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Abstract

Obtaining accurate probabilistic forecasts is an important operational challenge in many
applications, perhaps most obviously in energy management, climate forecast, supply chain
planning, and resource allocation. In many of these applications, there is a natural hierar-
chical structure over the forecasted quantities; and forecasting systems that adhere to this
hierarchical structure are said to be coherent. Furthermore, operational planning benefits
from accuracy at all levels of the aggregation hierarchy. Building accurate and coherent
forecasting systems, however, is challenging: classic multivariate time series tools and neural
network methods are still being adapted for this purpose. In this paper, we augment an
MQForecaster neural network architecture with a novel deep Gaussian factor forecasting
model that achieves coherence by construction, yielding a method we call the Deep Coherent
Factor Model Neural Network (DeepCoFactor) model. DeepCoFactor generates samples that
can be differentiated with respect to the model parameters, allowing optimization on various
sample-based learning objectives that align with the forecasting system’s goals, including
quantile loss and the scaled Continuous Ranked Probability Score (CRPS). In a comparison
to state-of-the-art coherent forecasting methods, DeepCoFactor achieves significant improve-
ments in scaled CRPS forecast accuracy, with gains between 4.16 and 54.40%, as measured
on three publicly-available hierarchical forecasting datasets.

1 Introduction

Obtaining accurate forecasts is an important step for long-term planning in complex and uncertain environ-
ments, with applications ranging from energy to supply chain management, from transportation to climate
prediction (Hong et al., 2014; Gneiting & Katzfuss, 2014; Makridakis et al., 2022a). Going beyond point
forecasts such as means and medians, probabilistic forecasting provides a key tool for forecasting uncertain
future events. This involves, e.g., forecasting that there is a 90% chance of rain on a certain day, or that
there is a 99% chance that people will want to buy fewer than 100 items at a certain store on a certain week.
Providing more detailed predictions of this form permits finer uncertainty quantification. This in turn permits
planners to prepare for different scenarios and to allocate resources depending on their anticipated likelihood
and cost structure. This can lead to better resource allocation, improved decision making, and less waste.

In many forecasting applications, there exist natural hierarchies over the quantities one wants to predict,
such as energy consumption at various temporal granularities (from monthly to weekly), different geographic
levels (from building-level to city-level to state-level), or retail demand for specific items (in a hierarchical
product taxonomy). Typically, most or all levels of the hierarchy are important: the bottom levels are key for
operational short-term planning, while higher levels of aggregation provide insights into longer-term or broader
trends. Moreover, it is often desired that probabilistic forecasts are coherent (or consistent) to ensure efficient
decision-making at all levels (Hong et al., 2014; Jeon et al., 2019). Coherence is achieved when the forecast
distribution assigns zero probability to forecasts that do not satisfy the hierarchy’s constraints (Panagiotelis
et al., 2023; Ben Taieb et al., 2017a; Olivares et al., 2023) (see Definition 1.1). Designing an accurate model,
capable of leveraging information from all hierarchical levels, while enforcing coherence is a well-known and
challenging task (Hyndman et al., 2011).

The hierarchical forecasting literature has been dominated by two-stage reconciliation approaches, where
univariate methods are first fitted and later reconciled towards coherence. For many years, most research
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Method End-to-End Multivariate
Forecast Distr.

Leverage Cross
Series Information

Arbitrary
Learning Objective

PERMBU (Ben Taieb et al., 2017b) ✗ ✗ ✗ ✗
Bootstrap (Panagiotelis et al., 2023) ✗ ✗ ✗ ✗
Normality (Wickramasuriya, 2023) ✗ ✓ ✗ ✗

DPMN (Olivares et al., 2023) ✓ ✓ ✗ ✗
HierE2E (Rangapuram et al., 2021) ✓ ✗ ✓ ✓
DeepCoFactor (ours) ✓ ✓ ✓ ✓

Table 1: Coherent forecast methods’ desirable properties.

focused on mean reconciliation (Hyndman et al., 2011; Hyndman & Athanasopoulos, 2018; Vitullo, 2011;
Hyndman et al., 2016; Dangerfield & Morris, 1992; Wickramasuriya et al., 2019; Mishchenko et al., 2019).
More recent statistical methods consider coherent probabilistic forecasts through variants of the bootstrap
reconciliation technique (Ben Taieb et al., 2017a; Panagiotelis et al., 2023) or the clever use of the Gaussian
forecast distributions’ properties (Wickramasuriya, 2023). Large-scale applications of hierarchical forecasting
require one to simplify over the two-stage reconciliation process by favoring end-to-end approaches that
simultaneously fit all levels of the hierarchy, while still achieving coherence. The end-to-end approach refers
to training a model constrained to achieve coherence by optimizing directly for accuracy. End-to-end methods
offer advantages such as reduced complexity, improved computational efficiency, and enhanced adaptability
by streamlining the entire forecasting pipeline into a single, unified model. More importantly, end-to-end
models generally achieve better accuracy compared to two-stage models that are first trained independently
for optimized accuracy and then made coherent through various reconciliation approaches (Rangapuram
et al., 2021; Olivares et al., 2023).

To the best of our knowledge, only three methods yield coherent probabilistic forecasts and allow models
to be trained in an end-to-end manner: Rangapuram et al. (2021), Olivares et al. (2023), and Das et al.
(2023). (There is also parallel research on hierarchical forecasts with relaxed constraints (Han et al., 2021;
Paria et al., 2021; Kamarthi et al., 2022), but this line of work is less relevant since our focus is on strictly
coherent forecasting methods.) In particular, Olivares et al. (2023) considers a finite mixture of Poisson
distributions that captures correlations implicitly through latent variables and does not leverage cross-time
series information. On the other hand, Rangapuram et al. (2021) leverages the multivariate time series
information, but it achieves coherence through a differentiable projection layer, which could degrade forecast
accuracy: it does not directly model correlations between the multivariate outputs, but rather it couples them
through its projection layer. Dedicated effort is still necessary to capture these hierarchical relationships to
improve forecast accuracy. Such probabilistic methods can benefit from the ability to optimize for arbitrary
loss functions through making samples differentiable, as demonstrated by Rangapuram et al. (2021). The
capacity to optimize any loss computed from forecast samples can help align the forecasting system’s goals
with the neural network’s learning objective.

More generally, an ideal hierarchical forecasting method should satisfy several desiderata: 1) be end-to-end
coherent; 2) model a joint multivariate probability distribution, capturing the intricate relationships between
series within the hierarchy; 3) leverage cross time series information to accurately reflect these relationships;
and 4) generate differentiable samples, to enable the method to optimize for arbitrary learning objectives
that align with the forecasting system’s goals. In this paper, we present a method which satisfies all of these
ideal properties; see Table 1 for a summary.

Our main contributions are the following.

1. We introduce the Deep Coherent Factor Model Neural Network (DeepCoFactor) model, a method for
probabilistic coherent forecasting that satisfies all the desired properties stated above. DeepCoFactor
achieves forecast coherence exactly by construction, producing a joint forecast distribution over the
bottom-level quantities in the hierarchy, and simply aggregating its samples up. Our approach is
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generic and can be applied to most univariate neural forecasting models with minimal modifications
to achieve vector autoregressive-like (VAR-like) behavior. The framework can be based on any
generic deep learning univariate forecasting model. In this paper, we test the modifications on the
well-performing MQCNN architecture (Wen et al., 2017; Olivares et al., 2022b), an MQForecaster neural
network architecture which specializes in mult-step probabilistic forecast.

2. DeepCoFactor uses a multivariate factor model to capture the hierarchy’s complex correlation
structure. Unlike existing joint distribution models that typically optimize for likelihood, we
directly optimize this neural network to achieve high marginal forecast accuracy, measured using
the Continuous Ranked Probability Score (CRPS) (Matheson & Winkler, 1976), through sample
differentiability and the reparametrization trick. This new learning objective enhances the robustness
of the probabilistic model to mis-specification, leading to improved forecast accuracy. Furthermore,
our model is versatile and can be tailored to optimize various forecast metrics, such as quantile losses,
CRPS, mean squared error, or combinations thereof, depending on the specific use case.

3. The DeepCoFactor model possesses the adaptability to fit complex temporal relationships between
known data and future predictions, while also modeling correlations between elements in the hierarchy.
We demonstrate DeepCoFactor’s flexibility by achieving state-of-the-art results on three public
datasets. Our findings show that DeepCoFactor improves accuracy by 4.16 to 54.40%, depending
on the dataset. Additionally, we evaluate our mean forecasts using the relative squared error and
find that our method surpasses previous methods by 14.56 to 95.98% across all three datasets.

Hierarchical forecasting notations. We denote a hierarchical multivariate time series vector by y[i],t =[
y⊤

[a],t | y⊤
[b],t

]
∈ RNa+Nb , where [i], [a], and [b] denote the set of full, aggregate and bottom indices of the

time series, respectively. There are |[i]| = Na + Nb time series in total, with Na aggregates from the Nb

bottom time series, at the finest level of granularity. We use t as a time index. In our notations, we keep
track of shape of tensors using square brackets in subscripts. Since each aggregated time series is a linear
transformation of the multivariate bottom series, we write the hierarchical aggregation constraint as

y[i],t = S[i][b]y[b],t ⇐⇒
[
y[a],t
y[b],t

]
=

[
A[a][b]
I[b][b]

]
y[b],t. (1)

The aggregation matrix A[a][b] represents the collection of linear transformations for deriving the aggregates,
and sums the bottom series to the aggregate levels. The hierarchical aggregation constraints matrix S[i][b]
obtained by stacking A[a][b] and the Nb × Nb identity matrix I[b][b].

For a simple example, consider Nb = 4 bottom-series, so [b] = {1, 2, 3, 4} and yT otal,t =
∑4

i=1 yi,t. Figure 1
shows an example of such hierarchical structure, where the multivariate hierarchical time series is defined

y[a],t = [yT otal,t, y1,t + y2,t y3,t + y4,t]⊤ , y[b],t = [y1,t, y2,t, y3,t, y4,t]⊤ . (2)

Consider historical temporal features x(h)
[b][:t], known future information x(f)

[b][t+1:t+Nh], and static data x(s)
[b] ,

forecast creation date t and forecast horizons in [t + 1 : t + Nh]. A multi-step multivariate forecasting task
aims to estimate the following conditional probability:

P
(

Y[i],t+η | x(h)
[b][:t], x(f)

[b][t+1:t+Nh], x(s)
[b]

)
for η = 1, · · · , Nh. (3)

A hierarchical forecasting task augments the forecast probability with coherence constraints (Ben Taieb et al.,
2020; Panagiotelis et al., 2023; Olivares et al., 2022b), by restricting the probabilistic forecast space to assign
zero probability to non-coherent forecasts. We can formalize this through Definition 1.1, which essentially
tells us that the distribution of a given aggregate random variable is exactly the distribution defined as the
aggregates of the bottom-series distributions through the summation matrix S[i][b].
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y3,t + y4,ty1,t + y2,t

yTotal,tyTotal,t

y1,t y2,t y3,t y4,t

(a) Graph representation

S[i][b] =


A[a][b]

I[b][b]

 =



1 1 1 1
1 1 0 0
0 0 1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


(b) Matrix representation

Figure 1: A simple time series hierarchical structure with Na = 3 aggregates over Nb = 4 bottom time
series. Figure 1a shows the disaggregated bottom variables with blue background. Figure 1b (right) shows
the corresponding hierarchical aggregation constraints matrix with horizontal lines to separate levels of the
hierarchy. We decompose our evaluation throughout the levels.

Definition 1.1. Let Ω[b], F[b],P[b] be a probabilistic forecast space (on the bottom-level series), with sample
space Ω[b], F[b] its σ-algebra, and P[b] a forecast probability. A coherent forecast space Ω[i], F[i],P[i] satisfies

P[i]
(
S[i][b](B)

)
= P[b](B), (4)

for any set B ∈ F[b] and set’s image S[i][b](B) ∈ F[i].
Definition 1.2. Any bottom-level multivariate distribution can be transformed into a coherent distribution
through coherent aggregation.1 Given a sample ŷ[b] ∼ P[b], a coherent P[i] distribution can be constructed
with the following sample transformation

ỹ[i] = S[i][b]
(
ŷ[b]

)
. (5)

In other words, it is enough to aggregate the bottom-level forecasts in a bottom-up manner. We include in
Appendix A a proof of the approach’s coherence property.

2 Methodology

In this section, we describe our main method, the Deep Coherent Factor Model Neural Network (DeepCoFactor)
model. It consists of a multivariate probabilistic model, an underlying neural network structure, and an
end-to-end model estimation procedure.

2.1 Multivariate Probabilistic Model

Our predicted probabilistic forecasts at all hierarchical levels are jointly represented by a Gaussian factor
model. Our neural network maps the known information (past, static and known future) to the location, scale
and shared factor parameters, and the forecasted factor model parameters are designed to model correlations
between the bottom-level series, while conditioning on all known information. Our factor model2 combined
with the coherent aggregation in Eqn. 8 directly estimates the multivariate probability of bottom-level series
y[b][t+1:t+Nh] conditioning on historical, known-future, and static covariates x(h)

[b][:t], x(f)
[b][t+1:t+Nh], x(s)

[b] , i.e.,

P
(

Ỹ[i][t+1:t+Nh] | x(h)
[b][:t], x(f)

[b][t+1:t+Nh], x(s)
[b]

)
= P

(
S[i][b]Ŷ[b][t+1:t+Nh] | µ̂[b][h],t, σ̂[b][h],t, F̂[b][k][h],t

)
. (6)

At a given forecast creation date t, the model uses the location µ̂[b][h],t ∈ RNb×Nh , scale σ̂[b][h],t ∈ RNb×Nh

and shared factor F̂[b][k][h],t ∈ RNb×Nk×Nh parameters, along with samples from standard normal variables
1Coherent aggregation can be though of a special case of bootstrap reconciliation (Panagiotelis et al., 2023) that only relies

on a bottom-level forecast distribution.
2Early work on factor forecast models augmenting neural networks done by Wang et al. (2019) does not ensure coherence.
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ỹ[i],t+1

c(sp)
[b],t+1

h[b],th[b],t−1h[b],t−2

TempConvolution + CrossSeriesMLP

t − 2
Decoder Decoder
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t − 1 t

MLP1 MLP2 x( f )
[b],t+1 x( f )

[b],t+2 x( f )
[b],t+3

Encoder

x(h)
[b],t−2

x( f )
[b][:t+3]x(s)

[b]x(h)
[b],t−1 x(h)

[b],t

c(sp)
[b],t+2 c(sp)

[b],t+3

ỹ[i],t+2 ỹ[i],t+2

ŷ[b],t+1

ŷ[b],η,t = ̂μ[b],η,t + Diag( ̂σ[b],τ) + F̂[b][k],η,t

ŷ[b],t+2 ŷ[b],t+3S[i][b]

c(ag)
[b],t

× × ×

z[b],η,t ϵ[k],η,t

Figure 2: The Deep Coherent Factor Model Neural Network is a Sequence-to-Sequence with Context network
that uses dilated temporal convolutions as the primary encoder and multilayer perceptron based decoders for
the creation of the multi-step forecast. DeepCoFactor leverages coherently aggregates the samples of the
factor model ỹ[i],η,t = S[i][b]ŷ[b],η,t. We mark in red the standard normal samples that are parameter-free, the
reparametrization trick allows to apply backpropagation through the factor model outputs.

z[b],η ∼ N (0[b], I[b][b]), and ϵ[k],η ∼ N (0[k], I[k][k]) to compose the following multivariate variables for each
horizon:

ŷ[b],η,t = µ̂[b],η,t + Diag(σ̂[b],η,t)z[b],η,t + F̂[b][k],η,tϵ[k],η,t, η = 1, · · · , Nh. (7)

After sampling from the multivariate factor we coherently aggregate the clipped outputs of the network,

ỹ[i],η,τ = S[i][b]
(
ŷ[b],η,τ

)
+ , (8)

where (·)+ = max(·, 0) returns the nonnegative part of its argument.

The shared factors enable the factor model to capture the relationships across the disaggregated series, and
the covariance structure of the disaggregated series follows:

Cov
(
ŷ[b],η,t

)
= Diag(σ̂2

[b],η,t) + F̂[b][k],η,tF̂⊤
[b][k],η,t. (9)

We include in Appendix A a proof of the covariance structure our multivariate factor model.

2.2 Neural Network Architecture

Our framework can adapt to any univariate deep learning forecasting models, so long as they can be made
to output factor model parameters. In this paper, we focus on the architecture implementation based
on MQCNN (Wen et al., 2017; Olivares et al., 2022b), because of its outstanding performance in multi-step
forecasting problems. Our MQCNN-based architecture has a main encoder which consists of a stack of dilated
temporal convolutions, and it is applied to historical information for all series. In addition, it uses a global
multi-layer perceptron (MLP) to encode the static and future information. The encoder at time t is described
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in Eqn. 10 below, and is applied to each disaggregated series:

h(h)
[i],t = TempConvolution

(
[S[i][b]x

(h)
[b][:t]]

)
(3)

h(s)
[b] = MLP1

(
x(s)

[b]

)
h(f)

[b],t = MLP2

(
x(f)

[b][t+1:t+Nh]

)
.

(10)

We use a residual cross series MLP to capture vector autorregressive relationships in the hierarchy with
minimal modifications to the architecture:

h(h)
[b],t = CrossSeriesMLP

(
h(h)

[i],t

)
. (11)

The DeepCoFactor uses a two-stage MLP decoder: the first decoder summarizes information into the horizon
agnostic context c(ag)

[b],t and the horizon specific context c(sp)
[b][h],t; and the second stage decoder transforms the

contexts into the Factor model parameters
(

µ̂[b][h],t, σ̂[b][h],t, F̂[b][k][h],t

)
. Eqn. 12 describes the operations:

h[b],t =
[
h(h)

[b],t, h(s)
[b] , h(f)

[b],t

]
c(ag)

[b],t = MLP3
(
h[b],t

)
c(sp)

[b][h],t = MLP4
(
h[b],t

)(
µ̂[b][h],t, σ̂[b][h],t, F̂[b][k][h],t

)
= MLP5

([
c(sp)

[b][h],t, c(ag)
[b],t , x(f)

[b][t+1:t+Nh]

])
.

(12)

For the last step, the network composes the factor model samples, using Eqn. 7 and aggregates them
(equivalent to bottom-up reconciliation) in Eqn. 8.

We design our method so that it can provide differentiable samples: we can differentiate sample-based
losses with respect to our distributional parameters, allowing to differentiate with respect to the neural
network weights. The forecast representation (i.e., Gaussian linear latent variable models) leverages the
simple reparametrization trick for Gaussian random variables (Kingma & Welling, 2013). However, recent
work (Figurnov et al., 2018; Ruiz et al., 2016; Jankowiak & Obermeyer, 2018) has shown that one can sample
in a differentiable manner from almost any continuous distribution. Our method exploits these results. If we
can compute differentiable samples from the factor distributions and from the bottom-level distributions,
we can compute differentiable samples for our forecasts, at any level of aggregation. This then allows us to
optimize any metric which can be estimated as a differentiable function of samples.

Differentiable sampling is implemented for many distributions of interest in the Pytorch open source machine
learning framework PyTorch4 (Paszke et al., 2019; Bradbury et al., 2018; Abadi et al., 2015). The differentiable
sampling approach is fairly easy to implement for many different distributions. We demonstrate this in the
PyTorch code snippet in Figure 4 in Appendix B. We only need to change a single line of code to change
distribution assumptions.

2.3 Learning Objective

Let θ be a model that resides in the class of models Θ defined by the model architecture. Here θ can be
thought of a non-linear function mapping from the model feature space to the parameter set for all target
horizons, we have

(µ̂[b][h],t, σ̂[b][h],t, F̂[b][k][h],t) = θ(x(h)
[b][:t], x(f)

[b][t+1:t+Nh], x(s)
[b] ). (13)

Let Ŷi,η,t(θ) be the random variable parameterized by θ. In some problems, multi-step coherent forecasts for
multiple items are needed (e.g., in retail business, coherent regional demand forecasts are required for each

3Temporal exogenous data only aggregates the target signal, other features (e.g. calendar) are maintained without aggregation.
4https://pytorch.org/docs/stable/distributions.html, and also in Jax and Tensorflow. See rsample methods in PyTorch.
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product). Let u be the index of such item within an index set {1, · · · , Nu} of interest, and let Ỹu,i,η,t(θ) be
the coherent forecast random variable for target yu,i,t+η. Using the reparametrization strategy (Kingma &
Welling, 2013), within the class of parameters Θ defined by the neural network architecture, we optimize for

min
θ∈Θ

∑
u,i,η,t

CRPS
(
yu,i,t+η, Ỹu,i,η,t(θ)

)
, (14)

where the CRPS between a target y and distributional forecast Ỹ (Matheson & Winkler, 1976; Gneiting &
Raftery, 2007) is defined as

CRPS
(
y, Ỹ

)
= EỸ

[
|Ỹ − y|

]
− 1

2EỸ ,Ỹ ′

[
|Ỹ − Ỹ ′|

]
, (15)

where Y ′ is distributed as Y , but is independent of it. We optimize the model using adaptive moments
stochastic gradient descent (Adam (Kingma & Ba, 2014)) with early stopping (Yao et al., 2007). Additional
details on the neural network optimization and hyperparameter selection are available in Appendix C.

2.4 Discussion

Here, we discuss differences between DeepCoFactor (our method) with two end-to-end coherent probabilistic
forecasting baselines in HierE2E (Rangapuram et al., 2021) and DPMN (Olivares et al., 2023).

The HierE2E method of Rangapuram et al. (2021) is “too general.” It consists of an augmented DeepVAR neural
network model (Flunkert et al., 2017) that produces probabilistic forecasts for all time-series in the hierarchy.
HierE2E claims to be more general than hierarchical forecasting, since it is designed to enforce any convex con-
straint satisfied by the forecasts; due to the constraining operation in the method, it has to revise the optimized
forecasts. It does not leverage specifics of the hierarchical constraints, which are more structured than a general
convex constraint. HierE2E produces forecast samples from Gaussian distributions for each time-series in the
hierarchy, assuming independence; since the samples are not guaranteed to be hierarchically coherent, HierE2E
couples samples by projecting them on the space of coherent probabilistic forecasts. Both the sampling opera-
tion (Kingma & Welling, 2013) and the projection are differentiable, allowing the method to be trained end-to-
end. HierE2E allows different distribution choices, although they are not explored in the initial paper, since
Gaussians can be replaced by any distribution which can be sampled in a differentiable way, i.e., almost any con-
tinuous distribution (Ruiz et al., 2016; Figurnov et al., 2018; Jankowiak & Obermeyer, 2018). In Rangapuram
et al. (2021), the projection operator ensures coherence, and correlations between bottom-levels are learned only
by optimizing the neural network. In contrast, DeepCoFactor produces forecasts for bottom-level series only,
while relying on common factors to encode correlations. This removes the need to forecast at all levels simulta-
neously, therefore reducing computational requirements if we are only interested in a subset of the aggregates.

On the other hand, the DPMN baseline (Olivares et al., 2023) is “too restrictive,” in particular as a Poisson
Mixture can be prone to distribution mis-specification problems. It is known that when a probability model
is mis-specified, optimizing log likelihood is equivalent to minimizing Kullback–Leibler (KL) divergence with
respect to the true probabilistic distribution, KL divergence measures change in probability space, while
optimizing CRPS is equivalent to minimizing the Cramer-von Mises criterion (Gneiting & Raftery, 2007),
which quantifies the distance with respect to the probability model in the sample space. The DeepCoFactor
learning objective for the probabilistic model is resilient to distributional mis-specification (Bellemare et al.,
2017). Moreover DeepCoFactor can be optimized to adapt for other evaluation metrics of interest.

Finally DPMN estimates the covariance among time series, but it does not leverage this when encoding the
historical time series. Similar to other ARIMA based baselines, on specific hierarchical benchmark datasets
such as Traffic, DPMN produces sub-optimal bottom-series forecasts. We improve the encoder for historical
time series by adding a CrossSeriesMLP after the Temporal convolution encoder, which bridges the accuracy
gap between HierE2E and our MQCNN based approach.
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Dataset # Items (Nu) Bottom (Nb) Levels Aggregated (Na + Nb) Time range Frequency Horizon (Nh)

Favorita 4036 54 4 93 1/2013 - 8/2017 Daily 34

Tourism-L 1 304 4/5 555 1998-2016 Monthly 12

Traffic 1 200 4 207 1/2008-3/2009 Daily 1

Table 2: Summary of publicly-available data used in our empirical evaluation.

3 Empirical Evaluation

In this section, we present our main empirical results. First, we describe the empirical set up. Second, we
evaluate the proposed model, and compare with state-of-the-art hierarchical forecast models. Third, we present
ablation study results that further analyze the source of improvements on variants of the DeepCoFactor.

3.1 Setting

Datasets. In our analysis, we consider three qualitatively different (public) datasets: Favorita, Tourism-L,
and Traffic. They have different properties which are representative of more realistic non-public data, and
forecasting all of them accurately requires substantial modeling flexibility. The Favorita dataset is a large
retail dataset, and it contains both count data (whole items) and real-valued data (items sold by weight)
for over 4000 items. The aggregation hierarchy is regional. We use it to test our method on a (relatively)
large-scale problem. The Tourism-L dataset represents the number of visitors to different regions in Australia.
The goal is to forecast thousands of visitors, i.e., rescaling count data by 1000. The aggregation is done
according to a hierarchy over region and purpose of travel, allowing us to test a case where the aggregate
levels have overlap. Finally, the Traffic dataset contains sum-aggregates of highway occupancy rates. The
initial rates are hourly, but (following (Olivares et al., 2023; Rangapuram et al., 2021)) the dataset we consider
is daily, i.e., it uses rates already aggregated to the daily level for each highway bend as bottom-level series.
The hierarchy in this dataset was defined randomly over highway bends. We use the same hierarchy as
previous work. This allows us to test whether our model requires aggregations to be in line with correlation
structures to achieve high accuracy. For all three datasets, the forecasted quantities are non-negative. We
describe dataset details in Appendix D.

Evaluation metrics. Our main evaluation metric is the mean scaled CRPS (Bolin & Wallin, 2019;
Makridakis et al., 2022b) defined as the score described in Eqn. 16, divided by the sum of all target values.
Let l(g) be a vector of length Na + Nb consisting of binary indicators for a hierarchical level g, where for each
j ∈ [i], l

(g)
j = 1 if aggregated series j is included in hierarchical level g, and 0 otherwise. Then sCRPS for

hierachical level g is defined as

sCRPS
(

y[i ][t+1:t+Nh], Ỹ[i ][h],t | l(g)
)

=

∑Na+Nb

i=1

(∑Nh

η=1 CRPS(yi,t+η, Ỹi,η,t)
)

· l
(g)
i∑Na+Nb

i=1 ||yi,[t+1:t+Nh]||1 · l
(g)
i

. (16)

We also evaluate mean forecasts denoted by ȳ[i][h],t := (ȳ[i],1,t, · · · , ȳ[i],Nh,t) through the relative squared error
relSE (Hyndman & Koehler, 2006), that considers the ratio between squared error across forecasts in all levels
over squared error of the Naive forecast (i.e., a point forecast using the last observation y[i],t) as described by

relSE
(

y[i][h],t, ȳ[i][t+1:t+Nh] | l(g)
)

=
∑Na+Nb

i=1 ∥yi,[t+1:t+Nh] − ȳi,[h],t∥2
2 · l

(g)
i∑Na+Nb

i=1 ∥yi,[t+1:t+Nh] − yi,t · 1[h]∥2
2 · l

(g)
i

. (17)

Baseline Models. We compare our method with the following coherent probabilistic methods: (1) DPMN-
GroupBU (Olivares et al., 2023), (2) HierE2E (Rangapuram et al., 2021), (3) ARIMA-PERMBU-MinT (Ben Taieb
et al., 2017b), (4) ARIMA-Bootstrap-BottomUp (Panagiotelis et al., 2023) and (5) an ARIMA. In addition, we
compare our method with the following coherent mean methods: (1) DPMN-GroupBU, (2) ARIMA-ERM (Ben
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Table 3: Empirical evaluation of probabilistic coherent forecasts. Mean scaled CRPS (sCRPS) averaged over
5 runs, at each aggregation level, the best result is highlighted (lower values are preferred). Methods without
standard deviation have deterministic solutions.
* The HierE2E results differ from Rangapuram et al. (2021), here the sCRPS quantile interval space has a finer granularity of 1 percent instead of 5 percent in
Rangapuram et al. (2021).
** PERMBU-MinT on Tourism-L is unavailable because the original implementation cannot be applied to datasets with multiple hierarchies.

Data Level DeepCoFactor
(coherent)

DPMN-GroupBU
(coherent)

HierE2E *

(coherent)
PERMBU-MinT **

(coherent)
Bootstrap-BottomUp

(coherent)
ARIMA

(not coherent)

Fa
vo

ri
ta

Overall 0.2908 ± 0.0025 0.4020 ± 0.0182 0.5298 ± 0.0091 0.4670 ± 0.0096 0.4110 ± 0.0085 0.4373
1 (geo.) 0.1841 ± 0.0033 0.2760 ± 0.0149 0.4714 ± 0.0103 0.2692 ± 0.0076 0.2900 ± 0.0067 0.3112
2 (geo.) 0.2754 ± 0.0026 0.3865 ± 0.0207 0.5182 ± 0.0107 0.3824 ± 0.0092 0.3877 ± 0.0082 0.4183
3 (geo.) 0.2945 ± 0.0025 0.4068 ± 0.0206 0.5291 ± 0.0129 0.6838 ± 0.0108 0.4490 ± 0.0098 0.4446
4 (geo.) 0.4092 ± 0.0022 0.5387 ± 0.0253 0.6012 ± 0.0131 0.5532 ± 0.0116 0.5749 ± 0.0003 0.5749

To
ur

is
m-

L

Overall 0.1197 ± 0.0037 0.1249 ± 0.0020 0.1472 ± 0.0029 - 0.1375 ± 0.0013 0.1416
1 (geo.) 0.0292 ± 0.0042 0.0431 ± 0.0042 0.0842 ± 0.0051 - 0.0622 ± 0.0026 0.0263
2 (geo.) 0.0593 ± 0.0049 0.0637 ± 0.0032 0.1012 ± 0.0029 - 0.0820 ± 0.0019 0.0904
3 (geo.) 0.1044 ± 0.0030 0.1084 ± 0.0033 0.1317 ± 0.0022 - 0.1207 ± 0.0010 0.1389
4 (geo.) 0.1540 ± 0.0046 0.1554 ± 0.0025 0.1705 ± 0.0023 - 0.1646 ± 0.0007 0.1878
5 (prp.) 0.0594 ± 0.0076 0.0700 ± 0.0038 0.0995 ± 0.0061 - 0.0788 ± 0.0018 0.0770
6 (prp.) 0.1100 ± 0.0049 0.1070 ± 0.0023 0.1336 ± 0.0042 - 0.1268 ± 0.0017 0.1270
7 (prp.) 0.1824 ± 0.0024 0.1887 ± 0.0032 0.1955 ± 0.0025 - 0.1949 ± 0.0010 0.2022
8 (prp.) 0.2591 ± 0.0050 0.2629 ± 0.0034 0.2615 ± 0.0016 - 0.2698 ± 0.0004 0.2834

Tr
af

fi
c Overall 0.0171 ± 0.0036 0.0907 ± 0.0024 0.0375 ± 0.0058 0.0677 ± 0.0061 0.0736 ± 0.0024 0.0751

1 (geo.) 0.0026 ± 0.0012 0.0397 ± 0.0044 0.0183 ± 0.0091 0.0331 ± 0.0085 0.0468 ± 0.0031 0.0376
2 (geo.) 0.0029 ± 0.0014 0.0537 ± 0.0024 0.0183 ± 0.0081 0.0341 ± 0.0081 0.0483 ± 0.0030 0.0412
3 (geo.) 0.0044 ± 0.0022 0.0538 ± 0.0022 0.0209 ± 0.0071 0.0417 ± 0.0061 0.0530 ± 0.0025 0.0549
4 (geo.) 0.0587 ± 0.0106 0.2155 ± 0.0022 0.0974 ± 0.0021 0.1621 ± 0.0027 0.1463 ± 0.0017 0.1665

Table 4: Empirical evaluation of mean hierarchical forecasts. Relative squared error (relSE) averaged over 5
runs, at each aggregation level, the best result is highlighted (lower values are preferred). Methods without
standard deviation have deterministic solutions.
* The ARIMA-ERM results for Tourism-L differ from Rangapuram et al. (2021), as we improved the numerical stability of their implementation.

Data Level DeepCoFactor
(hier.)

DPMN-GroupBU
(hier.)

ARIMA-ERM *

(hier.)
ARIMA-MinT-ols

(hier.)
ARIMA-BottomUp

(hier.)
ARIMA

(not hier.)
SNaive

(not hier.)

Fa
vo

ri
ta

Overall 0.5885 ± 0.0291 0.7563 ± 0.0713 0.8163 0.9465 0.8276 0.9665 1.1420
1 (geo.) 0.6109 ± 0.0400 0.7944 ± 0.0568 0.8362 0.8999 0.8415 0.9217 1.1269
2 (geo.) 0.5618 ± 0.0265 0.7355 ± 0.1057 0.7830 1.0057 0.8050 1.0451 1.1078
3 (geo.) 0.5619 ± 0.0256 0.7303 ± 0.1035 0.7986 1.0418 0.8192 1.0881 1.1315
4 (geo.) 0.5854 ± 0.0130 0.6770 ± 0.0351 0.8199 0.8808 0.8228 0.8228 1.2815

To
ur

is
m-

L

Overall 0.0951 ± 0.0145 0.1113 ± 0.0158 0.1178 0.1251 0.2979 0.1414 0.1306
1 (geo.) 0.0447 ± 0.0171 0.0597 ± 0.0212 0.0596 0.0472 0.4002 0.0343 0.0582
2 (geo.) 0.1014 ± 0.0180 0.1121 ± 0.0152 0.1293 0.1476 0.3340 0.2530 0.1628
3 (geo.) 0.2309 ± 0.0124 0.2250 ± 0.0196 0.2529 0.3556 0.4238 0.4429 0.3695
4 (geo.) 0.3075 ± 0.0134 0.2980 ± 0.0197 0.3236 0.4288 0.4012 0.4835 0.4766
5 (prp.) 0.0596 ± 0.0195 0.0798 ± 0.0195 0.0895 0.0856 0.1703 0.0973 0.0615
6 (prp.) 0.1199 ± 0.0115 0.1403 ± 0.0150 0.1466 0.1537 0.1986 0.1663 0.1577
7 (prp.) 0.2484 ± 0.0119 0.2654 ± 0.0212 0.2705 0.3017 0.3151 0.2914 0.3699
8 (prp.) 0.3432 ± 0.0157 0.3302 ± 0.0235 0.3543 0.3970 0.3769 0.3769 0.4969

Tr
af

fi
c Overall 0.0008 ± 0.0004 0.1750 ± 0.0099 0.0199 0.0425 0.0217 0.0433 0.0709

1 (geo.) 0.0001 ± 0.0002 0.1619 ± 0.0099 0.0133 0.0344 0.0168 0.0302 0.0547
2 (geo.) 0.0001 ± 0.0003 0.1835 ± 0.0101 0.0135 0.0380 0.0180 0.0392 0.0676
3 (geo.) 0.0005 ± 0.0007 0.1819 ± 0.0100 0.0373 0.0647 0.0295 0.0850 0.0989
4 (geo.) 0.1354 ± 0.0325 0.9964 ± 0.043 0.6355 0.5876 0.5669 0.5669 1.3118

Taieb & Koo, 2019), (3) ARIMA-MinT (Wickramasuriya et al., 2019), (4) ARIMA-BottomUp, (5) an ARIMA
and (6) Seasonal Naive. We use the implementation of statistical methods available in StatsForecast and
HierarchicalForecast libraries (Olivares et al., 2022b; Garza et al., 2022).

3.2 Forecasting Results

As mentioned earlier, we compare the proposed model to the DPMN (Olivares et al., 2023), the HierE2E (Ran-
gapuram et al., 2021), and two ARIMA-based reconciliation methods (Wickramasuriya et al., 2019; Panagiotelis
et al., 2023). Following previous work, we report the sCRPS at all levels of the defined hierarchies; see
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Figure 3: a) The CRPS learning objective shows clear advantages over classic negative log likelihood estimation,
while the Factor Model approach shows to be a more flexible approach compared to alternative distributions.
b) In the presence of strong correlations within the hierarchy the series cross learning strategy shows significant
accuracy improvements.*The Normal and StudentT are non coherent forecast distributions, in contrast to
the Gaussian Factor Model and the Poisson Mixture.

Table 3. The ARIMA reconciliation results are generated using Olivares et al. (2022b), with confidence interval
computed based on 10 independent runs. Results for HierE2E are generated based on three independent runs
using hyperparameters tuned by Olivares et al. (2022b). All metrics for DPMN are quoted from Olivares et al.
(2023) with identical experimental setting on all datasets.

Our model achieves better overall CRPS for the test sets of all three datasets, improving on previous methods
by 27.67%, 4.16% and 54.40% on Favorita, Tourism-L and Traffic, respectively, as seen on the Overall
rows of Table 3. For Favorita and Tourism-Large, our model achieves better accuracy at almost every
single level of the defined hierarchy. On Traffic, our model achieves remarkably better results than DPMN
and HierE2E. The accuracy improvements due to its ability to model VAR relationships accurately. It
is important to consider that aggregate levels are much smaller in sample size for which we prefer the
bottom-level measurements as an indicator of the methods’ accuracy. The accuracy gains on sCRPS are
mirrored by the accuracy gains on relSE; see Table 4. Finally, we qualitatively show DeepCoFactor forecast
distributions for a hierarchical structure in the Favorita dataset in Appendix E.

3.3 Ablation Studies

To analyze the source of improvements in the DeepCoFactor, we performed ablation studies on variants of
the MQCNN (Wen et al., 2017; Olivares et al., 2022b). We investigate the effects of the network’s learning
objective, and the effects of leveraging a VAR-like cross-series MLP. For the ablation studies we use a
simplified experimental setup over the Traffic dataset, where we consider the same forecasting task as the
main experiment but we evaluate the sCRPS in the validation set, for 5 randomly initialized neural networks.
Details available in Appendix F.

In our ablation study of the learning objective effects, we compared the CRPS-based optimization, as described
in Eqn. 14, with the classic negative log-likelihood estimation for the Gaussian factor model introduced in
Section 2.1. Additionally, to demonstrate the viability of the factor model, we also compared it with other
likelihood-estimated distributions, including Poisson Mixture, Student-T, and univariate Gaussian.

We observed that the CRPS-optimized factor model, improves forecasting accuracy by nearly 60% when
compared to the log likelihood optimized factor model.

In our ablation study of the effects of a cross-series MLP that mimics the vector autoregressive model, we com-
pare the DeepCoFactor architecture with and without the cross series multilayer perceptron (CrossSeriesMLP)
introduced in Eqn. 11. Such a module enables the network to share information of the series in the hierarchy
with minimal modifications in the architecture. We observed that the CrossSeriesMLP improved Traffic
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forecasting accuracy by 66% when compared to variants without it. We attribute the effectiveness of the
VAR approach to the presence of Granger-causal relationships in the traffic intersections. The cross series
learning approach allowed us to breach the Traffic performance gap between DPMN and HierE2E.

4 Conclusion

This study pioneers the use of factor models to capture correlations among hierarchical series structures, while
maintaining forecast coherence. While we focus on parametrizing the multivariate predictive distribution as a
Gaussian multivariate factor model, our framework is versatile and can accommodate other distributions that
support sample differentiability. This is of special interest for outlier quantiles that cannot be well approximated
by Gaussian variables. Exciting future research directions include extending the reparameterization trick to
handle discrete distributions, which could further enhance the accuracy of forecast distributions built on this
framework. Finally, we have only scratched the surface in exploring different learning objectives. Extensions
could involve exploring the energy score (Gneiting & Raftery, 2007), which naturally extends the univariate
CRPS objective to a multivariate context. Alternatively, investigating quadratic objectives or other robust
learning objective functions could also prove interesting.
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A Multivariate Factor Model Coherence and Covariance

A.1 Coherent Aggregation Properties

The coherence of DeepCoFactor is a special case of the bootstrap sample reconciliation technique (Panagiotelis
et al., 2023), as explored by Olivares et al. (2023).
Lemma A.1. Let (Ω[b], F[b],P[b]) be a probabilistic forecast space, with F[b] a σ-algebra on Ω[b]. If a forecast
distribution P[i] assigns a zero probability to sets that don’t contain coherent forecasts, it defines a coherent
probabilistic forecast space (Ω[i], F[i],P[i]) with Ω[i] = S[i][b](Ω[b]).

P[a]
(
y[a] /∈ A[a][b](B) | B

)
= 0 =⇒ P[i]

(
S[i][b](B)

)
= P[b] (B) ∀B ∈ F[b]. (18)

Proof. We note the following:

P[i]
(
S[i][b](B)

)
= P[i]

([
A[a][b]
I[b][b]

]
(B)

)
= P[i]

(
{
[
A[a][b](B)

RNb

]
} ∩ {

[
RNa

B

]
}
)

= P[a]
(
A[a][b](B) | B

)
P[b] (B) = (1 − P[a]

(
y[a] /∈ A[a][b](B) | B

)
) × P[b] (B) = P[b] (B) .

The first equality is the image of a set B ∈ Ω[b] corresponding to the constraints matrix transformation, the
second equality defines the spanned space as a subspace intersection of the aggregate series and the bottom
series, the third equality uses the conditional probability multiplication rule, the final equality uses the zero
probability assumption.

By construction of the samples of our model ỹ[i] = S[i][b]
(
ŷ[b]

)
+ and ỹ[a] = A[a][b]

(
ŷ[b]

)
+, satisfying the

assumptions of the lemma and proving the coherence of our approach.

A.2 Covariance Structure

Here we prove the covariance structure of our factor model introduced in Section 2.1.
Lemma A.2. Let our factor model be defined by

ŷ[b],η,t = µ̂[b],η,t + Diag(σ̂[b],η,t)z[b],η,t + F̂[b][k],η,tϵ[k],η,t, η = 1, · · · , Nh, (19)

with independent factors z[b],η ∼ N (0[b], I[b][b]), and ϵ[k],η ∼ N (0[k], I[k][k]), its covariance satisfies

Cov
(
ŷ[b],η,t

)
= Diag(σ̂2

[b],η,t) + F̂[b][k],η,tF̂⊤
[b][k],η,t. (20)

Proof. First, we observe that

Cov
(
ŷ[b],η,t, ŷ[b],η,t

)
= Cov

(
Diag(σ̂[b],η,t)z[b],η,t, Diag(σ̂[b],η,t)z[b],η,t

)
+ 2Cov

(
Diag(σ̂[b],η,t)z[b],η,t, F̂[b][k],η,tϵ[k],η,t

)
+ Cov

(
F̂[b][k],η,tϵ[k],η,t, F̂[b][k],η,tϵ[k],η,t

)
.

(21)

By bilinearity of covariance and independence of the sampled factors, it follows that

Cov
(
ŷ[b],η,t, ŷ[b],η,t

)
= Diag(σ̂[b],η,t)Cov

(
z[b],η,t, z[b],η,t

)
Diag(σ̂[b],η,t)⊺ + F̂[b][k],η,tCov

(
ϵ[k],η,t, ϵ[k],η,t

)
F̂⊺

[b][k],η,t.

We conclude that
Cov

(
ŷ[b],η,t, ŷ[b],η,t

)
= Diag(σ̂2

[b],η,t) + F̂[b][k],η,tF̂⊺
[b][k],η,t. (22)
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B Code Script for Sampling

def sample (self , distr_args , window_size , num_samples =None):
"""
** Parameters **
‘distr_args ‘: Forecast Distribution arguments .
‘window_size ‘: int=1, for reconciliation reshapes in sample method .
‘num_samples ‘: int=500 , number of samples for the empirical quantiles .

** Returns **
‘samples ‘: tensor , shape [B,H,‘ num_samples ‘].
‘quantiles ‘: tensor , empirical quantiles defined by ‘levels ‘.
"""
means , factor_loading , stds = distr_args
collapsed_batch , H, _ = means .size ()

# [ collapsed_batch ,H ]:=[ B*N*Ws ,H,F] -> [B,N,Ws ,H,F]
factor_loading = factor_loading . reshape (

(-1, self.n_series , window_size , H, self. n_factors )
). contiguous ()
factor_loading = torch . einsum (

"iv ,bvwhf -> biwhf ", self.SP , factor_loading
) # v = i but i represents reconciled forecasts and v base forecast

means = means . reshape (-1, self.n_series , window_size , H, 1). contiguous ()
stds = stds. reshape (-1, self.n_series , window_size , H, 1). contiguous ()

# Factor model loads factor for covariance Diag ( stds ) + F F^t -> ( SPF )(SPF ^t)
hidden_factor = Normal (

loc= torch . zeros (
( factor_loading . shape [0], window_size , H, self. n_factors )

).to( means . device ),
scale =1.0)

sample_factors = hidden_factor . rsample ( sample_shape =(self. num_samples ,))
sample_factors = sample_factors . permute (

(1, 2, 3, 4, 0)
). contiguous () # [ n_items , window_size , H, F, num_samples ]

sample_loaded_factors = torch . einsum (
"bvwhf ,bwhfn -> bvwhn ", factor_loading , sample_factors )

# [ n_items , n_base , window_size , H, num_samples ]
sample_loaded_means = means + sample_loaded_factors

# Sample Normal
normal = Normal (loc= torch . zeros_like ( sample_loaded_means ), scale =1.0)
samples = normal . rsample ()
samples = F.relu( sample_loaded_means + stds * samples )

samples = torch . einsum ("iv ,bvwhn -> biwhn ", self.SP , samples )
samples = samples . reshape ( collapsed_batch , H, self. num_samples ). contiguous ()

# Compute quantiles and mean
quantiles_device = self. quantiles .to( means . device )
quants = torch . quantile ( input =samples , q= quantiles_device , dim=-1)
quants = quants . permute ((1, 2, 0)) # [Q,B,H] -> [B,H,Q]
sample_mean = torch .mean(samples , dim=-1, keepdim =True)
return samples , sample_mean , quants

Figure 4: PyTorch function for sampling from our Gaussian Factor model. Note that the factor samples are
shared across all bottom-level distributions. The samples are differentiable with regard to the function inputs.
We can easily adapt this function to sample from other distributions.
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Table 5: Deep Coherent Factor Model Neural Network (DeepCoFactor) architecture hyperparameters.
* SGD batch selection as well as model dimensions follow mostly GPU memory constraints.

Parameter Notation Considered Values
Favorita Tourism-L Traffic

Activation Function. - ReLU ReLU ReLU
Temporal Convolution Dilations. Nck [1,2,4,8,16,32] [1,2,3,6,12] [1,7,14,28]
Temporal Convolution Channel Size. Np 30 30 10
Future Encoder Dimension. Nf 50 50 20
Static Encoder Dimension. Ns 50 20 5
Horizon Agnostic Decoder Dimensions. Nag 20 20 20
Horizon Specific Decoder Dimensions. Nsp 5 5 5

Factor Model Components. Nk 5 10 10
Cross Series MLP Hidden Size. Nk 5 50 200

SGD Batch Size. - 4 1 1
SGD Effective Batch Size. - 744 555 207
SGD Max steps. - 80e3 2e3 2e3
Learning Rate. - 5e-4 5e-4 5e-4
Random Seeds. - {1, 2, 3, 4, 42} {1, 2, 3, 4, 42} {1, 2, 3, 4, 42}
GPU Training Configuration. - 1 x NVIDIA V100 1 x NVIDIA V100 1 x NVIDIA V100

C Training Methodology and Hyperparameters

Here we complement and extend the description of our method in Section 2.

To avoid information leakage we perform ablation studies in the validation set preceding the test set, where
we explored variants of the probabilistic method, as well as its optimization. We report these ablation studies
in Appendix F. For each dataset, given the prediction horizon h, the test set is composed of the last h
time-steps. The validation set is composed of the h time-steps preceding the test set time range. The training
set is composed of all dates previous to the validation time-range. When reporting final accuracy results of
our model on test set, we used the settings that perform the best in validation set.

We tune minimally the architecture and its parameters varying only its size and the convolution kernel
filters to match the seasonalities present in each dataset. For the Favorita dataset we use dilations of
[1, 2, 4, 8, 16, 32] to match weekly and monthly seasonalities, for the Tourism-L dataset we use dilations of
[1, 2, 3, 6, 12] to match the monthly and yearly seasonalities, for the Traffic dataset we use dilations of
[1, 7, 14, 28] as multiples of 7 to match the weekly seasonalities.

The selection of the number of factors follows mostly the memory constraints of the GPU, as the effective
batch size implied by our probabilistic model grows rapidly as a function of the multivariate series. In
the Favorita dataset more factors are likely to continue to improve accuracy but with the tradeoff of the
computational speed. Similarly the Cross series MLP hidden size is selected following the GPU memory
constraints.

We share a learning rate of 5e-4 constant across the three datasets, which shows that the method is reasonably
robust across different forecasting tasks. During the optimization of the networks we use adaptive moments
stochastic gradient descent (Kingma & Ba, 2014) with early stopping (Yao et al., 2007) guided by the sCRPS
signal measured in the validation set. We use a learning rate scheduler that decimates the learning rate four
times during the optimization (SGD Maxteps/4), to ensure the convergence of the optimization.

The DeepCoFactor model is implemented using Pytorch (Paszke et al., 2019), with the NeuralForecast library
framework (Olivares et al., 2022a).
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Figure 5: Visualization of the hierarchical constraints of the empirical evaluation datasets. (a) Favorita
classifies its grocery sales by store, city, state, and country levels. (b) Tourism-L categorizes its 555 regional
visit series based on travel purpose, zones, states, and country-level geographical aggregations. (c) Traffic
organizes the occupancy series of 200 highways into quarters, halves, and totals.2014-12-01 2016-12-01 2018-12-01
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Figure 6: Tourism-L dataset partition into train, validation, and test sets used in our experiments. All
datasets use the last horizon window as defined in Table 2 (marked by the second dotted line), and the
previous window preceding the test set as validation (between the first and second dotted lines). Validation
provides the signal for hyperparameter selection and the ablation studies.

D Dataset Details

Favorita The Favorita dataset (Favorita et al., 2017) contains grocery sales of the Ecuatorian Corporación
Favorita in N = 54 stores. We perform geographical aggregation of the sales at the store, city, state and
national levels, following (Olivares et al., 2023). This yields a total of M = 94 aggregates. Concerning
features, we use past unit sales and number of transactions as historical data. In the Favorita dataset
we include item perishability static information, geographic state dummy variables, and for the historic
exogenous features and future exogenous features we use promotions and day of the week.

Tourism-L The Tourism-L dataset (Wickramasuriya et al., 2019) represents visits to Australia, at a monthly
frequency, between January 1998 and December 2016. We use 2015 for validation, and 2016 for testing, and
all previous years for training. The dataset contains 228 monthly observations. For each month, we have the
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number of visits to each of Australia’s 78 regions, which are aggregated to the zone, state and national level,
and for each of four purposes of travel. These two dimensions of aggregation total N = 304 leaf entities (a
region-purpose pair), with a total of M = 555 series in the hierarchy. We pre-process the data to include
static features we use purpose of travel as well as state dummies, for the historical information we use month
dummies, and for the future exogenous we use month and a seasonal naive anchor forecast that helps greatly
to account for the series seasonality.

Traffic The Traffic dataset (Ben Taieb & Koo, 2019) contains aggregates of daily freeway occupancy
rates for 200 sampled (out of 963) car lanes in the San Francisco Bay Area between January 2008 to March
2009. We follow the aggregation defined in Ben Taieb & Koo (2019). We note that this scheme aggregates
occupancy rates by adding them up. There are three aggregated levels: four groups of 50 car lanes, two
groups of 100 car lanes, and an overall group of 200 lanes. Each group was chosen randomly in Ben Taieb &
Koo (2019); we keep the same grouping. We follow previous experiments in the literature (Ben Taieb & Koo,
2019; Rangapuram et al., 2021; Olivares et al., 2023), and split the dataset into training, validation, and test
dataset of size 120, 120 and 126. In Table 3, we report accuracy numbers for the last date of 126 dates only,
following the experimentation setting in (Rangapuram et al., 2021; Olivares et al., 2023). In the Traffic
dataset we use geographic node dummies, that identify the quarter and halves belonging, for the historic and
future exogenous we use Saturday and Sunday dummies as well as the distance to the next Saturday.

E Forecast Distributions Visualization
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Figure 7: DeepCoFactor forecast distributions on a hierarchically linked time series of the Favorita dataset.
We show the forecasted demand for a grocery item on a store of the Puyo City, in the State of Pastaza and
the whole country demand in the top row. Forecast distributions show the 90% forecast intervals in light blue,
and the forecasted median in dark blue. The clipped Normal distribution achieves non-negative predictions
and a point mass at zero.
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Table 6: Ablation study on the Traffic dataset. empirical evaluation of probabilistic coherent forecasts.
Mean scaled continuous ranked probability score (sCRPS) averaged over 5 runs, at each aggregation level, the
best result is highlighted (lower measurements are preferred).
* The Normal and StudentT are non coherent forecast distributions, in contrast to the Factor Model and the Poisson Mixture.

Level FactorModel+crps FactorModel+nll PoissonMixture StudentT* Normal*

Overall 0.0259±0.0060 0.0879±0.1136 0.0827±0.1408 0.0600±0.0367 0.0734±0.0253
Total 0.0023±0.0022 0.0623±0.1335 0.0667±0.1817 0.0280±0.0283 0.0556±0.0327
Halves 0.0028±0.0018 0.0640±0.1318 0.0765±0.2030 0.0296±0.0300 0.0510±0.0316
Quarters 0.0043±0.0015 0.0644±0.1313 0.0742±0.1782 0.0301±0.0294 0.0450±0.0334
Lanes 0.0942±0.0195 0.1608±0.0615 0.1136±0.0056 0.1523±0.0752 0.1422±0.0554

Table 7: Ablation study on the Traffic dataset, empirical evaluation of probabilistic coherent forecasts.
Mean scaled continuous ranked probability score (sCRPS) averaged over 5 runs, at each aggregation level, the
best result is highlighted (lower measurements are preferred).

Level CrossSeriesMLP ¬CrossSeriesMLP

Overall 0.0242±0.0035 0.0613±0.0257
Total 0.0035±0.0015 0.0432±0.0296
Halves 0.0048±0.0030 0.0437±0.0289
Quarters 0.0041±0.0022 0.0440±0.0281
Lanes 0.0905±0.0084 0.1145±0.0174

F Ablation Studies Details

To analyze the sources of improvements in our model, we conducted ablation studies on variants of the
DeepCoFactor/MQCNN/DPMN (Wen et al., 2017; Olivares et al., 2022b). We utilized a simplified setup on the
Traffic dataset, focusing on the same forecasting task as the main experiment. We evaluated the sCRPS
from Eqn. 16 on the validation set across 5 randomly initialized neural networks. The experiments use the
same hyperparameters as reported in Table 5, and vary a single characteristic of interest of the network and
measuring its effects on the validation dataset.

In our first ablation study we explore the effects of the learning objective alternatives to Eqn. 14, for this
purpose we augment the DeepCoFactor architecture with different distribution outputs including Normal,
Student-T and Poisson Mixture distributions (Olivares et al., 2023). In addition we also compare with our
own Factor model approach, as we can see in Table 6 and Figure 3, the CRPS optimization of the Factor
Model improves upon the negative log likelihood by 60 percent the mean sCRPS in the validation set. The
difference is highly driven by outlier runs, but it is expected as the CRPS objective has much convenient
numerical properties, starting by its bounded gradients. Another important note is that in the literature
factor model estimation is usually done using evidence lower bound optimization, as the latent factors can
quickly land in subpar local minima. In this ablation study we show the CRPS offers a reliable alternative to
both.

In our second ablation study we explore the effects of the impact of including vector autorregresive relationships
of the hierarchy through the CrossSeriesMLP module described in Eqn. 11. In the experiment we train a
DeepCoFactor with and without the module on the Traffic dataset. As we can see in Table 6 and Figure 3
using the CrossSeriesMLP improves sCRPS upon the alternative (without) by 66 percent. The technique
breaches the gap to the HierE2E (Rangapuram et al., 2021), that previously outperformed all alternative
methods by over 50 percent. It is important to note that HierE2E is also a VAR approach. We attribute the
improvements to the heavy presence of Granger causal relationships between the traffic lanes, as they carry
lag historical information that influence each other.
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