
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SWIFT4D: ADAPTIVE DIVIDE-AND-CONQUER
GAUSSIAN SPLATTING FOR COMPACT AND EFFICIENT
RECONSTRUCTION OF DYNAMIC SCENE

Anonymous authors
Paper under double-blind review

32.23

32.0532.01

31.67

31.15

31.79

31.63

31.7

30.68

30.69

30.8

30.6

30.8

31

31.2

31.4

31.6

31.8

32

32.2

32.4

0 2 4 6 8 10 12 14

P
S

N
R

(d
B

)

Time(hours)

FPS:125

Swift4D (Ours)

Ours(lite)

FPS:215

3DGstream
FPS:0.15

K-planes

FPS:30

4DGS

FPS:5

Mix-voxel

FPS:8

StreamRF

FPS:0.05

NeRFPlayer

FPS:114

Real-time 4dgs

FPS:110

SpaceTimeGS

FPS:0.12

Hex-plane

The size of circle

represents the size

of model

Figure 1: Our method demonstrates high-quality rendering, rapid convergence, and compact storage
characteristics. It can achieve competitive result with just 5 minutes of training. Additionally, with
increased training iterations, our method excels in handling finer details.

ABSTRACT

Novel view synthesis has long been a practical but challenging task, although
the introduction of numerous methods to solve this problem, even combining
advanced representations like 3D Gaussian Splatting, they still struggle to recover
high-quality results and often consume too much storage memory and training
time. In this paper we propose Swift4D, a divide-and-conquer 3D Gaussian
Splatting method that can handle static and dynamic primitives separately,
achieving a good trade-off between rendering quality and efficiency, motivated by
the fact that most of the scene is the static primitive and does not require additional
dynamic properties. Concretely, we focus on modeling dynamic transformations
only for the dynamic primitives which benefits both efficiency and quality. We
first employ a learnable decomposition strategy to separate the primitives, which
relies on an additional parameter to classify primitives as static or dynamic. For
the dynamic primitives, we employ a compact multi-resolution 4D Hash mapper
to transform these primitives from canonical space into deformation space at each
timestamp, and then mix the static and dynamic primitives to produce the final
output. This divide-and-conquer method facilitates efficient training and reduces
storage redundancy. Our method not only achieves state-of-the-art rendering
quality while being 20× faster in training than previous SOTA methods with a
minimum storage requirement of only 30MB on real-world datasets.

1 INTRODUCTION

Novel view synthesis (NVS) is a crucial task in computer vision and graphics, with significant
applications in areas such as augmented reality (AR), virtual reality (VR), and content production.
The goal of NVS is to render photorealistic images from arbitrary viewpoints using 2D images

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) Dynamic NeRF method (b) Dynamic 3DGS method (c) Our decomposition method

Deformed point

Canonical point

Static point

Dynamic point

Deformation path

Figure 2: Illustration of different dynamic scene rendering methods. (a) Pumarola et al. (2021);
Park et al. (2021) proposes mapping deformation field points to canonical space, a widely adopted
practice in NeRF-based methods; (b) Wu et al. (2024); Yang et al. (2024) propose mapping canonical
space points to the deformation field; (c) We propose dividing the points in canonical space into
dynamic and static, and then mapping only the dynamic points to the deformation space.

or video inputs. While recent advancements have achieved considerable success in static scenes,
this task becomes particularly challenging when applied to dynamic scenes, where complexities
introduced by object motion and temporal changes make accurate rendering significantly difficult.

Current NVS techniques can be broadly classified into two predominant approaches: neural
rendering methods, exemplified by Neural Radiance Fields (NeRF) Mildenhall et al. (2021), and
point cloud-based rendering techniques, such as 3D Gaussian Splatting Kerbl et al. (2023). NeRFs
have recently made significant strides in achieving photorealistic rendering of static scenes, with
subsequent works Barron et al. (2021; 2022; 2023); Reiser et al. (2023) further enhancing both
quality and speed. Despite these advancements in static scene rendering, NeRFs face significant
challenges when extended to dynamic scenes, primarily due to the substantial training time and
storage requirements. To overcome these obstacles, various approaches have been proposed. As
shown in Fig.2(a), Pumarola et al. (2021) and Park et al. (2021) leverage deformation fields to map
deformation space at arbitrary timestamps to canonical space, effectively capturing dynamic scene
changes. Li et al. (2021) and Gao et al. (2021) employ scene flow to model the motion trajectories
within dynamic environments. Cao & Johnson (2023) and Fridovich-Keil et al. (2023), decompose
the 4D spacetime domain into multiple compact planes, thereby improving training and rendering
speeds. Although these methods have achieved some degree of success, achieving high-quality
real-time rendering remains challenging.

Compared to NeRF, 3DGS offers significant advantages, including real-time rendering and
substantially reduced training time. Within the scope of dynamic modeling, several notable methods
have emerged. As shown in Fig.2(b), 4DGS Wu et al. (2024), inspired by HexPlane, introduces a
neural voxel encoder to model deformation relationships over time. 3DGStream Sun et al. (2024)
utilizes a compact Neural Transformation Cache (NTC) to efficiently model the translation and
rotation of 3D Gaussians between two adjacent frames. RTGS Yang et al. (2023) treats spacetime as
an integrated whole by optimizing a set of 4D primitives, parameterized as anisotropic ellipses that
capture both geometry and appearance. Additionally, STGS Li et al. (2024) enhances standard 3D
Gaussians with temporal opacity and motion/rotation parameters, effectively capturing both static
and dynamic elements to model dynamic deformation.

While these approaches achieve higher-quality results with faster rendering times, they still face
challenges related to long training time and heavy storage requirements. One potential limitation
in their approach is the uniform treatment of all Gaussian points during the modeling process.
However, we observe that static points, such as those in background regions, constitute the majority
of the scene. These points exhibit minimal or no deformation and therefore do not require complex
dynamic modeling. It is more efficient to partition the scene into static and dynamic points and
model each separately. This strategy has the potential to significantly reduce computational overhead
and storage requirements. Moreover, as demonstrated by Wang et al. (2023), applying the same
modeling technique to both dynamic and static points can cause blurring in dynamic regions due to
the influence of static areas, ultimately compromising rendering quality.

In this paper, we introduce Swift4D, a method that simultaneously achieves fast convergence,
compact storage, and real-time high-quality rendering. Our approach starts by decomposing
Gaussian points into dynamic and static groups based on 2D multi-view images, incorporating an
additional parameter d for differentiation. For temporal modeling, we employ a deformation field
approach using a compact multi-resolution 4DHash and MLPs as the deformer, which maps dynamic
Gaussian points from canonical space to deformation space at arbitrary timestamps. Notably, as
shown in Fig. 2(c), temporal modeling is applied exclusively to the dynamic points, while static

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

points are treated as temporally invariant, significantly reducing computational demands. This
reduction in the number of dynamic points enables the 4DHash to concentrate on deformation,
leading to faster convergence and improved rendering quality. Finally, we combine the static and
dynamic Gaussian points to render the final output. This approach also addresses the issue of
blurring caused by static elements interfering with the time-aware multi-resolution 4DHash.

Our method achieves SOTA performance in terms of training and rendering speed, storage efficiency,
and rendering quality. Furthermore, our supplement videos (basketball 1 and 2) demonstrate that
our approach remains effective even in scenarios involving large movements. We will release our
code and pre-trained models upon acceptance. In summary, the key contributions of our work are:

1) We propose a novel method for decomposing dynamic 3D scenes into dynamic and static
components based on 2D images, effectively reducing computational complexity. This
method can be seamlessly integrated into existing dynamic approaches as a plug-and-play
module to enhance quality.

2) We introduce a compact multi-resolution 4DHash, with a footprint as small as 8MB, to
effectively model the spatio-temporal domain. This approach not only enhances rendering
quality and accelerates training but also ensures efficient and compact storage.

3) Our method achieves state-of-the-art performance in training and rendering speed, storage,
and high-quality output.

2 RELATED WORK

Novel View Synthesis. In recent years, novel view synthesis has garnered significant attention,
leading to numerous breakthroughs. NeRFMildenhall et al. (2021) pioneered this domain
by leveraging multi-layer perceptrons (MLPs) combined with volume rendering to model 3D
radiance fields, enabling image rendering from arbitrary viewpoints. Subsequent works aimed to
enhance efficiency and quality. Methods such as TensorF Chen et al. (2022), DVGO Sun et al.
(2022), PlenoxelFridovich-Keil et al. (2022), and Plenoctree Yu et al. (2021) adopt grid-based
representations for faster training and rendering. Instant NGP Müller et al. (2022) further accelerates
this process with a hash encoder, significantly reducing computation time. Meanwhile, MipNeRF
Barron et al. (2021) and MipNeRF360 Barron et al. (2022) propose integrated positional encoding
(IPE) to model conical frustums, effectively mitigating aliasing issues. More recently, 3DGS Kerbl
et al. (2023) introduced a novel point-based rendering paradigm for novel view synthesis, achieving
real-time rendering with high quality. This has spurred additional advancements, including
Mipsplatting Yu et al. (2024a) for anti-aliasing, 2DGS Huang et al. (2024a) for improved mesh
extraction, and ScaffoldGS Lu et al. (2024) for large-scale scene rendering.

Novel View Synthesis for dynamic scene. Li et al. (2021); Lin et al. (2024); Kratimenos et al.
(2023) attempt to directly model the trajectories of moving points across the scene, but they continue
to encounter challenges related to storage. Pumarola et al. (2021); Park et al. (2021); Wu et al.
(2024); Yang et al. (2024) try to build a consistent canonical space across each time step and
then employ a deformer, mainly MLP-based and Muti-plane-based, to map this canonical space
to deformation spaces at each timestamp. Huang et al. (2024b) focuses on monocular dynamic
inputs, leveraging sparse control points to reconstruct scene dynamics with exceptionally high FPS.
Lin et al. (2024) employs Fourier series and polynomial fitting to model the motion of Gaussian
points, enabling dynamic reconstruction. K-planes Fridovich-Keil et al. (2023) and Hexplane
Cao & Johnson (2023) employ an explicit structural representation of the 6D light field rather
than modeling underlying motions. Representing the deformer using MLPs or low-rank planes can
reduce storage requirements, but it often results in slower training and limited capacity for capturing
complex deformations.

Recently, He et al. (2024); Yan et al. attempt to separate dynamic and static Gaussian points to
improve rendering quality and introduced external models to segment foreground and background
areas. While these efforts have explored this direction, the resulting output quality remains
suboptimal. Liang et al. (2023) employs adaptive dynamic-static separation, which differs from
our explicit separation approach.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Static GS

𝑮(𝝁, 𝒔, 𝒓, 𝝈, 𝒄, 𝒅) Mixed GS

𝑡

Rendered IMG

𝑑 > 𝜁?

Density controlDecomp.Init.

4D hash ℎ4𝑑 MLPs

Spatial-Temporal Structure Sec.3.3

Deform

d𝑟

d𝜇

...

First Frame Images

Sparse pointsInit.

2D Dynamic-static masks

Decomp.

Dynamic GS

Train view

Test view

Floater

Density control

Sec.3.4Sec.3.2

Canonical. points

Figure 3: Pipeline of our Swift4D. First, we use the first frame images to obtain a well-initialized
canonical point cloud. Then, we train the dynamic parameter d according to the method described
in Sec.3.2. Based on d, the point cloud is divided into dynamic and static categories. Dynamic
points undergo deformation using a spatio-temporal structure, as discussed in Sec.3.3. Finally, the
deformed dynamic points are mixed with static points for rendering.

3 METHOD

Our main approach aims to achieve faster training speeds and higher quality rendering results
through the decomposition of dynamic and static elements. Based on this insight, we designed our
pipeline, as illustrated in Fig. 3. In this section, we will provide a detailed analysis of each module
in the pipeline. The preliminary concepts of 3D Gaussian Splatting are briefly introduced in Sec.
3.1. We initially train the canonical space Gaussians using the first-frame images and then optimize
the dynamic parameter d of each Gaussian point based on the 2D dynamic-static pixel masks from
different viewpoints, as discussed in Sec.3.2. In the following stage, as outlined in Sec. 3.3, we
freeze the training of dynamic parameter d and proceed to jointly optimize the remaining parameter
of the Gaussian points alongside the swift spatio-temporal structure. Furthermore, our pruning
strategies are thoroughly described in Sec. 3.4, while Sec. 3.5 provides an in-depth discussion
of the optimization process.

3.1 GAUSSIAN SPLATTING PRELIMINARY

3DGSKerbl et al. (2023) uses 3D Gaussian points as its rendering primitives. These 3D Gaussian
points have the following parameter: mean µ, covariance matrix Σ , opacity σ , and view-dependent
color c. A 3D Gaussian point is mathematically defined as:

G(x) = e−
1
2 (x−µ)TΣ−1(x−µ) (1)

In the next rendering phase, the 3D mean µ is directly projected onto the plane as a 2D mean µ2D,
while the 3D covariance matrix is transformed into a 2D covariance matrix using the following
formula: Σ′ = (JWΣWTJT), where W and J denote the viewing transformation and the Jacobian
of the affine approximation of the perspective projection transformation, respectively. Finally, the
color of each pixel can be calculated using the following formula:

C(x) =
∑

i∈N (x)

ciαi(x)

i−1∏
j=1

(1−αj(x)) where αi(x) = σi exp

(
−1

2
(x− µ2D

i)TΣ′−1(x− µ2D
i)

)
.

(2)
Where N is the number of Gaussian points that intersect with the pixel x ∈ R2. In the actual
implementation, the covariance matrix Σ is typically decomposed into rotation q and scaling s. The
color c is represented by a spherical harmonics (SH) function. Therefore, a Gaussian point can be
represented as G{µ, q, s, σ, c}.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Input view 2

Input view 1

Input view 3

Dynamic

Static

Rendering flow

Gradient flow

Occlusion

(a) (b)

Figure 4: (a) Diagram illustrating dynamic parameter d optimization. Even when static points (blue)
are occluded by dynamic points (orange) from View 1, they can still be correctly optimized from
View 2 and 3. (b) shows the result of decomposition. From top left to bottom right, the order is GT
mask, dynamic parameter rendered image, dynamic point and static point rendering results.

3.2 EFFICIENT DYNAMIC AND STATIC DECOMPOSITION

In this section, we introduce our dynamic-static decomposition method for eliminating redundant
computations for static Gaussian points. The time-varying motion model is applied solely to
the dynamic components, leaving the static elements unchanged. This approach leads to faster
convergence and enhanced rendering quality. Specifically, we introduce a learnable dynamic
parameter d (Initialized to 0.) within the Gaussian points to quantify the the dynamic level of
each points. A higher d corresponds to more pronounced motion, indicating that the point is likely
dynamic. We first compute a 2D dynamic-static pixel mask D(x) from the training videos to
distinguish dynamic and static pixels, as shown in Eq. 3, which serves as the supervision signal.

D(x) =

{
1 S(x) >= γ
0 S(x) < γ

where S(x) =

√√√√ 1

T

T∑
t=1

(C(x, t)− 1

T

T∑
t=1

C(x, t))2 (3)

where C(x, t) represents the pixel intensity of in t th frame at location x ∈ R2. S(x) is the temporal
standard deviation (std) for each pixel x across the entire time duration T . Subsequently, a threshold
of γ = 0.02 is applied to binarize S(x), generating a pixel mask D(x). Pixels with S(x) greater
than or equal to γ are classified as dynamic, while those below are considered static.

Based on the concept: During backpropagation, Gaussian points intersecting dynamic pixels should
receive a positive gradient, while those intersecting static pixels should receive a negative gradient,
with the gradient gradually weakening with distance and occlusion. Our decomposition design is
illustrated in Fig. 4(a). We use the α composition for parameter d with Sigmoid function to render
a dynamic value D̂(x) at location x, as Eq. 4 shows.

D̂(x) = Sigmoid(
∑
i=1

diαi(x)

i−1∏
j=1

(1− αj(x))) (4)

By applying the sigmoid function, we optimize the dynamic parameter d to span (−∞,+∞),
enabling finer differentiation of dynamic degrees. This approach converts our dynamic-static
decomposition into a binary classification problem. Consequently, optimizing the dynamic value
for each Gaussian point can be accomplished by minimizing the binary cross-entropy loss:

Ld = Ex[−D(x)log(D̂(x))− (1−D(x))log(1− D̂(x))]. (5)

From the equation above, we effectively optimize the dynamic parameter d for the Gaussian points.
The entire optimization process is highly efficient, typically concluding within 1 minute. Ultimately,
Gaussian points with dynamic parameter greater than the dynamic threshold ζ = 7.0 are classified
as dynamic; otherwise, they are classified as static. An ablation study on ζ is presented in Fig. 7 and
Sec. 5, demonstrating that our decomposition method is robust to the choice of ζ.

Notably, our method adapts well to occlusion. In Fig. 4(a), while dynamic pixels (orange) from View
1 incorrectly assign positive dynamic values to static Gaussian points (blue), other views like View

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

2 and 3 assign larger negative values, ensuring correct classification. Further details are provided in
the Supplementary material Sec. A.2.

3.3 SPATIO-TEMPORAL STRUCTURE

We introduce our proposed efficient spatio-temporal structure encoder, the 4D multi-resolution hash
h4d, and the deformation decoder MLPs, used to predict the deformation of each dynamic Gaussian.

4D Multi-resolution hash encoder. Inspired by INGP Müller et al. (2022), we propose utilizing a
4D multi-resolution hash h4d for encoding to effectively model the temporal information of dynamic
Gaussians by normalizing the point cloud into the hash grid range. As described in INGP, voxel grid
at each resolution is mapped to a hash table that stores F -dimensional learnable feature vectors. For
a given 4D dynamic Gaussian (µ, t) ∈ R4, its hash encoding at resolution l, denoted as h4d(µ, t; l) ∈
RF , is computed through linear interpolation of the feature vectors associated with corners of the
surrounding grid. Consequently, its multi-resolution hash encoding features are as follows:

fh = [h4d(µ, t; 0), h4d(µ, t; 1)...h4d(µ, t;L− 1)] ∈ RLF , (6)

where L denotes the number of resolution levels, typically set to 16. Following this, a small MLP ϕd

combines all features to produce fd = ϕd(fh). Using the 4D hash h4d as an encoder offers several
advantages: compactness, O(1) query complexity, and the multi-resolution approach effectively
integrates global and local information.

However, while 4D Hash offers O(1) query complexity, its hashing characteristics make encoding
the temporal information of an entire scene both challenging and storage-intensive. Fortunately, our
proposed decomposition method focuses on encoding the temporal information of dynamic points
only, reducing the need for a larger hashing space and simplifying the modeling of the scene’s
temporal domain. This approach enables us to retain the fast access speed of 4D Hash while
minimizing storage requirements.

Multi-head Gaussian Deformation Decoder. Once all features of dynamic Gaussian points are
encoded, we can compute any required variables using a multi-head Gaussian deformation decoder
MLPs = { ϕµ, ϕs, ϕq, ϕσ, ϕsh }:

dµ, ds, dq, dσ, dsh = MLPs(fd) (7)

Here, dµ, ds, dq, dσ, dsh represent the deformation intensity of the mean, scaling, rotation, opacity,
and color of the Gaussian point at time t. Therefore, the deformed parameters of dynamic Gaussian
Gd can be expressed as:

(µ′, r′, q′, σ′, sh′) = (µ+ dµ, r + dr, q + dq, σ + dσ, sh+ dsh) (8)

where (µ′, r′, q′, σ′, sh′) represent the new parameters of the dynamic Gaussian at time t. For static
Gaussian elements Gs, they are directly combined with the deformed dynamic Gaussian elements
Gd to render the final rendered image It.

3.4 DENSITY CONTROL

In the original 3DGS, the opacity of all points is regularly reduced, and Gaussian points with low
transparency are clipped during the pruning stage. However, this approach is not appropriate for our
method as it results in excessive coupling between the canonical space and the deformation space.
Therefore, we eliminate the reset opacity operation. In response to the resulting floaters, we adopt
a novel approach: Temporal Importance Pruning, as shown in Fig. 3. This involves calculating
the importance of each Gaussian point to each training viewpoint at every timestamp. Gaussians
with importance below a certain threshold can be clipped, effectively reducing floater issues. For a
Gaussian point gi, the importance wi is calculated as follows:

wi = max
I∈I,x∈I,t∈T

(αi(x|t)
i−1∏
j=1

(1− αj(x|t))) (9)

Here, I represents the images from all training views, αi(x|t) is the value of αi(x) at time t in Eq. 2,
T represents the set of query times. We prune Gaussians when their importance satisfies wi < 0.02.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Quality comparison on the N3DV dataset. The best and the second best results are
denoted by red and blue. 1 online method.

Method PSNR ↑ DSSIM ↓ LPIPS ↓ Time ↓ Size(MB) ↓ FPS ↑
DyNeRF Li et al. (2022b) 29.58 0.020 0.099 1300.0 hours 30 0.02

NeRFPlayer Song et al. (2023) 30.69 - 0.111 6.0 hours 5100 0.05
HexPlane Cao & Johnson (2023) 31.70 0.014 0.075 12.0 hours 240 0.21

K-Planes Fridovich-Keil et al. (2023) 31.63 0.018 - 5.0 hours 300 0.15
4DGS Wu et al. (2024) 31.02 0.030 0.150 50 mins 90 30

S4D He et al. (2024) 31.23 - 0.088 - - -
Gaussian-flow Lin et al. (2024) 32.00 - - 41.8 mins - -
3DGStream 1 Sun et al. (2024) 31.67 - - 60 mins 2340 215
SpaceTimeGS Li et al. (2024) 32.05 0.014 0.044 10.0 hours 200 110

Real-Time4DGS Yang et al. (2023) 32.01 0.014 0.055 9.0 hours > 1000 114
Swift4DLite(Ours) 31.79 0.017 0.072 20 mins 30 128

Swift4D(Ours) 32.23 0.014 0.043 25 mins 120 125

Table 2: Quantitative comparison on the MeetRoom dataset. PSNR is averaged across all frames,
while training time and storage requirements accumulate over the entire sequence. 1 online method.

Method PSNR ↑ Time(hours) ↓ Size(MB) ↓
PlenoxelFridovich-Keil et al. (2022) 27.15 70 304500

I-NGPMüller et al. (2022) 28.10 5.5 14460
3DGSKerbl et al. (2023) 31.31 13 6330

StreamRF 1Li et al. (2022a) 26.72 0.85 2700
3DGStream 1Sun et al. (2024) 30.79 0.6 1230

Swift4D(Ours) 32.05 0.3 40

In previous work Fan et al. (2023), Gaussian points were pruned based on spatial attributes like
transparency and volume. In contrast, we prune points based on their importance across all training
views in the temporal domain. As illustrated in Fig. 9, this method effectively eliminates artifacts
that are suspended in the air and were not captured by the training views. For the cloning and
splitting of Gaussians, we adhere to the procedures of 3DGS, with the child Gaussians inheriting the
dynamic properties of their parent Gaussians.

3.5 OPTIMIZATION PIPELINE

We start by initializing the SfM Schonberger & Frahm (2016) point cloud using the first frames,
then train on the first-frame images for 5000 iterations to establish a well-defined canonical space.
Next, training the dynamic attributes of each Gaussian point within the canonical space takes about 1
minute, followed by training the spatio-temporal structure. Consistent with the principles of 3DGS,
our loss function remains simple, without additional terms:

Lrec = (1− λ1)L1 + λ1LSSIM

4 EXPERIMENT

In this section, we provide details of our implementation and datasets in Sec. 4.1 and 4.2,
respectively. A thorough analysis of the experimental results is presented in Sec. 4.3, while Sec. 4.4
covers the ablation experiments for our method. The results show that our approach achieves sota
performance in terms of training speed, storage efficiency, and rendering quality.

4.1 IMPLEMENTATION DETAILS

We initialize with point clouds generated by Colmap, followed by constructing our canonical space
using the first frames from all training viewpoints, trained for 5000 epochs. Next, we train the
dynamic parameter d of Gaussian points using the Adam optimizer Kingma & Ba (2014) with a
learning rate of 0.05. This training spans 3000 epochs and completes in under 1 minute. Finally,
we train our spatio-temporal structure for approximately 14000 epochs, utilizing settings for the 4D
Hash table similar to those in InstantNGP Müller et al. (2022). We use the Adam optimizer with

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) GT (b) Ours (c) 3DGStream (d) 3DGS

Figure 5: Qualitative result on the discussion.

(a) GT (b) Ours (c) RTGS (d) STGS

Figure 6: Qualitative result on coffee martini and cut beef. It can be observed that our method
achieves higher-quality modeling in both dynamic and static regions.

an initial learning rate of 0.002, which exponentially decays to 0.00002 over the course of training.
Lite refers to a lite-version model with a hash table size set to 215 and λ1 = 0. All experiments were
conducted on an NVIDIA RTX 3090 GPU.

4.2 DATASET

The N3DV dataset Li et al. (2022b) is captured using a multi-view system with 18-21 cameras,
recording dynamic scenes at a resolution of 2704 × 2028 and 30 FPS. It includes various complex
scenarios such as fire, reflections, and new objects. Following prior works Li et al. (2022b); Cao &
Johnson (2023); Wu et al. (2024); Yang et al. (2023); Li et al. (2024), we downsampled the videos
by a factor of two and used the same training and testing data splits as established by them.

The Meet Room dataset Li et al. (2022a) is captured using a multi-view system with 13 cameras,
recording dynamic scenes at a resolution of 1280 × 720 and 30 FPS. Following prior works Sun
et al. (2024); Li et al. (2022a), we used 12 views for training and reserved 1 view for testing.

The Basketball court dataset VRU (2024) is captured using a multi-view system with 34 cameras,
recording dynamic scenes at a resolution of 1920 × 1080 and 25 FPS. This dataset encompasses a
large scene with many complex situations, including bouncing, fast motion, occlusion, and transient
objects, making it highly challenging.

4.3 EVALUATION

For the Meetroom and Basketball court dataset, we follow the processing approach from Sun et al.
(2024), using COLMAP Schonberger & Frahm (2016) to estimate the camera pose of the first frame
as the global pose. For the N3DV dataset, we adopt the processing approach from Wu et al. (2024).
We evaluate the methods using three metrics across all 300 frames: 1) Average PSNR, DSSIM, and
LPIPS Zhang et al. (2018) scores for the test views; 2) Total training time and FPS; 3) Model size .

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Lite (b) Muti-plane encoder (c) W/O decomp (d) Full(Ours)

Figure 8: Some ablation experiments results on sear steak.
Table 3: Quantitative results comparison for sear
steak and flame steak includes average PSNR and
time metrics over 300 frames of the test view.

Method PSNR ↑ Time(mins) ↓
Lite 33.31 20

Muti-planes 33.48 28
W/o decomp. 32.68 35

Full 33.83 25

Tab. 1 and Fig. 6 respectively present
the quantitative and qualitative evaluations of
various methods on the N3DV video dataset.
As shown in Tab. 1, our approach not only
significantly surpasses previous methods in
rendering quality but also achieves speeds at
least 20 times faster compared to methods
achieving similar rendering quality Yang et al.
(2023); Li et al. (2024). It can be seen in
Fig. 6 that our method not only achieves
higher-quality modeling of static regions, such
as the plate in the bottom right corner and the background outside the window in the coffee
martini, but also provides more detailed modeling of moving regions, such as the arms. As for
the MeetRoom dataset results, shown in Fig. 5 and Tab. 2, our method achieves state-of-the-art
performance in rendering quality, training time, and storage efficiency. Particularly noteworthy is
the storage efficiency, as 3DGStream requires 30 times more storage compared to our approach. The
results of training on the basketball court dataset are presented in Fig. 10, Appendix Tab. 5, and
the supplementary videos (basketball 1 and 2), showcasing our method’s ability to handle highly
complex dynamic scenes. Our decomposition technique effectively separates all athletes from the
scene, illustrating the model’s strong adaptability to occlusion, as discussed in Sec. 3.2.

4.4 ABLATION AND ANALYSIS

32

32.2

32.4

32.6

32.8

33

33.2

33.4

33.6

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

3 4 5 6 7 8 9

The percentage of dynamic points PSNR

Figure 7: Distribution of dynamic points counts
and PSNR at different thresholds.

Dynamic and static decomposition. To
validate the effectiveness of our dynamic-static
decomposition method, we conducted
experiments on the sear steak and flame
steak. As illustrated in Fig. 8(c) and Tab. 3,
treating all points as dynamic led to increased
computation time, significantly reduced
rendering quality, and introduced blurring in
areas with large motion amplitudes.

Muti-plane encoder. There are three
commonly used choices for encoder selection:
an implicit MLP Gao et al. (2021), multi-planes
Cao & Johnson (2023), and a hash table Müller
et al. (2022). In this study, we delve into
employing the multi-plane approach to replace
the 4D Hash as the encoder in our method. The subjective and objective experimental results, shown
in Fig. 8(b) and Tab. 3, indicate that while it slightly lags behind the hash table in terms of rendering
speed and quality, it still outperforms methods that do not apply dynamic-static decomposition Wu
et al. (2024).

Temporal importance pruning. As shown in Fig. 9, (a) and (b) exhibit severe artifacts. In contrast,
images rendered with our pruning strategy, (c), appear much cleaner.

5 DISCUSSION

Incomplete decomposition of dynamic and static points. Although we employ the pixel level
supervisor, it fails to fully decouple dynamic and static points. This can lead to two issues: Gaussian

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) With opacity reset (b) W/O opacity reset (c) Ours (d) GT

Figure 9: Importance Pruning Ablation Experiments: (a), (b), (c), and (d) show the rendered
results of the our model with opacity reset every 3000 iterations, without opacity reset, with our
importance pruning method, and the ground truth, respectively.

(a) (d)(c)(b)

Figure 10: Basketball court dataset experiment. (a) and (c) are dynamic point renderings, while
(b) and (d) are GT. The black floaters are actually Gaussian points from the dynamic background.

points in textureless regions of small moving objects may be mistaken for static, while static objects
may be identified as dynamic due to interference from nearby moving objects.

In the first situation, as shown in Fig. 4(b), certain textureless areas, like clothing and the table, are
mistakenly identified as static, despite being dynamic. In fact, this proves beneficial in Tab. 3. If the
entire table were labeled as dynamic, the increased dynamic points would lower rendering quality
(W/o decomp). By recognizing only the edges as dynamic, where pixel changes are significant, the
method reduces the number of dynamic points and enhances rendering quality (Ours).

In the second situation, as illustrated in Fig. 10, some Gaussians in static areas are classified as
dynamic due to the shadows or movements of the basketball players passing through these regions.
Therefore, it is reasonable to identify these areas as dynamic. Classifying these points as static will
impact the visual experience, as static points can hardly model dynamic areas.

The selection of the dynamic threshold. As shown in Fig. 7, experiments with the ”cook spinach”
scene revealed that varying the dynamic threshold ζ from 3 to 9 did not significantly affect PSNR
or the percentage of dynamic points, demonstrating the robustness of our method. To ensure
consistency, we set the threshold to 7.

The training time. Due to the large dataset (nearly 6000 images), we load images during training,
which empirically wastes around 40% of the training time on disk I/O. Eliminating this overhead
could reduce training time to 10 minutes while maintaining high-quality 4D scene reconstruction.

6 CONCLUSION

In this paper, we introduce Swift4D, which achieves fast convergence, compact storage, and
high-quality real-time rendering capabilities within the field of 4D reconstruction. The core
innovation of our method lies in the introduction of a dynamic-static decomposition technique,
which can be applied to most existing dynamic scene reconstruction methods, enhancing quality
and accelerating convergence. Additionally, we introduce a 4D Hash encoder and a multi-head
decoder as our spatio-temporal structure, allowing for faster and more efficient temporal modeling
of dynamic points. Finally, to prevent severe coupling between the canonical and deformation fields,
we propose a novel temporal pruning method that effectively removes floaters in the scene. Our
proposed method delivers competitive results in just 5 minutes, and we hope it can offer new insights
for applications struggling with training efficiency.

Limitation: Similar to previous work Sun et al. (2024); Li et al. (2024), our mrthod focuses
on multi-view scenes and currently does not support monocular datasets for dynamic scene
reconstruction. Additionally, our method focuses on scene reconstruction and does not include
human reconstruction Wu et al. (2020); Cheng et al. (2023).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and
Pratul P Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 5855–5864,
2021.

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf
360: Unbounded anti-aliased neural radiance fields. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 5470–5479, 2022.

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Zip-nerf:
Anti-aliased grid-based neural radiance fields. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 19697–19705, 2023.

Ang Cao and Justin Johnson. Hexplane: A fast representation for dynamic scenes. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 130–141, 2023.

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial radiance
fields. In European conference on computer vision, pp. 333–350. Springer, 2022.

Wei Cheng, Ruixiang Chen, Siming Fan, Wanqi Yin, Keyu Chen, Zhongang Cai, Jingbo Wang, Yang
Gao, Zhengming Yu, Zhengyu Lin, et al. Dna-rendering: A diverse neural actor repository for
high-fidelity human-centric rendering. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 19982–19993, 2023.

Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, and Zhangyang Wang. Lightgaussian:
Unbounded 3d gaussian compression with 15x reduction and 200+ fps. arXiv preprint
arXiv:2311.17245, 2023.

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo
Kanazawa. Plenoxels: Radiance fields without neural networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 5501–5510, 2022.

Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk Warburg, Benjamin Recht, and Angjoo
Kanazawa. K-planes: Explicit radiance fields in space, time, and appearance. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12479–12488, 2023.

Chen Gao, Ayush Saraf, Johannes Kopf, and Jia-Bin Huang. Dynamic view synthesis from dynamic
monocular video. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 5712–5721, 2021.

Bing He, Yunuo Chen, Guo Lu, Li Song, and Wenjun Zhang. S4d: Streaming 4d real-world
reconstruction with gaussians and 3d control points. arXiv preprint arXiv:2408.13036, 2024.

Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and Shenghua Gao. 2d gaussian splatting
for geometrically accurate radiance fields. arXiv preprint arXiv:2403.17888, 2024a.

Yi-Hua Huang, Yang-Tian Sun, Ziyi Yang, Xiaoyang Lyu, Yan-Pei Cao, and Xiaojuan Qi.
Sc-gs: Sparse-controlled gaussian splatting for editable dynamic scenes. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4220–4230, 2024b.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian
splatting for real-time radiance field rendering. ACM Trans. Graph., 42(4):139–1, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Agelos Kratimenos, Jiahui Lei, and Kostas Daniilidis. Dynmf: Neural motion factorization for
real-time dynamic view synthesis with 3d gaussian splatting. arXiv preprint arXiv:2312.00112,
2023.

Lingzhi Li, Zhen Shen, Zhongshu Wang, Li Shen, and Ping Tan. Streaming radiance fields for 3d
video synthesis. Advances in Neural Information Processing Systems, 35:13485–13498, 2022a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon Green, Christoph Lassner, Changil Kim,
Tanner Schmidt, Steven Lovegrove, Michael Goesele, Richard Newcombe, et al. Neural 3d video
synthesis from multi-view video. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 5521–5531, 2022b.

Zhan Li, Zhang Chen, Zhong Li, and Yi Xu. Spacetime gaussian feature splatting for real-time
dynamic view synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 8508–8520, 2024.

Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang. Neural scene flow fields for space-time
view synthesis of dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 6498–6508, 2021.

Yiqing Liang, Numair Khan, Zhengqin Li, Thu Nguyen-Phuoc, Douglas Lanman, James Tompkin,
and Lei Xiao. Gaufre: Gaussian deformation fields for real-time dynamic novel view synthesis.
arXiv preprint arXiv:2312.11458, 2023.

Haotong Lin, Sida Peng, Zhen Xu, Yunzhi Yan, Qing Shuai, Hujun Bao, and Xiaowei Zhou. Efficient
neural radiance fields for interactive free-viewpoint video. In SIGGRAPH Asia 2022 Conference
Papers, pp. 1–9, 2022.

Youtian Lin, Zuozhuo Dai, Siyu Zhu, and Yao Yao. Gaussian-flow: 4d reconstruction with dynamic
3d gaussian particle. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 21136–21145, 2024.

Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin Wang, Dahua Lin, and Bo Dai. Scaffold-gs:
Structured 3d gaussians for view-adaptive rendering. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 20654–20664, 2024.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics
primitives with a multiresolution hash encoding. ACM transactions on graphics (TOG), 41(4):
1–15, 2022.

Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman, Steven M
Seitz, and Ricardo Martin-Brualla. Nerfies: Deformable neural radiance fields. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 5865–5874, 2021.

Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-nerf: Neural
radiance fields for dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10318–10327, 2021.

Christian Reiser, Rick Szeliski, Dor Verbin, Pratul Srinivasan, Ben Mildenhall, Andreas Geiger, Jon
Barron, and Peter Hedman. Merf: Memory-efficient radiance fields for real-time view synthesis
in unbounded scenes. ACM Transactions on Graphics (TOG), 42(4):1–12, 2023.

Johannes L Schonberger and Jan-Michael Frahm. Structure-from-motion revisited. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 4104–4113, 2016.

Liangchen Song, Anpei Chen, Zhong Li, Zhang Chen, Lele Chen, Junsong Yuan, Yi Xu, and
Andreas Geiger. Nerfplayer: A streamable dynamic scene representation with decomposed neural
radiance fields. IEEE Transactions on Visualization and Computer Graphics, 29(5):2732–2742,
2023.

Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization: Super-fast
convergence for radiance fields reconstruction. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 5459–5469, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jiakai Sun, Han Jiao, Guangyuan Li, Zhanjie Zhang, Lei Zhao, and Wei Xing. 3dgstream: On-the-fly
training of 3d gaussians for efficient streaming of photo-realistic free-viewpoint videos. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
20675–20685, 2024.

VRU. https://anonymous.4open.science/r/vru-sequence/. 2024.

Feng Wang, Sinan Tan, Xinghang Li, Zeyue Tian, Yafei Song, and Huaping Liu. Mixed neural
voxels for fast multi-view video synthesis. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 19706–19716, 2023.

Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul P Srinivasan, Howard Zhou, Jonathan T
Barron, Ricardo Martin-Brualla, Noah Snavely, and Thomas Funkhouser. Ibrnet: Learning
multi-view image-based rendering. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 4690–4699, 2021.

Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
and Xinggang Wang. 4d gaussian splatting for real-time dynamic scene rendering. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20310–20320,
2024.

Minye Wu, Yuehao Wang, Qiang Hu, and Jingyi Yu. Multi-view neural human rendering. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
1682–1691, 2020.

Zhen Xu, Sida Peng, Haotong Lin, Guangzhao He, Jiaming Sun, Yujun Shen, Hujun Bao, and
Xiaowei Zhou. 4k4d: Real-time 4d view synthesis at 4k resolution. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20029–20040, 2024.

Jinbo Yan, Rui Peng, Luyang Tang, and Ronggang Wang. 4d gaussian splatting with scale-aware
residual field and adaptive optimization for real-time rendering of temporally complex dynamic
scenes. In ACM Multimedia 2024.

Zeyu Yang, Hongye Yang, Zijie Pan, Xiatian Zhu, and Li Zhang. Real-time photorealistic dynamic
scene representation and rendering with 4d gaussian splatting. arXiv preprint arXiv:2310.10642,
2023.

Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, and Xiaogang Jin. Deformable
3d gaussians for high-fidelity monocular dynamic scene reconstruction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20331–20341, 2024.

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. Plenoctrees for
real-time rendering of neural radiance fields. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 5752–5761, 2021.

Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and Andreas Geiger. Mip-splatting:
Alias-free 3d gaussian splatting. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 19447–19456, 2024a.

Zehao Yu, Torsten Sattler, and Andreas Geiger. Gaussian opacity fields: Efficient and compact
surface reconstruction in unbounded scenes. arXiv preprint arXiv:2404.10772, 2024b.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586–595, 2018.

Zheng Zhang, Wenbo Hu, Yixing Lao, Tong He, and Hengshuang Zhao. Pixel-gs: Density control
with pixel-aware gradient for 3d gaussian splatting. arXiv preprint arXiv:2403.15530, 2024.

A APPENDIX

In the supplementary materials, we will provide more details. In Sec.A.1, we provide detailed setting
s about our method. In Sec.A.2, we describe our dynamic-static decomposition method in detail. In
Sec.A.3, we present additional experimental results.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.1 IMPLEMENT DETAILS

Three-stage method. In the first stage, we train the Gaussian points initialized by SfMSchonberger
& Frahm (2016) using the first frame images from each viewpoint. The goal of this stage is to obtain
a canonical space. In the second stage, we train the dynamic parameter d of each Gaussian point
according to the method proposed in Sec. 3.2. In the third stage, we jointly train the attributes of the
Gaussian points and the spatio-temporal structure.

MLPs as feature decoders. As shown in Fig.13. we use five shallow MLPs as decoders for
the mean, opacity, color, rotation, and scaling, respectively. The outputs are directly added to the
attributes of the Gaussian points in the canonical space, and then passed through the corresponding
activation functions to obtain the attributes at time t.

Lite version. We empirically found that removing the SSIM loss, while slightly degrading rendering
quality, offers the advantage of reducing the number of Gaussian points by 2-3 times (approximately
200,000). Therefore, we removed the SSIM loss and set the hash table size to 215 in the Lite version.
This ensures a significant reduction in model size without severely impacting rendering quality. The
models rendered in the Lite version average only 30MB in size, with the Gaussian point cloud being
22MB and the hash table 8MB, making it the smallest dynamic model to date (including the NeRF
series).

A.2 DYNAMIC - STATIC DECOMPOSITION

We precompute the temporal variance S2
i (x) for each pixel x ∈ R to generate the variance map Vi

for each viewpoint i. To reduce noise, we smooth Vi using a Gaussian filter with a 31x31 kernel.
Each pixel’s variance S2

i (x) is then binarized into Di(x) using a threshold γ, providing pixel-level
supervision.

Initially, the dynamic parameter d of each Gaussian point is set to 0, resulting in a dynamic value of
D̂i(x) = 0.5 for each pixel. When the cross-entropy loss Ld is employed as the loss function, the
Gaussian points that intersect with the dynamic pixel D̂i(x) will receive a positive gradient, leading
to the dynamic parameter d expanding towards +∞. Conversely, when Gaussian points intersect
with static pixels, the dynamic parameter d will expand towards −∞. Due to the properties of the
Sigmoid function, the dynamic parameter can extend infinitely towards both −∞ and +∞, allowing
us to better distinguish between dynamic and static points.

When a Gaussian point intersects both dynamic and static pixels (e.g., in the presence of occlusion),
it will receive two opposing gradient values. If the positive gradient is larger, its dynamic value will
be greater than 0, classifying it as a dynamic point. Conversely, if the negative gradient dominates,
it will be classified as a static point.

Finally, we provide the formula for calculating the gradient received by each Gaussian point. Based
on this formula, the CUDA code can be easily written. Assuming we need to compute the dynamic
value gradient of Gaussian point g, the equation as following: ∂Ld

∂dg
. Due to autograd , we have

known grad1:

grad1 =
∂Ld

∂(
∑

i=1 diα
′
i

∏i−1
j=1(1− α′

j))
(10)

we only need to compute:

grad2 =
∂(
∑

i=1 diα
′
i

∏i−1
j=1(1− α′

j))

∂dg
= (α′

g

g−1∏
j=1

(1− α′
j)) (11)

So, the final formula is as follows:

∂Ld

∂dg
=

∂Ld

∂(
∑

i=1 diα
′
i

∏i−1
j=1(1− α′

j))
∗
∂(
∑

i=1 diα
′
i

∏i−1
j=1(1− α′

j))

∂dg
(12)

=
∂Ld

∂(
∑

i=1 diα
′
i

∏i−1
j=1(1− α′

j))
∗ (α′

g

g−1∏
j=1

(1− α′
j)) (13)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 4: Per-scenes results on the NV3D dataset. The best and the second best results are denoted
by red and blue.

Method Coffee Martini Spinach Cut Beef Flame Salmon Flame Steak Sear Steak Mean

MixVoxels 29.36 31.61 31.30 29.92 31.21 31.43 30.80
NeRFPlayer 31.53 30.56 29.35 31.65 31.93 29.13 30.69

HexPlane – 32.04 32.55 29.47 32.08 32.39 31.70
K-Planes 29.99 32.60 31.82 30.44 32.38 32.52 31.63

4DGS 27.34 32.46 32.90 29.20 32.51 32.49 31.15
3DGStream 27.75 33.31 33.21 28.42 34.30 33.01 31.67

SpaceTimeGS 28.61 33.18 33.52 29.48 33.64 33.89 32.05
Real-Time4DGS 28.33 32.93 33.85 29.38 34.03 33.51 32.01

Swift4DLite(Ours) 28.84 32.57 32.82 29.92 33.13 33.48 31.79
Swift4D(Ours) 29.13 33.05 33.80 29.75 33.67 33.98 32.23

Table 5: Quantitative comparison on the Basketball court dataset. The first four methods
correspond to static methods, tested on the first frame, while the last two methods represent dynamic
methods, tested on 20 frames.

Method PSNR ↑ SSIM ↑ ↓ LPIPS ↓
Gof Yu et al. (2024b) 30.39 0.949 0.141

2DGS Huang et al. (2024a) 30.78 0.949 0.187
PixelGS Zhang et al. (2024) 29.26 0.946 0.168

3DGSKerbl et al. (2023) 30.50 0.949 0.171

4DGSWu et al. (2024) 27.87 0.921 0.191
Swift4D(Ours) 29.03 0.933 0.187

From this formula, it can be seen that the gradient of the dynamic value is related to occlusion,
self-opacity, and the distance to the camera plane, which is very reasonable.

A.3 MORE RESULTS

Fig.11 shows the rendering results from new viewpoints at different iteration of training. It can be
observed that our method achieves very high quality after 7000 epochs (approximately 10 minutes),
demonstrating that our approach is highly efficient for reconstructing 4D dynamic scenes. Fig.12
demonstrates that our method can effectively segment dynamic points. Tab. 5 presents the results
of several static and dynamic methods on the basketball court datasetVRU (2024), showing that our
method outperforms 4DGSWu et al. (2024). To demonstrate the robustness and generalization of
our approach, we also conducted experiments on the ENeRF dataset. The results, shown in Table 6,
follow the training policies described in 4k4d Xu et al. (2024).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(a) GT (b) 3000 its (c) 7000 its (d) 13000 its

Figure 11: Training Epoch Comparison: the results of our method in 3000, 7000, 13000 epochs.
Based on the results from 3000 iterations, our method demonstrates rapid convergence.

Table 6: Performance comparison of different methods on ENeRF dataset. The results are derived
from 4k4d.

Methods PSNR ↑ SSIM ↑ LPIPS ↓
ENeRF Lin et al. (2022) 25.452 0.809 0.273
IBRNet Wang et al. (2021) 24.966 0.929 0.172
KPlanes Fridovich-Keil et al. (2023) 21.310 0.735 0.454
4k4d Xu et al. (2024) 25.815 0.898 0.147
Swift4D (Ours) 26.12 0.911 0.070

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(a) (d)(b) (c)

Figure 12: Decomposition results. (a) is the dynamic-static pixel mask, (b) is the dynamic map
rendered with our dynamic value d of Gaussians, (c) is the image rendered with dynamic Gaussians,
and (d) is the GT image.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

4D Hashx y z t
𝑁 × 128

ReLU
3 3 3 3

Mean: 𝑑𝜇

…𝑁 × 3

ReLU 𝑁 × 48
48

Color: 𝑑𝑠ℎ

… 48

ReLU 𝑁 × 4
4

Rotation: 𝑑𝑟

… 4

ReLU
3 3 3 3

Scaling: 𝑑𝑠

…𝑁 × 3

ReLU

1 1 1 1

Opacity: 𝑑𝑜

…𝑁 × 1

Figure 13: MLP Structures. For each dynamic point, we use five small MLPs to predict the
deformations.

Figure 14: The result of hierarchical rendering in dynamic scenes based on the dynamic parameter
d of Gaussian points. The specific video can be found in the supplementary material.

Figure 15: The training results of the basketball court from four novel viewpoints. The images above
are the GT images, and the ones below are our rendered results.

18

	Introduction
	Related work
	Method
	Gaussian Splatting Preliminary
	Efficient dynamic and static decomposition
	Spatio-temporal structure
	Density control
	Optimization pipeline

	Experiment
	Implementation details
	Dataset
	Evaluation
	ABLATION AND ANALYSIS

	Discussion
	Conclusion
	Appendix
	 Implement details
	 dynamic - static decomposition
	 More results

