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ABSTRACT

We consider high-dimensional distribution estimation through autoregressive net-
works. By combining the concepts of sparsity, mixtures and parameter sharing
we obtain a simple model which is fast to train and which achieves state-of-the-
art or better results on several standard benchmark datasets. Specifically, we use
an L1-penalty to regularize the conditional distributions and introduce a proce-
dure for automatic parameter sharing between mixture components. Moreover,
we propose a simple distributed representation which permits exact likelihood
evaluations since the latent variables are interleaved with the observable variables
and can be easily integrated out. Our model achieves excellent generalization
performance and scales well to extremely high dimensions.

1 INTRODUCTION

We consider the fundamental task of learning a high-dimensional distribution P(x) from training
examples x(n). The recently most successful approaches are based on autoregressive networks
which make use of the decomposition

P(x) =
D∏

d=1

P(xd |x1:d−1).

One simple way to model the D conditional distributions is through logistic or linear regressions
(Frey, 1998). Better results can be achieved by using flexible neural networks to model the condi-
tionals (Bengio & Bengio, 2000). Larochelle & Murray (2011) proposed to use the same hidden
units for all conditionals. Such a weight sharing among conditional distributions leads to a signif-
icant improvement in terms of the generalization performance (Bengio, 2011; Uria et al., 2013).
Several variants of this idea have been proposed (Uria et al., 2014; Raiko et al., 2014; Germain
et al., 2015). Since the hidden units in these models are deterministic, the associated learning al-
gorithms are relatively simple and exact likelihood evaluations are feasible. Neural networks with
stochastic hidden units (Gregor et al., 2014; Bornschein & Bengio, 2015) on the other hand require
sophisticated inference procedures and exact likelihood evaluations are then intractable.

In this work we start from sparse logistic and linear models for the conditionals. In contrast to
nonsparse nonlinear models, these can be learned from relatively small datasets and have excellent
generalization abilities. We then consider large mixtures of such sparse autoregressive networks
(SpARN) and study the effect of parameter sharing among mixture components. Since there is
no weight sharing between different conditional distributions, our learning procedure can be per-
fectly parallelized over the data dimensions. We are hence able to train models for extremely high-
dimensional data. In our experiments we achieve state-of-the-art or better performance on several
standard benchmark problems and obtain convincing results for datasets with several ten thousand
dimensions.

2 SPARSE AUTOREGRESSIVE NETWORKS

One major source of regularization in neural autoregressive networks is weight sharing among the
conditional distributions for different dimensions. This seems necessary in order to avoid overfitting
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but makes it hard to parallelize the learning procedure. In addition, early stopping is commonly
applied in neural networks to control the model complexity. Other typical regularization techniques
are weight decay (Uria et al., 2013; 2014; Raiko et al., 2014), dropout (Germain et al., 2015) or
adaptive weight noise (Gregor et al., 2014). Weight decay means that the L2-norm of the model
parameters is penalized.

None of these regularization methods yields sparse parameters. In this work we use an L1-penalty,
which induces sparsity. For high-dimensional problems it is very reasonable to assume that only
a small number of the variables x1, . . . , xd−1 are relevant for predicting xd. As shown in our ex-
periments, the use of an L1-penalty yields much better results than an L2-penalty. We also tried
elastic nets (Zou & Hastie, 2005), which use an L1- as well as an L2-penalty, but the performance
was typically worse than with just an L1-penalty. Since the effect of regularization depends on the
scale of the variables, we encode binary data as ±1 in order not to create a systematic bias. Sim-
ilarly, for real-valued data we normalize the variables to have mean zero and variance one. The
conditional distributions in our autoregressive network are modeled through L1-penalized logistic
or linear regressions which are fitted separately for each dimension via coordinate descent.

Concretely, for binary data x ∈ {−1, 1}D we minimize
N∑

n=1

log(1 + exp(−x(n)d [α
(d)
0 + (α

(d)
1:d−1)

Tx
(n)
1:d−1])) + λ0|α(d)

0 |+ λ||α(d)
1:d−1||1

where λ0, λ > 0. The intercept α(d)
0 has a special meaning and is hence regularized differently

than the dependency weights α(d)
i , i = 1 . . . , d − 1. Shrinkage for the intercept is needed to avoid

potentially degenerated probabilities (in case the empirical variance of xd is zero) but also improves
the generalization performance. The penalty strength λ0 can be much smaller than λ. The ratio
λ/λ0 is known as the intercept scaling factor. We do not expect the intercepts to be mostly zero, so
a different type of penalty could be used. But for simplicity we penalize the absolute value.

For continuous data x ∈ RD we minimize

1

2

N∑
n=1

(x
(n)
d − (α

(d)
1:d−1)

Tx
(n)
1:d−1)

2 + λ||α(d)
1:d−1|||1

where λ > 0. The intercept is not needed here since all variables are centered in advance. The
parameters α(d)

1:d−1 specify the conditional mean µ(d)(x1:d−1) of xd given x1:d−1. The conditional
standard deviation σ(d) is assumed to be fixed (i.e., it does not depend on x1:d−1) and is estimated
from the residuals x(n)d − µ(d)(x1:d−1). If each conditional distribution xd|x1:d−1 is Gaussian with
a constant variance then x has a multivariate normal distribution. Alternatively, we could model
the variance as a, say, quadratic function of the predicted value µd(x1:d−1) in which case x would
no longer be multivariate Gaussian. In any case, our conditional distributions are unimodal. We
deal with multimodality by learning mixtures of autoregressive networks. In contrast to that, Bishop
(1994); Davies & Moore (2000) model the conditional distributions through mixtures but only learn
a single network.

L1-penalized logistic and linear regressions for neighborhood selection have been used before in
undirected graphical models (Meinshausen & Bühlmann, 2006; Ravikumar et al., 2010). Sparse
linear models for conditional distributions have been used in image analysis by Cressie & Davidson
(1998); Domke et al. (2008). However, in these models the relevant parents for each pixel were
chosen manually, consisting of a small number of adjacent pixels. This means that no long-range
dependencies can be captured. Very restricted neighborhoods can lead to visible artifacts in samples
form such models. A fully Bayesian approach for deep sigmoid belief nets with a sparsity-inducing
prior has been used in Gan et al. (2015), where the posterior distribution on model parameters is
approximated through a variational Bayes procedure. The quantitative performance of this method
however is significantly worse than our L1-penalized regression approach (see section 3).

2.1 MIXTURES

For large datasets a single autoregressive network is not competitive with more sophisticated net-
works. Since learning requires only relatively few training examples it is natural to consider mixtures
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of the form

P(x) =
K∑

k=1

P(h = k)

D∏
d=1

P(xd |x1:d−1, h)

where the conditional distributions are sparse regressions. The latent variable h ∈ {1, . . . ,K}
indicates the active mixture component. It is straightforward to learn such a mixture using the EM-
algorithm (Dempster et al., 1977). A good initialization can be obtained by first learning a mixture
of product (Bernoulli or normal) distributions for the data.

2.1.1 WITHOUT PARAMETER SHARING

In a classical mixture model no parameters are shared among the components. The form1 of the
component conditionals in this case is

P(xd = 1|x1:d−1, h) = σ(β
(h,d)
0 + (β

(h,d)
1:d−1)

Tx1:d−1).

Consequently, separate autoregressive networks are trained for different clusters of the data. Without
parameter sharing, a typical number of mixture components before overfitting occurs is around one
per one thousand training examples.

2.1.2 WITH PARAMETER SHARING

A reasonable simplification is to assume that the dependence structure is rather universal, i.e., it does
not change much for the different mixture components. With shared dependency weights a much
larger mixture can be trained because only separate intercepts have to be learned. The form of the
component conditionals with parameter sharing is

P(xd = 1|x1:d−1, h) = σ(β
(h,d)
0 + (α

(d)
1:d−1)

Tx1:d−1).

The same sharing of dependency weights is used in autoregressive sigmoid belief networks (Gregor
et al., 2014), which are large implicit mixtures of (dense) autoregressive networks. Note that this
kind of parameter sharing across mixture components is very different from the mentioned weight
sharing in neural autoregressive networks (e.g., Larochelle & Murray, 2011) where weights are
shared across conditionals for different dimensions. With shared dependency weights, a typical
number of mixture components before overfitting occurs is around one per one hundred training
examples.

2.1.3 AUTOMATIC PARAMETER SHARING

Rather than manually deciding which parameters to share we can let the amount of sharing be part
of the learning process. Specifically, we can use a global bias term and global dependency weights,
and let the component parameters describe deviations from these global parameters. The form of
the component conditionals in this case is

P(xd = 1|x1:d−1, h) = σ(α
(d)
0 + β

(h,d)
0 + (α

(d)
1:d−1 + β

(h,d)
1:d−1)

Tx1:d−1).

We want the component parameters only to be nonzero if there is substantial gain from untying the
corresponding weights. Consequently, we use the penalty

λ0|α(d)
0 |+ λ0

K∑
h=1

|β(h,d)
0 |+ λ||α(d)

1:d−1||1 + λ

K∑
h=1

||β(h,d)
1:d−1||1.

A similar penalty for deviations from a shared parameter has been used for multi-task learning with
SVMs (Evgeniou & Pontil, 2004). The optimal number of mixture components with automatic shar-
ing is between the optimal numbers of components for mixtures with and without parameter sharing,
respectively. In our experiments, mixtures with automatic parameter sharing always performed bet-
ter than the mixtures with or without parameter sharing.

1We use here the notation for binary data, the corresponding expressions for continuous data are evident.
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2.2 SEQUENCE OF MIXTURES

In a mixture model only a single component is active at a time. In contrast to that, a distributed
representation (Bengio et al., 2013) allows several experts to cooperate in order to explain the obser-
vations. Each expert is a model for the data vector x. Using a specified composition rule (Goessling
& Amit, 2015) the active experts are combined to create the composed model for x. The traditional
approach is to use a top-down model in which latent variables are generated first and the distribution
of the visible variables is modeled conditioned on all hidden variables. Such an organization of the
variables makes inference and learning difficult. Moreover, exact likelihood evaluations are usually
intractable because the required computations involve a sum over all configurations of the latent
variables.

We propose a simple distributed representation for which inference is trivial and exact likelihood
evaluations are tractable. The basic idea is to divide the data dimensions into chunks and to learn
local models for each of these subsets of variables. Specifically, we partition the D dimensions into
L disjoint intervals I` := [d`−1 + 1 : d`] where

0 = d0 < d1 < . . . < dL = D.

We then use mixtures of sparse autoregressive networks for each of the data vectors xI` , ` =
1, . . . , L, utilizing the data x1:d`−1

from previous dimensions as additional predictors, i.e.,

P(xI` |x1:d`−1
, h`) =

d∏̀
d=d`−1+1

P(xd |x1:d−1, h`).

Associated with each mixture is a latent variable h` which specifies the component that is active for
interval I`. By choosing different configurations of mixture components global variation is achieved
while the autoregressive networks themselves capture local variation of the data. For each choice of
latent variables, the combined model is an autoregressive network for x.

Partition-based representations are simpler and more interpretable than other distributed representa-
tions because the area of responsibility is explicitly defined for the local models. Moreover, since
the local models describe disjoint sets of variables no composition rule is required (for each observ-
able variable exactly one local model is employed). For image modeling the main drawbacks of
existing partition-based approaches (Pal et al., 2002; Aghajanian & Prince, 2008) are discontinuities
and misalignments along the partition boundaries. Since in our approach each local model is an
autoregressive network that uses the data from all previous dimensions as predictors (not just the
data within its own interval I`) these problems are largely eliminated, see the experimental results
in section 3.

What remains to be specified is the distribution on the latent variables. In top-down approaches,
for example deep autoregressive networks (Gregor et al., 2014), the joint distribution on latent and
observable variables is factored as P(h,x) = P(h)P(x|h). This makes it easy to evaluate P(h) but
hard to evaluate P(x). Rather than first generating all latent variables we propose to interleave them
with the observable variables. Formally, the joint distribution is factored as

P(h,x) =
L∏

`=1

P(h`|x1:d`−1
)P(xI` |x1:d`−1

, h`).

where P(h`|x1:d`−1
) are multiclass logistic regressions. This means in particular that given x1:d`−1

the distribution for h` does not depend on h1:`−1. In contrast to that, hidden Markov models (Ra-
biner, 1989) define the distribution of h` in terms of h`−1. Our factorization makes it easy to
integrate out the latent variables. Indeed, it follows that

P(x) =
L∏

`=1

K∑̀
h`=1

P(h`|x1:d`−1
)P(xI` |x1:d`−1

, h`).

Inference is trivial since the posterior distribution P(h|x) factorizes over the latent variables. Conse-
quently, the model can be trained by learning L separate mixtures of sparse autoregressive networks.
A graphical representation of this sequence-of-mixtures model is shown in figure 1. The proposed
model family is a subfamily of sum-product networks (Poon & Domingos, 2011) which is particu-
larly easy to train and conceptually simple.
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Figure 1: Graphical representation of the sequence-of-mixtures model. Solid nodes represent ob-
servable variables and empty nodes represent latent variables. Blue edges denote dependence on a
block of variables.

3 EXPERIMENTS

We quantitatively evaluated our sparse autoregressive networks (SpARN) on various high-
dimensional datasets. For all experiments we used an intercept scaling factor (see section 2) of
10, meaning the penalty on the intercept is a factor 10 smaller than for the dependency weights. The
exact choice of the factor is not crucial, other values between 10 and 100 lead to very similar results.
We used likelihood evaluations on the validation set to choose the number of mixture components
and to select the penalty strength λ. The same penalty strength was applied for every dimension.
We also performed a qualitative evaluation on two very high-dimensional datasets.

3.1 CALTECH-101 SILHOUETTES

The first dataset we considered are the Caltech-101 silhouettes (Marlin et al., 2010). There are 4,100
training samples, 2,264 validation samples and 2,307 test samples of dimension 28 × 28 = 784.
Each data point is a binary mask for an object from one of 101 categories. Since the similarity
between samples is of semantic nature a large degree of abstraction is required to generalize well
to unseen examples. Previous results for this dataset are shown in table 1. The current state of
the art is a logistic autoregressive network, also called a fully visible sigmoid belief net (FVSBN),
which was learned through a variational Bayes procedure (Gan et al., 2015). Our network based
on L1-penalized logistic regressions and trained through coordinate descent achieves an average
test log-likelihood which is 4.5 nats higher. An autoregressive network with L2-penalized logistic
regressions performs significantly worse. The sparsity induced by the L1-penalty is thus crucial.
We also trained mixtures of sparse autoregressive networks in an unsupervised manner (i.e., without
using any category labels). The mixture with shared dependency weights (tied) improves over the
single network by more than 2 nats. The optimal number of mixture components is 100, which
makes sense because that is about the number of different object categories in the dataset. When
trained without intercept scaling the mixture essentially reduced to a single sparse network. Hence,
it was important to have a weaker penalty on the intercepts. The mixture with automatic parameter
sharing (auto) further improves the test performance by about 1 nat. The mixture without parameter
sharing (untied) was not better than the single network.

3.2 BINARIZED MNIST DIGITS

The next dataset we considered are the MNIST digits (Salakhutdinov & Murray, 2008) which were
binarized through random sampling based on the original intensity value. This is a relatively large
dataset consisting of 50,000 training samples, 10,000 validation samples and 10,000 test samples
again of dimension 28 × 28 = 784. Previous results for this dataset are shown in table 1. A
fully visible sigmoid belief net trained by stochastic gradient descent and regularized through early
stopping achieves about the same performance as a sparse logistic autoregressive network. This is
because the dataset is rather large and hence the need for regularization is small.For mixtures without
parameter sharing the optimal number of components is 20. Using automatic parameter sharing it
is 50 and with shared dependency weights it is 500. All mixtures substantially improve over the
single network. For this dataset, the mixture without sharing performs better than the mixture with
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Table 1: Average log-likelihoods (in nats) per test example using different models. The best result for
each dataset is shown in bold. Baseline results are taken from [1]Raiko et al. (2014), [2]Bornschein
& Bengio (2015), [3]Gan et al. (2015), [4]Larochelle & Murray (2011), [5]Germain et al. (2015)
and [6]Gregor et al. (2014).

Caltech-101 silhouettes
RBM [1] ≈-107.78
NADE-5 [1] -107.28
RWS-NADE [2] ≈-104.30
FVSBN (VB) [3] ≈-96.40
ARN (1 comp, L2-penalty) -95.95
SpARN (1 comp) -91.80
SpARN (100 comp, auto) -88.48
SpARN (100 comp, tied) -89.59

Binarized MNIST digits
FVSBN (VB) [3] ≈-100.76 SpARN (1 comp) -97.34
FVSBN (SGD) [4] -97.45 SpARN (20 comp, untied) -89.43
NADE [4] -88.86 SpARN (50 comp, auto) -87.95
MADE [5] -86.64 SpARN (500 comp, tied) -91.32
RBM (CD-25) [4] ≈-86.34 SpARN (4×50 comp, auto) -87.40
DARN [6] ≈ -84.13 SpARN (4×500 comp, tied) -88.63

Figure 2: Left: Samples from the sequence-of-mixtures model trained on MNIST digits. Right:
Closest training examples.

shared parameters. We believe that this is the case because compared to the Caltech-101 silhouettes
the distribution of MNIST digits has fewer modes and more training samples are available to learn
from. We also trained a sequence-of-mixtures model. For that the image grid was divided into
four quadrants of size 14 × 14 pixels and a mixture model was learned for each of the quadrants
using the same number of components as before. With parameter sharing this model improves the
performance of the corresponding mixture by 2.5 nats. Note that the number of parameters for the
sequence-of-mixtures model is almost the same as for the mixture. The only additional parameters
come from the multiclass logistic regressions for the hidden variables. When automatic parameter
sharing is used the gain through a sequence of mixtures is smaller. Without parameter sharing
there is no gain from the sequence of mixtures. Samples from the sequence-of-mixtures model with
automatic parameter sharing as well as nearest training examples are shown in figure 2. This shows
that the model puts the probability mass in the right region of the data space and that it does not
simply memorize the training examples.

3.3 BINARY UCI DATASETS

We performed additional quantitative evaluations on eight standard benchmark datasets from the
UCI Machine Learning Repository using the same splits into training, validation and test sets as in
previous work. The datasets have various sample sizes and dimensions. The ratio of training sam-
ples to dimensionality varies between 1 and 300. Table 2 reports the obtained test log-likelihoods for
mixtures of sparse autoregressive networks together with previous results. The table also shows the
optimal numbers of mixture components for the different kinds of parameter sharing and the stan-
dard error of the test log-likelihood (when using automatic parameter sharing). On smaller datasets
mixtures with parameter sharing tend to perform a bit better than mixtures without parameter shar-
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Table 2: Average log-likelihoods (in nats) per test example for various models and datasets. The best
result for each dataset is shown in bold. Baseline results are taken from Germain et al. (2015); Born-
schein & Bengio (2015). Dataset sizes, standard errors and used numbers of mixture components
are shown in italic.

Adult Connect4 DNA Mushrooms NIPS-0-12 OCR-letters RCV1 Web
train 5,000 16,000 1,400 2,000 400 32,152 40,000 14,000
valid 1,414 4,000 600 500 100 10,000 10,000 3,188
test 26,147 47,557 1,186 5,624 1,240 10,000 150,000 32,561
dim 123 126 180 112 500 128 150 300

Ber. Mix. -20.44 -23.41 -98.19 -14.46 -290.02 -40.56 -47.59 30.16
FVSBN (SGD) -13.17 -12.39 -83.64 -10.27 -276.88 -39.30 -49.84 -29.35
NADE -13.19 -11.99 -84.81 -9.81 -273.08 -27.22 -46.66 -28.39
DARN -13.19 -11.91 -81.04 -9.55 -274.68 ≈-28.17 ≈-46.10 ≈-28.83
MADE -13.12 -11.90 -79.66 -9.68 -277.28 -28.34 -46.74 -28.25
RWS-NADE ≈-13.16 ≈-11.68 ≈-84.26 ≈-9.71 ≈-271.11 ≈-26.43 ≈-46.09 ≈-27.92
SpARN (untied) -13.04 -12.04 -79.32 -9.58 -271.13 -28.48 -45.55 -27.98
SpARN (auto) -13.04 -11.98 -79.05 -9.38 -270.29 -27.96 -45.11 -27.50
SpARN (tied) -13.04 -12.14 -79.26 -9.39 -270.53 -31.53 -45.50 -28.12

std. error 0.02 0.01 0.21 0.01 0.52 0.11 0.06 0.10
comp (untied) 1 10 1 2 1 100 200 100
comp (auto) 1 10 3 10 20 200 1,000 200
comp (tied) 1 10 3 20 20 5,000 5,000 200

ing, and vice versa on larger datasets. The performance of our mixtures of sparse autoregressive
networks with automatic parameter sharing is better than the best previously reported result on six
of the eight datasets (all improvements except for the NIPS-0-12 dataset are statistically significant).
For the other two datasets the performance is close to the state of the art.

3.4 WEIZMANN HORSES

The following experiment shows the ability of our model to cope with very high-dimensional data.
The Weizmann horse dataset (Borenstein & Ullman, 2008) consists of 328 binary images of size
200×240. We divided the image grid into four quadrants of size 100×120 and learned a mixture of
sparse autoregressive networks for each quadrant. We decided to use five components each for the

Figure 3: 1st & 4th row: Samples from the sequence-of-mixtures model trained on Weizmann
horses. 2nd & 5th row: Closest training examples. 3rd & 6th row: Symmetric differences between
the synthetic sample and the closest training example (pixels in blue are only ‘on’ for the training
example and pixels in orange are only ‘on’ for the synthetic sample).
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Figure 4: First five columns: Samples from a sparse linear autoregressive network trained on
Caltech faces. Last column: Closest training examples for the adjacent sample.

top two quadrants (i.e., horse head and back) and ten components each for the bottom two quadrants
(i.e., horse legs) because there is more variability in the lower half of the image. Samples from the
sequence-of-mixtures model are presented in figure 3 together with the closest training examples.
Our model creates overall realistic samples which differ from the training examples. In particular,
no discontinuities along the borders of the quadrants are visible. We emphasize that our model was
trained using the full resolution of the images. Each data point is a 48,000 dimensional binary vector.
The same dataset was used in Eslami et al. (2014) where a Boltzmann machine was learned from
the data. In their experiments the images were downsampled to 32 × 32 pixels, which is a factor
50 smaller than in our case. This was probably necessary in order to speed up computations and to
avoid overfitting. Refer to figure 5(d) in that paper to compare the quality of the model samples.

3.5 CALTECH FACES

A very high-dimensional real-valued dataset that we considered are the Caltech Faces (Fergus et al.,
2003) consisting of 450 high-resolution color images. We downsampled the images to 200×150×3,
which are 90,000 dimensions. Samples from a sparse linear autoregressive network with constant
conditional variance are presented in figure 4. The samples are diverse and show substantial ab-
straction from the training examples. We also learned a network in which the conditional variance
was modeled as a quadratic function of the predicted value. This improved the likelihood only
slightly and the corresponding samples were visually indistinguishable from the samples of the net-
work with constant variance. Since the variability in this dataset is mainly local, a mixture of sparse
autoregressive networks did not improve over the single network in terms of likelihoods.

4 CONCLUSION

We pointed out the importance of sparsity in autoregressive networks. Using simple mixtures of
sparse autoregressive networks we achieved results which are competitive with much more sophis-
ticated models. We also introduced a distributed representation for autoregressive networks based
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on a sequence of mixture models. No weight sharing across dimensions was needed for our models
which allowed us to perfectly parallelize the learning procedure.
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