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ABSTRACT

Very deep convolutional networks have been central to the largest advances in
image recognition performance in recent years. One example is the Inception ar-
chitecture that has been shown to achieve good performance at relatively low com-
putational cost. Recently, the introduction of residual connections in conjunction
with a more traditional architecture has yielded state-of-the-art performance in
the 2015 ILSVRC challenge; its performance was similar to the latest generation
Inception-v3 network. This raises the question of whether there are any benefit
in combining the Inception architecture with residual connections. Here we give
clear empirical evidence that training with residual connections accelerates the
training of Inception networks significantly, however, when fully trained, the final
quality of the non-residual Inception variants seem to be close to those of resid-
ual versions. We present several new streamlined architectures for both residual
and non-residual Inception networks. With an ensemble of three residual and one
pure Inception-v4, we achieve 3.08% top-5 error on the test set of the ImageNet
classification (CLS) challenge.

1 INTRODUCTION

In this work we study the combination of the two most recent ideas: Residual connections introduced
in He et al. (2015) and the latest revised version of the Inception architecture Szegedy et al. (2015).
In He et al. (2015), it is argued that residual connections are of inherent importance for training
very deep architectures. However, Since Inception networks tend to be very deep, it is natural to
replace the filter concatenation stage of the Inception architecture with residual connections. This
would allow Inception networks to reap all the benefits of the residual approach while retaining
their computational efficiency. Besides a straightforward integration, we have also studied whether
Inception itself can be made more efficient by making it deeper and wider. For that purpose, we
designed a new version named Inception-v4 which has a more uniform simplified architecture and
more inception modules. In this report, we will compare the two pure Inception variants, Inception-
v3 and v4, with similarly expensive hybrid Inception-ResNet versions and tested their performance
on the ImageNet classification challenge Russakovsky et al. (2014) dataset.

2 MODEL

Residual connection were introduced by He et al. in He et al. (2015) in which they give convincing
theoretical and practical evidence for the advantages of utilizing additive merging of signals both
for image recognition, and especially for object detection. See figures 1a and 1b. The authors argue
that residual connections are inherently necessary for training very deep convolutional models. Our
findings do not seem to support this hypothesis. In the experimental section we demonstrate that it
is not too difficult to train competitive very deep networks without utilizing residual connections.
However the use of residual connections seems improve the training speed greatly, which is alone
a great argument for their use. Here, we propose a hybrid Inception-ResNet architecture for com-
puter vision built from hybrid like in Figure 1c. Note that although this increases the number of
layers, the overall computation performed by each layer might be reduced. Our overall proposed
network architecture is based in the Inception-v3 network introduced in Szegedy et al. (2015). The
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Figure 1: Residual network module variants. The first two variants were introduced in He et al.
(2015).
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Figure 2: Further example Inception module variants optimized for certain grid sizes.

main difference is that we replace each inception module by modules like in 1c. Also, in addition,
we increase the number of modules. An extra change that seemed to improve the stability of the
training of residual variants is to scale the output of the residuals by a relatively small numbers, 0.1
in our experiments. The intuitive motivation for that is that the activation vectors should approx-
imate a path in a high-dimensional space as the number of modules increases. In addition to the
ResNet variants we tried a new costlier version of Inception-v3, code named Inception-v4 which
does not employ residual connections but utilizes more wider Inception modules than Inception-v3.
We have trained our networks with stochastic gradient utilizing the TensorFlow Abadi et al. (2015)
distributed machine learning system using 20 replicas running each on a NVidia Kepler GPU us-
ing RMSProp Tieleman & Hinton and a learning rate of 0.045, decayed every by 6% in every two
epochs.

3 RESULTS

We have tested the above variants on the ImageNet classification dataset Russakovsky et al. (2014).
Firs we compare the training behavior of Inception-v3 Szegedy et al. (2015) with Inception-ResNet-
v1 utilizing the hybrid residual Inception modules While the residual variant seems to train much
faster, it levels off at an almost identical error rate as the traditional Inception variant as can be seen in
Figure 3 This graph also shows the training behavior of the newline introduced simplified, but more
expensive Inception-v4 network with a similarly costly hybrid Inception-ResNet-v2 variant which
has more filters per layer than Inception-ResNet-v1. We can see that both larger networks yielded
very similar results while the residual variant trained faster and reached a slightly better result.
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(b) Top-5 error

Figure 3: Error evolution of two wider Inception variants. The residual model has trained faster and
reached very similar final accuracy and top-5 recall as the traditional variant with similar cost.

Network Models Top-1 Error Top-5 Error
ResNet-151 He et al. (2015) 6 – 3.6%
Inception-v3 Szegedy et al. (2015) 4 17.3% 3.6%
Inception-v4(+Residual) 4 16.5% 3.1%

Table 1: Ensemble results

However the final quality seems to be much more correlated with the model size than with the use
of residual connections. Finally we took our four best models, including one traditional Inception-
v4 and three Inception-ResNet-v2 style models that differed less then 0.2% in their single crop
top-1 accuracy. The ensembled results can be seen in Table Ensemble results with 144 crops/dense
evaluation. We report them on the test of ILSVRC 2012. For Inception-v4(+Residual), the ensemble
consists of one pure Inception-v4 and three Inception-ResNet-v2 models and were evaluated both
on the validation and on the test-set. The test-set performance (as measured on the test server) was
3.08% top-5 error verifying that we didn’t over-fit on the validation set. The other two results were
reported during the ILSVRC 2015 Competition.
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