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Abstract— General robotic grippers are challenging to con-
trol because of their rich nonsmooth contact dynamics and the
many sources of uncertainties due to the environment or sensor
noise. In this work, we demonstrate how to compute 6-DoF
grasp poses using simulation-based Bayesian inference through
the full stochastic forward simulation of the robot in its environ-
ment while robustly accounting for many of the uncertainties
in the system. A Riemannian manifold optimization procedure
preserving the nonlinearity of the rotation space is used to
compute the maximum a posteriori grasp pose. Simulation and
physical benchmarks show the promising high success rate of
the approach.

I. INTRODUCTION

Industrial grasping works very well in highly structured
environments with few uncertainties. However, complex ap-
plications requiring great flexibility have recently gained a
lot of interest. For such tasks, dealing with uncertainties
becomes key to robust performance.

While previous methods relied on simplified surrogates of
the likelihood function, we bring a novel simulation-based
approach for full Bayesian inference based on a deep neural
network surrogate of the likelihood-to-evidence ratio. By
framing robotic grasping as an inference task, we demon-
strate the general applicability of simulation-based inference
algorithms to complex robotic tasks and their usefulness to
deal with uncertainties.

We summarize our contributions as follow:
• We bring simulation-based Bayesian inference meth-

ods [1] to robotic grasping.
• We make use of Riemannian manifold optimization to

deal with the nonlinearity of the rotation space.
• We validate our method on simulated and real experi-

ments. Results show promising grasping performances.

II. PROBLEM STATEMENT

We consider the problem of planning 6-DoF hand con-
figurations of a general robotic gripper for unknown rigid
objects placed on a table and observed through multi-view
depth images (Fig. 1).

A. Description

The robot arm (6 or 7 DoF) evolves in a cubic workspace
with a planar tabletop. It is equipped with a robotic gripper
and observes the scene with a depth camera mounted on its
flange. Depth images, captured along a predefined trajectory,
are fused into a Truncated Signed Distance Function (TSDF)
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Fig. 1: Our benchmark scene. (left) The simulated environ-
ment. (right) The real setup.

voxel grid [2]. Then, we search for the most plausible hand
configuration given a successful grasp and the TSDF voxel
grid. Finally, a joint trajectory is computed by a path planner
based on the TSDF to reach the hand pose and grasp the
object in order to remove it from the table.

B. Notations

Frames We use several reference frames in our work.
The world frame F−→W and the workspace frame F−→S can be
choosen freely and are not tied to a physical location. F−→B,
F−→C, F−→F, F−→E correspond respectively to the robot base, the
camera, the flange and the tool center point (TCP).

Hand configuration The hand configuration h ∈ H =
R3×SO(3) is defined as the combination of the pose TSE=
(StSE,RSE) ∈ R3 × SO(3) of the hand, where StSE is the
vector ~SE expressed in F−→S. We parametrize the rotation
RSE with quaternions.

Binary metric A binary variable S ∈ {0, 1} indicates if
the grasp fails (S = 0) or succeeds (S = 1).

Observation Given the depth images Ik = {I0, ..., Ik}
with their corresponding transformations camera to world
Γk = {T0

WC, ...,T
k
WC} and camera intrinsic matrix K, we

construct a TSDF voxel grid V with N3 voxels, representing
the workspace of size l.

Latent variables Unobserved variables z capture uncer-
tainties about the nonsmooth dynamics of contact, the sensor
noise, as well as the geometry of the object (see Section.V-
A).

C. Probabilistic modeling

We model the scene and the grasping task according to the
Bayesian network shown in Fig. 2. The variables S,V and



h are modelled as random variables to capture the noise in
sensors, uncertainties in the dynamics, as well as our prior
beliefs about the hand configuration. The structure of the
Bayesian network is motivated by the fact that S is dependent
on h, V and z, h is dependent of V and V is dependent on z.
This structure also enables a direct and straightforward way
to generate data: h and z are sampled from their respective
prior distributions while S and V can be generated using
forward physical simulators.
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Fig. 2: Probabilistic graphical model of the environment.
Gray nodes correspond to observed variables and white nodes
to unobserved variables.

D. Objectives

Given our probabilistic graphical model, we formulate the
problem of grasping as the Bayesian inference of the hand
configuration h∗ that is a posteriori the most likely given a
successful grasp and a TSDF voxel grid V. That is, we are
seeking for the maximum a posteriori (MAP) estimate

h∗ = arg max
h

p(h|S = 1,V), (1)

from which we then compute the joint trajectory

τ1:m = Λ(τ0, IK(h∗),V) (2)

where IK is an inverse kinematic solver, τ1:m are waypoints
in the joint space, τm = IK(h∗) and Λ is a path planner.

III. RELATED WORK

Probabilistic approaches for grasping problems are usually
based on likelihood functions which model the probability
of success or a grasp quality metric with respect to an
observation and a grasp pose. Then, different methods can be
used to find the maximum likelihood estimate (MLE) which
corresponds to the final grasp pose. Numerical optimization
can be used when the likelihood is modeled by differentiable
models [3]. Direct regression of the MLE with a learnt
model generates quick output but without capturing the full
distribution [4]. Other approaches identify the maximum
likelihood estimate based on a list of candidates computed
through a grasp map on the sensor space [5], [6]. Similar
to our work, [7] learn models respectively for the likelihood
and the prior. Then, they can optimize via gradient descent
the posterior density. Contrary to our work, they use Euler
angles which can lead to gimbal lock and singularities. Our
method preserves the topology by using Riemannian gradient
descent.

From a statistical perspective, several Bayesian likelihood-
free inference algorithms [8], [9], [10], [11], [12], [13],
[14] have been developed to carry out inference when the
likelihood function is implicit and intractable. These methods
operate by approximating the posterior through rejection
sampling or by learning parts of the Bayes’ rule, such as
the likelihood function, the likelihood-to-evidence ratio, or
the posterior itself. These algorithms have been used across
a wide range of scientific disciplines such as particle physics,
neuroscience, biology, or cosmology [1]. To the best of our
knowledge, our work is one of the first to apply one of those
for the direct planning successful grasps. More specifically,
we rely here on amortized neural ratio estimation [14] to
carry out inference within seconds for any new observation
V. In contrast, an approach such as ABC [8], [9] could
take up to hours to determine a single hand configuration h
since data would need to be simulated on-the-fly for each
observation V due to the lack of amortization of ABC.
Neural posterior estimation [13] is also amortizable but
would have required new methodological developments to
be applicable on distributions defined on manifolds, such as
those needed here for the rotational part of the pose.

IV. LIKELIHOOD-FREE BAYESIAN INFERENCE FOR
MULTI-FINGERED GRASPING

From the Bayes’s rule, the posterior of the hand configu-
ration is

p(h|S,V) =
p(S | h,V)

p(S | V)
p(h | V). (3)

A. Priors

Position The prior over the position StSE := xE is a
uniform distribution over all the dimensions. We first use a
uniform distribution over the cube of length [−1, 1]3, called
p(u) and then use the bijection B(u;V) : [−1, 1]3 →
[xlow, xhigh]× [ylow, yhigh]× [zlow, zhigh] to compute xE, where
the bounds are chosen to be the dimensions of the object
voxel axis aligned bounding box. Then, p(xE | V) =
(B(V)◦p)(u). It ensures that the position and orientation are
within the same numerical values for estimating the density
and the bijection emphasizes our ignorance about interesting
regions of space for grasping.

Orientation The prior over the orientation RSE := qE
is defined as a mixture of power-spherical (PS) distribu-
tions [15] with 20 modes νi (Fig. 3). Each mode is itself
a mixture that satisfies p(qE; ·) = p(−qE; ·). In total, we
have

p(qE) =
1

20

20∑
i=1

PS(qE; νi, κ)

2
+

PS(qE;−νi, κ)

2
. (4)

This prior encodes a top-down approach as well as side
approaches by its 5 main modes νi. The 4 additional modes,
rotated by π

2 , allows us to explore various orientations. We
set the concentration factor κ = 8 for all modes, which keeps
the prior gradients low and not hightly regularizes the MAP.
In this way, our prior covers a large part of the rotation space



Fig. 3: The modes of the orientation distribution. (left)
Encode a top-down approach. (others) Encode side approach.

and is sufficiently informative by contrast to a uniform prior
over the unit sphere S3.

Finally, p(h | V) = p(xE | V)p(qE).

B. Density ratio estimation

The likelihood function p(S | h,V) and the evidence
p(S | V) are both intractable, which makes standard
Bayesian inference procedures such as Markov chain Monte
Carlo unusable. However, drawing samples from forward
models remains feasible with physical simulators, hence
enabling likelihood-free Bayesian inference algorithms.

First, we express the likelihood-to-evidence ratio as,

r(S | h,V) =
p(S | h,V)

p(S | V)
=

p(S,h | V)

p(S | V)p(h | V)
. (5)

By adapting the approach described in [14] for likelihood
ratio estimation, we train a neural network classifier dφ that
we will use to approximate r(S|h,V). The network dφ is
trained to distinguish positive tuples (S,h,V) (labeled y =
1) sampled from the joint distribution p(S,h | V) against
negative tuples (labeled y = 0) sampled from the product of
marginals p(S | V)p(h | V). The Bayes optimal classifier
d∗(S,h,V) that minimizes the cross-entropy loss is given
by

d∗(S,h,V) =
p(S,h | V)

p(S | V)p(h | V) + p(S,h | V)
, (6)

which recovers the likelihood ratio r(S|h) as

d∗(S,h,V)

1− d∗(S,h,V)
=

p(S,h | V)

p(S | V)p(h | V)
=
p(S|h,V)

p(S | V)
. (7)

Therefore, by modelling the classifier with a neural network
dφ trained on the binary classification problem, we obtain
an approximate but amortized and differentiable likelihood
ratio

r̂(S | h,V) =
dφ(S,h,V)

1− dφ(S,h,V)
. (8)

Finally, the likelihood ratio is combined with the prior to
approximate the posterior as

p̂(h|S = 1,V) = r̂(S = 1 | h,V)p(h | V), (9)

which enables immediate posterior inference despite the
initial intractability of the likelihood function p(S | h,V)
and of the evidence p(S | V).

Ensembles tend to produce more conservative posteri-
ors [16]. In our case, we take 4 models and compute the
ratio as

log r̂ = log
1

4
Σ4
i=1 exp log r̂i (10)

The neural network classifiers dφ is architectured as fol-
lows. The hand configuration h enters the neural network
as a tuple of (NB × 3,NB × 4) vector where NB is the
batch size. The position is rescaled into a cube of [−1, 1]
thanks to a bijection. In dφ, V is fed to a 3D convolutional
network made of four convolutional layers followed by a
fully connected layer, as in [5], and which goal is to produce
a vector embedding of the voxel grid. The voxel embedding,
the 4D pose (position and 2D rotation) of the object point
cloud p = f(V) obtained via the TSDF, S and h are then
fed to a subsequent network made of 2 fully connected layers
of 256 neurons. The parameters φ are optimized using Adam
as optimizer.

C. Maximum a posteriori estimation

Due to the intractability of the likelihood function and
of the evidence, Eq. (1) cannot be solved analytically nor
numerically. We rely instead on the approximation given by
the likelihood-to-evidence ratio r̂ to find an approximation
of the maximum a posteriori (MAP) estimate as

ĥ∗ = arg max
h

r̂(S = 1 | h,V)p(h | V) (11)

= arg min
h

− log r̂(S = 1 | h,V)p(h | V), (12)

which we solve using gradient descent. The gradient of
Eq. (12) decomposes as

−∇(x,q) log r̂(S | h,V)p(h | V) =−∇(x,q) log r̂(S | h,V)

−∇(x,q) log p(h | V).
(13)

Our prior p(h | V) has analytical gradients. In fact, uniform
distributions are set to have null gradient everywhere in the
domain. Therefore, ∇xp(h) = 0. By contrast, p(qE) is a
weakly informative prior and has a non null gradient from
the power spherical distribution. Its derivative with respect
to q is

∇qp(q; ν, κ) = C(κ)κ(1 + νTq)κ−1∇q(1 + νTq)

= C(κ)κν(1 + νTq)κ−1,
(14)

where C(κ) is the normalization term. Since the likelihood-
to-evidence ratio estimator r̂ is modelled by a neural net-
work, it is fully differentiable with respect to its inputs and
its gradients can be computed by automatic differentiation.
However, not all variables of the problem are Euclidean
variables and naively performing gradient descent would
violate our geometric assumptions. Let us consider a variable
Z on the smooth Riemannian manifold M = R3 × S3 with
tangent space TZM and a function f : M → R. Since S3
is embedded in R4, f can be evaluated on R3×R4, leading
to the definition of the Euclidean gradients ∇f(Z) ∈ R3 ×
R4. In turn, these Euclidean gradients can be transformed
into their Riemannian counterparts gradf(Z) via orthogonal
projection PZ into the tangent space TZM. Therefore,

gradf(Z) = PZ(∇f(Z)) (15)

where the orthogonal projection onto R3 is the identity I3
and the orthogonal projection onto S3 is Pξ(∇f) = (I4 −



ξξT )∇f at ξ ∈ S3. Thus, we can solve Eq. (12) by projecting
Euclidean gradients of Eq. (13) to the tangent space TZM
and use it in the following update rule

hk+1 = exphk
(−αkgradf(hk)) (16)

with expx(v) : TxM→M is the exponential map.

V. EXPERIMENTS

To validate our approach, we perform a series of experi-
ments in simulation as well as in the real setup. We evaluate
the performance of our method and determine the transfer
capabilities of our network without any fine-tuning.

A. Data generation

The data generating procedure is defined as follow:

z ∼ p(z) (17)

Ik ∼ p(I | z,Tk
WC) (18)

V = f(Ik,Γk) (19)
{h ∼ p(h | V)} (20)

{τ1:m ∼ Λ(τ0, IK(h),V)} (21)
{S ∼ p(S | τ1:m, z)} (22)

We use Pybullet [17] for implementing these functions.
We use the same object assets than VGN [5] for the training
and testing. The latent variables z are described as follow:

Object mesh We sample uniformly an object mesh from
an asset of objects.

Pose of the table TST We randomize the posi-
tion (x, y) ∼ N (0, 0.008) and the rotation qT =
(0., 0., sin( θTable

2 ), cos( θTable
2 )), θTable ∼ U(−5, 5) of the table

with respect to F−→S.
Pose of the object TTO We randomize the posi-

tion (x, y) ∼ U(−l2 ,
l
2 ) and the orientation qO =

(0., 0., sin( θO
2 ), cos( θO

2 )), θO ∼ U(0, 2π) of the object with
respect to F−→T.

Torque applied by the fingers We randomize the final
torque applied by the fingers τ ∼ U(35, 40).

Lateral friction coefficient We randomize the lateral
friction coefficient µ ∼ U(1, 2).

Spinning friction coefficient We randomize the spinning
friction coefficient γ = ηµ, η ∼ N (0.002, 0.0001).

Depth images We add noise to the rendered depth images
in simulation using the additive noise model of [18] with the
same parameters.

B. Simulated Experiments

We evaluate the performance of our method with the
success rate (%). For one round, procedures from (17) to (19)
are done. We find the MAP or the MLE by sampling 1000
initial hand configurations from the prior and we take the best
one. Then, we perform 300 optimization steps with a step
size of 0.005 for the orientation and 0.008 for the position.
Because of the stochastic nature of our MAP estimate, we
recompute the MLE/MAP at a maximum of 3 times if the
path planner fails to find a valid path. Our method reaches a
success rate of nearly 91% with the MAP, demonstrating the

Fig. 4: (left) Object assets used in the real setup. (right)
Example of side grasp.

capabilities to adapt to new objects and correctly lift object.
Moreover, the MLE performs slightly lower (87.3%) than the
MAP. Our weakly informative prior explains the difference in
success rates and motivates the use of a Bayesian approach.

C. Real Robot Experiments

We carry out experiments with a Robotiq 3-finger gripper
attached to a UR5 robotic arm, as shown in Fig. 1. A Intel
Realsense D435i depth sensor is mounted to the flange of
the robotic arm. It produces 848× 480 depth images which
are integrated into a TSDF with a resolution of N = 40
for the network and a resolution of N = 120 for collision
detection using Open3D [19]. The transformation TFC is
calibrated using hand-eye calibration from OpenCV [20].
All the devices are handled within the ROS framework. We
performs 100 rounds with a protocol similar to the simulation
experiments. We randomly select 1 object from the 10 test
objects and put it randomly on the table by hand. The objects
are chosen between seen and unseen objects during training
and for their availability in the lab. Our success rate of
90% is similar than in simulation, which indicates that the
simulation-to-reality transfer works well. Our approximate
ratio learnt successfully several modes to grasp an object
and can switch most of the time between them if the path
planner fails (Fig .4).

In simulation as well as in the real setup, half of the failure
cases are due to the path planner and half are due to wrong
hand configurations making the object slip. We leave the
improvement of these parts as future work.

VI. CONCLUSION

We demonstrate the usefulness and applicability of
simulation-based Bayesian inference to robotic grasping. Our
results show promising performance for determining 6 DoF
grasp poses. Nevertheless, our task is rather simple compared
to others benchmarks. In the next step, we plan to challenge
our method to more complex tasks such as grasping in
cluttered environments.
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