
Workshop track - ICLR 2016

WHY ARE DEEP NETS REVERSIBLE: A SIMPLE THEORY,
WITH IMPLICATIONS FOR TRAINING

Sanjeev Arora, Yingyu Liang & Tengyu Ma
Department of Computer Science
Princeton University
Princeton, NJ 08540, USA
{arora,yingyul,tengyu}@cs.princeton.edu

ABSTRACT

Generative models for deep learning are promising both to improve understanding of the
model, and yield training methods requiring fewer labeled samples. Recent works use
generative model approaches to produce the deep net’s input given the value of a hidden
layer several levels above. However, there is no accompanying “proof of correctness”
for the generative model, showing that the feedforward deep net is the correct inference
method for recovering the hidden layer given the input. Furthermore, these models are
complicated.
The current paper takes a more theoretical tack. It presents a very simple generative
model for ReLU deep nets, with the following characteristics: (i) The generative model
is just the reverse of the feedforward net: if the forward transformation at a layer is A
then the reverse transformation is AT . (This can be seen as an explanation of the old
weight tying idea for denoising autoencoders.) (ii) Its correctness can be proven under a
clean theoretical assumption: the edge weights in real-life deep nets behave like random
numbers. Under this assumption —which is experimentally tested on real-life nets like
AlexNet— it is formally proved that feed forward net is a correct inference method for
recovering the hidden layer.
The generative model suggests a simple modification for training: use the generative
model to produce synthetic data with labels and include it in the training set. Experi-
ments are shown to support this theory of random-like deep nets; and that it helps the
training.
This extended abstract provides a succinct description of our results while the full paper is
available on arXiv.

1 INTRODUCTION

Discriminative/generative pairs of models for classification tasks are an old theme in machine learning (Ng &
Jordan, 2001). Generative model analogs for deep learning may not only cast new light on the discriminative
backpropagation algorithm, but also allow learning with fewer labeled samples. A seeming obstacle in this
quest is that deep nets are successful in a variety of domains, and it is unlikely that problem inputs in these
domains share common families of generative models.

Some generic (i.e., not tied to specific domain) approaches to defining such models include Restricted
Boltzmann Machines (Freund & Haussler, 1994; Hinton & Salakhutdinov, 2006) and Denoising Autoen-
coders (Bengio et al., 2006; Vincent et al., 2008). Surprisingly, these suggest that deep nets are reversible:
the generative model is a essentially the feedforward net run in reverse. Further refinements include Stacked
Denoising Autoencoders (Vincent et al., 2010), Generalized Denoising Auto-Encoders (Bengio et al., 2013b)
and Deep Generative Stochastic Networks (Bengio et al., 2013a).

1

http://arxiv.org/abs/1511.05653

Workshop track - ICLR 2016

In case of image recognition it is possible to work harder —using a custom deep net to invert the feedforward
net —-and reproduce the input very well from the values of hidden layers much higher up, and in fact to
generate images very different from any that were used to train the net (e.g., (Mahendran & Vedaldi, 2015)).

To explain the contribution of this paper and contrast with past work, we need to formally define the problem.
Let x denote the data/input to the deep net and z denote the hidden representation (or the output labels). The
generative model has to satisfy the following: Property (a): Specify a joint distribution of x, z, or at least
p(x|z). Property (b) A proof that the deep net itself is a method of computing the (most likely) z given x.
Past work usually fails to satisfy one of (a) and (b).

The current paper introduces a simple mathematical explanation for why such a model should exist for deep
nets with fully connected layers. We propose the random-like nets hypothesis, which says that real-life
deep nets –even those obtained from standard supervised learning—are “random-like,” meaning their edge
weights behave like random numbers. Notice, this is distinct from saying that the edge weights actually are
randomly generated or uncorrelated. Instead we mean that the weighted graph has bulk properties similar to
those of random weighted graphs. To give an example, matrices in a host of settings are known to display
properties —specifically, eigenvalue distribution— similar to matrices with Gaussian entries; this so-called
Universality phenomenon is a matrix analog of the Law of Large Numbers. The random-like properties of
deep nets needed in this paper involve a generalized eigenvalue-like property, which we empirically verified
on the real world neural nets.

If a deep net is random-like, we can show mathematically that it has an associated simple generative model
p(x|z) (Property (a)) that we call the shadow distribution, and for which Property (b) also automatically
holds in an approximate sense. Our generative model makes essential use of dropout noise and ReLUs and
can be seen as providing (yet another) theoretical explanation for the efficacy of these two in modern deep
nets.

Note that Properties (a) and (b) hold even for random (and hence untrained/useless) deep nets. Empiri-
cally, supervised training seems to improve the shadow distribution, and at the end the synthetic images are
somewhat reasonable, albeit cruder compared to say (Mahendran & Vedaldi, 2015).

2 GENERATIVE MODEL AND PROVABLE GUARANTEES

Let x denote the input and h denote the hidden variable computed by the neural network. When h has
fewer nonzero coordinates than x, this has to be a many-to one function, and prior work on generative
models has tried to define a probabilistic inverse of this function. Sometimes —e.g., in context of denoising
autoencoders— such inverses are called reconstruction if one thinks of all inverses as being similar. Here we
abandon the idea of reconstruction and focus on defining many inverses x̃ of h. We define a shadow distri-
bution p(x|h), such that a random sample x̃ from this distribution satisfies Property (b), i.e., the feedforward
network computes a hidden variable that is close to h. For example, one layer network with weight W and
bias b outputs ReLU(WT x̃+ b), which we show is close to h. To understand the considerations in defining
such an inverse, one must keep in mind that the ultimate goal is to extend the notion to multi-level nets. Thus
a generated “inverse” x̃ has to look like the output of a 1-level net in the layer below. As mentioned, this is
where previous attempts such as DBN or denoising autoencoders run into theoretical difficulties.

One layer model. For simplicity we start with a single layer neural net. Given h ∈ Rm, the model p(x|h)
generates x ∈ Rn as follows: first compute r(αWh) where a scaling scalar α and and r is the ReLU; then
randomly zero-out each coordinate with probability 1− ρ. Formally, let � denote entry-wise product of two
vectors. Then p(x|h) is defined as

x = r(αWh) � ndrop , (1)
where α = 2/(ρn) is a scaling factor, and ndrop ∈ {0, 1}n is a binary random vector satifying

Pr[ndrop] = ρ‖ndrop‖0(1− ρ)n−‖ndrop‖0 , (2)
where ‖ndrop‖0 denotes the number of non-zeros of ndrop. We refer to this noise model as “dropout noise”,
and note that ρ can be reduced to make x as sparse as needed; typically ρ will be small. Let st(·) be the

2

Workshop track - ICLR 2016

x = sk0(r(α0W0h
(1)))

h(`−1) = sk`−1
(r(α`−1W`−1h

`))

h(1)

h(`)

W0

W`−1

(observed layer)

(a) Generative model

x

h̃(`−1)

h̃(1) = r(W T
0 x + b1)

h̃(`) = r(W T
`−1h̃

(`−1) + b`)

W T
0

W T
`−1

(observed layer)

(b) Feedforward NN

Figure 1: Generative-discriminative pair: a) defines the conditional distribution Pr[x|h(`)]; b) defines the
feed-forward function h̃(`) = NN(x).

random function that drops coordinates with probability 1 − ρ, that is, st(z) = z � ndrop. Then (1) is
simplified to

x = sρn(r(αWh)). (3)

Multiple layer model. We describe the multilayer generative model for the shadow distribution associated
with an `-layer deep net with ReLUs. The feedforward net is shown in Figure 2 (b). The j-th layer has nj
nodes, while the observable layer has n0 nodes. The corresponding generative model is in Figure 2 (a). The
number of variables at each layer, and the edge weights match exactly in the two models, but the generative
model runs from top to down.

The generative model starts with the top layer h(`), which is from some arbitrary distribution D` over the set
of k`-sparse vectors in Rn` . Then it generates the hidden variable h(`−1) below using the same stochastic
process as described for one layer: compute r(α`−1W`−1h

(`)), and then apply a random sampling function
sk`−1

(·) on the vector, where k`−1 is the target sparsity of h(`−1), and α`−1 = 2/k`−1 is a scaling constant.
Formally, the generative model is

x = sk0(r(α0W0sk1(r(α1W1 · · · ·))). (4)

Probable Guarantees We now present our formal guarantees for 2 and 3 layers that the feedforward net
inverts the generative model, i.e., Property (b). We assume the random-like matrices Wj’s to have standard
gaussian prior:

Wj has i.i.d entries from N (0, 1) (5)

We also assume that the distribution D` produces k`-sparse vectors with not too large entries almost surely:

h(`) ∈ Rn`

≥0 , |h(`)|0 ≤ k`, and |h(`)|∞ ≤ O
(√

logN/(k`)
)
‖h‖ a.s. (6)

whereN ,
∑
j nj is the total number of nodes in the architecture. Under this mathematical setup, we prove

the following reversibility and dropout robustness results for 2-layer networks.
Theorem 2.1 (2-Layer Reversibility and Dropout Robustness). For ` = 2, and k2 < k1 < k0 < k22 , for
0.9 measure of the weights (W0,W1), the following holds: There exists constant offset vector b0, b1 such
that when h(2) ∼ D2 and Pr[x | h(2)] is specified as model (4), then network has reversibility and dropout
robustness in the sense that the feedforward calculation (defined in Figure 2(b)) gives h̃(2) satisfying

∀i ∈ [n2], E
[
|h̃(2)i − h

(2)
i |2

]
≤ ετ2 (7)

3

Workshop track - ICLR 2016

where τ = 1
k2

∑
i h

(2)
i is the average of the non-zero entries of h(2) and ε = Õ(k2/k1).

To parse the theorem, we note that when k2 � k1 and k1 � k0, in expectation, the entry-wise difference
between h̃(2) and h(2) is dominated by the average single strength of h(2). We note that the magnitude of
the error in the theorem is on the order of the ratio of the sparsities between two layers.

3 SUMMARY OF OTHER RESULTS

Theorem 2.1 is extended to three layers with stronger assumptions on the sparsity of the top layer – We
assume additionally that

√
k3k2 < k0, which says that the top two layer is significantly sparser than the

bottom layer k0. We note that this assumption is still reasonable since in most of practical situations the top
layer consists of the labels and therefore is indeed much sparser.

Theorem 3.1 (3-layers Reversibility and Dropout Robustness, informally stated). For ` = 3, when k3 <
k2 < k1 < k0 < k22 and

√
k3k2 < k0, the 3-layer generative model has the same type of reversibility and

dropout robustness properties as in Theorem 2.1.

We also present experimental results that support our theory. First, the random-like nets hypothesis was
verified on the fully connected layers in a few trained networks, such as those in AlexNet and also those in
multilayer nets that we trained on different data sets. Edge weights fit a Gaussian distribution, and bias in
the ReLU gates are essentially constant (in accord with the theorems) and the distribution of the singular
values of the weight matrix is close to the quarter circular law of random Gaussian matrices.

Second, the knowledge that the deep net being sought is random-like can be used to improve training.
Namely, take a labeled data point x, and use the current feedforward net to compute its label z. Now use
the shadow distribution p(x|z) to compute a synthetic data point x̃, label it with z, and add it to the training
set for the next iteration. Experiments show that adding this to training yields measurable improvements
over backpropagation + dropout for training fully connected layers. Furthermore, throughout training, the
prediction error on synthetic data closely tracks that on the real data, as predicted by the theory.

REFERENCES

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise training of deep
networks. In NIPS, pp. 153–160, 2006.

Yoshua Bengio, Eric Thibodeau-Laufer, Guillaume Alain, and Jason Yosinski. Deep generative stochastic
networks trainable by backprop. arXiv preprint arXiv:1306.1091, 2013a.

Yoshua Bengio, Li Yao, Guillaume Alain, and Pascal Vincent. Generalized denoising auto-encoders as
generative models. In Advances in Neural Information Processing Systems, pp. 899–907, 2013b.

Yoav Freund and David Haussler. Unsupervised learning of distributions on binary vectors using two layer
networks. Technical report, 1994.

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural networks.
Science, 313(5786):504–507, 2006.

A. Mahendran and A. Vedaldi. Understanding deep image representations by inverting them. In IEEE
Conference on Computer Vision and Pattern Recognition, 2015.

Andrew Y. Ng and Michael I. Jordan. On discriminative vs. generative classifiers: A comparison of logistic
regression and naive bayes. In Advances in Neural Information Processing Systems 14 [Neural Infor-
mation Processing Systems: Natural and Synthetic, NIPS 2001, December 3-8, 2001, Vancouver, British
Columbia, Canada], pp. 841–848, 2001.

4

Workshop track - ICLR 2016

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and composing
robust features with denoising autoencoders. In ICML, pp. 1096–1103, 2008.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol. Stacked
denoising autoencoders: Learning useful representations in a deep network with a local denoising crite-
rion. The Journal of Machine Learning Research, 11:3371–3408, 2010.

5

	Introduction
	Generative model and provable guarantees
	Summary of other results

