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ABSTRACT

Are score function estimators a viable approach to learning with k-subset sam-
pling? Sampling k-subsets is a fundamental operation that is not amenable to
differentiable parametrization, impeding gradient-based optimization. Previous
work has favored approximate pathwise gradients or relaxed sampling, dismissing
score function estimators because of their high variance. Inspired by the suc-
cess of score function estimators in variational inference and reinforcement learn-
ing, we revisit them for k-subset sampling. We demonstrate how to efficiently
compute the distribution’s score function using a discrete Fourier transform and
reduce the estimator’s variance with control variates. The resulting estimator pro-
vides both k-hot samples and unbiased gradient estimates while being applicable
to non-differentiable downstream models, unlike existing methods. We validate
our approach experimentally and find that it produces results comparable to those
of recent state-of-the-art pathwise gradient estimators across a range of tasks.

1 INTRODUCTION

Subsets are essential in tasks such as feature selection (Balın et al., 2019; Huijben et al., 2019;
Yamada et al., 2020), optimal sensor placement (Manohar et al., 2018), learning to explain (Chen
et al., 2018), stochastic k-nearest neighbors (Grover et al., 2019), and system identification (Brunton
et al., 2016). Therefore, understanding and effectively manipulating subsets is an important step in
improving machine methods that model discrete phenomena.

A cornerstone of modern machine learning is efficient learning, typically achieved through differ-
entiable models optimized via stochastic gradient descent. However, not all operations useful in
modeling are differentiable, necessitating gradient estimation to be compatible with gradient-based
optimization. For instance, discrete sampling, including k-subset sampling, is not amenable to the
reparametrization trick (Kingma & Welling, 2014).

Gradient estimation for Bernoulli and categorical distributions has been extensively studied (Bengio
et al., 2013; Jang et al., 2017; Maddison et al., 2017; Dimitriev & Zhou, 2021; De Smet et al., 2023;
Liu et al., 2023). These distributions are less structured than subset distributions and do not share
their combinatorially large support. A Bernoulli distribution has a support size of 2, a categorical
n, and a k-subset

(
n
k

)
. Still, the methods employed in their optimization serve as a blueprint for

more structured distributions. Existing approaches for differentiable subset sampling (Xie & Er-
mon, 2019; Ahmed et al., 2023; Pervez et al., 2023) use either approximate pathwise estimators or
relaxed sampling. While these methods are effective, they produce biased estimates and relaxed
samples respectively (see Figure 1). This paper seeks to address these limitations by revisiting
score function estimators (Glynn, 1990; Williams, 1992; Kleijnen & Rubinstein, 1996), a technique
well-established in reinforcement learning (Sutton et al., 1999) and variational inference (Ranganath
et al., 2014), but overlooked for subset sampling. In this work, we cover the aforementioned research
gap by posing the following question:

Can score function estimators compete with approximate and relaxed pathwise gradient
estimators in k-subset sampling despite their weaker assumptions?
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Figure 1: Gradient estimation for discrete distributions. Three prominent approaches to gradient estimation
for discrete distributions: (a) approximate score function estimator, (b) pathwise gradient estimator, and (c)
relaxed sampling. The examples listed estimate the gradients of Bernoulli samples, categorical samples, or
both. We propose a score function estimator for k-subset sampling to complement existing methods based on
approximate pathwise derivatives and relaxed sampling (see Section 5). Because it does not use the pathwise
gradient, it is applicable in cases when f is non-differentiable.

We propose score function estimators for k-subset sampling (SFESS) as a complement to existing
methods1. Our proposed approach fundamentally differs from prior works on k-subset sampling (see
Table 1), offering both exact samples and unbiased gradient estimates. Furthermore, it does not as-
sume differentiable downstream models, broadening the possible applications of k-subset sampling
to cases when the downstream model’s gradient is unavailable or computationally expensive.

In addition to the complementary advantages of our proposed approach, our research question holds
significant relevance to the field, as previous work advises against the use of score function esti-
mators for k-subset selection due to their high variance (Xie & Ermon, 2019; Niepert et al., 2021;
Ahmed et al., 2023). Thus, illustrating the potential of this family of methods could facilitate further
progress in a direction that is currently overlooked in the field.

To realize our proposal, we develop an efficient method for computing the score function based
on the discrete Fourier transform (DFT) for computing the Poisson binomial distributions’ PMF
(Fernandez & Williams, 2010). Furthermore, we use control variates to significantly reduce the high
variance of the vanilla score function estimator. In summary, our contributions are the following:

Research gap We identify and address a significant research gap in k-subset sampling where score
function estimators are not being considered despite their conceptual simplicity, desirable properties,
and broad applicability.

Approach We propose a score function estimator for the k-subset distribution featuring an efficient
DFT-based score function calculation and reduced variance using multi-sample control variates.

Results We validate our approach in multiple experimental settings and find comparable results
to state-of-the-art relaxed and approximate pathwise gradient methods, signifying the potential of
score function estimators for k-subset selection.

2 PROBLEM STATEMENT AND MOTIVATION

The gradient estimation problem We are interested in learning with k-subset sampling using the
following gradient:

∇θEpθ,k(z)[f(z)], (1)

where pθ,k is a parameterized distribution over subsets with size k and f is a downstream function
of the subset samples. In practice, f will often be a parameterized function with additional inputs
besides z. The discrete distribution over subsets is not amenable to the reparametrization trick
(Kingma & Welling, 2014) which motivates the development of alternative gradient estimators for
Eq. (1).

1Code available at https://github.com/klaswijk/sfess.
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Table 1: Method comparison. Comparison of methods for learning with k-subset sampling based on the
criteria: producing exact (k-hot) samples, having unbiased gradient estimates (a desirable property in statistical
estimators), compatibility with non-differentiable objectives f , and being free from parameters requiring tuning
(e.g., relaxation temperature, which may require multiple training runs to adjust). Insensitive parameters like
the number of samples used for variance reduction are not considered tuned.

Method Exact samples Unbiased Allows non-differentiable f Tuning-free

GS (Xie & Ermon, 2019) ✗ ✓ ✗ ✗

STGS (Xie & Ermon, 2019) ✓ ✗ ✗ ✗

I-MLE (Niepert et al., 2021) ✗ ✗ ✓ ✗

SIMPLE (Ahmed et al., 2023) ✓ ✗ ✗ ✓

NCPSS (Pervez et al., 2023) ✓2 ✗ ✗ ✓4

SFESS (Ours) ✓ ✓3 ✓ ✓4

Existing approaches and their limitations Existing approaches to learning with k-subset sam-
pling generally fall into one of two categories: approximate gradient methods or relaxed sampling.

Approximate pathwise gradient methods directly modify the gradient calculation. The best known
example is the straight-through estimator (Bengio et al., 2013) which treats the sampling as an
identity function during the backward pass. Recently, Liu et al. (2023) showed that straight-through
estimation works as a first-order approximation of the gradient for Bernoulli and categorical samples.
However, these approximate estimators tend to produce biased gradients.

Relaxed sampling methods replace the distribution with a relaxed distribution so that the
reparametrization trick (Kingma & Welling, 2014) can be used to obtain a gradient. These are
gradients of the relaxed samples, not the discrete samples of the original distribution. Regardless,
these gradients can be used to train a model can be used with discrete samples at test time. Although
this approach can often be effective, it has two significant limitations. One is that it requires using
relaxed samples instead of discrete ones (which may not be possible depending on f ), and the other
is that there is a discrepancy between training and test time: the model trained with relaxed sam-
pling is not guaranteed to generalize to discrete samples at test time. The error of this discrepancy
is difficult to account for.

Common to both approximate pathwise gradients and relaxed sampling is the reliance on differen-
tiable f , which limits their applicability to, e.g., non-differentiable settings in reinforcement learning
or black-box functions. Figure 1 shows the forward and backward passes of the two approaches and
how they differ from score function estimators. For in-depth reviews of Monte-Carlo gradient esti-
mators and the Gumbel-max trick, we refer the reader to Mohamed et al. (2020) and Huijben et al.
(2023) respectively.

Why use black-box gradient estimates? A natural question to ask is what potential benefits
black-box gradient estimates like score function estimators provide. Although discarding the path-
wise gradient theoretically reduces the dimensionality of gradient information by one (Metz et al.,
2021; Liu et al., 2023), it also allows for non-differentiable downstream functions. Interestingly,
Metz et al. (2021) find that the variance of black-box estimates is not necessarily higher than for
pathwise estimators. Furthermore, score function estimators have been used extensively in settings
like variational inference (Ranganath et al., 2014) and reinforcement learning (Sutton et al., 1999)
where they form the basis for algorithms like PPO (Schulman et al., 2017). We summarize some
desirable properties of our proposed method, that stem from it being a score function estimator, and
compare it to existing methods in Table 1. It is also worth noting that score function estimators have
successfully been combined with pathwise estimators for Bernoulli and categorical distributions
(Tucker et al., 2017; Grathwohl et al., 2018).

2NCPSS draws k-hot samples, but relaxes the subset size k such that k varies slightly.
3Using conditional Poisson samples in the forward pass.
4Ignoring the number of samples used for variance reduction, which only needs to be set sufficiently high.
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Figure 2: Toy problem comparison. Bias and variance (left) and error (right) of gradient estimates in a toy
problem (Ahmed et al., 2023) with known ground-truth gradients. All methods use single sample estimates,
except SFESS + VR, where control variates are computed using 32 samples. Estimates are computed using
10,000 samples, with error bars (1 std) from 10 repetitions with different random seeds.

3 METHOD

We are interested in devising a black-box gradient estimator for k-subset sampling with efficacy
similar to the existing techniques. Here, we describe our method including how to compute the
score function and reduce its variance with control variables. The resulting algorithm is presented
in Algorithm 2 along with Gumbel top-k sampling (Kool et al., 2019b) in Algorithm 1 for k-subset
sampling.

Overview We are interested in sampling subsets z of size k given a set of n variables. We consider
the following distribution:

pθ,k(z) = pθ (b |
∑n

i=1 bi = k) =

∏n
i=1 pθ(bi)

pθ (
∑n

i=1 bi = k)
1∑n

i=1 bi = k, (2)

where b ∈ {0, 1}n is independently Bernoulli distributed withf parameters θ ∈ [0, 1]n and 1 denotes
the indicator function. This equation induces a particular distribution over the

(
n
k

)
possible subsets

using only n parameters and is naturally only one of many ways to do so. In sampling design, this
particular approach is known as conditional Poisson sampling (Tillé, 2006).

Previous work has explored approximate pathwise derivatives of various k-subset distributions’ sam-
ples (Xie & Ermon, 2019; Ahmed et al., 2023). In this work, we instead consider score function
estimators that are exact in expectation. Hence, we want to compute the score function defined on
the region where

∑n
i=1 bi = k,

∇θ log pθ,k(z) =

n∑
i=1

∇θ log pθ(bi)︸ ︷︷ ︸
Bernoulli

−∇θ log pθ (
∑n

i=1 bi = k)︸ ︷︷ ︸
Poisson binomial

. (3)

Computing the first term is easy, since each pθ(bi) is Bernoulli distributed. The second term ap-
pears more challenging. It is the score function of a Poisson binomial distribution, a generalized
binomial distribution where the samples are not necessarily identically distributed. Several efficient
methods for computing the Poisson binomial’s PMF have been proposed, including approximate
and recursive methods (Le Cam, 1960; Wadycki et al., 1973; Ahmed et al., 2023). We follow Fer-
nandez & Williams (2010) and compute it using an FFT (Cooley & Tukey, 1965), leveraging its
O(n log n) time-complexity and efficient implementation on modern hardware5. The gradient of
the log probability is computed using automatic differentiation.

Now, being able to compute the score function in Eq. (3), we can write the following score function
estimator:

∇θEpθ,k(z)[f(z)] = Epθ,k(z)[∇θ log pθ,k(z)f(z)] ≈
1

N

N∑
i=1

∇θ log pθ,k(z
(j))f(z(i)), (4)

where N is the number of k-subset samples z(j) ∼ pθ,k(z) used in the Monte-Carlo estimate of the
expectation. For completeness, we derive the standard score function estimator in Appendix A.

5We use the Nvidia cuFFT implementation in PyTorch. See Appendix B for pseudocode.
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Algorithm 1 Subset sampling using Gumbel top-k

Require: Subset parameters θ and size k

1: Sample noise gi ∼ Gumbel(0, 1) for i = 1, . . . , n

2: Compute z ← ArgTopK(log θ + g, k) ▷ A k-hot vector

3: return z

Algorithm 2 SFESS + VR: Score function estimator for k-subset sampling with variance reduction

Require: Initial subset parameters θ and size k, and number of variance reduction samples N

1: repeat
2: Sample z(i) ∼ pθ,k(z) for i = 1, . . . , N ▷ Or conditionally with, e.g., pθ,k(z|x)
3: Compute the Poisson-Binomial likelihood log pθ

(∑n
i=1 b

(j)
i = k

)
using Eq. (6)

4: Compute the score function∇θ log pθ,k(z
(i)) using Eq. (3) and autodiff

5: Evaluate f(z(i)) for i = 1, . . . , N ▷ Or with additional inputs, e.g., f(z,x)

6: Optimize parameters θ using the variance-reduced gradients in Eq. (7)

7: until convergence ▷ Number of steps, threshold, etc.

8: return θ

Efficiently computing the score function The second term of Eq. (3) follows a Poisson binomial
distribution. The likelihood of which can be written as:

pθ (
∑n

i=1 bi = k) =
∑

b∈{0,1}n

pθ(b)1∑n
i=1 bi = k. (5)

Computing the PMF using Eq. (5) requires iterating all 2n binary vectors b which is prohibitively
expensive. Instead, we look for a more efficient method. Eq. (5) in Fernandez & Williams (2010)
gives us this closed-form expression:

pθ (
∑n

i=1 bi = k) =
1

n+ 1

n∑
l=0

(
e−lk 2πi

n+1

n∏
m=1

[
pθ(bm)el

2πi
n+1 + (1− pθ(bm))

])
, (6)

where i =
√
−1. The corresponding discrete Fourier transform (Eq. (6) in Fernandez & Williams

(2010)):

DFT

(
n∏

m=1

[
pθ(bm)e−lk 2πi

n+1 + (1− pθ(bm))
])

l = 0, . . . , n,

is efficiently solved for all k using an FFT Cooley & Tukey (1965). Note that the PMF is a function
of θ and k so it does not need to be recomputed when evaluating Eq. (3) for different samples z.
This is useful for computing the control variate in Eq. (7) where we draw multiple samples with the
same θ.

Reducing variance with control variates The vanilla score function estimator generally suffers
from high variance. While many variance reduction techniques have been proposed (Mnih & Gregor,
2014; Gu et al., 2016; Tucker et al., 2017; Shi et al., 2022), we choose to employ control variates
using multiple samples (Mnih & Rezende, 2016; Kool et al., 2019a) in this work due to its simplicity,
unbiasedness, and lack of additional assumptions. In Section 4, we will see that this straightforward
approach proves highly effective. The estimator with reduced variance is shown below:

∇θEpθ,k(z)[f(z)] ≈
1

N

N∑
i=1

∇θ log pθ,k(z
(j))

(
f(z(j))− 1

N − 1

∑
i ̸=j

f(z(j))

)
. (7)

Drawing approximate samples Having designed our gradient estimator for samples following the
distribution in Eq. (2), we now turn to the sampling operation in the forward pass. Sampling from
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(c) Variance reduction and gradient error.
The cosine difference of the true gradient and
the estimated gradient using SFESS + VR with
different numbers of variance reduction sam-
ples on the toy problem with known gradients.
No VR corresponds to the vanilla SFESS es-
timator. Estimates are computed using 10,000
samples, with error bars (1 std) from 10 repe-
titions with different random seeds.

the distribution described by Eq. (2), i.e., conditional Poisson sampling, presents two challenges.
First, sampling procedures for generating conditional Poisson samples assume parameters θ such
that

∑n
i=1 θi = k. Second, drawing samples efficiently is more challenging than, e.g., Gumbel

top-k sampling, with most procedures using rejection sampling. In practice, we find that bypassing
these problems by using Gumbel-top-k samples as approximate conditional Poisson samples gives
satisfactory results and makes for a simple and efficient forward pass.

Conditional distributions and varaints of f Conditional k-subset distributions pθ(z|x) are a
useful extension of the model presented above that do not change the gradient estimator (the es-
timated gradients are simply backpropagated through the conditioning variable). Similarly, down-
stream functions with additional inputs, e.g., f(z,x), and parameterized functions, e.g., fϕ, are
easily incorporated and optimized alongside the k-subset distribution’s parameters. We investigate
both conditional distribution and neural-network parameterized functions in our experiments (Sec-
tion 4).

4 EXPERIMENTS

In this section, we validate our proposed estimator in three main experimental settings: feature se-
lection, variational autoencoders (VAE), and stochastic k-nearest-neighbors (k-NN). In this set of
problems, the k-subset distribution is used in various ways: as the first operation in feature selec-
tion, as the mid-point bottleneck in a VAE, and in computing the final loss in stochastic k-NN (see
Figure 3a).

We use MNIST (LeCun et al., 1998) and FASHION MNIST (Xiao et al., 2017) with the canonical
train and test splits. We withhold 10,000 samples from the train set for validation. For all training,
we use a batch size of 128 and train for 50,000 steps using the Adam optimizer (Kingma & Ba,
2015) with a learning rate of 1e−4 and parameters β1 = 0.9 and β2 = 0.999. We compare our
proposed method with variance reduction (SFESS + VR) using 32 variance reduction samples to
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relaxed subset sampling (GS) and its straight-through variant (STGS) (Xie & Ermon, 2019), implicit
maximum likelihood estimation (I-MLE) (Niepert et al., 2021), SIMPLE (Ahmed et al., 2023),
and SFESS without variance reduction. For ST and STGS we use the the relaxation temperature
τ = 0.5, which gave the best overall results out of τ ∈ {0.1, 0.5, 1.0}. For I-MLE, we set both the
input and target noise temperature to 1.0. As noted in Table 1, SIMPLE and our method have no
hyperparameters in need of tuning.

4.1 TOY PROBLEM

First, we consider a simple toy setting with known ground-truth gradients. We adapt the toy problem
in Ahmed et al. (2023)6 where the gradient estimator is used to minimize Epθ(z)[∥z − θ∗∥2] where
θ∗ are the ground-truth parameters sampled from a standard normal distribution. Using n = 10 and
k = 5 lets us enumerate all

(
10
5

)
= 256 subsets and compute the ground-truth gradient. Figure 2

shows the estimated bias, variance, and error (1−cosine similarity compared to ground-truth) of the
different estimators. Figure 3c shows the decreasing error of SFESS + VR as the number of variance
reduction samples increases.

4.2 FEATURE SELECTION

Sampling a subset of inputs and estimating the gradients (Balın et al., 2019; Huijben et al., 2019;
Yamada et al., 2020) is an intuitive approach to differentiable feature selection. By being differen-
tiable, the selection can be jointly optimized alongside a downstream network. We consider feature
selection for reconstruction and where a reconstruction network (282 → 200 → 200 → 282 dense
ReLU network) predicts the full set of input features inputs masked by the sampled subset and both
the subset parameters and reconstruction network are optimized using the reconstruction loss (binary
cross entropy). Table 2 shows our results and Figure 4 the convergence of the validation loss.

4.3 VARIATIONAL AUTOENCODERS

Variational Autoencoders (Kingma & Welling, 2014) with latent variables distributed over k-subsets
has been used as a benchmark in previous work on learning with k-subset sampling (Niepert et al.,
2021; Ahmed et al., 2023). We use the approximate ELBO and network architecture of Niepert
et al. (2021). The encoder (282 → 512→ 256→ nd dense ReLU network) encodes the input. The
outputs are reshaped to (d× d). Then, d k-subset sample of length n are drawn and decoded by the
decoder (d2 → 256 → 512 → 282 dense ReLU network). The loss is the sum of a reconstruction
loss (binary cross entropy) and the KL-divergence between each latent distribution and a uniform
prior. Table 3 shows our results and Figure 5 the convergence of the validation loss. Finally, the
wall-clock time is shown in Figure 3b.

4.4 STOCHASTIC k-NEAREST-NEIGHBORS

Our final experiment is stochastic k-NN (Grover et al., 2019). Here, we learn an embedding that opti-
mizes the classification accuracy of k-NN. During training, we sample a query point {xquery,yquery}
and a batch of neighbors {x(i)

neighbor,y
(i)
neighbor}ni=1 (we use n = 128 in our experiments) and encode

them using an encoder gϕ (282 → 512 → 256 → d dense ReLU network). Then, we compute
the Euclidean distances from the query point embedding to all neighbor candidates’ embeddings
{∥gϕ(xquery)− gϕ(x

(i)
neighbor)∥}ni=1 and sample a k-subset of neighbors using the distances as unnor-

malized logits. Finally, the negated proportion of the k-subset with the same label as the query point
is used as a loss. The algorithm is slightly different at test time: we use the entire training set as
candidate neighbors and compute the k-nearest-neighbors deterministically instead of sampling a
k-subset. Table 4 shows the results. The convergence of accuracy on the validation set is shown in
Appendix C. Embeddings of the validation sets are shown in Figure 6.

6Code available at https://github.com/UCLA-StarAI/SIMPLE.
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Table 2: Feature selection results. BCE on the test split. The parameters n and k are the number of inputs and
the number of selections respectively. The means and standard deviations are computed from 5 repetitions with
different random seeds. The best mean result is shown in bold and the second best mean result is underlined.

MNIST FASHION MNIST

Method n k Mean Std Mean Std

GS (Xie & Ermon, 2019) 784 50 0.147 ± 0.005 0.320 ± 0.002
STGS (Xie & Ermon, 2019) 784 50 0.146 ± 0.001 0.318 ± 0.002
I-MLE (Niepert et al., 2021) 784 50 0.182 ± 0.010 0.323 ± 0.001
SIMPLE (Ahmed et al., 2023) 784 50 0.133 ± 0.001 0.311 ± 0.001
SFESS (Ours) 784 50 0.189 ± 0.011 0.326 ± 0.002
SFESS + VR (Ours) 784 50 0.132 ± 0.002 0.307 ± 0.001

GS (Xie & Ermon, 2019) 784 30 0.168 ± 0.004 0.336 ± 0.002
STGS (Xie & Ermon, 2019) 784 30 0.173 ± 0.005 0.335 ± 0.004
I-MLE (Niepert et al., 2021) 784 30 0.206 ± 0.010 0.341 ± 0.005
SIMPLE (Ahmed et al., 2023) 784 30 0.160 ± 0.002 0.327 ± 0.002
SFESS (Ours) 784 30 0.214 ± 0.011 0.343 ± 0.004
SFESS + VR (Ours) 784 30 0.154 ± 0.003 0.320 ± 0.002

Table 3: VAE results. BCE + KL-divergence on the test set. The parameters d, n, and k are the number of
latent subsets, their dimensionality, and size respectively. The means and standard deviations are computed
from 5 repetitions with different random seeds. The best mean result is shown in bold and the second best
mean result is underlined.

MNIST FASHION MNIST

Method d n k Mean Std Mean Std

GS (Xie & Ermon, 2019) 10 10 5 97.36 ± 2.08 241.72 ± 1.57
STGS (Xie & Ermon, 2019) 10 10 5 95.05 ± 1.57 233.68 ± 0.53
I-MLE (Niepert et al., 2021) 10 10 5 99.74 ± 0.77 234.88 ± 0.36
SIMPLE (Ahmed et al., 2023) 10 10 5 81.90 ± 0.10 225.19 ± 0.11
SFESS (Ours) 10 10 5 205.72 ± 0.15 384.27 ± 1.20
SFESS + VR (Ours) 10 10 5 90.04 ± 2.79 227.73 ± 0.12

GS (Xie & Ermon, 2019) 20 20 10 86.25 ± 1.03 248.63 ± 1.87
STGS (Xie & Ermon, 2019) 20 20 10 73.90 ± 0.24 225.06 ± 0.55
I-MLE (Niepert et al., 2021) 20 20 10 84.55 ± 0.45 238.13 ± 1.95
SIMPLE (Ahmed et al., 2023) 20 20 10 67.96 ± 0.14 218.82 ± 0.29
SFESS (Ours) 20 20 10 205.86 ± 0.05 384.81 ± 0.11
SFESS + VR (Ours) 20 20 10 68.83 ± 0.15 218.39 ± 0.15

Table 4: k-NN results. Accuracy on the test set. The parameters d, n, and k are the dimensionality of the
embedding, the number of neighbors sampled in the training steps, and the parameter of k-NN respectively.
The means and standard deviations are computed from 5 repetitions with different random seeds. The best
mean result is shown in bold and the second best mean result is underlined.

MNIST FASHION MNIST

Method d n k Mean Std Mean Std

GS (Xie & Ermon, 2019) 2 128 10 0.950 ± 0.002 0.873 ± 0.002
STGS (Xie & Ermon, 2019) 2 128 10 0.950 ± 0.002 0.873 ± 0.002
I-MLE (Niepert et al., 2021) 2 128 10 0.740 ± 0.037 0.696 ± 0.023
SIMPLE (Ahmed et al., 2023) 2 128 10 0.949 ± 0.002 0.871 ± 0.002
SFESS (Ours) 2 128 10 0.938 ± 0.009 0.778 ± 0.010
SFESS + VR (Ours) 2 128 10 0.949 ± 0.002 0.869 ± 0.001
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Figure 4: Feature selection validation loss. Convergence of BCE on the validation set for feature selection
with k = 30 selections (see Appendix C for k = 50) averaged over 5 repetitions with different random seeds.
The results follow the trend in the toy experiment (see Figure 2).
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Figure 5: VAE validation loss. Convergence of BCE + KL-divergence on the validation set with d = 20,
n = 20, and k = 10 (see Appendix C for d = 10, n = 10, and k = 5) averaged over 5 repetitions with
different random seeds. The effect of variance reduction on SFESS is evident—going from a failure to learn
useful representations to second best among the methods tested.

4.5 ADDITIONAL RESULTS

We provide a few additional studies shedding light on the various empirical aspects of SFESS.
First, we explore the benefit of variance reduction. Figure 3c shows the improved alignment of the
gradients with ground truth on the toy dataset. This improvement comes at the cost of increased
sampling which could affect the computational burden of SFESS. Figure 3b shows the wall-clock
time of SFESS and other baselines, indicating only a minor increase in the total wall-clock time due
to the additional sampling. Finally, while the quantitative evaluation metrics indicate the efficacy of
SFESS+VR compared to baselines, in Figure 6 we illustrate the quality of learned embedding.

5 RELATED WORK

In this section, we provide an overview of existing methods for k-subset sampling. Table 1 shows a
qualitative comparison of the methods’ different properties.

Relaxed Subset Sampling (Xie & Ermon, 2019) extends the Gumbel-Softmax distribution to dis-
tributions over subsets. Despite its elegance, relaxed subset sampling inherits the biased gradient
estimation of the Gumbel-Softmax estimator. Furthermore, the top-k sampling procedure sequen-
tially applies the softmax function k times, which limits scalability with respect to k and potentially
degrades performance (Pervez et al., 2023). The temperature parameter τ ∈ R≥0 controls the relax-
ation strength. The relaxed samples approach uniform as τ →∞ and k-hot as τ → 0.

SIMPLE (Ahmed et al., 2023) approximates the pathwise gradient of the sample using its exact
marginals, achieving both lower bias and variance than ST Gumbel-Softmax top-k.

Neural Conditional Poisson Subset Sampling (NCPSS) (Pervez et al., 2023) relaxes k-subset
sampling in a manner different from relaxed subset sampling (Xie & Ermon, 2019), allowing subset
sizes slightly smaller and larger subsets than k. Then, pathwise gradient estimates are used for
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Figure 6: Stochastic k-NN embeddings. Two-dimensional embeddings (d = 2) of the MNIST (left) and
FASHION MNIST (right) validation sets learned by optimizing the stochastic k-NN objective with k = 10 for
30,000 training steps. The resulting embeddings form clusters of the same class. Note that some of the samples
placed between clusters are indeed ambiguous examples.

differentiable optimization. The authors show that NCPSS is more scalable than relaxed subset
sampling and that the subset size k can be optimized alongside the distribution’s parameters.

Implicit Maximum Likelihood Estimation (I-MLE) (Niepert et al., 2021) uses a perturb-and-
MAP approach that is applicable to general optimization problems, with subset sampling as a special
case.

Other methods In some settings, a subset distribution can be modeled as either the concatenation
of n Bernoulli variables or the sum of k categorical variables. This way, a host of gradient esti-
mates for Bernoulli and categorical variables can be used (Yamada et al., 2020; Paulus et al., 2021;
Dimitriev & Zhou, 2021; Shi et al., 2022; De Smet et al., 2023; Liu et al., 2023). However, neither
option directly models k-subset sampling. Bernoulli variables require some constraint (e.g., a loss
term) limiting the subset size, and a sum of categoricals requires nk parameters and runs the risk
of duplicate inclusions (Nilsson et al., 2024). Finally, there are techniques for relaxed sampling of
other discrete structures like permutation matrices, trees, or graphs (Paulus et al., 2020).

6 CONCLUSION

In this work, we identified a research gap to explore the viability of score-function estimators for
learning with k-subset sampling. We devised a simple approach and showed its efficacy in a variety
of tasks achieving comparable results to existing state-of-the-art. This is a significant finding not
only due to the complementary properties and wider applicability of our approach but also due to its
dismissal in the current literature. The main limitation of our proposed estimator is the need to draw
multiple samples for variance reduction. This means we need to evaluate f multiple times, which
can be costly or impossible in some settings. Another limitation is using Gumbel top-k samples
as approximate conditional Poisson samples in the forward pass, which introduces some bias in
practice. We believe our work paves the way for future research in differentiable k-subset sampling,
such as combining score-function and pathwise estimators similarly to what was done for Bernoulli
and categorical distributions. (Tucker et al., 2017; Grathwohl et al., 2018).

10



Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

The authors would like to thank Denis Korzhenkov for bringing our attention to the differences be-
tween Gumbel top-k sampling and conditional Poisson sampling. We would also like to thank Luca
Franceschi for valuable feedback and for connecting us with Andrei-Marian Manolache, Ahmed
Kareem, and Mathias Niepert who assisted greatly with applying SIMPLE.

This work was partially supported by the Swedish e-Science Research Centre (SeRC) and KTH
Digital Futures. The computations were enabled by resources provided by the National Academic
Infrastructure for Supercomputing in Sweden (NAISS), partially funded by the Swedish Research
Council through grant agreement no. 2022-06725 as well as the Berzelius resource provided by the
Knut and Alice Wallenberg Foundation at the National Supercomputer Centre.

REFERENCES

Kareem Ahmed, Zhe Zeng, Mathias Niepert, and Guy Van den Broeck. SIMPLE: A Gradient Esti-
mator for k-Subset Sampling. In International Conference on Learning Representations, 2023.

Muhammed Fatih Balın, Abubakar Abid, and James Zou. Concrete Autoencoders: Differentiable
Feature Selection and Reconstruction. In International Conference on Machine Learning, 2019.
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Yves Tillé. Sampling Algorithms. In Sampling Algorithms. Springer New York, 2006.

George Tucker, Andriy Mnih, Chris J. Maddison, Dieterich Lawson, and Jascha Sohl-Dickstein. RE-
BAR: Low-variance, unbiased gradient estimates for discrete latent variable models. In Advances
in Neural Information Processing Systems, 2017.

Walter J. Wadycki, B. K. Shah, P. D. Ghangurde, Edward J. Dudewicz, Nathan Mantel, Charles C.
Brown, Harold J. Larson, Donald R. Barr, James W. Frane, Bernard Saperstein, I. J. Good, and
Howard L. Jones. Letters to the Editor. The American Statistician, 27:123–127, 1973.

Ronald J. Williams. Simple Statistical Gradient-Following Algorithms for Connectionist Reinforce-
ment Learning. Machine Learning, 8:229–256, 1992.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel Image Dataset for Bench-
marking Machine Learning Algorithms. arXiv preprint arXiv:1708.07747, 2017.

Sang Michael Xie and Stefano Ermon. Reparameterizable Subset Sampling via Continuous Relax-
ations. In International Joint Conference on Artificial Intelligence, 2019.

Yutaro Yamada, Ofir Lindenbaum, Sahand Negahban, and Yuval Kluger. Feature Selection using
Stochastic Gates. In International Conference on Machine Learning, 2020.

13



Published as a conference paper at ICLR 2025

A DERIVING THE SCORE FUNCTION ESTIMATOR

In this appendix, we derive the score function estimator (Williams, 1992) which provides a Monte-
Carlo estimate of the objective’s gradient. We adapt the proof from Mohamed et al. (2020) (with
annotations added):

∇θEpθ(z)[f(z)] = ∇θ

∑
z

pθ(z)f(z) By definition of E (8)

=
∑
z

∇θpθ(z)f(z) Interchange gradient and summation

=
∑
z

pθ(z)∇θ log pθ(z)f(z) By log derivative rule

= Epθ(z)[f(z)∇θ log pθ(z)] By definition of E (9)

≈ 1

N

N∑
i=1

f(z(i))∇θ log pθ(z
(i)) Monte-Carlo estimate (10)

By the law of large numbers, the Monte-Carlo estimator in Eq. (10) converges to the expected value
in Eq. (9) as N →∞, which is exactly the value of the true gradient in Eq. (8). Hence, the estimator
is an unbiased estimator of the true gradient.

B SCORE FUNCTION CALCULATION

A key component of SFESS is calculating the score function in Eq. (3). The unconditional indepen-
dent Bernoulli distribution is renormalized by the Poisson binomial distribution. This renormaliza-
tion factor is calculated following Fernandez & Williams (2010). Listing 1 outlines this calculation
in pseudocode.

Listing 1 PyTorch-style pseudocode for calculating the Poisson-Binomial PMF (Fernandez &
Williams, 2010).
import torch
import cmath

def poibin_prob(theta, k):
n = theta.size(0)
i = torch.arange(n + 1).unsqueeze(-1)
c = cmath.exp(2j * torch.pi / (n + 1))
prod = torch.prod(theta * c**i + (1 - theta), dim=1)
probs = torch.fft.fft(prod).real / (n + 1)
return probs[k]
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C ADDITIONAL LOSS CURVES
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Figure 7: Feature selection validation loss. Convergence of BCE on the validation set for feature selection
with for k = 50 averaged over 5 repetitions with different random seeds.
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Figure 8: VAE validation loss. Convergence of BCE + KL-divergence on the validation set with d = 10,
n = 10, and k = 5 averaged over 5 repetitions with different random seeds.
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Figure 9: k-NN validation accuracy. Convergence of accuracy on the validation set with d = 2, n = 128,
and k = 10 averaged over 5 repetitions with different random seeds.

15


	Introduction
	Problem Statement and Motivation
	Method
	Experiments
	Toy Problem
	Feature selection
	Variational Autoencoders
	Stochastic k-Nearest-Neighbors
	Additional Results

	Related Work
	Conclusion
	Deriving the Score Function Estimator
	Score Function Calculation
	Additional Loss Curves

