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Abstract

Detecting deepfake videos is highly challenging given
the complexity of characterizing spatio-temporal artifacts.
Most existing methods rely on binary classifiers trained us-
ing real and fake image sequences, therefore hindering their
generalization capabilities to unseen generation methods.
Moreover, with the constant progress in generative Artifi-
cial Intelligence (AI), deepfake artifacts are becoming im-
perceptible at both the spatial and the temporal levels, mak-
ing them extremely difficult to capture. To address these
issues, we propose a fine-grained deepfake video detec-
tion approach called FakeSTormer that enforces the mod-
eling of subtle spatio-temporal inconsistencies while avoid-
ing overfitting. Specifically, we introduce a multi-task learn-
ing framework that incorporates two auxiliary branches for
explicitly attending artifact-prone spatial and temporal re-
gions. Additionally, we propose a video-level data syn-
thesis strategy that generates pseudo-fake videos with sub-
tle spatio-temporal artifacts, providing high-quality sam-
ples and hand-free annotations for our additional branches.
Extensive experiments on several challenging benchmarks
demonstrate the superiority of our approach compared to
recent state-of-the-art methods. The code is available at
https://github.com/10Ring/FakeSTormer.

1. Introduction

With the advances in generative modeling [22, 43], deep-
fake videos have become alarmingly realistic. Despite their
interest in several applications, such as entertainment and
education, this type of technology also raises societal con-
cerns [5, 45, 53]. There is therefore an urgency for develop-
ing effective deepfake detection methods.

In the literature, several deepfake detection techniques
aim to model spatial artifacts by treating each frame inde-
pendently [3, 6, 7, 15, 33, 39, 41, 42, 46, 48, 69]. While
this is reasonable when dealing with frame-level genera-
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Figure 1. a) Traditional video-based methods [20, 23, 25, 56, 57,
64, 67, 71] versus b) the proposed multi-task learning framework;
c) Visualization of the temporal vulnerabilities. Note that only
some temporal locations are shown.

tion methods [32, 51, 73], it becomes less adequate in the
presence of video-level manipulation techniques [1, 19, 58],
where temporal and spatial artifacts are intertwined.

For that reason, researchers have explored video-based
deepfake detection methods capable of modeling spatio-
temporal artifacts [20, 23, 25, 56, 64, 67, 71]. Those meth-
ods mainly rely on a deep neural network formed by a sin-
gle binary classification branch that is trained using a fixed
dataset with real and fake data (see Figure 1-a). As a re-
sult, they suffer from two main limitations, namely: (1) The
lack of generalizability - As highlighted in [33, 39, 42, 48],
models trained with a standalone binary classifier tend to
overfit the type of deepfakes they are trained on, resulting in
poor generalization to unseen manipulations; (2) The lack
of robustness to high-quality (HQ) deepfake videos - The



quality of deepfake videos is improving continuously, re-
sulting in subtle spatio-temporal artifacts. As such, vanilla
single-branch architectures trained solely with binary super-
vision fail to fully capture them, necessitating the design of
appropriate attention mechanisms.

To address the generalization issue, video-level data syn-
thesis approaches [24, 34, 62] have been introduced to
encourage models to learn more generic representations.
However, these methods usually simulate exaggerated tem-
poral variations that are inherently different from artifacts
in hyper-realistic deepfake videos. On the other hand, to
model localized spatio-temporal inconsistencies, some re-
cent methods [63, 67] have used dedicated architectures in-
tegrating an implicit attention mechanism. Nevertheless,
these models still rely solely on a binary classifier with no
guarantee of extracting artifact-prone fine-grained traces.

Interestingly, in image-based deepfake detection, it has
been recently demonstrated that the use of a tailored multi-
task learning framework for explicitly attending artifact-
prone small regions coupled with a subtle data synthesis
strategy can be a way to enhance generalization and, at the
same time, robustness to high-quality deepfakes [41, 42].
Nevertheless, such an approach has been disregarded in the
field of video-level deepfake detection, as its extension to
the video level is not straightforward. In particular, it would
necessitate the characterization of subtle temporal artifacts
that are inherently different from spatial ones, within both
the multi-task learning framework and the data synthesis.

In this paper, we redefine deepfake video detection as
a fine-grained detection task by proposing a multi-branch
network that leverages synthesized data and incorporates
specialized learning objectives specifically targeting both
subtle spatial and temporal artifacts. As shown in Fig-
ure 1-b, a novel multi-task learning framework, termed
FakeSTormer is introduced. It is formed by two auxil-
iary parallel branches in addition to the standard classifi-
cation head, namely: (1) a regression temporal branch
incorporating an explicit attention that aims at locating the
vulnerability-prone temporal locations. It has been shown
that regressing spatial vulnerabilities in specific points [42]
or patches [41] can help improve the generalizability of a
deepfake detector model. We refer to the definitions given
in [41, 42] which describe: “vulnerable patches/points as
the patches/points that are the most likely to embed blending
artifacts”. To generalize this concept to the temporal do-
main, we propose locating temporal high changes in spatial
vulnerable patches (see Figure 1-c). (2) a spatial branch to
ensure a balance between the spatial and the temporal do-
mains. In fact, detecting spatial artifacts in addition to tem-
poral ones is crucial [56, 67]. For that purpose, we propose
predicting frame-wise spatial vulnerabilities.

To create hand-free ground truths for the proposed
branches, we introduce a HQ video-level data synthesis al-

gorithm, called “Self-Blended Video (SBV)”, inspired by
“Self-Blended Image (SBI) [48]”, enforcing temporal co-
herence using two proposed modules on top of SBI (detailed
in Section. 3.1). Our experiments demonstrate that sim-
ply training a baseline classification model on SBV enables
achieving on par performance w.r.t. state-of-the-art (SOTA),
highlighting the effectiveness of SBV. Finally, for enhanc-
ing spatial and temporal modeling, we revisit the TimeS-
former [2] architecture that we use as our backbone. In par-
ticular, we leverage TimeSformer’s decomposed temporal
and spatial attention on embedded patches, appending clas-
sification tokens for each frame and for each patch across
frames, rather than a single token for the entire video. These
classification tokens are then used within the spatial and
classification heads, while the embedded patches are used
within the temporal head. Extensive experiments on several
well-known deepfake detection benchmarks show that our
method outperforms the existing SOTA approaches.
Contributions. In summary, we propose in this paper:

• A novel multi-task learning framework using only real
data for fine-grained video-based deepfake detection.

• Two auxiliary branches that capture both temporal and
spatial vulnerabilities, that are fined-grained by defini-
tion.

• A video-level data synthesis technique called SBV that
generates high-quality pseudo-fakes and is supported by
a vulnerability-driven cutout augmentation strategy to
avoid overfitting specific artifact-prone regions.

• A revisited version of the TimeSformer [2], specifically
tailored for the proposed video-based deepfake detector.

• Extensive experiments and analyses conducted on several
challenging datasets.

Paper organization. Section 2 reviews related work on
video deepfake detection. Section 3 describes the proposed
FakeSTormer method. Section 4 presents experiments and
results. Finally, Section 5 concludes with future work.

2. Related Work

Video-based Deepfake Detection. As highlighted in [56,
71], using a naive spatio-temporal binary classification
model for video-level deepfake detection can lead the model
to overfit obvious artifacts, resulting in poor generaliza-
tion to unseen manipulations. To address this, FTCN [71]
proposes a fully temporal convolution network by reduc-
ing the spatial kernel size to one, hence decreasing the
likelihood of focusing only on spatial artifacts. LipForen-
sics [25] considers solely the mouth region, while spatio-
temporal dropout [64] randomly removes parts of the in-
put frames in both spatial and temporal domains. AltFreez-
ing [56] separates convolution layers into spatial and tempo-
ral ones, failing to model long-term dependencies. Instead
of using convolution layers, ISTVT [67] utilizes a video-



based Vision Transformer [16] with self-attention to extract
longer-range correlations. Meanwhile, [9] decomposes fea-
tures into spatial and temporal components. TALL [57] em-
ploys an image-level deepfake detector by converting video
frames into a thumbnail layout. Despite being promising,
most of the aforementioned methods solely rely on a sin-
gle binary classifier that implicitly guides the feature ex-
traction. As highlighted in the literature on image-based
deepfake detection [6, 15, 33, 42], this approach might lead
to overfitting specific artifacts present in training datasets.
Moreover, the absence of an explicit attention mechanism
to spatio-temporal artifact-prone regions can lead to poor
robustness to high-quality artifacts.
Data Synthesis. A highly effective approach for enhancing
the generalizability of deepfake detectors is training mod-
els with synthesized data. While frame-level solutions have
been extensively studied [6, 15, 33, 48, 68], video-level
augmentations remains relatively underexplored. In recent
works, STC [34] generates pseudo-fake samples via time-
shuffling, VB [62] perturbs landmarks per frame without
imposing temporal coherence, while ST-SBV [24] injects
temporal artifacts through random face scaling and blurring
over time. However, these methods often introduce exag-
gerated temporal distortions that differ from HQ deepfakes
typically exhibiting finer temporal inconsistencies.

3. Methodology
Let V ≜ ∪N

i=1{(Xi, yi)} be a training dataset formed
by N videos, where Xi denotes the ith video sample and
yi its associated label indicating whether the clip is real
(yi = 0) or fake (yi = 1). Traditional methods [20, 23,
25, 56, 57, 64, 67, 71] aim to learn jointly a feature extrac-
tor Φ : V 7→ F and a binary classifier f : F → {0, 1} by
minimizing the standard binary cross-entropy (BCE) loss
LBCE(f(Φ(Xi)), yi) using the entire training set V , with
F being the learned feature space. As previously discussed
in [33, 39, 42, 48] and also highlighted in Section 1, such a
strategy might lead to poor generalization capabilities to un-
seen generation methods while providing only binary out-
puts that are not interpretable.

To tackle these issues, inspired by the literature on
image-level deepfake detection [6, 15, 33, 42, 68], we
introduce a novel multi-task learning framework called
FakeSTormer that only relies on the real data subset denoted
as Vr ⊂ V . Specifically, in addition to the binary clas-
sifier f , our framework includes two additional branches
h : F → H and g : F → G that aim at triggering the learn-
ing of localized temporal and spatial artifact-prone features,
respectively, through relevant auxiliary tasks. Note that H
and G denote respectively the output spaces of h and g. The
proposed branches are depicted further in Section 3.2. To
provide ground truth to those branches and at the same time
avoid overfitting to specific manipulations, we apply to each

video belonging to Vr a data synthesis method described in
Section 3.1, resulting in a pseudo-fake subset denoted as
V r̃. Hence, our framework is trained using Ṽ ≜ {Vr ∪V r̃}.

3.1. Video-Level Data Synthesis and Augmentation
Self-Blended Video. Blending-based data synthesis
methods have demonstrated great performance in image-
based deepfake detection [6, 7, 33, 41, 42, 48, 68]. In fact,
as the blending step is common to different manipulation
types, they contribute to the improvement of the general-
ization aspect in deepfake detection [33, 42]. Nevertheless,
such an approach has been overlooked in the context of
video-based deepfake detection. Hence, we propose to
extend blending-based data synthesis to the video level. In
particular, we revisit Self-Blended Image (SBI) [48], given
its ability to produce high-quality pseudo-fake images. The
proposed data synthesis approach, termed Self-Blended
Video (SBV), is constituted of two main components
building on top of SBI, i.e., a Consistent Synthesized
Parameters (CSP) module followed by a Landmark Inter-
polation module (LI) for preserving the temporal coherence
of synthesized videos, which is essential for producing
high-quality synthesized videos.

Specifically, given a real video Xr
i ∈ Vr formed by T

consecutive frames, we start by extracting a set of 2D land-
marks Li(t) = {lij(t)}1≤j≤n at each instant t from Xr

i (t),
where n refers to the number of landmarks and {lij(t)} ∈
R2. Then, we apply SBI to the 1st video frame denoted
as Xr

i (t0) to obtain a pseudo-fake image, i.e., Xr̃
i (t0) and

a blending mask Mi(t0). All related blending parameters
θ(sbi) (e.g., ConvexHull type, Mask deformation kernels,
blending ratio, etc.) are then conserved for synthesizing
the remaining video frames. However, using those param-
eters solely cannot guarantee the temporal consistency of
pseudo-fake videos since the geometry of landmarks can
significantly vary over time. To mitigate the issue, we pro-
pose to re-interpolate each landmark li(t) based on li(t−1)
for t > t0 as follows,

li(t) =


li(t− 1) +

li(t)− li(t− 1)

round(d/d̄)
, if d > τ

where d = ∥li(t)− li(t− 1)∥2/n
li(t), otherwise,

(1)

where d represents the normalized distance between the po-
sition of a given landmark at the instants t and t − 1, τ
is a constant threshold for determining when to interpo-
late (interpolation intervenes only in the presence of dras-
tic changes), and d̄ is empirically chosen. Overall, a higher
d value will push the updated point to move closer to the
previous landmark position li(t− 1), hence contributing to
smooth the landmark position over time. However, exces-
sive smoothing can be disadvantageous, as it can discard
temporal artifacts. To address this, we use a round operator
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Figure 2. I) Overview of the proposed framework: Our multi-task learning framework, FakeSTormer, consists of three branches, i.e., the
temporal branch (h), the spatial branch (g), and the standard classification branch (f ). Those branches are specially designed to facilitate
the disentanglement learning of spatial-temporal features. The hand-free ground-truth data to train the framework are generated based
on our proposed video-level data synthesis algorithm coupled with a vulnerability-driven Cutout strategy. II) Overview of generating a
self-blended video: It contains two main components, including a landmark interpolation module (LI) and the consistent utilization of
synthesized parameters (CSP). III) Examples of pseudo-fake videos: with(w/ ) and without(w/o) vulnerability-driven Cutout and their
corresponding soft labels. We apply the Cutout data augmentation at the same spatial locations throughout video frames. IV) Extraction
of temporal vulnerabilities: We compute derivatives of the spatial vulnerabilities over time.

to incorporate slight errors. Hence, the proposed SBV data
synthesis produces high-quality pseudo-fake videos incor-
porating subtle temporal artifacts.

As a result, we obtain the pseudo-fake video Xr̃
i ∈ V r̃

and its blending mask sequence Mi ∈ RT×H×W , with H
and W being the image height and width, respectively. An
illustration of SBV is given in Figure 2-II. Additional sam-
ples, as well as the detailed algorithm, are provided in sup-
plementary materials. It is important to note that, despite
being simple, SBV is generic and applicable to any existing
video-level deepfake detection approach.

Vulnerability-Driven Cutout Augmentation. Previous
works [54, 72] have demonstrated that deep learning meth-
ods are often impacted by overfitting. Deepfake detectors
might even be more sensitive to this phenomenon as deep-
fakes are typically characterized by localized artifacts [42].
One solution to regularize training is data augmentation.
As such, we propose, in addition to SBV, a novel Cutout
data augmentation driven by vulnerable patches, i.e., im-
age patches that are prone to blending artifacts [41]. We
posit that by masking the most vulnerable regions, overfit-
ting risks will be reduced, as the model will be pushed to
learn from other areas. This masking strategy has already
been explored in other computer vision fields such as Clas-
sification [8, 12], Object Detection [21] demonstrating great

potential.
Specifically, similar to [33], we create a set of blending

boundaries B using a randomly generated blending mask
M as follows,

B = (1−M) ∗M ∗ 4,B ∈ RT×H×W , (2)

with ∗ being the element-wise multiplication and 1 an all-
one matrix. Inspired by [41], vulnerability values are then
quantified at the patch level in a non-overlapping manner by
applying a MaxPooling function as follows,

B̄ = MaxPooling(B), B̄ ∈ RT×
√
N×

√
N , (3)

where N indicates the number of patches.
After that, we define a threshold τcutout that is ran-

domly selected from the range (0.5, 1.0]. We use the
latter to define the set of patches to be masked P ={
(l,m) | B̄l,m(t0) > τcutout

}
within the first frame. The

set P is then used to mask out patches at those locations
not only in the first frame but also in the entire video to
enforce temporal consistency that is crucial for generating
high-quality pseudo-fakes. After masking those patches
over time, we finally obtain the masked blending boundary
denoted as B̃. This results in masking the most vulnerable
regions, i.e., the regions that are the most likely to include
blending artifacts. Figure 2-III shows some examples of the
proposed cutout augmentation.



3.2. FakeSTormer
Our multi-task framework, called FakeSTormer, is in-

spired by [41, 42], where auxiliary branches are designed
to push the feature extractor to focus on vulnerabilities. As
discussed earlier, the vulnerability is defined in [41, 42]
as the pixels/patches that are the most likely to be im-
pacted by blending artifacts. This strategy is therefore
claimed to allow the detection of subtle artifacts that are
generic across different types of manipulations. While such
a vulnerability-driven approach has shown very promising
results [41, 42], it does not take into account the tempo-
ral nature of videos. Therefore, in addition to spatial vul-
nerabilities, we argue that there is a need to model tempo-
ral vulnerabilities, which we define as significant temporal
changes in the blending boundary. Specifically, we intro-
duce two additional branches, namely a temporal head h
and a spatial one g. The branch h predicts the derivatives
of the blending boundary over time which can reflect high
changes, typically characterizing temporal artifacts. More-
over, we suggest the use of a spatial branch g which enables
predicting soft labels representing the forgery intensity en-
coded in each frame, computed from vulnerability informa-
tion. The proposed framework relies on the TimeSformer
backbone [2], which we revisit for better modeling spatial
and temporal information.

Herein, we first describe the proposed revisited
TimeSformer-based feature extractor Φ in Section 3.2.1.
We then detail the two additional temporal and spatial heads
in Section 3.2.2 and Section 3.2.3, respectively. Finally, we
give the overall training details in Section 3.2.4.

3.2.1. Backbone: Revisited TimeSformer
We choose TimeSformer [2] as our feature extractor

given its ability to effectively capture separate long-range
temporal information and spatial features. In TimeSformer,
a video input X ∈ RC×T×H×W results in an embedding
matrix input Z0 ∈ RT×N×D. A global class token zcls at-
tends all patches and is then used for classification. This
mechanism implicitly captures mixed spatio-temporal fea-
tures, which might lead to overfitting one type of artifact.
We revisit it slightly in order to decouple the spatial and
temporal information by considering two sorts of additional
tokens (one spatial and one temporal).

For that purpose, we attach in each dimension of Z0, a
spatial token z0s ∈ RD and a temporal token z0t ∈ RD, re-
spectively. These tokens will independently interact only
with patch embeddings belonging to their dimension axis
by leveraging the decomposed SA [2]. This mechanism
not only facilitates the disentanglement learning process of
spatio-temporal features but is also beneficial to optimize
the computational complexity of O(T 2 +N2) as compared
to O(T 2 · N2) in vanilla SA. Those tokens will be then
fed into L (L = 12 as default) transformer encoder blocks,

as described in Figure 2-I. Formally, the feature extraction
process can be summarized as follows,

[ZL, zLs , z
L
t ] = Φ(X), (4)

where ZL is the final patch embedding matrix, zLs the result-
ing set of spatial tokens, and zLt the resulting set of tempo-
ral tokens that will be respectively sent to the temporal head
h, the spatial head g, and the classification head f . More
details about the implementation of the proposed revisited
TimeSformer are given in supplementary materials.

3.2.2. Temporal Head h

Ground Truths. Our temporal head h aims to model fine-
grained temporal vulnerabilities in deepfake videos through
a regression task. First, to generate ground truth data for
the branch h, we hypothesize that temporal high-changes in
the blending boundary can reflect the presence of temporal
artifacts (see Figure 2-IV). To achieve this, we compute D
based on B̃ such that:

D =
∂B̃

∂t
, D ∈ RT×

√
N×

√
N . (5)

More details regarding the derivative calculation are pro-
vided in supplementary materials. To stabilize training, D is
standardized resulting in D̂ ∈ RT×

√
N×

√
N . Experiments

with different normalization strategies are reported in sup-
plementary materials.
Architecture Design. In order to construct the regression
head for predicting D̂, we take the patch embedding matrix
ZL as input and process them to produce 3D features as
follows,

F = Reshape(ZL),F ∈ RD×T×
√
N×

√
N . (6)

To estimate temporal derivatives, we employ two 3D convo-
lution blocks (3DCnvB) with 3-dimensional temporal ker-
nels and 1-dimensional spatial kernels [71] as follows,

D̃ = h(F) = 3DCnvB3×1×1(3DCnvB3×1×1(F)), (7)

where D̃ ∈ RT×
√
N×

√
N . Each convolution block com-

prises a 3D convolution layer, followed by a BatchNorm
and a GELU layer.
Objective Function. For training the temporal branch, we
optimize the following Mean Squared Error (MSE) loss,

Lh =
1

T ×N
∥D̂− D̃∥22, (8)

with ∥.∥2 referring to the L2 norm.

3.2.3. Spatial Head g

Ground Truths. To avoid overfitting one type of artifact,
we enforce the model to explicitly predict soft labels repre-
senting the intensity level of spatial artifacts for each video



frame. Note that several works [4, 40, 49, 52, 66] have
leveraged soft labels for training regularization. Given a
pseudo-fake video X = (X(t))t∈[[1,T ]] formed by T frames
and B̃ = (B̃(t))t∈[[1,T ]] its associated cutout blending
boundary, the ground truth for these soft labels is generated
for each frame t as follows,

p(t) = max
l,m∈[[1,

√
N ]]

(B̃(t)), (9)

resulting in the ground truth for training the spatial branch
denoted as p = (p(t))t∈[[1,T ]]. We note that p = 1T if
cutout is not applied and p = 0T for a real video.
Architecture Design. To predict the proposed soft labels, a
Multi-Layer Perceptron (MLP) is applied to the set of spa-
tial tokens zLs , as follows,

p̃ = g(zLs ) = MLP(zLs ), p̃ ∈ RT . (10)

Objective Function. To train the spatial branch, we opti-
mize the following Binary Cross Entropy (BCE) loss similar
to [52, 66],

Lg = BCE(p̃,p). (11)

3.2.4. Overall Training Objective
Finally, for the standard classification head f , we use the

set of temporal tokens zLt such that the predicted label ỹ is
given by,

ỹ = f(zLt ) = MLP(zLt ). (12)

The classification loss Lc is then given by applying a BCE
between the ground-truth label y and the predicted label ỹ.

Overall, the network is trained by optimizing the follow-
ing loss:

L = λcLc + λhLh + λgLg , (13)

where λc, λh, λg are hyper-parameters to balance the train-
ing of the three branches.

4. Experiment
4.1. Settings
Datasets. We set up our datasets following several
works [3, 9, 55–57, 59, 67, 71]. For both training and val-
idation, we employ FaceForensics++ (FF++) [46], which
consists of four manipulation methods for the fake data
(Deepfakes (DF) [10], FaceSwap (FS) [31], Face2Face
(F2F) [51], and NeuralTextures (NT) [50]). It can be noted
that, for training, we use only the real videos and gener-
ate pseudo-fake data using our synthesized method, SBV.
By default, the c23 version of FF++ is adopted, following
the recent literature [9, 56, 57, 67, 71]. For further vali-
dation, we also evaluate on the following datasets: Celeb-
DFv2 (CDF) [36], DeepfakeDetection (DFD) [17], Deep-
fake Detection Challenge Preview (DFDCP) [13], Deep-
fake Detection Challenge (DFDC) [14], WildDeepfake

Method Training Test set AUC (%)
Real Fake CDF DFD DFDCP DFDC DFW DiffSwap

Xception [46] ✓ ✓ 73.7 - - 70.9 - -
MATT [69] ✓ ✓ 68.3 92.9 63.0 - 65.7 -
RECCE [3] ✓ ✓ 70.9 98.2 - - 68.2 -

SBI [48] ✓ × 90.6 - - 72.4 - -
SFDG [55] ✓ ✓ 75.8 88.0 73.6 - 69.3 -
LSDA [60] ✓ ✓ 91.1 - 77.0 - - -
STIL [23] ✓ ✓ 75.6 - - - - -

LipForensics [25] ✓ ✓ 82.4 - - 73.5 - -
RealForensics [26] ✓ ✓ 86.9 82.2 75.9 - - -

FTCN [71] ✓ ✓ 86.9 94.4 74.0 71.0 - -
ISTVT [67] ✓ ✓ 84.1 - 74.2 - - -

AltFreezing [56] ✓ ✓ 89.5 98.5 - - - -
Swin+TALL [57] ✓ ✓ 90.8 - 76.8 - - -

StyleLatentFlows [9] ✓ ✓ 89.0 96.1 - - - -
LFGDIN [63] ✓ ✓ 90.4 - 80.8 - - 85.7

FakeSTormer (T = 4) ✓ × 92.4 98.5 90.0 74.6 74.2 96.9
FakeSTormer (T = 8) ✓ × 92.4 98.2 90.0 74.9 75.9 97.1

FakeSTormer (T = 16) ✓ × 92.8 98.6 90.2 75.1 75.3 97.2

Table 1. Generalization to unseen datasets. AUC (%) compar-
isons at video-level on multiple unseen datasets [13, 14, 17, 36,
70, 74]. All detectors are trained on FF++(c23). Results are di-
rectly extracted from the original papers and from [25, 42]. Bold
and Underlined text, respectively highlight the best and the second
best performance, excluding the variants of our framework with
T = 8 and T = 16.

Method Training set Cross-dataset DF40 subset
Real Fake CDF DFDCP DiffSwap BlendFace FSGAN MobileSwap

Face X-ray [33] ✓ ✓ 79.5 - - - - -
PCL+I2G [68] ✓ ✓ 90.0 74.3 - - - -

SLADD [6] ✓ ✓ 79.7 - - - - -
SBI [48] ✓ × 93.2 86.2 90.6 86.5 85.4 86.6

LAA-Net [42] ✓ × 95.4 86.9 92.1 91.2 94.2 93.9
STC-Scratch [34] ✓ × 83.4 86.8 - - - -
STC-Pretrain [34] ✓ × 95.8 89.4 - - - -

ST-SBV [24] ✓ × 90.3 91.2 - - - -
StA+VB [62] ✓ × 94.7 90.9 - 90.6 96.4 94.6

TimeSformer [2] + SBV ✓ × 94.9 93.0 93.3 89.7 94.6 94.6
FakeSTormer ✓ × 96.5 94.1 97.7 91.1 96.4 95.0

Table 2. AUC(%) comparison at video-level with other
data synthesis methods. For fair comparison, we train our
FakeSTormer on raw data of FF++(c0), and test cross-dataset
on [13, 36, 70] and cross-manipulation on three subsets of [61].

Method Training set FF++ LQ (%)
Real NT DF FS

Xception [46] ✓ ✓ 58.7 51.7
Face X-ray [33] ✓ ✓ 57.1 51.0

F3Net [44] ✓ ✓ 58.3 51.9
RFM [54] ✓ ✓ 55.8 51.6
SRM [37] ✓ ✓ 55.5 52.9

SLADD [6] ✓ ✓ 62.8 56.8
TALL-Swin [57] ✓ ✓ 63.2 51.4
ResNet3D∗ [27] ✓ ✓ 66.8 60.6

TimeSformer∗ [2] ✓ ✓ 73.3 54.4
Ours ✓ × 85.3 62.1

Table 3. Generalization on heavily compressed data (LQ). AUC
(%) comparisons on FF++ (LQ) [46] with a high compression level
(c40). The results for comparison are directly extracted from [6,
38]. The symbol ∗ denotes our implementation.

(DFW) [74], DF40 [61], and DiffSwap [63, 70] generated
using a recent diffusion-based approach [70]. Further de-
tails on these datasets are provided in supplementary mate-
rials.
Data Pre-processing. Following the splitting conven-
tion [46], we extract 256, 32, and 32 consecutive frames
for training, validation, and testing, respectively. Facial re-
gions are cropped using Face-RetinaNet [11] and resized to
a fixed resolution of 224 × 224. Additionally, we store 81
facial landmarks for each frame, extracted using Dlib [30].



Method Training set FF++ (%)
Real Fake DF FS F2F NT Avg.

Xception [46] ✓ ✓ 93.9 51.2 86.8 79.7 77.9
Face X-ray [33] ✓ ✓ 99.5 93.2 94.5 92.5 94.9

SBI [48] ✓ × 98.6 95.4 92.6 82.3 92.2
LSDA [60] ✓ ✓ 96.9 95.1 96.4 94.9 95.8

LipForensics [25] ✓ ✓ 99.7 90.1 99.7 99.1 97.1
FTCN [71] ✓ ✓ 99.8 99.6 98.2 95.6 98.3

RealForensics [26] ✓ ✓ 100 97.1 99.7 99.2 99.0
AltFreezing [56] ✓ ✓ 99.8 99.7 98.6 96.2 98.6

StyleLatentFlows [9] ✓ ✓ 99.7 98.8 98.6 96.4 98.4
NACO [65] ✓ ✓ 99.9 99.7 99.8 99.4 99.7

LFGDIN [63] ✓ ✓ 96.2 80.5 90.5 81.7 87.2
Ours (c23) ✓ × 99.9 97.8 98.5 97.2 98.4
Ours (c0) ✓ × 100 99.8 99.9 99.7 99.9

Table 4. Generalization to unseen manipulations. AUC (%)
comparisons on FF++ [46], which consists of four manipulation
methods (DF, FS, F2F, NT).

Further details are provided in the supplementary materials.
Evaluation Metrics. For fair comparisons with SOTA
methods, we use the widely adopted Area Under the Curve
(AUC) metric at the video level [9, 25, 26, 56, 57, 67, 71].
Implementation Details. Our framework is initialized with
pretrained MAE weights [28] and trained for 100 epochs
using the SAM optimizer [18] with a weight decay of 10−4

and a batch size of 32. The learning rate starts at 5 × 10−4

for the first quarter of training and decays to 0 thereafter.
The backbone is frozen for the first 5 epochs for warm-up,
then all layers are unfrozen. Data augmentation includes
ColorJittering at the video level and our proposed Cutout.
Experiments are conducted on four NVIDIA A100 GPUs,
with τ = 0.35 and d̄ = 0.2 (Eq. (1)), and T = 4 frames in
most experiments.

4.2. Comparison with State-of-the-art Methods
Generalization to Unseen Datasets. To assess the general-
ization capabilities of our method, we conduct evaluations
using the challenging cross-dataset setup [3, 42, 55, 56, 71],
validating on unseen datasets (i.e., datasets other than
FF++). The results are detailed in Table 1 and Table 2.

As shown, our method achieves comparable results
on DFD while surpassing SOTA methods on other
datasets. Specifically, it significantly outperforms prior
video deepfake detection techniques, including spatio-
temporal learning-based methods like AltFreezing [56] and
ISTVT [67], as well as various data synthesis approaches.
Moreover, our method exhibits superior performance on the
large-scale DFDC dataset and the challenging in-the-wild
DFW dataset. These results further confirm the enhanced
generalization ability of FakeSTormer compared to recent
methods.
Generalization on Heavily Compressed Data. Following
previous work [6, 38], we also evaluate FakeSTormer on
heavily compressed FF++(c40) data. In addition to compar-
ing with several SOTA methods, we train ResNet3D [27],
commonly used in deepfake video detection [9, 56, 71],
and TimeSformer [2] on NT, then test on DF and FS. The

SBV V-CutOut g h
Test set AUC (%)

CDF DFD DFDCP DFDC DFW DiffSwap Avg.
× × × × 61.5 62.8 59.4 58.5 65.2 71.6 63.2
✓ × × × 90.7 95.7 87.9 72.2 70.9 92.9 85.1(↑21.9)
✓ ✓ × × 91.1 96.0 87.6 72.6 71.0 93.1 85.2(↑22.0)
✓ ✓ ✓ × 92.2 95.4 88.5 72.8 71.3 93.8 85.7(↑22.5)
✓ × × ✓ 93.4 98.5 88.5 72.8 69.6 97.3 86.7(↑23.5)
✓ ✓ ✓ ✓ 92.4 98.5 90.0 74.6 74.2 96.9 87.8(↑24.6)

Table 5. Ablation study of framework’s components. Gray in-
dicates the use of original fake data for training.

comparison results are presented in Table 3. Our method
achieves notably higher AUC scores than other methods
across both testing subsets, highlighting its robust gener-
alization capability under various data compression condi-
tions.
Generalization to Unseen Manipulations. Table 4 com-
pares our framework with SOTA methods on FF++. Other
methods [9, 25, 56, 71] use a cross-manipulation setup,
training on three forgery types and evaluating on the re-
maining one. In contrast, our approach trains only on real
videos, treating all manipulations as unseen. Despite this,
our method shows competitive performance with the oth-
ers, even without being trained on specific forgery types.
Robustness to Unseen Perturbations. Deepfakes are
widely shared on social media, where various perturbations
can affect their appearance. Following [29], we evaluate
FakeSTormer’s robustness across six unseen degradation
types at five levels, comparing it with other augmented-
based methods [33, 35, 42, 48]. Figure 3 shows AUC
scores for each method on these perturbations, using models
trained on FF++. Our results demonstrate that FakeSTormer
outperforms prior methods on most distortions, with a slight
drop compared to LAA-Net [42] for Change Saturation.
Nonetheless, FakeSTormer achieves higher performance on
average, especially at higher severity levels, highlighting its
superior generalization and robustness. Detailed scores are
in supplementary materials.

4.3. Additional Discussions
Ablation Study of the FakeSTormer’s Components. We
conduct ablation studies to assess the impact of each com-
ponent in our framework, as shown in Table 5. Using
TimeSformer trained on FF++ as the baseline, we exper-
iment with different combinations of components: Self-
Blended Video (SBV), Vulnerability-driven CutOut (V-
CutOut), the spatial branch (g), and the temporal branch (h).
Each component improves performance, with SBV provid-
ing the most significant boost by generating high-quality
pseudo-fake data that aids generalization to unseen datasets.
Ablation Study of the SBV’s Components. SBV enhances
SBI [48] with CSP and LI for robust pseudo-fake genera-
tion in video data. Table 6 shows that without these com-
ponents, simply stacking frame-wise SBIs fails to produce
consistent temporal features, leading to overfitting on more
obvious artifacts and poor generalization [56]. A qualitative
comparison is provided in supplementary materials.
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Figure 3. Robustness to unseen perturbations. AUC (%) under five different degradation levels for various types of perturbations [29]
on FF++ [46]. “Average” denotes the mean across all corruptions at each level. Best viewed in color.

Method Comp. CSP LI Test set AUC (%)
CDF DFD DFDCP DFDC DFW DiffSwap

Stacked SBIs c23 × × 48.4 49.1 48.9 51.7 52.8 55.5
+ CSP c23 ✓ × 84.1 89.2 86.1 69.5 65.5 85.7
SBV c23 ✓ ✓ 90.7 95.7 87.9 72.2 70.9 92.9
SBV c0 ✓ ✓ 94.9 97.6 93.0 76.4 75.3 93.3

Table 6. Ablation study of SBV’s components. Performance
analyses of different SBV’s components using cross-evaluation on
multiple datasets [13, 14, 17, 36, 70, 74].

λc λh λg
Test set AUC (%)

CDF DFD DFDCP DFDC DFW DiffSwap Avg.
0.9 1 0.1 89.5 91.0 93.2 71.5 74.7 90.6 85.1
0.9 10 0.1 92.5 95.7 86.8 71.7 72.7 94.5 85.7
0.9 100 0.1 91.6 98.0 87.3 73.6 70.6 96.2 86.2
0.8 100 0.2 92.4 98.5 90.0 74.6 74.2 96.9 87.8
0.5 100 0.5 92.4 98.0 88.1 74.5 72.1 97.1 87.0

Table 7. Impact of loss balancing factors. AUC (%) comparisons
of FakeSTormer trained with different values of λc, λh, and λg on
cross-dataset setup, demonstrating robustness to varying hyperpa-
rameter settings.

Influence of Number of Frames. Increasing the number
of frames T provides more fine-grained temporal informa-
tion. In Table 1, we vary T values by fixing it to 4, 8, and
16. Our results show a consistent performance improve-
ment with more frames, confirming our hypothesis. How-
ever, increasing T also incurs a higher computational cost.
Impact of Loss Balancing Factors. We introduce three
hyperparameters, λc, λg , and λh in Eq (13) to balance the
training among the three branches of our framework. In
Table 7, we analyze the impact of these hyperparameters
using various values. Our results show that the method is
robust to a range of hyperparameter values, with the best
performance achieved when λc, λg , and λh are set to 0.8,
0.2, and 100, respectively.

4.4. Visualization of Saliency Maps
To analyze the contribution of the two proposed branches

h and g in the detection performance of FakeSTormer, we
visualize the input regions activated by those branches. For
that purpose, we adopt Grad-CAM [47] for the temporal
branch h and utilize the final SA scores of spatial tokens for
the spatial branch g. The visualization results from various
datasets are presented in Figure 4. It can be observed that
FakeSTormer can discriminate between real and fake videos
by focusing on very few, different local areas, even without

DF
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NT

CDF

DFDCP

DFDC

DFW

DFD

t=1t=1

Temporal Heatmaps Spatial Heatmaps

Figure 4. Visualization of Saliency Maps. The second-fifth
and sixth-ninth columns represent temporal heatmaps and spa-
tial heatmaps on different frames in the video, respectively. All
datasets are unseen during validation.

having seen those types of forgeries during training.

5. Conclusion
This paper introduces a fine-grained approach for gen-

eralizable deepfake video detection with two main contri-
butions. First, we propose a multi-task learning frame-
work that targets both subtle spatial and fine-grained tem-
poral vulnerabilities in high-fidelity deepfake videos, in-
corporating a standard classification branch along with two
new auxiliary branches (temporal and spatial). These pro-
posed branches help the model focus on vulnerable regions
and provide more valuable insights into how the network
sees the data while offering more robustness to high-quality
deepfakes. This framework is further supported by the in-
troduction of a high-quality pseudo-fake generation tech-
nique. Extensive experiments on several challenging bench-
marks demonstrate that FakeSTormer achieves superior per-
formance compared to SOTA methods.
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