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Abstract

In data analysis problems where we are not able to rely on distributional assump-
tions, what types of inference guarantees can still be obtained? Many popular
methods, such as holdout methods, cross-validation methods, and conformal pre-
diction, are able to provide distribution-free guarantees for predictive inference,
but the problem of providing inference for the underlying regression function (for
example, inference on the conditional mean E [Y |X]) is more challenging. In the
setting where the features X are continuously distributed, recent work has estab-
lished that any confidence interval for E [Y |X] must have non-vanishing width,
even as sample size tends to infinity. At the other extreme, if X takes only a small
number of possible values, then inference on E [Y |X] is trivial to achieve. In this
work, we study the problem in settings in between these two extremes. We find that
there are several distinct regimes in between the finite setting and the continuous
setting, where vanishing-width confidence intervals are achievable if and only if
the effective support size of the distribution of X is smaller than the square of the
sample size.

1 Introduction

Consider a regression problem, where our aim is to model the distribution of a response variable Y ∈
R based on the information carried by features X ∈ X . Given training data (X1, Y1), . . . , (Xn, Yn),
we aim to build a fitted model to estimate the conditional distribution of Y | X , or some summary of
this distribution such as the conditional mean or conditional median. In this type of setting, our goals
are to simultaneously perform two tasks, estimation and inference—that is, we want to accurately
estimate the conditional distribution, and we also want a reliable way of quantifying our uncertainty
about this estimate.

To make this concrete, suppose the training data {(Xi, Yi)} are drawn i.i.d. from some unknown
distribution P on Rd×R, and we want to estimate the true conditional mean, µP (x) := E [Y |X = x],
of this distribution. Given the training data, we construct a fitted regression function µ̂ : Rd → R
using any algorithm, for instance, a parametric method such as least squares or a nonparametric
procedure such as a Gaussian kernel method. For many regression algorithms, assuming certain
conditions on the underlying distribution P will ensure an accurate estimate of µP ; however, unless
we are able to verify these assumptions, we cannot be confident that the corresponding error rates
will indeed lead to a valid confidence interval for µP . The goal of distribution-free inference is to
provide inference guarantees—in this case, confidence intervals for µP (Xn+1) at a newly observed
feature vector Xn+1—that are valid universally over any underlying distribution P .
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1.1 Our contributions

In this work, we study the problem of constructing a confidence interval Ĉn(x) for µP (x), that
satisfies the following property:

Definition 1. An algorithm Ĉn provides a distribution-free (1 − α)-confidence interval for the
conditional mean if it holds that

P
(Xi,Yi)

iid∼P

{
µP (Xn+1) ∈ Ĉn(Xn+1)

}
≥ 1− α for all distributions P on (X,Y ) ∈ Rd × [0, 1].

Here the probability is taken with respect to the distribution of both the training data
(X1, Y1), . . . , (Xn, Yn) and the test point (Xn+1, Yn+1), all drawn i.i.d. from an arbitrary P .1

Recent work by Vovk et al. [2005], Barber [2020], Gupta et al. [2020] (studying the conditional mean
of a binary response Y ) and by Medarametla and Candès [2021] (studying the conditional median
of a real-valued Y ) proves that distribution-free coverage properties similar to Definition 1 lead to
fundamental limits on the accuracy of inference. Writing PX to denote the marginal distribution
of X under P , these results show that if PX is nonatomic (meaning that there are no point masses,
i.e., PPX {X = x} = 0 for all points x ∈ Rd), then any distribution-free confidence interval Ĉn
cannot have vanishing length as sample size n tends to infinity, regardless of the smoothness of
P , or any other “nice” properties of this distribution. Specifically, these works show that if PX
is nonatomic, then Ĉn must also be a valid predictive interval, i.e., must contain Yn+1 itself with
probability ≥ 1− α. This implies that the length of Ĉn cannot be vanishing, since Yn+1 is inherently
noisy. An explicit lower bound on the length is proved in Barber [2020].

Our new results examine the possibility of constructing confidence intervals Ĉn that are both
distribution-free (Definition 1) and have vanishing length, when PX may be discrete, nonatomic, or a
mixture of the two. We find that the hardness of this problem can be characterized by the effective
support size of PX—essentially, how many points x ∈ Rd are needed to capture most of the mass of
PX (for example, if PX is uniform over M points, then its effective support size is ≤M ).

Our main theoretical results show that there are two regimes. If the effective support size is� n2,
then PX essentially behaves like a nonatomic distribution because in a sample of size n, with high
probability all the X values are observed at most once; in this regime, we find that the average
length of Ĉn(Xn+1) is bounded away from zero, i.e., no distribution-free confidence interval can
have vanishing length. If instead the effective support size is� n2, then it becomes possible for
Ĉn(Xn+1) to have vanishing length, and in particular, the minimum possible length scales as M1/4

n1/2

for effective support size M . Interestingly, vanishing length is possible even when M is larger than
n, meaning that distribution-free inference for E [Y |X] is possible even if most X values were never
observed in the training set.

1.2 Additional related work

The problem of distribution-free inference has been studied extensively in the context of predictive
inference, where the goal is to provide a confidence band for the response value Yn+1 given a
new feature vector Xn+1. The prediction problem is fundamentally different from the goal of
covering the conditional mean. In particular, by splitting the data and using a holdout set, we can
always empirically validate the coverage level of any constructed predictive band. Methods such as
conformal prediction (see, e.g., Vovk et al. [2005], Papadopoulos et al. [2002], Lei et al. [2018], Vovk
et al. [2018]) or jackknife+ [Barber et al., 2021, Kim et al., 2020] can ensure valid distribution-free
predictive inference without the need to split the data set (thus avoiding reducing the sample size).

As mentioned earlier, Vovk et al. [2005], Barber [2020], Gupta et al. [2020], Medarametla and Candès
[2021] also study the problem of confidence intervals for the conditional mean or median of Y |X ,
establishing impossibility results on the setting of a nonatomic PX . These results are connected
to earlier results on the impossibility of adaptation to smoothness, in the nonparametric inference
literature—specifically, if µP is β-Hölder smooth, then it is possible to build a confidence interval of

1In this definition and throughout our work, Ĉn can be either a deterministic or randomized function of the
training data; if the construction is randomized then the definition above should be interpreted as computing
probability with respect to the distribution of the data and the randomization of the construction.
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length O(n−
β

2β+d ) if β is known (e.g., using k-nearest-neighbors with an appropriately chosen k),
but this cannot be achieved when β is unknown (see, e.g., Giné and Nickl [2016, Section 8.3] for an
overview of results of this type).

While the results above establish the challenges for distribution-free inference when the features X
are nonatomic, at the other extreme we can consider scenarios where X has a discrete distribution. In
this setting, the problem of estimating µP is related to the discrete distribution testing, where the
aim is to test properties of a discrete distribution—for instance, we might wish to test equality of two
distributions where we draw samples from each [Chan et al., 2014, Acharya et al., 2014, Diakonikolas
and Kane, 2016, Canonne et al., 2015]; to test whether a sample is drawn from a known distribution
P or not [Diakonikolas and Kane, 2016, Acharya et al., 2015, Valiant and Valiant, 2017, Diakonikolas
et al., 2018], or drawn from any distribution belonging to a class P or not [Acharya et al., 2015,
Canonne et al., 2018]; or to estimate certain characteristics of a distribution such as its entropy or
support size [Valiant and Valiant, 2011b,a, Acharya et al., 2014]. The distribution-free confidence
intervals we will construct in Section 3 are closely related to methods developed in this literature.

2 Main results: lower bound

Before presenting our main result, we begin with several definitions. For any distribution PX on
X ∈ Rd, we first define the effective support size of PX at tolerance level γ ∈ [0, 1):

Mγ(PX) = min
{
|X | : X ⊂ Rd and PPX {X ∈ X} ≥ 1− γ

}
,

where |X | denotes the cardinality of the set X . In particular, if PX is a distribution supported on M
points, then Mγ(PX) ≤M for any γ. If instead PX is nonatomic, then Mγ(PX) =∞ for all γ > 0.
We note that, in many practical settings, the effective support size Mγ(PX) may be substantially
smaller than the overall support size. For example, if X ∈ Rd measures d categorical covariates with
mj possible values for the jth covariate, then the support of PX is potentially as large as

∏d
j=1mj ,

which will grow extremely rapidly with the dimension d even if each mj is small; in real data,
however, it may be the case that most combinations of covariate values are extremely unlikely, and so
the effective support size Mγ(P ) would be substantially smaller, and might grow more slowly with d.

Next, for any distribution P on (X,Y ) ∈ Rd × [0, 1], we define

σ2
P,β = the β-quantile of VarP (Y |X), under the distribution X ∼ PX .

With these definitions in place, our first main result establishes a lower bound on the expected length
of any distribution-free confidence interval Ĉn. Let Leb denote the Lebesgue measure on R.

Theorem 1. Fix any α > 0, and let Ĉn be a distribution-free (1 − α)-confidence interval (i.e.,
satisfying Definition 1). Then for any distribution P on Rd × R, for any β > 0 and γ > α+ β,

E
[
Leb

(
Ĉn(Xn+1)

)]
≥ 1

3σ
2
P,β(γ − α− β)1.5 ·min

{(
Mγ(PX)

)1/4
n1/2

, 1

}
,

where the expected value is taken over data points (Xi, Yi)
iid∼ P , for i = 1, . . . , n+ 1.

2.1 Special cases

To help interpret this result, we now examine its implications in several special cases.

Uniform discrete features If PX is a uniform distribution over M points, then for any γ > 0 the
effective support size is Mγ(PX) = d(1− γ)Me. Therefore, Theorem 1 implies that for any P with
nonatomic marginal PX ,

E
[
Leb

(
Ĉn(Xn+1)

)]
≥ 1

3σ
2
P,β(γ − α− β)1.5(1− γ)0.25 ·min

{
M1/4

n1/2
, 1

}
for any β ∈ (0, γ − α). In particular, we see that M � n2 implies a constant lower bound on the
width of any distribution-free confidence interval, while M � n2 allows for the possibility of a
vanishing width for a distribution-free confidence interval.
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Binary response If the response Y is known to be binary (i.e., Y ∈ {0, 1}), we might relax the
requirement of distribution-free coverage to only include distributions of this type, i.e., we require

P
(Xi,Yi)

iid∼P

{
µP (Xn+1) ∈ Ĉn(Xn+1)

}
≥ 1− α for all distributions P on Rd × {0, 1}. (1)

This condition is strictly weaker than Definition 1, where the coverage property is required to
hold for all distributions P on Rd × [0, 1], i.e., for a broader class of distributions. However, it
turns out that relaxing the requirement does not improve the lower bound. Specifically, if we
have an algorithm to construct a confidence interval Ĉn satisfying (1), then we can easily convert
Ĉn into a method that does satisfy Definition 1. Given data (X1, Y1), . . . , (Xn, Yn), for each
i = 1, . . . , n draw a binary response Ỹi ∼ Bernoulli(Yi). Then we clearly have n i.i.d. draws from
a distribution on (X, Ỹ ) ∈ Rd × {0, 1}, where E[Ỹ | X] = E [Y | X] = µP (X). After running
our algorithm to construct Ĉn on the new data (X1, Ỹ1), . . . , (Xn, Ỹn), the binary distribution-free
coverage property (1) satisfied by Ĉn ensures that this modified procedure satisfies Definition 1.

To summarize, then, we see that the problem of distribution-free coverage is equally hard for the
binary response case (Y ∈ {0, 1}) as for the more general bounded response case (Y ∈ [0, 1]).

Nonatomic features We now consider the setting where the marginal distribution of X is
nonatomic, i.e., PPX {X = x} = 0 for all x. (In particular, this includes the continuous case,
where X has a continuous distribution on Rd.) In this case, for any γ > 0 the effective support size is
Mγ(PX) =∞. Therefore, Theorem 1 implies that for any P with nonatomic marginal PX , for any
β ∈ (0, 1− α),

E
[
Leb

(
Ĉn(Xn+1)

)]
≥ 1

3σ
2
P,β(1− α− β)1.5.

In particular, this lower bound does not depend on n, and so the width of any distribution-free
confidence interval is non-vanishing even for arbitrarily large sample size n (as long as σ2

P,β > 0).

In case of a binary response, where P is a distribution on Rd × {0, 1} with nonatomic marginal
distribution PX , Barber [2020] establishes that any distribution-free confidence interval for µ must
satisfy a lower bound that is a function only of P and does not depend on n (and, in particular, does
not vanish as n→∞). In this sense, our new result can be viewed as a generalization of this work,
since the nonvanishing minimum length for nonatomic PX is a consequence of our result.

2.2 Adding knowledge of PX

One way we might try to weaken the notion of distribution-free coverage would be to allow as-
sumptions about the marginal distribution PX , while remaining assumption-free for the function µP
determining the conditional mean. In other words, we might weaken Definition 1 to require coverage
over all distributions P for which PX = P ∗X , for a known P ∗X (or, all P for which PX satisfies some
assumed property). Interestingly, the lower bound in Theorem 1 remains the same even under this
milder definition of validity—we will see in the proof that knowledge of PX does not affect the lower
bound, since the argument relies only on our uncertainty about the conditional distribution of Y |X .

2.3 Bounded or unbounded?

The lower bound established in Theorem 1 assumes distribution-free coverage for distributions with
a bounded response Y—that is, Definition 1 requires coverage to hold for distributions where the
response Y is supported on [0, 1] (although no other assumptions are placed on P ). Would it be
possible for us to instead consider the general case, where P is an unknown distribution on Rd × R?
The following result shows that this more general question is not meaningful:

Proposition 1. Suppose an algorithm Ĉn satisfies

P
(Xi,Yi)

iid∼P

{
µP (Xn+1) ∈ Ĉn(Xn+1)

}
≥ 1− α for all distributions P on Rd × R.

Then for all distributions P , for all y ∈ R it holds that

P
(Xi,Yi)

iid∼P

{
y ∈ Ĉn(Xn+1))

}
≥ 1− α.
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This means that if we require Ĉn to have distribution-free coverage over distributions with unbounded
response, then inevitably, every point in the real line is contained in the resulting confidence interval a
substantial portion of the time. (In particular, Ĉn(Xn+1) will of course have infinite expected width.)
Clearly an unbounded Y cannot result in any meaningful distribution-free inference, and for this
reason we therefore restrict our attention to the setting where the response Y takes values in [0, 1] (of
course, these results can easily generalize to Y ∈ [a, b] for any known a < b).

3 Main results: upper bound

We next construct an algorithm that, for certain “nice” distributions P , can achieve a confidence
interval length that matches the rate of the lower bound. Our procedure requires two main ingredients
as input:

1. A hypothesized ordered support set {x(1), x(2), . . . } ⊂ Rd for the marginal PX , and

2. A hypothesized mean function µ : Rd → [0, 1].

One possible way of obtaining these inputs would be to use data splitting, where one portion of our
data (combined with prior knowledge if available) is used to construct a hypothesized support set
and mean function, and the second portion of the data is then used for constructing the confidence
interval (note that the sample size n in our construction below refers to the size of this second part of
the data, e.g., half of the total available sample size). Any algorithm can be applied for estimating µ,
for example, logistic regression, nearest neighbors regression, or a neural network.

We emphasize that the coverage guarantee provided by our method does not rely in any way on the
accuracy of these initial guesses—the constructed confidence interval will satisfy distribution-free
validity (Definition 1) even if these initial parameters are chosen in a completely uninformed way.
In particular, while the algorithm that fits µ might be able to guarantee accuracy of µ under some
assumptions placed on P , the validity of our inference procedure does not rely on these assumptions.
However, the length of the resulting confidence interval will be affected, since high accuracy in
these initial guesses can be expected to result in a shorter confidence interval. In particular, the
hypothesized support set {x(1), x(2), . . . } should aim to list the highest-probability values of X early
in the list, while the hypothesized mean function µ should aim to be as close to the true conditional
mean µP as possible. (Our theoretical results below will make these goals more precise.)

Given the hypothesized support and hypothesized mean function, to run our algorithm, we first choose
parameters γ, δ > 0 satisfying γ + δ < α, and then compute the following steps.

• Step 1: estimate the effective support size. First, we compute an upper bound on the
support size needed to capture 1− γ of the probability under PX ,

M̂γ = min

{
m :

n∑
i=1

1

{
Xi ∈ {x(1), . . . , x(m)}

}
≥ (1− γ)n+

√
n log(2/δ)

2

}
,

or M̂γ =∞ if there is no m that satisfies the inequality. Applying the Hoeffding inequality

to the Binom(n, γ) distribution, we see that P
{
M̂γ ≥M∗γ (PX)

}
≥ 1− δ/2, where

M∗γ (PX) = min
{
m : PPX

{
X ∈ {x(1), . . . , x(m)}

}
≥ 1− γ

}
. (2)

(Note that M∗γ (PX) ≥Mγ(PX) by definition.)
• Step 2: estimate error at each repeated X value. Next, for each m = 1, 2, . . . , let
nm =

∑n
i=1 1

{
Xi = x(m)

}
denote the number of times x(m) was observed, and let

N≥2 =
∑
m≥1

1 {nm ≥ 2} (3)

be the number of X values observed at least twice. For each m with nm ≥ 2, let ȳm =
1
nm

∑n
i=1 Yi · 1

{
Xi = x(m)

}
and s2

m = 1
nm−1

∑n
i=1(Yi − ȳm)2 · 1

{
Xi = x(m)

}
be the

sample mean and sample variance of the corresponding Y values. Define

Z =
∑

m=1,2,...
s.t. nm ≥ 2

(nm − 1) ·
(
(ȳm − µ(x(m)))2 − n−1

m s2
m

)
. (4)
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This construction is inspired by analogous statistics appearing in the literature for testing
properties of discrete distributions—for instance, the work of Chan et al. [2014]. To see
the intuition behind this construction, we observe that {Yi : Xi = x(m)} is a collection of
i.i.d. observations with mean µP (x(m)). Therefore, conditional on nm (with nm ≥ 2),

E [ȳm] = µP (x(m)) and Var (ȳm) = n−1
m E

[
s2
m

]
,

and therefore E
[
(ȳm − µ(x(m)))2 − n−1

m s2
m

]
= (µ(x(m))− µP (x(m)))2 is an estimate of

our error at this X value.
• Step 3: construct the confidence interval. Finally, we define our confidence interval. Let

∆̂ =

√
2M̂γ + n

n(n− 1)
·
√

4Z+ + 8
√
N≥2/δ + 24/δ,

where Z+ denotes max{Z, 0}. Then for each x ∈ Rd, we define

Ĉn(x) =

[
max

{
0, µ(x)− ∆̂

α− δ − γ

}
,min

{
1, µ(x) +

∆̂

α− δ − γ

}]
. (5)

We now verify that this construction yields a valid distribution-free confidence interval.
Theorem 2. The confidence interval constructed in (5) is a distribution-free (1 − α)-confidence
interval (i.e., Ĉn satisfies Definition 1).

Next, we will see how this construction is able to match the rate of the lower bound established
in Theorem 1—specifically, in a scenario where the hypothesized support set and mean function
are “chosen well”, i.e., are a good approximation to the true distribution P . For simplicity, we only
consider the case where the marginal PX is approximately uniform over some finite subset of the
hypothesized support, and the hypothesized function µ has uniformly bounded error.
Theorem 3. Suppose the distribution P on (X,Y ) ∈ Rd × R has marginal PX that is supported
on {x(1), . . . , x(M)} and satisfies PPX

{
X = x(m)

}
≤ η/M for all m, and suppose that P has

conditional mean µP : Rd → R that satisfies EPX
[
(µP (X)− µ(X))2

]
≤ err2µ. Then the confidence

interval constructed in (5) satisfies

E
[
Leb(Ĉn(Xn+1))

]
≤ c

(
errµ +

M1/4

n1/2

)
,

where c depends only on the parameters α, δ, γ, η.

To see some concrete examples of where this upper bound might be small, suppose that µ is
constructed via data splitting (i.e., our initial data set has sample size 2n, and we use n data points
to train µ and then the remaining n to construct the confidence interval). If µ is constructed via
logistic regression, and the distribution P follows this model, then under standard conditions on PX
we would have errµ = O(

√
d/n); in a k-sparse regression setting where we use logistic lasso we

might instead obtain errµ = O(
√
k log(d)/n) [Negahban et al., 2012]. If instead µ is constructed

via k-nearest neighbors, if x 7→ µP (x) is β-Hölder smooth (and k is chosen appropriately), then as
mentioned earlier we have errµ = O(n−β/(β+d)) [Györfi et al., 2002, Giné and Nickl, 2016].

4 Discussion

Our main result, Theorem 1, shows that the problem of constructing distribution-free confidence
intervals for a conditional mean has hardness characterized by the effective support size Mγ(PX)
of the feature distribution; distribution-free confidence intervals may have vanishing length if the
sample size is at least as large as the square root of the effective support size, but must have length
bounded away from zero if the sample size is smaller. The rate of the lower bound on length,
scaling as min{Mγ(PX))1/4

n1/2 , 1}, is achievable in certain settings—Theorems 2 and 3 establish that
distribution-free confidence intervals may achieve this length if we have a good hypothesis µ for µP .
Of course, the specific construction used for these matching bounds may not be optimal—both in
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terms of constant factors that may inflate its length, and in terms of the range of settings in which it is
able (up to constants) to match the lower bound. Improving this construction to provide a practical
and accurate algorithm is an important question for future work.

One counterintuitive implication of our result is that a meaningful distribution-free inference can be
achieved even in the case Mγ(PX)� n, where with high probability, the new observation Xn+1 is
a value that was never observed in the training set. The reason inference is possible in this regime
is that the repeated X values in the training set provide some information we need to construct a
meaningful confidence interval, and since the set of X values that are repeated is random, this leads
to a coverage guarantee (recall that these repeated X values were central to the construction of our
confidence interval in Section 3). An interesting possible application of this finding is for distribution-
free calibration, where the aim is to cover within-bin averages of the form µb = E [Y | X ∈ Xb]
where Rd = ∪b=1,...,BXb is a partition into bins. Gupta et al. [2020] study this problem in the
distribution-free setting, and develop methods for guaranteeing coverage of each µb when the number
of bins satisfies B � n; in contrast, the methods studied in our present work suggest that we may be
able to cover µb on average over all bins b in the regime n� B � n2.

Generally, all inference methods must inherently involve a tradeoff between the strength of the
guarantees, and the precision of the resulting answers. In this present work, we consider a universally
strong guarantee (i.e., coverage of the conditional mean for all distributions P ), which results in
precise inference (i.e., vanishing-length confidence intervals) for only some distributions P , namely,
those with effective support size� n2. This tradeoff may not be desirable in practice, since in an
applied setting we might instead prefer to relax the required coverage properties for more challenging
distributions P in order to allow for more precise answers. In practice, we may be satisfied with a
validity condition that yields weaker guarantees in a nonatomic setting, but still yields the stronger
coverage guarantee in the achievable regime where Mγ(PX)� n2. In future work, we aim to study
whether this more adaptive type of validity definition, which is weaker than distribution-free coverage,
may enable us to build confidence intervals that have vanishing length even in the nonatomic setting.

A Proofs

In this section we will prove Proposition 1 and Theorem 1. The proofs of Theorems 2 and 3, as well
as of all the supporting lemmas appearing in this section, are given in the Supplementary Materials.

A.1 Proof of Proposition 1

To prove this proposition, we will consider replacing P with a distribution that places vanishing
probability on some extremely large value.2 Fix any distribution P , and any y ∈ R. For any fixed
ε > 0, define a new distribution Q as follows:

Draw X ∼ PX , then draw Y |X ∼ (1− ε)PY |X + εδε−1y−(ε−1−1)µP (X),

where PY |X is the conditional distribution of Y |X under P , and δt denotes the point mass at t. Then
we can trivially calculate that dTV(Pn × PX , Qn ×QX) ≤ nε. Therefore,

PPn×PX
{
y ∈ Ĉn(Xn+1)

}
≥ PQn×QX

{
y ∈ Ĉn(Xn+1)

}
− nε.

On the other hand, the distribution Q has conditional mean

µQ(x) = (1− ε)µP (x) + ε
(
ε−1y − (ε−1 − 1)µP (x)

)
= y,

and so the conditional mean µQ(Xn+1) is equal to y almost surely. Therefore,

PQn×QX
{
y ∈ Ĉn(Xn+1)

}
= PQn×QX

{
µQ(Xn+1) ∈ Ĉn(Xn+1)

}
≥ 1− α,

where the last step holds since Ĉn must satisfy distribution-free coverage and, therefore, must satisfy
coverage with respect to Q. Since ε > 0 is arbitrarily small, this completes the proof.

2Similar constructions are used in many related results in the literature—e.g., Lei and Wasserman [2014,
Lemma 1] proves an analogous infinite-width result for the problem of prediction intervals required to be valid
conditional on Xn+1, while here we are interested in confidence intervals but only require marginal validity.
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A.2 Proof of Theorem 1

To prove the theorem, we will need several supporting lemmas:
Lemma 1. Let Q be any distribution on [0, 1] with variance σ2. Then we can write Q as a mixture
of two distributions Q0, Q1 on [0, 1] such that

Q = 0.5Q0 + 0.5Q1 and EQ1
[X]− EQ0

[X] ≥ 2σ2.

Lemma 2. Let PX be any distribution on Rd, and let Rd = X1 ∪ X2 ∪ . . . be a fixed partition.
Define a distribution P0 on (X,Z) ∈ Rd × {0, 1} as:

Draw X ∼ PX , and draw Z ∼ Bernoulli(0.5), independently from X .

For any fixed sequence a = (a1, a2, . . . ) of signs a1, a2, · · · ∈ {±1}, and any fixed ε1, ε2, · · · ∈
[0, 0.5], define a distribution Pa on on (X,Z) ∈ Rd × {0, 1} as:

Draw X ∼ PX , and conditional on X , draw Z|X ∈ Xm ∼ Bernoulli(0.5 + am · εm).

Finally define P̃0 = (P0)n (i.e., n i.i.d. draws from P0), and define a mixture distribution P̃1 on
(X1, Z1), . . . , (Xn, Zn) as

Draw A1, A2, . . .
iid∼ Unif{±1}, then conditional on A = (A1, A2, . . . ), draw (Xi, Zi)

iid∼ PA.

Then

dTV(P̃0, P̃1) ≤ 2n

√∑
m≥1

ε4m · PPX {X ∈ Xm}
2
.

We are now ready to prove the theorem. Define X1 = {x ∈ Rd : PPX {X = x} > 1
Mγ(PX)}. We

must have |X1| < Mγ(PX) since PX is a probability measure, and therefore PPX {X ∈ X1} < 1−γ
by definition of Mγ(PX). On the set Rd\X1, any point masses of the distribution PX must each have
probability ≤ 1/Mγ(PX), by definition of X1; PX may also have a nonatomic component. Applying
Dudley et al. [2011, Proposition A.1], we can partition Rd\X1 into countably many sets,X2∪X3∪. . . ,
such that PPX {X ∈ Xm} ≤ 1/Mγ(PX) for all m ≥ 2. Define pm = PPX {X ∈ Xm}.
For each x in the support of PX , let PY |X=x denote the conditional distribution of Y given X = x.
By Lemma 1, we can construct distributions P 1

Y |X=x and P 0
Y |X=x such that

PY |X=x = 0.5P 1
Y |X=x + 0.5P 0

Y |X=x and EP 1
Y |X=x

[Y ]− EP 0
Y |X=x

[Y ] ≥ 2σ2
P (x),

where σ2
P (x) = Var (Y | X = x) is the variance of PY |X=x. Next fix ε1 = 0 and ε2 = ε3 = · · · = ε

for some ε ∈ (0, 0.5]. For any vector a = (a1, a2, . . . ) of signs a1, a2, · · · ∈ {±1}, define the
distribution Pa over (X,Y ) as follows:

• Draw X ∼ PX , i.e., the same as the marginal distribution of X under P .
• Conditional on X = x ∈ Xm for any m ≥ 1, draw Y as

Y | X = x ∼ (0.5 + amε) · P 1
Y |X=x + (0.5− amε) · P 0

Y |X=x.

Thus, Pa differs from P in that, conditional on X ∈ Xm for any m ≥ 2, the distribution of Y is
perturbed to be slightly more likely (if am = +1) or slightly less likely (if am = −1) to be drawn from
P 1
Y |X rather than P 0

Y |X . Finally, we define a mixture distribution Pmix on (X1, Y1), . . . , (Xn, Yn) as:

Draw A1, A2, . . .
iid∼ Unif{±1}, then conditional on A = (A1, A2, . . . ), draw (Xi, Yi)

iid∼ PA.

In the Supplementary Materials, we verify that we can apply Lemma 2 to obtain

dTV (Pmix, P
n) ≤ 2n

√∑
m≥1

ε4mp
2
m = 2n

√∑
m≥2

ε4p2
m ≤

2ε2n√
Mγ(PX)

, (6)

where the last step holds since pm ≤ 1/Mγ(PX) for all m ≥ 2, by definition.
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The remainder of the proof will center on the fact that, if ε is chosen to make the total variation
distance between Pn and Pmix sufficiently small, then it is impossible to distinguish between data
drawn from Pn or from PnA for a random A (i.e., from Pmix); since the conditional mean of Y |X
differs by O(ε) between P and PA, this means that our confidence interval for µP will need to have
width at least O(ε). For any Pa, since Ĉn satisfies distribution-free coverage, we have

P(Pa)n×PX

{
µPa(Xn+1) ∈ Ĉn(Xn+1)

}
≥ 1− α.

We can also calculate, for each m ≥ 2 and each x ∈ Xm that lies in the support of PX ,

µPa(x) = (0.5 + amε)EP 1
Y |X=x

[Y ] + (0.5− amε)EP 0
Y |X=x

[Y ]

= 0.5
(
EP 1

Y |X=x
[Y ] + EP 0

Y |X=x
[Y ]
)

+amε
(
EP 1

Y |X=x
[Y ]− EP 0

Y |X=x
[Y ]
)

= µP (x)+amε∆(x),

where we write ∆(x) =
(
EP 1

Y |X=x
[Y ]− EP 0

Y |X=x
[Y ]
)

. In particular, if Xn+1 6∈ X1, then

µPa(Xn+1) ∈ Ĉn(Xn+1) implies {µP (Xn+1)± ε∆(Xn+1)} ∩ Ĉn(Xn+1) 6= ∅. Therefore,

P(Pa)n×PX

{
{µP (Xn+1)± ε∆(Xn+1)} ∩ Ĉn(Xn+1) 6= ∅

}
≥ P(Pa)n×PX

{
µPa(Xn+1) ∈ Ĉn(Xn+1)

}
− P(Pa)n×PX {Xn+1 ∈ X1} ≥ γ − α,

since PPX {X ∈ X1} < 1 − γ. Since this bound holds for all a, and since Pmix is a mixture of
distributions (Pa)n, then

PPmix×PX

{
{µP (Xn+1)± ε∆(Xn+1)} ∩ Ĉn(Xn+1) 6= ∅

}
≥ γ − α.

By our total variation bound (6), therefore,

PPn×PX
{
{µP (Xn+1)± ε∆(Xn+1)} ∩ Ĉn(Xn+1) 6= ∅

}
≥ γ − α− 2ε2n√

Mγ(PX)
. (7)

Now fix some ε0 ∈ [0, 0.5]. We calculate

Leb
(
Ĉn(Xn+1)

)
=

∫
t∈R
1

{
t ∈ Ĉn(Xn+1)

}
dt ≥

∫
t≥0

1

{
{µP (Xn+1)± t} ∩ Ĉn(Xn+1) 6= ∅

}
dt

≥
∫ ε0∆(Xn+1)

t=0

1

{
{µP (Xn+1)± t} ∩ Ĉn(Xn+1) 6= ∅

}
dt

=

∫ ε0

ε=0

1

{
{µP (Xn+1)± ε∆(Xn+1)} ∩ Ĉn(Xn+1) 6= ∅

}
·∆(Xn+1) dε

≥ 2σ2
P,β

∫ ε0

ε=0

1

{
σ2
P (Xn+1) ≥ σ2

P,β and {µP (Xn+1)± ε∆(Xn+1)} ∩ Ĉn(Xn+1) 6= ∅
}

dε,

where the last step holds since ∆(Xn+1) ≥ 2σ2
P (Xn+1) by Lemma 1. Applying (7), and since

P
{
σ2
P (Xn+1) ≥ σ2

P,β

}
≥ 1− β by definition of σ2

P,β , we have

EPn×PX
[
Leb

(
Ĉn(Xn+1)

)]
≥ 2σ2

P,β

∫ ε0

ε=0

(
γ − α− 2ε2n√

Mγ(PX)

)
− β dε

= 2σ2
P,β

[
ε0(γ − α− β)− 2ε30n

3
√
Mγ(PX)

]
.

Finally, choosing ε0 = min
{(

(γ−α−β)
√
Mγ(PX)

2n

)1/2

, 0.5
}

yields the desired lower bound.
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