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Figure 1: From Self-Attention to CAT with two implementations. Left: standard Self-Attention
with a dense N×N attention map (O(N2)). Middle: CAT (O(N2)), a softmax-preserving circulant
form of attention that reduces intermediate computations but remains quadratic overall. Right: CAT
(O(N logN)), the same circulant attention computed in the frequency domain using the Fast Fourier
Transform (FFT), its inverse (IFFT), and an element-wise Hadamard product, achieving sub-quadratic
complexity.

Abstract

Transformers have driven remarkable breakthroughs in natural language processing
and computer vision, yet their standard attention mechanism still imposes O(N2)
complexity, hindering scalability to longer sequences. We introduce Circular-
convolutional ATtention (CAT), a Fourier-based approach that efficiently applies
circular convolutions to reduce complexity without sacrificing representational
power. CAT achieves O(N logN) computations, requires fewer learnable pa-
rameters by streamlining fully connected layers, and introduces no additional
heavy operations, resulting in consistent accuracy improvements and about a 10%
speedup in naive PyTorch implementations. Based on the Engineering-Isomorphic
Transformers (EITs) framework, CAT’s design not only offers practical efficiency
and ease of implementation, but also provides insights to guide the development of
future high-performance Transformer architectures. Finally, our ablation studies
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highlight the key conditions underlying CAT’s success, shedding light on broader
principles for scalable attention mechanisms.

1 Introduction

Transformers have become the cornerstone of modern deep learning, excelling in natural language
processing, computer vision, and beyond Vaswani et al. [2017], Kaplan et al. [2020], Dosovitskiy et al.
[2021]. However, the O(N2) complexity of standard Self-Attention poses a formidable challenge for
large-scale or real-world tasks Zhou et al. [2021], Wu et al. [2019], Liu et al. [2024]. To mitigate this,
Linear Transformers attempt to reduce the complexity to O(N) by adopting various kernel functions
instead of softmax Katharopoulos et al. [2020], Choromanski et al. [2021]. Although these methods
can handle long sequences, they often struggle to maintain the essential softmax-based weighting
structure, leading to training instability and accuracy degradation Zhang et al. [2024]. Moreover,
alternative architectures such as Mamba Gu and Dao [2023, 2024] deviate substantially from the
original Transformer blueprint, increasing parameter counts and altering core mechanisms rather than
serving as a true drop-in replacement Waleffe et al. [2024].

In this work, we introduce Engineering-Isomorphic Transformers (EITs), a class of attention-based
models that must retain the core softmax weighting while achieving sub-quadratic time. This concept
helps preserve the strong representational power of standard attention, avoiding many of the pitfalls
(e.g., numerical instability, partial token coverage) seen in previous approximations. As a concrete
instantiation, we propose Circular-convolutional ATtention (CAT), which leverages Fast Fourier
Transform (FFT) and its inverse (IFFT) based circular convolutions to reduce the naive O(N2) cost
to O(N logN). Unlike kernel or sparse approximations, CAT maintains a global softmax and does
not introduce extra hyperparameters tied to the sequence length. We validate CAT on large-scale
vision (ImageNet-1k) and language (WikiText-103) tasks, demonstrating consistent speedups over
standard attention and comparable or improved accuracy. In addition, an ablation study reveals key
design factors, such as merging query and key projections, that enable CAT to serve as a drop-in
replacement under the EIT principles.

Our main contributions are as follows.

• EITs: A new framework. We formally define Engineering-Isomorphic Transformers
(EITs), a class of sub-quadratic yet fully softmax-preserving architectures that clarifies how
efficiency and the softmax-based weighting form can coexist.

• CAT: FFT-based attention. We propose Circular-convolutional ATtention (CAT), which
uses FFT-based circular convolutions to reduce the naive O(N2) cost to O(N logN), while
maintaining global softmax behavior and requiring fewer parameters, matrix operations, and
no hyperparameters.

• Empirical validation. On ImageNet-1k and WikiText-103, CAT consistently matches
or exceeds standard attention under simpler token mixing (e.g. average pooling, masked
inputs), providing speedup in naive implementations. Looking ahead, we believe CAT’s
sub-quadratic design, solidly grounded in EIT principles, opens new directions for longer-
sequence modeling across language and vision tasks. Combining CAT with other efficient
attention mechanisms or advanced GPU kernels may unlock even greater scalability in
future Transformer architectures.

2 Engineering-Isomorphic Transformers (EITs)

Standard Self-Attention Recap. Let X ∈ RN×D be an input sequence of length N and feature
dimension D. A standard Transformer projects X into queries, keys, and values:

Q = XWQ, K = XWK, V = XWV,

where WQ,WK,WV ∈ RD×D. Then, the Self-Attention is computed as

Attention(Q,K,V) = softmax
(QK⊤
√
Dk

)
V ∈ RN×D,
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where softmax is applied row-wise, Dk is the key/query dimension, and each row in the resulting
N ×N matrix sums to 1.

Engineering-Isomorphic Transformers. We now formalize a class of Transformers that preserve the
softmax-based weighting form of standard Self-Attention while achieving sub-quadratic complexity.
We refer to such models as Engineering-Isomorphic Transformers (EITs). The notion of EITs
helps us reason about efficiency and representational fidelity in a unified framework, offering clear
guidelines for designing novel attention mechanisms.

Formally, EITs must satisfy four requirements:

1. Softmax Preservation. There exist functions Fattn(X) and Fvalue(X) such that the core
attention mechanism can be written as

Fout(X) = softmax
(
Fattn(X)

)
Fvalue(X),

mirroring QK⊤ based weighting and row-wise normalization in standard attention. This
ensures the global context dependencies remain intact.

2. Sub-Quadratic Complexity. Fout(X) must be computable in strictly less than O(N2) time
(where N is the sequence length).

3. Parameter Efficiency. The total number of trainable parameters should remain comparable
to (or smaller than) standard multi-head attention.

4. Minimal Hyperparameter Overhead. No sequence-length-dependent hyperparameters
that require careful tuning (e.g., block sizes, custom sparsity patterns) should be introduced.

Design space. EITs are not tied to a single construction. In general, any mechanism that retains
the softmax-based weighting form of standard attention while executing the attention computation
in time below quadratic (e.g., O(N logN) or O(N)) falls within the EIT design space. Examples
include value-stream reductions that keep a global row-wise softmax (e.g., average or learned pooling
prior to value mixing), biasing or Hadamard gating that does not alter the row-wise normalization,
and other Toeplitz/circulant-like transforms. CAT should be viewed as one concrete instance in this
broader space, rather than the only one.

Why preserve softmax? We do not claim that exact softmax is universally optimal; efficiency,
accuracy, and theory ultimately decide. Still, keeping softmax is a pragmatic axis to explore: it
maintains normalized and interpretable token weights, remains compatible with established training
stacks and inference kernels (e.g., Flash-style implementations, KV caching, cross-attention), and
avoids token-subset coverage effects. This axis complements kernel/linear approaches that discard
softmax and search a different approximation space: EITs keep the softmax form while seeking
implementations below quadratic time. Our results with CAT indicate that this branch can be made
efficient (e.g., an O(N logN) realization with favorable wall-clock and memory profiles) without
sacrificing accuracy.

2.1 Properties and Theoretical Insights

In defining EITs, two key challenges must be addressed to ensure that Fout(X) meets sub-quadratic
requirements and remains practically viable. First, we need to establish theoretical efficiency, the
attention operation must truly circumvent the O(N2) bottleneck. Second, even if we achieve a lower
computational complexity on paper, the method must exhibit practical performance validity when
scaled to real-world applications.

Theoretical Efficiency A core requirement of EITs is the capacity to compute Fout(X) in strictly
less than O(N2) time. Naively multiplying an N ×N matrix by an N ×D matrix would ordinarily
incur O(N2) complexity, particularly if Fattn(X) directly corresponds to QK⊤. To circumvent
this, one must either avoid explicitly constructing the full attention matrix or leverage specialized
transforms that reduce the overall cost. For instance, in Sec. 4 we introduce CAT, which exploits
Fourier-based circular convolutions to achieve O(N logN) complexity Cooley and Tukey [1965], all
while retaining the softmax-based weighting structure central to Self-Attention.

Practical Performance Validity However, merely satisfying sub-quadratic complexity does not
guarantee strong empirical performance. Large-scale tasks in language processing or vision demand
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not just efficient computations but also robust training stability and high accuracy. Many existing
approximations, though efficient in principle, struggle with degraded performance when confronted
by real-world data scales. Thus, practical performance validity becomes essential: an EIT must
demonstrate that its theoretical gains do not come at the expense of representational capacity or overall
results. In Sec.5, we present empirical evidence verifying that our approach preserves (and often
improves) the performance of standard Transformers, illustrating that a sub-quadratic softmax-based
mechanism can indeed align with practical, large-scale demands.

3 Related Work

Having established the concept of EITs, we now evaluate how widely used attention-reduction
techniques align with or diverge from this framework.

Approaches like BigBird Zaheer et al. [2020] and Longformer Beltagy et al. [2020] reduce attention
to specific regions or compressed representations, effectively pushing complexity below O(N2).
While such strategies preserve a row-wise softmax, it is only applied to a subset of tokens, thereby
breaking the global weighting that we consider essential for EITs. Moreover, many sparse or low-rank
architectures rely on carefully tuned patterns (e.g., block sizes, sparsity thresholds) that may need
readjustment as sequence length N grows, introducing additional hyperparameter overhead. This
conflicts with the minimal-hyperparameter principle we outlined above.

Performer Choromanski et al. [2021] and Linear Transformers Katharopoulos et al. [2020] introduce
kernel-based feature mappings to approximate softmax. Although this yields O(N) scaling, the exact
softmax structure is lost, which may affect training stability and interpretability Zhang et al. [2024].

Methods such as S4 Gu et al. [2022] or Mamba Gu and Dao [2023, 2024] eschew attention en-
tirely, employing continuous-time or RNN-like mechanisms. While efficient, they diverge from the
fundamental idea of a data-dependent softmax weighting over all pairs of tokens.

By contrast, EITs preserve a global softmax mechanism and still operate with sub-quadratic com-
plexity. In Sec. 4, we introduce CAT as a concrete instantiation of this principle, illustrating how a
Fourier-based approach can retain the core benefits of attention while breaking the O(N2) barrier.

4 Proposed Method

We propose Circular-convolutional ATtention (CAT), an approach that meets the EITs criteria
(Sec. 2). CAT applies circular convolutions in the frequency domain to reduce the O(N2) cost of
Self-Attention to O(N logN), while preserving the essential global softmax structure.

Key Idea. Rather than explicitly computing softmax(QK⊤), CAT interprets the attention weights as
a circulant (or circular shift) matrix. Specifically, we learn a single projection matrix WA ∈ RD×1

to map the input X ∈ RN×D into a vector

Z = XWA ∈ RN×1.

We then apply a row-wise softmax, yielding Z⋆ = softmax(Z). This Z⋆ serves as the first row of a
circulant matrix circ(Z⋆), thus representing global pairwise interactions. In particular, we define

circ(Z⋆) =


Z⋆
1 Z⋆

2 . . . Z⋆
N

Z⋆
N Z⋆

1 . . . Z⋆
N−1

...
...

. . .
...

Z⋆
2 Z⋆

3 . . . Z⋆
1

 ,

so each row is a one-step circular shift of the previous row. Convolving this matrix with XWV

(where WV ∈ RD×D) can be performed via FFT, thereby avoiding the naive N ×N multiplication.

Formally, let V = XWV. Then,

Fcat = circ(Z⋆)V ⇐⇒ IFFT
[
FFT(Z⋆) ⊙ FFT(V)

]
,

where ⊙ denotes the Hadamard (element-wise) product applied in the frequency domain, and the
overall computation is performed in O(N logN) time.
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Unlike kernel-based approximations, this FFT-based procedure does not distort the softmax distribu-
tion, since the circulant structure is exactly equivalent to circular convolution (up to floating-point
rounding). Qualitative attention-map analyses in Appendix A are consistent with this interpretation,
showing structured, shift-like patterns induced by the circulant design.

Multi-head Extension. CAT naturally extends to multi-head attention by maintaining separate sets
of (WA,WV) per head. Except for this, no additional modifications are needed. We refer readers
to Sec. 5 for performance results in image classification and language modeling. Moreover, CAT
naturally integrates typical attention optimizations, such as key-value caching during inference.

4.1 Implementation Details

We consider two ways of implementing CAT. The gather-based version, while nominally O(N2) due
to indexing overhead, consistently yields about a 10% speedup of each iteration in naive PyTorch.
Complete runtime and memory profiles are provided in Appendix B. In contrast, a full FFT-based
version can theoretically achieve O(N logN) complexity, although we currently observe minimal
gains at moderate N . We detail these comparisons below.

Gather-based Approach. By rolling the value matrix V via torch.gather, we avoid large matrix
multiplications. Despite having an O(N2) indexing, we see a net 10% speedup over standard attention
(e.g., for ViT CLIP-L on NVIDIA V100 GPUs). We attribute this to simpler dataflows and fewer
partial matrix operations.

FFT-based Approach. Applying FFT/IFFT directly to Z⋆ and V realizes the sub-quadratic
O(N logN) complexity. However, for N = 256, the overhead of FFT calls (and their GPU kernels)
often offsets the theoretical advantage. We anticipate greater speedups for larger N and specialized
GPU FFT implementations, which we leave for future work.

4.2 Key Theoretical Considerations and Advantages

Beyond achieving sub-quadratic complexity, our CAT design offers several theoretical merits that
ensure it remains faithful to the core properties of Self-Attention. We briefly summarize these points
here.

Minimal Row-Wise Softmax Structure. A key insight is that CAT maintains an exact row-wise
softmax normalization by leveraging circulant matrices. Formally, for any Z,

softmax(circ(Z)) ≡ circ(softmax(Z)),

since both the circulant operator and the softmax function act independently on rows. Thus, CAT
meets the strict EIT requirement of a global row-normalized weighting, providing a “minimal” row-
wise transform that does not distort the softmax attention. Introducing additional transformations
would typically break this row-wise property and lose the exact softmax coverage.

Dramatically Reduced Attention-Map Materialization. Unlike standard QK⊤ attention, which
computes an N ×N matrix of attention scores at runtime, CAT represents attention with a length-N
circulant kernel Z⋆ derived from XWA, from which the full attention matrix is generated by circular
shifts. This reduces the number of attention coefficients that must be produced and operated on from
N2 to N (per head), lowering intermediate compute and memory traffic and enabling O(N logN)
FFT-based execution. We observe that this structured reduction can stabilize optimization and, in
some configurations, improve generalization (e.g., Tab. 3).

Explicit Relative Positioning. In many tasks, the relative ordering of tokens (e.g. word positions,
time steps, or spatial locations) plays a vital role. While classical Transformers rely on positional
embeddings to hint at absolute positions, they lack a dedicated mechanism for handling relative
offsets. Empirical studies of early Transformer layers Clark et al. [2019] suggest attention maps
often exhibit shift-like or local patterns. By explicitly enforcing a circulant structure, CAT encodes
this shift-based symmetry from the outset. Hence, early layers can more naturally capture local
recurrences or repeated patterns in the data, which may lead to faster convergence and improved
feature extraction.

Complementarity with Standard Attention. Despite these advantages, our experiments (Sec. 5)
show cases where standard Self-Attention still excels, especially if highly flexible global interactions
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Model Pool Type Mechanism Learnable Complexity Acc.↑
CLIP-B token Attention 3D2 O(N2) 0.574
CLIP-B token CAT (ours) (D +H)D O(N logN) 0.540
CLIP-B token CAT-Alter (ours) (2D +H/2)D O(N2) 0.582
CLIP-L token Attention 3D2 O(N2) 0.574
CLIP-L token CAT (ours) (D +H)D O(N logN) 0.559
CLIP-L token CAT-Alter (ours) (2D +H/2)D O(N2) 0.593
CLIP-B avg Attention 3D2 O(N2) 0.638
CLIP-B avg CAT (ours) (D +H)D O(N logN) 0.649
CLIP-B avg CAT-Alter (ours) (2D +H/2)D O(N2) 0.662
CLIP-L avg Attention 3D2 O(N2) 0.646
CLIP-L avg CAT (ours) (D +H)D O(N logN) 0.694
CLIP-L avg CAT-Alter (ours) (2D +H/2)D O(N2) 0.681

Table 1: ImageNet-1k results on ViT CLIP-B/L with different pooling strategies. Here, D is the input
embedding dimension, and H is the number of attention heads. Recent optimizations can reduce this
overhead, but are not considered in our baseline. CAT excels when the token mixing is simpler (e.g.,
avg), while CAT-Alter is competitive or superior across most settings.

Model LM Type Mechanism Learnable Complexity Word PPL↓
Transformer-XL masked Attention 3D2 O(N2) 13.94
Transformer-XL masked CAT (ours) (D +H)D O(N logN) 10.28
Transformer-XL masked CAT-Alter (ours) (2D +H/2)D O(N2) 8.51
GPT-2 small masked Attention 3D2 O(N2) 9.82
GPT-2 small masked CAT (ours) (D +H)D O(N logN) 8.32
GPT-2 small masked CAT-Alter (ours) (2D +H/2)D O(N2) 7.54
Transformer-XL causal Attention 3D2 O(N2) 30.82
Transformer-XL causal CAT (ours) (D +H)D O(N2) 36.71
Transformer-XL causal CAT-Alter (ours) (2D +H/2)D O(N2) 30.93
GPT-2 small causal Attention 3D2 O(N2) 27.84
GPT-2 small causal CAT (ours) (D +H)D O(N2) 32.36
GPT-2 small causal CAT-Alter (ours) (2D +H/2)D O(N2) 27.68

Table 2: WikiText-103 (masked and causal language modeling). Here, D is the input embedding
dimension, and H is the number of attention heads. CAT shows notable gains in the masked setting,
while CAT-Alter remains more robust in the causal setup.

are required. However, combining CAT and standard attention within a single network (e.g., CAT-
Alter) can yield complementary benefits, as CAT enforces shift-based regularization while standard
attention remains fully expressive. Thus, even if CAT alone is occasionally suboptimal, this hybrid
approach can surpass both purely circulant and purely attention-based methods, offering a practical
balance between efficiency and accuracy.

Overall, CAT embodies a “least complex” row-wise transform that fully preserves the softmax
mechanism while drastically reducing the attention overhead. In the following sections, we detail
how these properties translate into strong empirical performance, especially under simpler token
mixing (avg pooling) or masked language modeling regimes (Sec. 5).

5 Experiments

We evaluate our CAT on two major benchmarks: ImageNet-1k Russakovsky et al. [2015] for image
classification and WikiText-103 Merity et al. [2016] for language modeling. Our main focus is to
demonstrate (1) whether CAT can maintain or improve performance despite its sub-quadratic design,
and (2) how a hybrid variant that partially retains standard attention might further boost robustness.
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Figure 2: Ablation study comparing different parameterization strategies for query, key, and
value (qkv, qv, q, v). Although fully splitting qkv (Averaged-Key) can yield slightly higher accuracy,
it reintroduces attention-level parameter budgets. Our qv variant (CAT) strikes a practical balance,
maintaining sub-quadratic complexity and competitive performance.

Model Pool Type Mechanism Circular qkv Learnable Complexity Acc.↑
CLIP-L avg Attention - 3D2 O(N2) 0.646
CLIP-L avg Circular qkv (Averaged-Key) 3D2 O(N logN) 0.696
CLIP-L avg Circular qv (CAT) (D +H)D O(N logN) 0.694
CLIP-L avg Circular q (N +H)D O(N logN) 0.637
CLIP-L avg Circular v (N +D)D O(N logN) 0.625

Table 3: Ablation on key-value parameterization under circular convolution. Here, D is the input
embedding dimension, H is the number of attention heads, and N is the input time series. While qkv
achieves slightly higher accuracy, qv (CAT) remains competitive with fewer parameters.

We primarily use ViT CLIP-B/L Radford et al. [2021], Cherti et al. [2023] for image classification and
a Transformer-XL Dai et al. [2019] / GPT-2 small Radford et al. [2019] backbone for language model-
ing. We follow the original architectures for CLIP-B (12 heads), CLIP-L (16 heads), Transformer-XL
(10 heads), and GPT-2 small (12 heads) preserving the same number of attention heads in both
standard and CAT layers. Training hyperparameters, such as learning rate and batch size, are likewise
inherited from each respective baseline. Where indicated, we replace all attention layers with CAT
(denoted CAT) or half of them (denoted CAT-Alter), while the rest remain standard attention. In
the latter case, the network interleaves CAT and standard attention blocks. Although half the layers
still run in O(N2), the other half operate in O(N logN) via CAT, yielding a net speedup in practice.
Moreover, because CAT merges query and key projections, these replaced layers reduce the overall
number of learnable parameters relative to fully attentive models.

Our comparisons include the original Transformer attention for each architecture. We report standard
validation accuracy on ImageNet-1k and validation word perplexity (word PPL) on WikiText-103.
Complete runtime and memory profiles are provided in Appendix B.

5.1 Training Details

We train our models on the ImageNet-1k training dataset Russakovsky et al. [2015] using a batch size
of 256 and a standard input resolution of 224× 224 on 4 NVIDIA V100 GPUs. The initial learning
rate is set to 2× 10−5, with weight decay of 1× 10−4. All models are randomly initialized. We train
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for 50 epochs, applying a 10-epoch warmup phase followed by a cosine-annealing scheduler. We use
AdamW with default hyperparameters (i.e., β1 = 0.9, β2 = 0.999). Data augmentation consists of
random cropping and horizontal flipping.

For language modeling on the WikiText-103 training dataset Merity et al. [2016], we train with a
batch size of 128 and an initial learning rate of 2.5× 10−4 on 4 NVIDIA V100 GPUs. We run 50
total epochs, employing a 1000-iteration warmup. We set the maximum sequence length to 256.
A dropout rate of 0.1 is applied, and gradient norms are clipped at a maximum of 0.25. As with
ImageNet-1k, we use AdamW Loshchilov and Hutter [2019] under default settings unless stated
otherwise. Models are also randomly initialized in this setup. Finally, for masked language modeling
experiments, we use a masking probability of 0.15.

In causal language modeling, we shift Z to ensure each position attends only up to its current
timestep. However, enforcing strict causality reintroduces computational overhead, typically reverting
CAT’s complexity to O(N2) via explicit masking or repeated circular shifts. Fully sub-quadratic
implementations under causal constraints remain an important open challenge.

5.2 Experimental Results

We examine image classification tasks on ImageNet-1k (Tab. 1). We test two pooling strategies:
token pooling via a special classification token, and avg pooling over the entire sequence. Overall,
CAT tends to excel under simpler token mixing, as seen with average pooling, while CAT-Alter
appears more robust across different setups. Notably, CAT-Alter can outperform standard attention in
several configurations, illustrating that a partial replacement can deliver improvements without fully
discarding the attention mechanism.

We further examine masked and causal language modeling on WikiText-103 (Tab. 2). CAT attains
strong gains in masked modeling scenarios, suggesting that its sub-quadratic structure remains highly
effective when masking or simpler token manipulations are involved. In contrast, CAT-Alter often
achieves performance close to, or slightly better than, standard attention across a wider range of
conditions, indicating that partial adoption of CAT can preserve the benefits of attention while
introducing computational advantages for parts of the network.

The compatibility results with GQA and the hybrid GQA-CAT-Alter accuracy snapshot are summa-
rized in Appendix C.

5.3 Additional Baselines: Linear and Sparse Attentions

For completeness, we also experimented with a Linear Attention variant as in Katharopoulos et al.
[2020], Choromanski et al. [2021], hoping to achieve O(N) complexity under the same training
conditions. However, on CLIP-L, we encountered repeated training instabilities (e.g., NaN loss
values) and could not obtain stable convergence. Such issues are consistent with prior reports of
kernel-based attention struggling to maintain numerical stability at larger scales.

We further examined representative sparse-attention methods such as BigBird Zaheer et al. [2020] and
Longformer Beltagy et al. [2020]. However, these approaches introduce sequence-length–dependent
sparsity hyperparameters (e.g., block size or global token selection), which complicate direct compar-
ison under fixed training settings. As CAT is inherently hyperparameter-free by design, we focus on
standard Attention to ensure a fair and controlled comparison.

Hence, we omit further comparisons with Linear and sparse attention variants in the main results.

5.4 Discussion

Taken together, these results show that CAT can reduce complexity while maintaining or even
improving accuracy in settings with simpler token mixing requirements, particularly when using
average pooling or masked inputs. Notably, avg pooling often outperforms token pooling across our
baselines (Tab. 1), highlighting a broader trend in vision models that prefer global summarization
over relying on a specialized classification token. Hence, the fact that CAT excels under avg pooling
is especially significant: it aligns well with designs where tokens are mixed more globally, suggesting
broad applicability in future ViT-like architectures. In addition, the strong gains in the masked setup
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in language modeling are particularly noteworthy, given the recent surge of competitive Transformer
variants that also adopt masked language modeling objectives Nie et al. [2025].

Meanwhile, CAT-Alter offers a balanced compromise, often exceeding standard attention’s perfor-
mance in both vision and language tasks. We hypothesize that employing CAT layers for parts of
the network unlocks notable efficiency gains, while retaining the expressive power of full attention
elsewhere. This hybrid-layer behavior aligns with the snapshots in Appendix C and mirrors findings
in recent Transformer/SSM hybrids such as H3 Fu et al. [2023] and Jamba Lenz et al. [2025], where
mixing attention with state-space components yields stronger or more stable performance than either
mechanism alone. Achieving high accuracy under masked language modeling underscores CAT’s
potential for next-generation models where masking or simplified token interactions are central to
performance.

6 Ablation Study

Thus far, we have primarily used a combined query-key projection WA alongside a separate value
matrix WV. However, one can define or omit independent Q, K, and V in various ways, for example,
by adopting an averaged key or partially splitting the query and key. To clarify how these design
choices affect performance and parameter count, we conduct an ablation on ViT CLIP-L, comparing:

• qkv (Averaged-Key): Retains separate query, key, and value modules (with 3D2 param-
eters), leveraging circular convolutions for sub-quadratic complexity. Its explicit q-k-v
structure facilitates simpler integration into existing cross-attention pipelines compared to
CAT’s merged-query design.

• qv (CAT): Our default approach (Sec. 4), where Q is absorbed into a single projection WA,
while V remains separate.

• q only or v only: Attempts for comparison to simplify by learning parameters either for the
query or value, but relying on a dimension proportional to N . We denote these strategies as
’q-only’ and ’v-only’ for brevity.

For completeness, we summarize the formulations of each variant in the same notation as Sec. 4. Let
X ∈ RN×D denote the input sequence, let circ(·) represent the circulant operator, and let mean(·)
represent the mean operator from RN×D to R1×D.

(1) circular qkv (Averaged-Key): Q = XWQ, Kavg = mean(XWK),

Z⋆ = softmax
(QK⊤

avg√
Dk

)
, F = circ(Z⋆)XWV;

(2) circular qv (CAT): Z⋆ = softmax(XWA), F = circ(Z⋆)XWV;

(3) circular q only: Z⋆ = softmax(XWA), F = circ(Z⋆)VT;

(4) circular v only: Z⋆ = softmax(ZT), F = circ(Z⋆)XWV,

where VT ∈ RN×D and ZT ∈ RN×1 are trainable parameters replacing XWV and XWA.

All variants share the same circulant attention mechanism but differ in how query–key projections
are parameterized. The qkv version retains full independence among (WQ,WK,WV); CAT (qv)
merges query and key through WA; q-only and v-only restrict learnable parameters to a single
branch.

Observations. While splitting into qkv yields a slight performance edge, it reintroduces learnable
parameters. Conversely, q-only or v-only designs compromise accuracy and can inflate parameter
requirements with respect to N . Therefore, our qv approach provides a practical balance, effectively
emulating attention’s capacity without incurring quadratic parameter overhead.

1. qkv vs. qv: Retaining fully distinct query, key, and value (qkv) yields the highest accuracy
(0.696) but also the largest parameter budget (3D2). In contrast, our qv design maintains
nearly the same accuracy (0.694) with fewer specialized matrices and matrix operations.

2. q or v alone: Eliminating either query or value parameters reduces the complexity of one
component but allocates learnable dimensions proportional to N . This approach not only
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falls behind in accuracy (down to 0.637 or 0.625) but also scales poorly for larger sequence
lengths.

3. Balancing cost and performance: The qv (CAT) configuration achieves a good trade-off,
preserving global softmax weighting, keeping complexity at O(N logN), and attaining
competitive accuracy.

Parallels to Input-Based Control. Beyond these core ablations, we note a conceptual parallel to
state-space models such as Mamba Gu and Dao [2023, 2024], which incorporate input-driven control
signals to update internal states more dynamically. Specifically, Mamba injects control variables from
the input directly into its state equations, often improving accuracy via data-dependent updates. In
a similar vein, our qv configuration merges query-like transformations (Q) with the primary value
projection (V), effectively supplying an input-driven mechanism to modulate attention weights on a
per-token basis. We hypothesize that this design fosters the same kind of dynamic control observed in
Mamba, potentially explaining the qv variant’s strong performance despite fewer learnable parameters
than qkv. Exploring this connection, e.g., by systematically contrasting different input-injection
strategies across attention and state-space frameworks, represents an intriguing direction for future
research.

7 Conclusion

We introduced Engineering-Isomorphic Transformers (EITs), a framework that retains the essential
softmax-based attention structure while reducing theoretical complexity below O(N2). Within
this perspective (Sec. 2), our CAT results (Appendix B) indicate that a softmax-preserving, below-
quadratic design can be both efficient and competitive at scale. As a concrete realization, our
CAT leverages FFT-based circular convolutions to achieve O(N logN) runtime. Through extensive
experiments on ImageNet-1k and WikiText-103, we demonstrated that CAT can match or surpass
standard attention under simpler token operations (e.g., average pooling, masked language modeling),
an important result, given that avg pooling increasingly outperforms token-based approaches in
certain vision tasks, and that masked language modeling has become a highly competitive paradigm
in recent Transformer research. Furthermore, our partial substitution scheme (CAT-Alter) remained
robust across broader scenarios, at times exceeding full attention. An ablation study (Sec. 6) further
revealed that merging query-key (qv) offers a practical balance of parameter efficiency and accuracy,
outperforming alternatives like k-only or v-only projections. We believe this qv-based CAT design
effectively emulates key aspects of standard attention without incurring quadratic complexity or
parameter overhead.

Open Challenges and Scalability. Although CAT ensures sub-quadratic runtime in principle,
validating its training stability and accuracy for extremely large sequences (e.g., tens of thousands of
tokens) remains an open challenge. In particular, understanding how CAT scales in both efficiency
and representational quality at these lengths would further solidify its real-world applicability Gu and
Dao [2023]. Another promising direction is integrating CAT with other efficient attention variants,
such as sparse, low-rank, or kernel-based methods, to push large Transformer architectures even
further. From an implementation standpoint, hardware-optimized FFT kernels on GPUs or specialized
accelerators could amplify the observed gains Dao et al. [2022]. Beyond language and vision, applying
EITs principles to domains like speech or time-series forecasting may unveil new advantages of
sub-quadratic models. We hope our work sparks further innovation in balancing efficiency and
representational power, positioning EITs as a versatile foundation for the next generation of scalable
deep learning.

Broader Impact and Future Work. While our sub-quadratic approach lowers the computational
barrier and can democratize large-scale model training, it may also inadvertently accelerate the
widespread usage of resource-intensive models, potentially increasing energy consumption and
enabling misuse in certain applications. Addressing these concerns will require careful consideration
of environmental sustainability, governance, and ethical guidelines in future work. We believe
that ongoing efforts to develop hardware-optimized kernels and efficient deployment strategies
will complement our method, helping to ensure that sub-quadratic Transformers can be harnessed
responsibly and sustainably.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly state in the abstract and introduction that our proposed method
reduces the complexity from O(N2) to O(NlogN) while maintaining the exact softmax
structure, and our experiments confirm these claims in Sec. 5 and 6.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Sec. 7 discusses scenarios where our approach might underperform, such as
extremely large sequence lengths , or hardware-optimization.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We state all assumptions for our sub-quadratic claim in Sec. 4.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We detail dataset splits, preprocessing, model hyperparameters, and training
settings (in Sec. 5), providing all configurations required to replicate our main results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We use publicly available datasets (ImageNet-1K, WikiText-103), but we have
not released our code due to ongoing internal requirements.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Sec. 5 details our data splits, optimization hyperparameters, and optimization
algorithms.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We primarily reported our results but did not include standard deviation due to
limited computation. We acknowledge this is a limitation and plan to include extended runs
in future work.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Sec. 5 states that we conducted our experiments on a cluster of NVIDIA V100
GPUs. Each training run took approximately 1-2 days.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our study follows all ethical guidelines and uses public datasets (ImageNet-1k
and WikiText-103) with proper citations. Neither confidential nor sensitive data are involved,
and the methodology does not raise specific ethical concerns.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: In Section 7 , we discuss the ecological benefits of reducing training compute,
as well as potential negative implications of enabling more large-scale models, including
concerns about misinformation.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: Our work focuses on general attention mechanism improvements and does not
introduce high-risk data or models requiring special safeguards.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original references for ImageNet and WikiText-103 in Sec. 5 and
mention their licenses. We also acknowledge the standard open-source PyTorch and FFT
libraries.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not introduce new datasets or models beyond the standard ones; thus,
no new asset documentation is required.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work is purely algorithmic and does not involve human subjects or
crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects or participant-based studies were involved in our research.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We employ standard Transformer-XL and GPT-2 small as conventional lan-
guage models, but do not rely on any large-scale LLM for core methodology or data
generation.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Visualization of Attention Maps

We provide qualitative visualizations to illustrate how CAT and CAT-Alter differ from standard
Self-Attention in terms of structural attention patterns. For CLIP-B (ViT-B/16), we visualize token-to-
token attention maps at the patch level (196×196). Each bottom panel in Figs. 3a–3b shows a 12×12
mosaic: rows correspond to attention heads (h=1 . . . 12, left to right), and columns correspond to
layers (l=1 . . . 12, top to bottom). All maps are computed from per-head attention weights after
softmax and are individually min–max normalized for visualization, using a shared colormap across
methods. No averaging across heads or layers is applied before plotting.

In these visualizations, standard Self-Attention typically exhibits two canonical motifs: (1) woven,
grid-like stripes representing cross-token interactions, and (2) near-identity diagonal bands capturing
self-alignment. CAT, in contrast, produces more regular and shift-like diagonal structures that reflect
its circulant formulation. While visually distinct, CAT achieves comparable or higher accuracy,
as reported in the main tables. CAT-Alter combines both behaviors: it retains structured diagonal
patterns in early layers while showing more globally diffuse attention in deeper layers. Interestingly,
this mixture of localized and global dynamics coincides with its superior overall performance among
all compared mechanisms, perhaps because combining fine-grained local structure with broader
global context yields a more balanced representation.

B Runtime and Efficiency Analysis

To provide quantitative evidence of CAT’s computational advantages, we present detailed run-
time and memory profiles that clarify the extent of its speed and memory benefits over stan-
dard Self-Attention. All measurements were conducted on NVIDIA V100 GPUs (FP16 pre-
cision, batch size = 32) using the AdamW optimizer. Experiments used PyTorch 2.7.0
+ cu126 + cuDNN 9.5.1, with cuFFT as the FFT backend for CAT and FlashAttention
(torch.nn.functional.scaled_dot_product_attention) for Self-Attention baselines. We
measure iteration time as the sum of the forward, backward, and optimizer passes, averaged over 10
steps. Table 4 reports this aggregate figure.

Table 4 summarizes runtime and memory usage for CLIP-L and GPT-2 small. CAT consistently
reduces iteration time by 10–25% compared with Self-Attention, and the cuFFT implementation
additionally lowers peak memory by about 25%.

Nonetheless, two practical bottlenecks still remain: (1) limited mixed-precision support, where
performance degrades for sequence lengths not equal to powers of two. (2) Overhead for short
sequences, where the gather version can outperform the FFT version.

Looking ahead, future GPU architectures with optimized FFT kernels and planning caches are
expected to further accelerate the O(N logN) variant, especially for long-sequence applications.

C Compatibility with FlashAttention and GQA

Efficient attention mechanisms are often combined in practice to balance speed, memory, and
accuracy. To facilitate adoption and to position CAT among widely used baselines, we note that CAT
integrates with both FlashAttention and GQA (Grouped-Query Attention), and is expected to offer
complementary efficiency gains when used together. Below we discuss how CAT interacts with each
method, relate these observations to our FFT-based findings, and present a concise computational
sketch together with small empirical results.

C.1 FlashAttention Integration

FlashAttention’s streaming formulation of exact softmax eliminates the need to materialize the full
N×N attention map, substantially reducing memory traffic. A similar idea can be applied to CAT:
implementing a streaming circulant variant allows the circular mixing to be computed on the fly
without constructing intermediate matrices. This approach reduces transient buffers in the gather step
and lowers peak memory, which is expected to provide FlashAttention-like benefits in runtime and
memory efficiency, particularly when FFT planning overhead dominates at small sequence lengths
(cf. Appendix B).
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(a) Attention-map visualization, input: siamese cat.

(b) Attention-map visualization, input: catamaran.

Figure 3: Attention-map visualizations using CLIP-B (average pooling). Top-left: input image.
Bottom row (left→right): Self-Attention, CAT, and CAT-Alter. Each panel shows 196×196 token-
to-token attention maps arranged as a 12×12 grid: rows correspond to attention heads (h=1 . . . 12)
within each layer, and columns correspond to layers (l=1 . . . 12) from top to bottom. All maps share
the same colormap and are normalized by min–max scaling.
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Variant Param (M) Peak Mem (MB) Avg Time (ms)

CLIP-L
Self-Attention (PyTorch MatMul) 304.2 16654 1465.7
Self-Attention (FlashAttention) 304.2 13594 1467.5
CAT (gather, O(N2)) 254.2 14931 1188.5
CAT (cuFFT, O(N logN)) 254.2 11882 1187.9

GPT-2 small
Self-Attention (PyTorch MatMul) 107.5 5289 521.6
Self-Attention (FlashAttention) 107.5 5259 531.0
CAT (gather, O(N2)) 93.5 4651 441.8

Table 4: Runtime and memory profiles for CLIP-L and GPT-2 small on NVIDIA V100 GPUs (FP16,
batch size = 32). CAT shows shorter iteration time than the Self-Attention baselines across both
models, and the cuFFT variant further reduces peak memory on CLIP-L.

Variant Param (M) Peak Mem (MB) Avg Time (ms)

CLIP-L
Self-Attention (PyTorch MatMul) 304.2 16654 1465.72
GQA (K=1/4) 260.3 16510 1307.26
GQA (K=1/16) 257.0 16474 1270.39
CAT (gather, O(N2)) 254.2 14931 1188.48

Table 5: Runtime snapshot for CLIP-L (V100 FP16, batch size = 32). CAT (gather) appears
competitive and often faster than typical GQA configurations.

C.2 GQA Enhancement (Runtime, Memory, Accuracy)

A compact projection-side compute model for the attention block can be written as

GQA: 2ND (D + 2DK), CAT: 2ND (D +H),

where N is sequence length, D hidden size, H number of heads, and K the key-reduction ratio in
GQA. In regimes where 2DK > H (typical in large models), CAT is generally not slower in practice
and tends to use fewer parameters within the attention block. To check this trend empirically, Table 5
reports a like-for-like comparison of GQA and CAT under identical settings.

The empirical results are consistent with the analytical model: CAT achieves lower runtime and
comparable or smaller parameter counts than GQA, suggesting that their theoretical relation holds in
practice.

In this small-scale sweep, GQA-CAT-Alter (i.e., replacing the attention component of CAT-Alter
with GQA) achieves both reduced parameter count and improved runtime compared with standard
GQA, while maintaining comparable accuracy. Although limited in scale, this consistent trend
indicates that incorporating CAT principles into GQA is a promising direction for further exploration.

C.3 Summary

Taken together, these observations suggest that replacing standard GQA with CAT-based designs
(GQA-CAT-Alter) offers consistent advantages in runtime, memory, and parameter efficiency while
maintaining comparable or better accuracy. This direction appears to be a viable and promising path
for extending GQA-style models, while potentially enabling FlashAttention-like streaming benefits
and helping mitigate FFT-related memory overheads for small sequences.

D Permutation Equivariance and Domain Applicability

When we reorder the input tokens, should the model’s output stay unchanged, follow the same
reordering, or respond differently? This choice fixes the model’s inductive bias toward order: it
specifies whether the representation should ignore the order (invariance), respect it up to relabeling
(equivariance), or treat different orders as different meanings. Match the symmetry to the task: CNNs
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Model Pool Type Mechanism Setting Acc.

CLIP-B token Attention – 0.574
CLIP-B token CAT-Alter – 0.582
CLIP-B token GQA K=1/4 0.561
CLIP-B token GQA-CAT-Alter K=1/4 0.571

CLIP-B avg Attention – 0.638
CLIP-B avg CAT-Alter – 0.662
CLIP-B avg GQA K=1/4 0.629
CLIP-B avg GQA-CAT-Alter K=1/4 0.658

Table 6: Accuracy comparison on CLIP-B (token and average pooling). CAT-Alter consistently
outperforms vanilla MHA, while the hybrid GQA-CAT-Alter improves upon standard GQA in both
pooling settings. These small-scale results are consistent with our runtime findings, indicating that
CAT-based extensions of GQA are empirically stable and practically efficient.

are translation-equivariant at the layer level and can yield translation invariance after pooling/readout;
position-free Transformers for permutation-equivariant, order-agnostic inputs (e.g., sets, point clouds).
In natural language, by contrast, the order of words often carries meaning (e.g., “dog bites man”
vs. “man bites dog”; the scope of items like only or negation; long-range dependencies), so the full
permutation symmetry must be broken by injecting positional information (absolute or relative).
This makes relative order and distance representable and typically yields small but consistent gains in
practice. Spelling out the required symmetry up front clarifies what is gained or lost when we modify
the attention mechanism or add positional encodings.

Without positional signals, a self-attention layer is equivariant to any permutation in the full symmetric
group SN , and becomes permutation invariant only when paired with an invariant read-out (e.g.,
global pooling). By contrast, CAT’s circulant mixing makes the layer equivariant to cyclic shifts in
CN ; with an order-agnostic read-out the overall mapping becomes invariant to cyclic shifts. Since CN

is a strict subgroup of SN , cyclic-shift equivariance/invariance does not imply equivariance/invariance
to arbitrary permutations.

When permutation symmetry is required, for true set-structured inputs or certain graph/particle
systems, the symmetry must be engineered into the model explicitly. Two lightweight, design-intent
examples are: (i) imposing a canonical order via differentiable sorting (e.g., SoftSort) before applying
CAT; and (ii) adopting a hybrid pipeline in which an order-assigning encoder precedes CAT and a
permutation-invariant read-out aggregates the final representation.
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