to increase FR accuracy (Huang et al., 2020a; Li et al.,
2023; Huang et al., 2022). BioNet(Li, 2023) significantly improved the accuracy of low-quality
datasets using neuroscientific methods. Studies (Feng et al., 2018; Shi et al., 2020; He et al., 2022)
involving physical 3D reconstruction ignore identity-irrelevant information. A sample-level weight-
ing approach called MvCoM was proposed from a mathematical perspective to handle various bias
changes in Liu et al. (2022). SphereFace2(Wen et al., 2022) circumvents the softmax normalization
and bridges the gap between training and evaluation.

3 SMAFACE

3.1 MINING-BASED SOFTMAX AND ADAPTIVE MARGIN FUNCTION

A pivotal advancement in FR technology is the mining-based strategy of hard samples. The core idea
of this strategy revolves around giving special attention and training to so-called hard samples, which
can substantially enhance the performance of FR systems in practical applications. The mining-
based technique of samples has been gradually acknowledged as an effective method for training
deep neural networks. Numerous recent research papers, such as Lin et al. (2017); Shrivastava et al.
(2016), have opted to learn discriminative features based on the loss value of hard samples.

In these studies, the mining-based formula can be summarized as

LMining(xi) = −I (pyi) log
exp(f(θyi

;m))

exp(f(θyi
;m)) +

∑C
j ̸=yi

exp(s cos θj)
, (2)

where, pyi
=

exp(f(θyi ;m))

exp(f(θyi ;m))+
∑C

j ̸=yi
exp(s cos θj)

represents the probability of the prediction being the

ground truth and I(pyi
) is an indicator function. Drawing upon the research in Lin et al. (2017),

they introduced F-Softmax, while Shrivastava et al. (2016) presented HM-Softmax. The specific

forms are as IHM-Softmax(pyi) =

{
0 the sample is easy

1 the sample is hard
and IF-Softmax(pyi) = (1 − pyi)

γ . The γ

is a modulating factor.

However, we have proposed a new definition for the indicator function, which differs from the
methods proposed by Lin et al. (2017); Shrivastava et al. (2016). Our definition is given by

I(pyi) = 1 + α

(
1

1 + epyi
−p0

− 0.5

)
, (3)

In this equation, α is a key hyperparameter, primarily used to control the magnitude of the weights.
First, let’s consider the case where α is a positive number. When a sample is harder, meaning that
pyi is smaller, the weight I(pyi) becomes larger. Conversely, when the sample is easier, with pyi

being larger, the weight I(pyi) becomes smaller. Moreover, p0 acts as a threshold, primarily adjust-
ing the boundary at which a sample is considered hard or easy. If the pyi

of a sample is less than p0,
the sample is viewed as hard, and the weight I(pyi

) will be greater than 1. In contrast, if the pyi
of

a sample is greater than p0, the sample is considered easy, and the weight I(pyi
) will be less than 1.

For the case where α is a negative value, the situation is opposite to what was described earlier. Dur-
ing experiments, we found that this indicator function results in loss = NaN for non-conventional
values of α. Thus, for cases with p0 = 0.6, we reset I∗(pyi

) =
∥∥∥ 7
7+α

∥∥∥(1 + α
(

1
1+epyi−p0

− 0.5
))

,
where the factor of 7 is solely related to p0 and is an empirically optimal value..

Next, by incorporating this dynamic weighting coefficient into Equation 2, we can obtain our fi-
nal loss function. It’s worth noting that, unlike F-Softmax and HM-Softmax, this new weighting
function offers a more valuable distinction between easy and hard samples, as we introduce a dy-
namically adjusted weight coefficient based on the correct class probability in the loss function.
Such a design allows the model to focus more on samples that we prefer during training, thereby
enhancing its discriminative capabilities.
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In practical applications, it’s necessary to adjust the hyperparameter α and threshold probability p0
based on the characteristics of the dataset and task requirements. These parameters will influence
the calculation of the weight coefficient I(pyi

), subsequently affecting the model’s attention towards
samples of varying difficulties. By judiciously setting these parameters, we can balance the weights
of easy and hard samples during training, thereby effectively boosting the model’s performance in
FR tasks.

Regarding the adaptive margin function, we define it as

f(θj ;m)SM-CosFace =

{
s(cos θj−madd) j=yi
s cos θj j ̸=yi

, (4)

f(θj ;m)SMAFace=

{
s(cos(θj+mangle)−madd) j=yi
s cos θj j ̸=yi

. (5)

Equations 4 and 5 are the margin functions we will employ. SM-CosFace is used to demonstrate the
positive effects of sample mining when compared to CosFace, while SMAFace will be employed
for comparisons with other methods.

3.2 SCALING TERM FROM GST

At the outset of this section, we employ the definition of the gradient scaling parameter (GST)

g :=
∂LMargin

∂p
(i)
j

∂p
(i)
j

∂f(cos θj)

∂f(cos θj)

∂ cos θj
. (6)

gMining is decomposed into gSM-CosFace and gSMAFace. The value of gSM-CosFace is

gSM-CosFace =

(
∂I(pyi)

∂pyi

pyi log pyi + I(pyi)

)
(pyi − 1) s,

∂I(pyi
)

∂pyi

= ασ(p0−pyi)(σ(p0−pyi)−1),

(7)
where σ(x) denotes the sigmoid function. For the proofs of Equation 7, see Appendix C and D. The
proof processes for these are not particularly important, and simply examining the computational
results will not impact the understanding of this paper.

Given that it signifies a discrepancy, the magnitude’s significance increases proportionally. By com-
paring gsoftmax, gCosFace, gArcFace and gSM-CosFace, we note that (pyi − 1) s is a common term across
these equations. Therefore, we can normalize these equations by the base value (pyi − 1) s, renam-
ing the result scaling term (st), to highlight their difference. It can be observed that stsoftmax = 1
and stCosFace = 1, while

stArcFace = cos(m)+
cos θyi

sin(m)√
1− cos2 θyi

, stSM-CosFace =
∂I(pyi

)

∂pyi

pyi log pyi + I(pyi). (8)

There are specific reasons behind both scaling parameters not being equal to 1, and these reasons
differ. The reason why stArcFace is not equal to 1 is because the result of ∂f(cos θyi )

∂ cos θyi
is not s. Con-

versely, the reason why stSM-CosFace is not 1 comes from the fact that the result of ∂L
∂pyi

is not − 1
pyi

.
This leads to the dynamic adaptive nature of st. As these origins are different, they can be used in
conjunction.

We have plotted the variations of st with different pyi
values for p0 and α, and compared the st

values between ArcFace and SM-CosFace. It can be observed that SM-CosFace demonstrates better
balance and controllability when dealing with samples of varying difficulties. The performance
under various scenarios can be flexibly modulated by adjusting the parameter α.

From the perspective of st, the principles behind AdaFace and ArcFace are congruent. Thus, as
discussed previously, the method of AdaFace can be amalgamated with SM-CosFace, culminating
in the creation of SMAFace. The stSMAFace is given by

stSMAFace =

(
cos(mangle)+

cos θyi
sin(mangle)√

1− cos2 θyi

)
stSM-CosFace. (9)
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From this point, the derivation of gSMAFace becomes evident, and the analysis for gMining that we
propose is concluded.

Earlier, we introduced the indicator function I∗(pyi). The results obtained from this method are
termed SMAFace∗. It results in distinct st values. Notably, when α takes on negative values,
the dynamics shift profoundly, which refers to NSMAFace. It’s imperative to ensure α > −7.
The properties of SMAFace∗ and SMAFace remain consistent, so no distinction will be made in
subsequent discussions. The same applies to NSMAFace∗ and NSMAFace.

3.3 COMPARISON AND ANALYSIS

In Figure 2, the vertical axis ∥̂zi∥ represents a proxy for image quality. We can find that when
∥̂zi∥ = −1, the corresponding mangle is m, and here we take it as 0.4. This value corresponds to an
image with a low feature norm, implying low quality, and the converse holds. Examining AdaFace’s
performance, it indeed prioritizes easy samples when facing low-quality images and hard samples
when dealing with high-quality images. In our method, when α > 0 and is no larger than 7, we
do emphasize hard samples when facing low-quality images, but we don’t overlook easy samples,
implementing a bimodal strategy. When dealing with high-quality images, our attention to hard
samples surpasses that of AdaFace. When α < 0 and no smaller than −7, we also adopt a bimodal
strategy for high-quality images, but our focus on easy samples is even more intense than AdaFace.
Overall, SMAFace demonstrates a heightened focus on hard samples, whereas NSMAFace directs
its attention predominantly to easy samples.
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Figure 2: Comparison of ten method concerning ∥̂zi∥ and cos(θyi
). MagFace depends on ai and

cos(θyi
), where ai represents the magnitude, similar to ∥̂zi∥.

We present the heatmap of the scaling term for ten scenarios in Figure 2. The conversion of st
into color values is not merely a straightforward process; rather, it involves a consideration of the
angle margin and cosine margin. The blue region on the right-hand side represents cases where the
inequality f(θyi ;m) > s cos θj(j ̸= yi) is satisfied. In such instances, correct classification can be
determined without the need for any penalty. Herein, a hotter hue indicates a larger value while a
colder hue signifies a smaller one. As ∥̂zi∥ increases, the image quality improves. Furthermore,
larger cos(θyi

) values suggest that the image is easier to recognize. For HM-Softmax, F-Softmax
and their combination with AdaFace, there exists an issue where the st value of the green region on
the right is set to 0. This is unreasonable, as we shouldn’t completely disregard these easy samples.
In other words, both of these Mining-based Methods have this irreparable issue, which is why we
propose SMAFace.

Notably, within the plots for SM-CosFace, SMAFace∗ and NSMAFace∗, a linear boundary is ob-
served. This boundary exhibits a narrow width, attributed to the fact that s = 64. As the value of
s increases, its width shrinks. The slope of this boundary is determined by m, with m = 0.4 in
this context, leading the boundary to pass through the point (0.4,−1). This division positions easy
samples towards the right region and hard samples towards the left. We observe that SMAFace∗
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places a higher emphasis on harder samples, especially those of higher quality, thus aiding hard
and high-quality samples in garnering the attention they deserve. On the other hand, NSMAFace∗
prioritizes easier samples, particularly those of lower quality, ensuring they receive appropriate at-
tention. Deciding whether hard or easy samples contribute more substantially to the results remains
a context-dependent consideration.

4 EXPERIMENTS AND RESULTS

4.1 DATASETS AND IMPLEMENTATION DETAILS

Datasets In our research, we utilize three training datasets, namely MS1MV2(Deng et al., 2019a),
MS1MV3(Deng et al., 2019b) and WebFace4M(Zhu et al., 2021), which provide a rich set of training
samples for our study. Our evaluations are performed on ten distinct datasets to validate the model’s
performance.

Among these datasets, LFW(Huang et al., 2008), CFP-FP(Sengupta et al., 2016), CPLFW(Zheng
& Deng, 2018), AgeDB(Moschoglou et al., 2017), CALFW(Zheng et al., 2017), CFP-FF(Sengupta
et al., 2016) and VGG2-FP(Cao et al., 2018) are highly popular benchmark datasets. The image
quality in these datasets is exceptionally high, aiding us in accurately evaluating our model’s per-
formance. The IJB-B and IJB-C(Whitelam et al., 2017; Maze et al., 2018) datasets introduce some
low-quality images, which help us assess the model’s generalization capabilities. Both IJB-B and
IJB-C include a mix of high and low-quality face images. Lastly, TinyFace(Cheng et al., 2019) is
a pure low-quality dataset without any high-quality face images, proving essential for testing the
model’s performance under extreme conditions.

Training Settings Throughout our research, we adopted and followed the processing method from
Deng et al. (2019a). Initially, face images were finely cropped using MTCNN and aligned to five
preset landmarks. By doing so, we generated uniformly sized face images of dimensions 112×112.
For the primary neural network architecture, our backbone network, we referenced and employed
the improved version of ResNet(He et al., 2016) from Deng et al. (2019a). On this foundation,
several rounds of training were carried out. We trained for a total of 30 epochs, using SGD as our
optimization method. Regarding the learning rate setting, we adopted a dynamic adjustment strat-
egy. The initial learning rate was set to 0.1, and during the training process, we reduced the learning
rate by a factor of ten at the 12th, 20th, and 24th epochs to achieve better training outcomes. For
the scaling parameter s, we set it to 64, referencing the standard settings from Deng et al. (2019a);
Wang et al. (2018). Regarding data augmentation, we incorporated three widely used augmentation
techniques in image classification tasks (He et al., 2019), including cropping, rescaling, and lumi-
nance modification. The probability of applying these techniques was uniformly set to 0.2, identical
to that in AdaFace (Kim et al., 2022), to enhance the model’s generalization. Lastly, in terms of
training batch size, for ResNet18 and ResNet50, we set the batch size to 256, while for ResNet100,
it was set to 512. Hardware-wise, ResNet18 and ResNet50 were trained on a single-card NVIDIA
GeForce RTX 4090 server, whereas ResNet100 was trained on single-card NVIDIA A100 80GB
PCIe and five-card NVIDIA RTX A4000 server. The training precision for all was set to 16bit.

4.2 ABLATION AND ANALYSIS

In this study, we conducted an in-depth ablation analysis on the hyperparameters α and p0. To
accurately assess the effects of these hyperparameters, we employed ResNet50 and ResNet18 as the
backbone networks, utilizing MS1MV2 as our experimental dataset. The performance metrics we
adopted include the average 1:1 verification accuracy on LFW, CFP-FP, CPLFW, AgeDB, CALFW,
CFP-FF and VGG2-FP.

Effect of Image Hard Threshold Concentration p0 In our initial hypothesis, we anticipated the
optimal value for hyperparameter p0 might be 0.5. However, to validate this assumption, a series
of empirical experiments were necessary. In Table 1, we showcase performance comparisons at
various p0 values, concluding that the best value for p0 is 0.6. This decision primarily stems from
the average accuracy of high-quality datasets. Achieving high accuracy on low-quality datasets is
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Table 1: Ablation of our mining function parameters p0 and α and the mining function parameters m
on the ResNet18 backbone and the ResNet50 backbone. The performance metrics are as described
in Section 4.2.

Method Backbone p0 α HQ Datasets
AdaFace ResNet50 - - 97.00(Reproduce)

aaSMAFaceaa ResNet50

0.40

1.00

97.02
0.50 97.02
0.60 97.09
0.70 97.00
0.80 96.97

aaSMAFaceaa ResNet50 0.6
0.50 97.06
1.00 97.09

aaSMAFace∗aa 2.00 96.99

aaNSMAFace∗aa ResNet50 0.6
−1.00 97.02
−3.00 97.04
−5.00 96.98

AdaFace ResNet18 - - 95.75(Reproduce)

aaSMAFaceaa ResNet18 0.6
0.50 95.69
1.00 95.70

aaSMAFace∗aa 2.00 95.65

aaNSMAFace∗aa ResNet18 0.6
−1.00 95.76
−3.00 95.81
−5.00 95.78

CosFace ResNet50 - - 96.94(Reproduce)
aaSM-CosFaceaa ResNet50 0.60 1.00 96.99

aaNSM-CosFace∗aa ResNet50 0.6
−1.00 97.04
−3.00 97.03
−5.00 96.97

contingent upon already attaining it on high-quality ones. Moreover, the accuracy of AdaFace is
based on replicated results, using a batch size of 256.

Effect of Scaling Hyperparameter α The scaling factor α is a pivotal parameter in our method,
and its effects were previously analyzed through heatmaps. When α > 0, our method is termed
SMAFace; whereas, for α < 0, it’s called NSMAFace. To prevent scenarios of loss = NaN for
α > 1 and α < 0, we employed the scaled versions SMAFace∗ and NSMAFace∗. This practice aids
in model convergence. Table 1 displays experiments to investigate the impact of varying α values.
As previously mentioned, different scaling factors modify the model’s focus on samples of varying
difficulty, subsequently influencing the final results. Larger α values increase the model’s attention
to hard samples, while smaller values emphasize easy samples. Given MS1MV2’s mediocre quality,
prioritizing hard samples isn’t always advisable. Observing Table 1 reveals commendable results for
α = 1,−3. Interestingly, due to ResNet18’s limited fitting capability, it struggles with hard samples
when α > 0, yielding worse performance on HQ Datasets compared to AdaFace. The performance
of SM-CosFace also demonstrates a significant improvement over CosFace.

4.3 COMPARISON WITH SOTA METHODS

To compare with the SoTA methods, we trained the ResNet100 model using both SMAFace and
NSMAFace and evaluated it on the 10 datasets mentioned in Section 4.1. For high-quality datasets
in Table 2, it can be observed that the accuracies are all above 90%, leaving little room for improve-
ment. The accuracy of these datasets is nearing saturation, making breakthroughs challenging. On
some easier datasets, such as LFW, AgeDB and CFP-FF, our method did not lead to significant im-
provements. However, SMAFace, especially in the challenging CPLFW and VGG2-FP under HQ
Quality, exhibited impressive performances. Given that SMAFace emphasizes hard samples, this
underscores the importance of these hard samples in training. The model trained on WebFace4M
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Table 2: A performance comparison of recent methods ArcFace(Deng et al., 2019a), AFRN(Kang
et al., 2019), MV-Softmax(Wang et al., 2020), CurricularFace(Huang et al., 2020b), BroadFace(Kim
et al., 2020), MagFace(Meng et al., 2021), SCF-ArcFace(Li et al., 2021), MvCoM-CosFace(Liu
et al., 2022), AdaFace(Kim et al., 2022), VPL-ArcFace(Deng et al., 2021) and PFC-0.3(An et al.,
2022) on high quality datasets with the ResNet100 backbone. For LFW, CFP-FP, CPLFW, AgeDB,
CALFW, CFP-FF and VGG2-FP, 1:1 verification accuracy is reported. The first table contains
training sets all from MS1MV2, the second table consists of training sets from MS1MV3, and
the third one utilizes WebFace4M. All SMAFace variants have α = 1, SMAFace∗ has α = 2 and
NSMAFace∗ variants all have α = −2. The red data in the table represents the state of the art, while
the blue data corresponds to the second-highest accuracy ranking.

Method High Quality
LFW CFP-FP CPLFW AgeDB CALFW CFP-FF VGG2-FP AVG

ArcFace 99.83 98.27 92.08 98.28 95.45
AFRN 99.85 95.56 93.48 95.35 96.30
MV-Softmax 99.80 98.28 92.83 97.95 96.10
CurricularFace 99.80 98.37 93.13 98.32 96.20
BroadFace 99.85 98.63 93.17 98.38 96.20
MagFace 99.83 98.46 92.87 98.17 96.15
SCF-ArcFace 99.82 98.40 93.16 98.30 96.12
MvCoM 99.80 98.37 92.75
AdaFace

99.78 98.54 93.20 98.10 96.20 99.81 95.80 97.35(Reproduce)
SMAFace 99.83 98.47 93.72 98.27 96.10 99.79 95.54 97.39
NSMAFace∗ 99.82 98.56 93.45 98.32 96.12 99.79 95.48 97.36
VPL-ArcFace 99.83 99.11 93.45 98.60 96.12
AdaFace

99.82 98.97 93.67 98.22 96.18 99.80 95.44 97.44(Reproduce)
SMAFace 99.82 98.97 93.85 98.35 95.95 99.76 95.86 97.51
NSMAFace∗ 99.82 99.06 93.80 98.35 96.18 99.83 95.62 97.52
MagFace 99.83 98.46 92.87 98.17 96.15
PFC-0.3 99.83 99.23 98.01
AdaFace

99.83 99.04 94.45 97.88 96.05 99.80 95.94 97.57(Reproduce)
SMAFace 99.83 99.11 94.70 97.93 96.10 99.76 95.94 97.63
SMAFace∗ 99.85 99.17 94.50 98.00 96.13 99.80 95.84 97.61
NSMAFace∗ 99.80 99.17 94.45 97.95 96.05 99.76 96.10 97.61

achieved SoTA performance on the CPLFW and VGG2-FP datasets, with accuracies of 94.70% and
96.10%, respectively, surpassing all previous methods on these two datasets trained using all train-
ing datasets. The experimental results for IJB-B, IJB-C and TinyFace are presented in Appendix J,
where they also demonstrate equal significance. The time complexity of our proposed method hasn’t
increased, with computational overhead not exceeding 1%. This is because our method didn’t intro-
duce new network architectures.

5 CONCLUSION

In this paper, we analyzed the mining-based method. By defining a fully controllable boundary and
increasing the focus on hard and easy samples in the training dataset, we enhanced the performance
of FR algorithms. The hyperparameters we designed are intuitive and fully controllable, and we
visualized their effects. Our method offers a fresh perspective and provides a new direction for
improving FR algorithms. Our experimental results effectively support our research content.

Limitations Despite the promising efficacy of the mining-based method, our research in this di-
rection remains preliminary. We haven’t made special accommodations for mislabeled samples,
which may adversely impact training outcomes. The ideas presented in this paper might apply to
broader image classification domains, though we haven’t explored this potential. Incorporating it
into domains beyond FR holds the potential for encouraging outcomes.
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APPENDIX

A ADAPTIVE MARGIN FUNCTION

To further enhance the distinguishability between images, we adopt a margin function based on fea-
ture norm. Through this approach, we can enlarge the inter-class distance and reduce the intra-class
distance, further boosting the model’s discriminative power over image features. As we highlighted
in Section 3.1, using an indicator function can balance the weights of easy and hard samples.

As a feature norm, ∥zi∥ can’t be directly used as an image quality proxy; we normalize it with batch
statistics µz and σz . Specifically, we set

∥̂zi∥ =

⌊
∥zi∥ − µz

σz/h

⌉1
−1

,

where µz and σz represent the mean and standard deviation of all ∥zi∥ within a batch, respectively.
⌊·⌉ clips the value between −1 and 1, preventing gradient flow. This method ensures the distribution
of ∥̂zi∥ approximates a unit Gaussian distribution as closely as possible, clipping its value between
−1 and 1 for data processing. The hyperparameter h is used to control the concentration of the
distribution and more precisely regulate the Gaussian distribution ratio between −1 and 1. For its
value, we directly adopt the optimal data after the ablation experiments of AdaFace(Kim et al.,
2022), i.e., h = 0.33, ensure that the value of ∥zi∥−µz

σz/h
falls between −1 and 1 to the greatest extent.

It should be noted that, with smaller batch size, the stability of batch statistics, namely µz and σz ,
might be compromised, leading to potentially significant noise in the statistical data. Given that
µz and σz vary throughout the training phases, we adopt the same solution as AdaFace(Kim et al.,
2022), which is the application of Exponential Moving Average (EMA) for µz and σz to enhance
stability. Let µ(k) and σ(k) represent the batch statistics of ∥zi∥ at the kth step. We then have

µz = αµ(k)
z + (1− α)µ(k−1)

z ,

where α is the momentum coefficient and is set to 0.99. σz is computed in a similar manner.

In designing the margin function, we aim to increase the emphasis on samples as the quality of the
image improves or decreases. To this end, we employ the functions mangle and madd, representing
the angular margin and the cosine margin respectively. Specifically, we define

f(θj ;m)SM-CosFace =

{
s(cos θj−madd) j=yi
s cos θj j ̸=yi

, (10)

f(θj ;m)SMAFace=

{
s(cos(θj+mangle)−madd) j=yi
s cos θj j ̸=yi

. (11)

The f(θj ;m) of SMAFace is consistent with AdaFace(Kim et al., 2022), integrating the mining-
based method of AdaFace. We define madd and mangle as

mangle = −m · ∥̂zi∥, madd = m · ∥̂zi∥+m.

It is worth noting that when ∥̂zi∥ = −1, f(θj ;m)SM-CosFace becomes a function without margin,
while f(θj ;m)SMAFace becomes akin to an ArcFace. When ∥̂zi∥ = 0, both of them are reduced
to the standard CosFace. For ∥̂zi∥ = 1, f(θj ;m)SM-CosFace transforms into an enhanced version of
CosFace, whereas f(θj ;m)SMAFace becomes a superimposition of negative-margin ArcFace and the
enhanced CosFace.

B MARGIN-BASED SOFTMAX AND THE GRADIENT

We scrutinize the influence of gradient variations in traditional margin-based cosine similarity clas-
sification on the entire system. The mathematical form of the gradient of LMargin with respect to
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W:,j and xi is expressed as

∂LMargin

∂W:,j
=

∂LMargin

∂p
(i)
j

∂p
(i)
j

∂f(cos θj)

∂f(cos θj)

∂ cos θj

∂ cos θj
∂W:,j

=
(
p
(i)
j − 1yi=j

) ∂f(cos θj)

∂ cos θj

(
x0

i − cos θjW
0
:,j

)
∥W:,j∥

,

(12)

∂LMargin

∂xi
=

C∑
k=1

∂LMargin

∂p
(i)
k

∂p
(i)
k

∂f(cos θk)

∂f(cos θk)

∂ cos θk

∂ cos θk
∂xi

=

C∑
k=1

(
p
(i)
k −1yi=k

)∂f(cos θk)
∂ cos θk

(
W 0

:,k − cos θkx
0
i

)
∥xi∥

.

For the proofs of Equations 12 and 13, refer to Appendix B.1 and B.2. From expressions Equa-

tions 12, we extract the scalar ∂L
∂p

(i)
j

∂p
(i)
j

∂f(cos θj)
∂f(cos θj)
∂ cos θj

, referred to as the Gradient Scale Parameter

(GST) by Kim et al. (2022), denoted by the symbol g. For the GST based solely on the margin, its
value is

gMargin =
∂LMargin

∂p
(i)
j

∂p
(i)
j

∂f(cos θj)

∂f(cos θj)

∂ cos θj
=
(
p
(i)
j − 1yi=j

) ∂f(cos θj)

∂ cos θj
. (13)

GST fails to convey the appropriate degree of significance. The specific rationale behind this will
become clearer as we delve into the analysis of vector directions later on. For the time being, let us
temporarily set aside this matter for further discussion. It’s noteworthy that this paper doesn’t make
improvements from the perspective of j ̸= yi. As such, our primary focus is on the j = yi case,
analyzing the corresponding gradient scaling parameter g. We abbreviate p

(i)
yi as pyi

because the
superscript i is already reflected in the subscript yi. Under normal circumstances, the expression for
the normalized gradient scaling parameter gsoftmax is given by gsoftmax = (pyi

−1)s. It’s easy to derive
that the calculation result of gCosFace is identical to the above formula gCosFace = (pyi

−1)s. However,
we found that the value of gArcFace varies with the difficulty of the samples. As θyi

increases, gArcFace
shows a decreasing trend

gArcFace= (pyi
− 1)s

(
cos(m)+

cos θyi
sin(m)√

1− cos2 θyi

)
. (14)

This outcome aligns with our expectations, and we will delve into a more detailed analysis in sub-
sequent sections. For the proof of Equation 14, refer to Appendix B.3.

B.1 CALCULATION OF GST

To calculate gMargin, the first step is to determine the value of ∂LMargin

∂p
(i)
j

. According to the definition of

the margin-based loss function LMargin, its expression can be written as

LMargin = − log(p
(i)
j ), (15)

from which we can derive that
∂LMargin

∂p
(i)
j

= − 1

p
(i)
j

.

Next, we revisit the definition of p(i)j , which represents the output probability of class j after input
xi has been processed by the softmax function. Its expression can be written as

p
(i)
j =

exp(f(θyi
;m))

exp(f(θyi
;m)) +

∑N
j ̸=yi

exp(s cos θj)
, (16)

where f(θyi
;m) = f(cos θj), and their difference is merely notational. Subsequently, we want to

solve
∂p

(i)
j

∂f(cos θj)
, which involves handling two cases.

For the case where j = yi, using the quotient rule for derivatives, we can let u =

exp(f(θyi
;m)), v = exp(f(θyi

;m)) +
∑N

j ̸=yi
exp(s cos θj), and then obtain

u′ =
∂u

∂f(cos θyi)
= exp(f(cos θyi)) = pyiv, v

′ =
∂v

∂f(cos θyi)
= exp(f(cos θyi)) = pyiv.
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Furthermore, u can be expressed as
u = pyi

v.

Based on the analysis above, we can calculate the specific value of ∂pyi

∂f(cos θyi )
as

∂pyi

∂f(cos θyi
)
=

u′v − uv′

v2
=

pyi
v2 − pyi

v · pyi
v

v2
= pyi

(1− pyi
) . (17)

The other case is where j ̸= yi. In this situation, we know that f(θj ;m) is a piecewise function.
When j ̸= yi, its value satisfies f(θj ;m) = s cos θj , hence we get

u′ =
∂u

∂f(cos θj)
=

∂u

∂(s cos θj)
= 0,

v′ =
∂v

∂f(cos θj)
=

∂v

∂(s cos θj)
= exp(f(s cos θj)) = exp(f(cos θj)) = p

(i)
j v.

Following the previous method, we can derive

∂p
(i)
j

∂f(cos θj)
=

u′v − uv′

v2
=

0− p
(i)
j v · p(i)j v

v2
= p

(i)
j

(
0− p

(i)
j

)
. (18)

Summarizing the analysis above, we find that, regardless of whether the value of j is yi or not, the

value of
∂p

(i)
j

∂f(cos θj)
can be expressed as

∂p
(i)
j

∂f(cos θj)
=
(
1yi=j − p

(i)
j

)
p
(i)
j . (19)

Finally, we also need to consider the value of ∂f(cos θj)
∂ cos θj

, which involves the specific function
f(cos θj). Notably, for softmax and CosFace, we have the following equation

∂f(cos θj)

∂ cos θj
= s.

This result can be directly observed without detailed derivation. As for the ArcFace case, we have
given the proof process for j = yi in the previous section, and the derivation process for j ̸= yi is
identical. Therefore, we can obtain

gMargin =
∂LMargin

∂p
(i)
j

∂p
(i)
j

∂f(cos θj)

∂f(cos θj)

∂ cos θj
= − 1

p
(i)
j

(
1yi=j − p

(i)
j

)
p
(i)
j

∂f(cos θj)

∂ cos θj

=
(
p
(i)
j − 1yi=j

) ∂f(cos θj)

∂ cos θj
.

(20)

B.2 COMPARISON OF THE DERIVATIVES OF LMARGIN

We begin by revisiting the derivatives of the margin loss function LMargin concerning W:,j and xi,
expressions for which have already been detailed in the paper

∂LMargin

∂W:,j
=
(
p
(i)
j − 1yi=j

) ∂f(cos θj)

∂ cos θj

∂ cos θj
∂W:,j

,
∂LMargin

∂xi
=

C∑
k=1

(
p
(i)
k −1yi=k

)∂f(cos θk)
∂ cos θk

∂ cos θk
∂xi

.

(21)

Examining these two expressions, we note that the computation of ∂LMargin

∂W:,j
does not involve any

summation, while ∂LMargin

∂xi
requires summation over all classes k. This discrepancy can be readily

understood.

First, consider ∂LMargin

∂W:,j
, the gradient of the loss function LMargin with respect to the jth column of

the weight matrix W . In the forward propagation, the jth column of W interacts solely with the
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corresponding class j logic, focusing mainly on the specific computation path for class j. Since
W:,j does not directly influence the output for non-j classes, during backpropagation, only those
gradient parts directly related to W:,j need to be considered, without summation across all classes.

However, when we consider the gradient of the loss function concerning the input sample xi, de-
noted by ∂LMargin

∂xi
, the scenario is different. During forward propagation, the input sample xi is

directly involved in the probability computation for all classes, with each similarity score impact-
ing the final loss function. Therefore, the gradient must be summed across all classes to ensure we
capture the complete information on how changes in xi affect the loss. This summation can be seen
as an aggregation step, encompassing the influence of all classes on the input sample xi. This step
is crucial in backpropagation, providing a comprehensive view of how to adjust xi to minimize the
loss.

Next, we focus on the final term of the expression, namely ∂ cos θj
∂W:,j

. It is well-known that the cosine
similarity cos θj is given by the dot product of vectors xi and W:,j divided by the magnitudes of the
two vectors, expressed as

cos θj =
xi ·W:,j

∥xi∥∥W:,j∥
. (22)

Our task is to compute the derivative of this ratio concerning the vector W:,j . Since both the nu-
merator and denominator are functions of W:,j , we must apply the quotient rule for differentiation.
For ease of manipulation, we rewrite cos θj as the ratio of two functions, p(W:,j) = xi ·W:,j and
q(W:,j) = ∥xi∥∥W:,j∥. Hence, cos θj =

p(W:,j)
q(W:,j)

. Subsequently, the derivative is found to be

∂ cos θj
∂W:,j

=

∂p(W:,j)
∂W:,j

q(W:,j)− p(W:,j)
∂q(W:,j)
∂W:,j

q(W:,j)2
.

In the subsequent step, the task is to compute ∂p(W:,j)
∂W:,j

and ∂q(W:,j)
∂W:,j

. Initially, ∂p(W:,j)
∂W:,j

equals xi

since the derivative of xi ·W:,j with respect to W:,j is xi. Secondly, for q(W:,j) = ∥xi∥∥W:,j∥,
we solely consider the derivative of ∥W:,j∥ with respect to W:,j . The derivative of a vector’s mag-
nitude concerning the vector itself is the vector divided by its magnitude, i.e., W:,j

∥W:,j∥ . Consequently,
∂q(W:,j)
∂W:,j

=
W:,j

∥W:,j∥∥xi∥. Substituting these results into the quotient rule for differentiation, we
acquire

∂ cos θj
∂W:,j

=
∥xi∥∥W:,j∥xi − xi ·W:,j

W:,j

∥W:,j∥∥xi∥
(∥xi∥∥W:,j∥)2

=
xi

∥xi∥∥W:,j∥
− cos θjW:,j

∥W:,j∥2
.

Here, the unit vector xi

∥xi∥ is denoted as x0
i , and the unit vector W:,j

∥W:,j∥ is denoted as W 0
:,j . The

aforementioned equation can be represented as

∂ cos θj
∂W:,j

=

(
x0
i − cos θjW

0
:,j

)
∥W:,j∥

. (23)

From this equation, it can be discerned that the numerator represents the unit vector in the direction
of xi subtracted by its projection in the direction of W:,j , culminating in a vector that is perpen-
dicular to W:,j . The magnitude of this vector equals the distance from the endpoint of x0

i to W:,j ,
i.e. ∥∥∥∥∂ cos θj

∂W:,j

∥∥∥∥ =
sin θj
∥W:,j∥

. (24)

When the directions of these two vectors are identical, the numerator will be a zero vector. Similarly,
the derivative with respect to xi can be deduced as

∂ cos θk
∂xi

=

(
W 0

:,k − cos θkx
0
i

)
∥xi∥

,

∥∥∥∥∂ cos θk
∂xi

∥∥∥∥ =
sin θk
∥xi∥

. (25)

As can be seen from the direction of
(
W 0

:,k − cos θkx
0
i

)
and

(
x0
i − cos θjW

0
:,j

)
, it has a positive

effect only when the value of
(
p
(i)
j − 1yi=j

)
∂f(cos θj)
∂ cos θj

and
(
p
(i)
k −1yi=k

)
∂f(cos θk)
∂ cos θk

is negative, and
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the st we provide in our text perfectly meets this requirement. The st has the opposite sign to(
p
(i)
j − 1yi=j

)
∂f(cos θj)
∂ cos θj

and
(
p
(i)
k −1yi=k

)
∂f(cos θk)
∂ cos θk

, so it can be used to represent the level of
importance for the samples, while GST cannot meet this requirement. In some cases, such as when
the samples are of low quality and hard, st may be negative, which means that we are giving up on
these worthless samples.

B.3 DERIVATION OF ANGULAR MARGIN

The margin function expression of ArcFace is given as

f(cos θyi) = s cos(m+ θyi), (26)

where s represents the scale factor, θyi denotes the angle, and m is the increment of the cosine
margin. To calculate the derivative concerning cos θyi

, we need to apply the chain rule. Moreover,
based on d cos x

dx = − sinx, we can derive

dx

d cosx
= − 1√

1− cos2 x
.

Consequently, we can deduce

∂f(cos θyi)

∂ cos θyi

=
∂f(cos θyi)

∂θyi

∂θyi

∂ cos θyi

= −s sin(m+ arccos(cos θyi
))

1√
1− cos2 θyi

.

Next, utilizing the trigonometric identity sin(a + b) = sin a cos b + cos a sin b, we can decompose
it as follows

∂f(cos θyi
)

∂ cos θyi

= −s(sin(m) cos(arccos(cos θyi)) + cos(m) sin(arccos(cos θyi)))
1√

1− cos2 θyi

.

With the basic inverse trigonometric identities cos(arccos(x)) = x and sin(arccos(x)) =
√
1− x2,

we obtain
∂f(cos θyi)

∂ cos θyi

= −s

(
cos(m)+

cos θyi sin(m)√
1− cos2 θyi

)
. (27)

Lastly, substituting the above result into the equation gArcFace = (pyi − 1)
∂f(cos θyi )

∂ cos θyi
yields

gArcFace= (pyi
− 1)s

(
cos(m)+

cos θyi sin(m)√
1− cos2 θyi

)
. (28)

With this, the whole derivation process is complete. QED.

C GST OF SM-COSFACE

We adopt the following step-by-step calculation for gSM-CosFace

∂LMining

∂p
(i)
j

= −

(
∂I(p

(i)
j )

∂p
(i)
j

log p
(i)
j +

I(p
(i)
j )

p
(i)
j

)
. (29)

Additionally, the value of
∂p

(i)
j

∂f(cos θj)
remains the same as that with LMargin, as shown below

∂p
(i)
j

∂f(cos θj)
=
(
1yi=j − p

(i)
j

)
p
(i)
j . (30)

At this step, we observe that ∥̂zi∥ is a scalar with respect to p
(i)
j , which implies

∂f(cos θj)

∂ cos θj
= s. (31)
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Summarizing the above steps, for the case where j = yi, we can derive the gradient scaling factor
gSM-CosFace as follows

gSM-CosFace = −
(
∂I(pyi

)

∂pyi

log pyi
+

I(pyi
)

pyi

)
(1− pyi

) pyi
s

=

(
∂I(pyi)

∂pyi

pyi
log pyi

+ I(pyi
)

)
(pyi

− 1) s,

(32)

D DERIVATION OF I(pyi)

In order to conveniently calculate ∂I(pyi
)

∂pyi
, we introduce a new expression for the indicator function

I(pyi), where the sigmoid function is defined as follows

σ(x) =
1

1 + e−x
.

Hence, we can express I(pyi) as

I(pyi
) = 1 + α (σ(p0 − pyi

)− 0.5) . (33)

Considering the following commonly used result

∂σ(x)

∂x
= σ(x)(1− σ(x)),

we can derive ∂I(pyi
)

∂pyi
as

∂I(pyi
)

∂pyi

= ασ(p0 − pyi
)(σ(p0 − pyi

)− 1). (34)

E ANALYSIS OF SM-COSFACE AND ARCFACE

We have plotted the graph concerning pyi , illustrating the changes in stSM-CosFace as shown in Fig-
ure 3. By observing the curve in the figure, it can be discerned that different st values emerge under
varying difficulties, which aligns with our expectations. Additionally, we have separately observed
the effects of parameters p0 and α on st. The results reveal that a larger α implies a more pronounced
disparity in the attention given to samples under easy and hard scenarios. Meanwhile, alterations in
p0 will influence the overall penalty magnitude.
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Figure 3: This is the plot of the scaling term function of SM-CosFace. When the function plot
parameters of stSM-CosFace regarding pyi and α are set to α = 1, by changing the magnitude of
p0, it’s not difficult to see that the penalty for all samples has been increased. Meanwhile, when
p0 = 0.6, changing the magnitude of α can further enhance the gap between easy samples and hard
samples. Both the ∥̂zi∥ are set to 0.

We further plotted the graph concerning cos θyi
, comparing the variations between stArcFace and

stSM-CosFace, as illustrated in Figure 4. It is evident from the figure that ArcFace imposes relatively
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extreme penalties or rewards for samples at very high difficulties (where cos θyi
approaches −1) and

very low difficulties (where cos θyi
nears 1). In contrast, SM-CosFace more gently scales the hard

and easy samples. Furthermore, our method boasts fully controllable boundaries. Specifically, by
adjusting the value of α, we can effectively modulate its operational range, especially in exception-
ally difficult or simple scenarios. We have also displayed the surface of st concerning the margin m
and cos θyi

, as depicted in Figure 5. It can be observed that the positive and negative values of m
have opposite effects for ArcFace, whereas for SM-CosFace, it only alters the boundaries, marking
a distinction between the two.
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Figure 4: This is the plot of the scaling term function of ArcFace and SM-CosFace. The plot of
stArcFace with respect to cos θyi

has a parameter m = 0.4. The plot of stSM-CosFace with respect to
cos θyi

has parameters set as p0 = 0.6, α = 1.0, m = 0.4 and s = 64.0. We set ∥̂zi∥ to 0. In actual
training, we do use s = 64.0, because we need to take into account factors such as the number of
samples.
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Figure 5: This is the plot of the scaling term function of ArcFace and SM-CosFace. The plot of
stSM-CosFace with respect to cos θyi and m has parameters set as p0 = 0.6, α = 2.0 and s = 64.0.
∥̂zi∥ remains 0. Both m and cos θyi vary within the interval [−1, 1].

Although SM-CosFace is more controllable than ArcFace, it still falls short in handling both easy
and hard samples perfectly, which is why we opt for SMAFace.

F SCALING TERM OF SMAFACE

In our paper, we have analyzed SM-CosFace. Accordingly, SMAFace can be derived by multiplying
SM-CosFace with the st of AdaFace. This allows us to easily understand its properties. In practical
use, we often employ SMAFace∗, which can be regarded as the normalized SMAFace. The indicator
function of SMAFace∗ deviates from that of SMAFace by a factor of

∥∥∥ 7
7+α

∥∥∥. We will start our
analysis with NSMAFace∗ where α < 0, and extend to the case where α > 0.

For α = −1, α = −2, α = −4, α = −8, α = −32, we have plotted the stNSMAFace∗ for each, as
shown in Figure 6. It can be seen that when α is adjusted to −16, its trend becomes uncontrolled,
and the leftmost st even becomes positive, which is illogical and harmful to the performance of the
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FR algorithm. When α = −32, it can be interpreted as emphasizing both hard and easy samples,
while neglecting average samples.
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Figure 6: The stNSMAFace∗ with ∥̂zi∥ = 0,m = 0.4, s = 64, p0 = 0.6 and α < 0 being far from −7.

Having fully understood the above, we now consider a different situation when α > 0, where the
scenario becomes entirely different, resulting in a bimodal picture. As shown in Figure 7, it’s not
difficult to find that when α is too large, it is unreasonable as the rightmost stSMAFace∗ is less than 0,
which is detrimental to the training results.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

1.5

2

2.5

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1
-2

-1

0

1

2

3

4

Figure 7: The stSMAFace∗ with ∥̂zi∥ = 0,m = 0.4, s = 64, p0 = 0.6 and α > 0.

For the situation where α is near −7, the value of NSMAFace∗ becomes too large and is not suitable
for training, as shown in Figure 8. In this case, its training method is too dismissive of high-quality
samples, making it difficult to train an effective FR model.
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Figure 8: The stNSMAFace∗ and stNSMAFace with ∥̂zi∥ = 0,m = 0.4, s = 64, p0 = 0.6 and α
approaching −7.

G OTHER MINING-BASED METHOD

In our previous work, we mentioned that F-Softmax was proposed by Lin et al. (2017) and HM-
Softmax by Shrivastava et al. (2016). Their specific forms are given by

IHM−Softmax(pyi
) =

{
0 pyi

< 0.5

1 pyi ≥ 0.5
, IF−Softmax(pyi

) = (1− pyi
)γ . (35)
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The expression, ∂LMining

∂p
(i)
j

= −
(

∂I(p
(i)
j )

∂p
(i)
j

log p
(i)
j +

I(p
(i)
j )

p
(i)
j

)
, always hold. Thus, substituting I(p

(i)
j )

with IF−Softmax(pyi) and IHM−Softmax(pyi) gives us their respective st values. Let f(θyi ;m) =
s cos θyi , we have

stHM-Softmax = IHM−Softmax(pyi
) =

{
0 pyi

< 0.5

1 pyi
≥ 0.5

, (36)

stF-Softmax =
∂IF−Softmax(pyi

)

∂pyi

pyi
log pyi

+ IF−Softmax(pyi
)

= γ(1− pyi
)γ−1pyi

log pyi
+ (1− pyi

)γ .

(37)

From the expressions alone, we cannot discern much. It is essential to consider the definition of pyi ,
given by

pyi
=

exp(f(θyi
;m))

exp(f(θyi
;m)) +

∑N
j ̸=yi

exp(s cos θj)
.

Combining the above equation, we can analyze their properties. The optimal value for s was found
to be 64, and we use s = 64 directly during training unless the adaptive strategy proposed by Ada-
Cos(Zhang et al., 2019) is adopted. Blindly using a value of s that is too large results in insufficient
penalization for misclassified samples, whereas a value that is too small penalizes samples that are
already correctly classified. This is precisely the reason why we do not vary its value. Consequently,
the relationship between pyi

and cos θyi
appears as a piecewise function: it is 0 when cos θyi

is be-
low a certain threshold and 1 when above. In reality, this is an illusion. With s = 64, the transition
of pyi

from 0 to 1 is extremely rapid, making it seem like a jump. However, this directly results in
the scenario depicted in Figure 9, where the st values for both HM-Softmax and F-Softmax are 0
when cos θyi

is above a certain boundary.

Figure 9: Comparison of HM-Softmax, F-Softmax, AdaFace, SM-CosFace, SMAFace∗ and
NSMAFace∗ concerning mangle.
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H VARIANT OF SMAFACE

We have further adjusted the indicator function based on the original basis. We first review the
expression of I∗ (pyi

)

I∗(pyi
) =

∥∥∥∥ 7

7 + α

∥∥∥∥(1 + α

(
1

1 + epyi
−p0

− 0.5

))
. (38)

For it, we make the following adjustments

I∗(pyi
)weak =

∥∥∥∥ 7

7 + α

∥∥∥∥
(
1 + α

(
1

1 + e(pyi
−p0)

− − 0.5

))
,

I∗(pyi
)strong =

∥∥∥∥ 7

7 + α

∥∥∥∥
(
1 + α

(
1

1 + e(pyi
−p0)

+ − 0.5

))
.

(39)

Wherein, (pyi
− p0)

− represents min (pyi
− p0, 0), and (pyi

− p0)
+ represents max (pyi

− p0, 0).
Then, its properties change. We name them strong and weak not because of their higher or lower
values, but based on whether the terrain features in the image are more prominent or flatter. We have
shown the impact it brings, as shown in Figure 10. It can be seen that when α = 2 if we use the
normal I∗(pyi), its emphasis on easy samples is insufficient. However, if we use I∗(pyi)strong, the
distinction for all samples is not enough. After using I∗(pyi)weak, we can have something akin to a
bimodal emphasis. When α = 3, 4, the situation is similar to that of α = 2, just the trend is less
gentle.
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Figure 10: The st graph of NSMAFace∗, NSMAFace∗strong and NSMAFace∗weak with ∥̂zi∥ = 0,m =
0.4, s = 64, p0 = 0.6. The left α is 2 and the right α is −4.

In addition, there is another variant, for which we provide the indicator function

I∗(pyi , β) =

∥∥∥∥ 7

7 + α

∥∥∥∥(1 + α0

(
1

1 + eβ(pyi
−p0)

− 0.5

))
, α0 = 1. (40)

The role of β is similar to that of α, and its effect is within our expectations. In Figure 11 and 12,
we can observe that it can also achieve parameter scaling and yield excellent results.

I TESTING SETS AND THRESHOLD

As shown in Table 3, datasets CALFW and VGG2-FP(Zheng et al., 2017; Cao et al., 2018) are more
conducive for SMAFace and NSMAFace training strategies. In these testing sets, mining-based
methods display inherent advantages. Even without incorporating AdaFace’s margin function or,
in other words, without angular margin, it still manages decent accuracy. This could be due to the
pronounced difficulty variation in these face images or possibly because they are tough among the
seven HQ Quality datasets, highlighting our method’s distinct advantages.

Through a meticulous examination of the data presented in Table 4 within the supplementary mate-
rials, it has been ascertained that the optimal value for the parameter p0 resides in the proximity of
0.6. This observation is underpinned by the recognition that samples with exceedingly minute proba-
bilities are susceptible to potential misclassification, necessitating cautious consideration rather than
undue emphasis. This empirical finding is in complete consonance with the overarching conclusions
expounded within the main body of the paper.
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Figure 11: The st graph of SM-CosFace∗weak and NSM-CosFace∗weak with ∥̂zi∥ = 0,m = 0.4, s =
64, p0 = 0.6, α0 = 1.
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Figure 12: The st graph of SMAFace∗weak and NSMAFace∗weak with ∥̂zi∥ = 0,m = 0.4, s = 64, p0 =
0.6, α0 = 1.

J COMPARISON WITH SOTA METHODS

The results from Table 5 on IJB-B and IJB-C are even more valuable than those of HQ Quality
because they comprise both high and low-quality datasets and have a substantial number of testing
images, allowing for comprehensive model generalization assessment. The results of SMAFace and
NSMAFace were expected. Due to the lower image quality of MS1MV2, NSMAFace should per-
form better than SMAFace sometimes. In contrast, both MS1MV3 and WebFace4M are high-quality
datasets with less noise, suggesting that hard samples should be prioritized, i.e., SMAFace should
outperform NSMAFace. Observations confirmed these expectations, indicating that the quality of
the training dataset alters our training approach. On the IJB-B dataset, the model trained on Web-
Face4M achieved SoTA performance at TAR@FAR=0.01%, 0.0001%, surpassing all other methods
trained through WebFace4M.

Regarding TinyFace, SMAFace still holds a slight advantage due to its emphasis on hard samples.
Though its persuasiveness is less than that of IJB-B and IJB-C, SoTA performance was achieved
on TinyFace’s Closed-set rank-5 retrieval and AVG, surpassing the accuracies of all other methods
trained using all training datasets.

Table 3: The accuracy comparison of models trained on ResNet50, tested on the CALFW and
VGG2-FP dataset.

Method Train Data α CALFW VGG2-FP
AdaFace MS1MV2 - 96.05 95.16(Reproduce)

SMAFace MS1MV2
0.50 96.13 95.36
1.00 96.08 95.38

SMAFace∗ 2.00 96.13 95.10

NSMAFace∗ MS1MV2
−1.00 96.12 95.10
−3.00 96.22 95.18
−5.00 96.08 95.10

24



Under review as a conference paper at ICLR 2024

Table 4: Ablation of hard threshold parameter p0, with the ResNet50 backbone trained by MS1MV2.
For IJBC datasets, TAR@FAR=0.01%, 0.001% are reported. For TinyFace, closed-set rank retrieval
(Rank-1, Rank-5 and Rank-20) is reported.

Method p0
TinyFace IJBC

Rank-1 Rank-5 Rank-20
IJB-B IJB-C

0.001% 0.01% 0.001% 0.01%
AdaFace - 65.37 69.31 71.62 87.20 94.77 93.73 96.12(Reproduce)

aaSMAFaceaa

0.40 65.50 69.31 71.62 85.94 94.63 93.29 96.05
0.50 65.37 69.07 71.73 88.91 94.67 93.67 96.13
0.60 64.89 68.94 71.81 87.99 94.85 93.83 96.20
0.70 65.61 69.05 71.57 87.17 94.64 93.75 96.22
0.80 64.94 68.70 71.24 86.36 94.42 93.20 96.02

Table 5: A performance comparison of recent methods ArcFace(Deng et al., 2019a), URL(Shi et al.,
2020), CurricularFace(Huang et al., 2020b), MagFace(Meng et al., 2021), DAM-CurricularFace(Liu
et al., 2021), PASS(Dhar et al., 2021), 3D-BERL(He et al., 2022), IDEA-Net(Low & Beng-Jin Teoh,
2022), AdaFace(Kim et al., 2022) and VPL-ArcFace(Deng et al., 2021) on IJB-B, IJB-C and Tiny-
Face datasets with the ResNet100 backbone. For IJB-B and IJB-C, TAR@FAR=0.01%, 0.0001%
is reported. Closed-set rank retrieval (Rank-1 and Rank-5) is used for TinyFace. The first table
contains training sets all from MS1MV2, the second table consists of training sets from MS1MV3,
and the third one utilizes WebFace4M. All SMAFace variants have α = 1, SMAFace∗ has α = 2
and NSMAFace∗ variants all have α = −2.

Method IJB-B IJB-C TinyFace
0.0001% 0.01% 0.0001% 0.01% Rank-1 Rank-5 AVG

ArcFace 38.28 94.25 89.06 96.03
URL 96.60 63.89 68.67 66.28
CurricularFace 94.80 96.10 63.68 67.65 65.67
MagFace 40.91 94.33 89.26 95.81
DAM-CurricularFace 95.12 96.20
PASS 94.60
3D-BERL 45.77 94.98 88.45 96.20
IDEA-Net 66.13
AdaFace

45.37 95.47 87.94 96.76 68.11 71.67 69.89(Reproduce)
SMAFace 45.64 95.24 86.77 96.66 68.19 71.27 69.73
NSMAFace∗ 46.28 95.60 86.52 96.80 67.84 71.22 69.53
VPL-ArcFace 95.56 96.76
AdaFace

43.26 95.84 91.42 97.08 68.03 71.08 69.56(Reproduce)
SMAFace 41.22 95.89 91.81 97.18 68.40 71.06 69.73
NSMAFace∗ 43.41 95.78 89.59 97.11 67.97 70.90 69.44
ArcFace 95.75 97.16 71.11 74.38 72.75
MagFace 40.91 94.51 90.24 95.97
AdaFace

49.81 96.03 90.45 97.31 72.29 74.73 73.51(Reproduce)
SMAFace 49.82 95.84 91.39 97.30 72.08 75.11 73.60
SMAFace∗ 44.29 96.06 91.53 97.31 72.10 74.73 73.42
NSMAFace∗ 48.63 95.81 91.99 97.23 71.97 74.41 73.19

25


	Introduction
	Related Work
	SMAFace
	Mining-based Softmax and Adaptive Margin Function
	Scaling Term From GST
	Comparison and Analysis

	Experiments and Results
	Datasets and Implementation Details
	Ablation and Analysis
	Comparison with SoTA Methods

	Conclusion
	Adaptive Margin Function
	Margin-based Softmax and the Gradient
	Calculation of GST
	Comparison of the Derivatives of LMargin
	Derivation of Angular Margin

	GST of SM-CosFace
	Derivation of I(pyi)
	Analysis of SM-CosFace and ArcFace
	Scaling Term of SMAFace
	Other Mining-based Method
	Variant of SMAFace
	Testing Sets and Threshold
	Comparison with SoTA Methods

