
Simultaneous Machine Translation with Tailored Reference

Shoutao Guo 1,2, Shaolei Zhang 1,2, Yang Feng 1,2∗

1Key Laboratory of Intelligent Information Processing,
Institute of Computing Technology, Chinese Academy of Sciences (ICT/CAS)

2 University of Chinese Academy of Sciences, Beijing, China
guoshoutao22z@ict.ac.cn, zhangshaolei20z@ict.ac.cn, fengyang@ict.ac.cn

Abstract

Simultaneous machine translation (SiMT) gen-
erates translation while reading the whole
source sentence. However, existing SiMT mod-
els are typically trained using the same ref-
erence disregarding the varying amounts of
available source information at different la-
tency. Training the model with ground-truth at
low latency may introduce forced anticipations,
whereas utilizing reference consistent with the
source word order at high latency results in
performance degradation. Consequently, it is
crucial to train the SiMT model with appropri-
ate reference that avoids forced anticipations
during training while maintaining high quality.
In this paper, we propose a novel method that
provides tailored reference for the SiMT mod-
els trained at different latency by rephrasing
the ground-truth. Specifically, we introduce the
tailor, induced by reinforcement learning, to
modify ground-truth to the tailored reference.
The SiMT model is trained with the tailored
reference and jointly optimized with the tai-
lor to enhance performance. Importantly, our
method is applicable to a wide range of cur-
rent SiMT approaches. Experiments on three
translation tasks demonstrate that our method
achieves state-of-the-art performance in both
fixed and adaptive policies1.

1 Introduction

Simultaneous machine translation (SiMT) (Gu
et al., 2017; Ma et al., 2019, 2020) generates the
target sentence while reading in the source sen-
tence. Compared to Full-sentence translation, it
faces a greater challenge because it has to make
trade-offs between latency and translation quality
(Zhang and Feng, 2022a). In applications, it needs
to meet the requirements of different latency tol-
erances, such as online conferences and real-time
subtitles. Therefore, the SiMT models trained at
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Source 
Sentence 

Ground-Truth 

Tailored Ref 

看    电影    是    一项    愉快的    活动    。
 (watch)(a movie)   (is)        (an)       (enjoyable)   (activity)          

It  is  an  enjoyable  activity  to  watch  a  movie  .

Watching  a  movie  is  an  enjoyable  activity  .

Figure 1: An example of Chinese-English parallel sen-
tence. The SiMT model will be forced to predict ‘an
enjoyable activity’ before reading corresponding source
tokens. In contrast, the tailored reference avoids forced
anticipations while maintaining the original semantics.

different latency should exhibit excellent transla-
tion performance.

Using an inappropriate reference to train the
SiMT model can significantly impact its perfor-
mance. The optimal reference for the SiMT model
trained at different latency varies. Under high la-
tency, it is reasonable to train the SiMT model with
ground-truth since the model can leverage suffi-
cient source information (Zhang and Feng, 2022c).
However, under low latency, the model is con-
strained by limited source information and thus
requires reference consistent with the source word
order (Chen et al., 2021). Therefore, the SiMT
model should be trained with corresponding appro-
priate reference under different latency.

However, the existing SiMT methods, which em-
ploy fixed or adaptive policy, commonly utilize
only ground-truth for training across different la-
tency settings. For fixed policy (Ma et al., 2019;
Elbayad et al., 2020; Zhang and Feng, 2021), the
model generates translations based on the prede-
fined rules. The SiMT models are often forced to
anticipate target tokens with insufficient informa-
tion or wait for unnecessary source tokens. For
adaptive policy (Ma et al., 2020; Miao et al., 2021;
Zhang and Feng, 2022b), the model can adjust its
translation policy based on translation status. Nev-
ertheless, the policy learning of SiMT model will
gradually adapt to the given reference (Zhang et al.,
2020). Consequently, employing only ground-truth
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for the SiMT models trained at varying latency lev-
els can negatively impact overall performance, as
it forces them to learn the identical policy. Further-
more, Chen et al. (2021) adopts an offline approach
to generate reference using the Full-sentence model
for training the SiMT model at different latency, but
this approach also imposes an upper bound on the
performance of the SiMT model. Therefore, it is
necessary to provide high-quality and appropriate
reference for the models with different latency.

Under these grounds, we aim to dynamically pro-
vide an appropriate reference for training the SiMT
models at different latency. In SiMT, the source in-
formation available to the translation model varies
with latency (Ma et al., 2019). Therefore, the appro-
priate reference should allow the model to utilize
the available information for predicting target to-
kens accurately. Otherwise, it will result in forced
anticipations, where the model predicts target to-
kens in reference using insufficient source infor-
mation (Guo et al., 2023). To explore the extent
of forced anticipations when training the SiMT
model with ground-truth at different latency, we
introduce anticipation rate (AR) (Chen et al., 2021).
As shown in Table 1, the anticipation rate decreases
as the SiMT is trained with higher latency. Con-
sequently, the reference requirements of the SiMT
model vary at different latency. To meet the re-
quirements, the appropriate reference should avoid
forced anticipations during training and maintain
high quality. Therefore, we propose to dynamically
tailor reference, called tailored reference, for the
training of SiMT model according to the latency,
thereby reducing forced anticipations. We present
an intuitive example of tailored reference in Figure
1. It can avoid forced predictions during training
while maintaining the semantics consistent with
the original sentence.

Therefore, we propose a new method for pro-
viding tailored reference to SiMT models at differ-
ent latency. To accomplish this, we introduce the
tailor, a shallow non-autoregressive Transformer
Decoder (Gu et al., 2018), to modify ground-truth
to the tailored reference. Since there is no explicit
supervision to train the tailor, we quantify the re-
quirements for the tailored reference as two reward
functions and optimize them using reinforcement
learning (RL). On the one hand, tailored reference
should avoid forced anticipations, ensuring that the
word reorderings between it and the source sen-
tence can be handled by the SiMT model trained

k 1 3 5 7 9

AR[%] 28.17 8.68 3.49 1.12 0.49

Table 1: The AR(↓) on WMT15 De→En test set at
different latency. k belongs to Wait-k policy (Ma et al.,
2019) and represents the number of tokens that the target
sentence lags behind the source sentence.

at that latency. To achieve this, the tailor learns
from non-anticipatory reference corresponding to
that latency, which can be generated by applying
Wait-k policy to Full-sentence model (Chen et al.,
2021). On the other hand, tailored reference should
maintain high quality, which can be achieved by
encouraging the tailor to learn from ground-truth.
Therefore, we measure the similarity between the
output of tailor and both non-anticipatory reference
and ground-truth, assigning them as separate re-
wards. The tailor can be optimized by striking a
balance between these two rewards. During train-
ing, the SiMT model takes the output of the tailor
as the objective and is jointly optimized with the
tailor. Additionally, our method is applicable to a
wide range of SiMT approaches. Experiments on
three translation tasks demonstrate that our method
achieves state-of-the-art performance in both fixed
and adaptive policies.

2 Background

For a SiMT task, the model reads in the source sen-
tence x = (x1, ..., xJ) with length J and generates
the target sentence y = (y1, ..., yI) with length I
based on the policy. To describe the policy, we de-
fine the number of source tokens read in when trans-
lating yi as gi. Then the policy can be represented
as g = (g1, ..., gI). Therefore, the SiMT model can
be trained by minimizing the cross-entropy loss:

Lsimt = −
I∑

i=1

log p(y⋆i | x≤gi ,y<i), (1)

where y⋆i represents the ground-truth token.
Our approach involves Wait-k (Ma et al., 2019),

HMT (Zhang and Feng, 2023b) and CTC training
(Libovický and Helcl, 2018), so we briefly intro-
duce them.

Wait-k policy As the most widely used fixed
policy, the model reads in k tokens first and then
alternates writing and reading a token. It can be
formalized as:

gki = min{k + i− 1, J}, (2)



where J indicates the length of the source sentence.

HMT Hidden Markov Transformer (HMT),
which derives from the Hidden Markov Model, is
the current state-of-the-art SiMT model. It treats
the translation policy g as hidden events and the
target sentence y as observed events. During train-
ing, HMT learns when to generate translation by
minimizing the negative log-likelihood of observed
events over all possible policies:

Lhmt = − log
∑
g

p(y | x,g)× p(g) . (3)

CTC CTC (Graves et al., 2006) is applied in non-
autoregressive translation (NAT) (Gu et al., 2018)
due to its remarkable performance and no need for
length predictor. CTC-based NAT will generate
a sequence containing repetitive and blank tokens
first, and then reduce it to a normal sentence based
on the collapse function Γ−1. During training, CTC
will consider all possible sequences a, which can
be reduced to y using function Γ−1:

Lctc = − log
∑

a∈Γ(y)

p(a | x) , (4)

where p(a | x) is modeled by NAT architecture.

3 Method

In this section, we introduce the architecture of
our model, which incorporates tailor into the SiMT
model. To train the SiMT model with the tailor, we
present a three-stage training method, in which the
SiMT model benefits from training with tailored
reference and is optimized together with the tai-
lor. During inference, the SiMT model generates
translation according to the policy. The details are
introduced in the following subsections.

3.1 Model Architecture
We present the architecture of our method in Figure
2. Alongside the encoder and decoder, our method
introduces the tailor module, which is responsible
for generating a tailored reference for the SiMT
model, utilizing the ground-truth as its input. Con-
sidering the efficiency of generating tailored refer-
ence, the tailor module adopts the structure of the
non-autoregressive Transformer decoder (Vaswani
et al., 2017). To enable the tailor to generate a
tailored reference that is not limited by the length
of ground-truth, it initially upsamples the ground-
truth. Subsequently, it cross-attends to the output

Figure 2: The architecture of our method. The tailor
module modifies ground-truth to the tailored reference,
which serves as the training target for the SiMT model.
The tailor is induced to optimize two rewards by rein-
forcement learning.

of the encoder and modifies ground-truth while
considering the word order of the source sentence.
Finally, it transforms the output of tailor into the tai-
lored reference by eliminating repetitive and blank
tokens (Libovický and Helcl, 2018). The tailored
reference replaces the ground-truth as the training
objective for the SiMT model.

Given the lack of explicit supervision for train-
ing the tailor, we quantify the requirements for
tailored reference into two rewards and optimize
the model through reinforcement learning. We pro-
pose a three-stage training method for the SiMT
model with the tailor, the details of which will be
presented in the next subsection.

3.2 Training Method

After incorporating tailor into the SiMT model,
it is essential to train the SiMT model with the
assistance of tailor to get better performance. In
light of this, we quantify the requirements of the
tailored reference into two rewards and propose a
novel three-stage training method for the training
of our method. First, we train the SiMT model
using ground-truth and equip the SiMT model with
good translation capability. Subsequently, we use
a pre-training strategy to train the tailor, enabling
it to establish a favorable initial state and converge
faster. Finally, we fine-tune the tailor by optimiz-



ing the two rewards using reinforcement learning,
where the output of the tailor serves as the train-
ing target for the SiMT model after being reduced.
In the third stage, the tailor and SiMT model are
jointly optimized and share the output the of the
encoder. Next, we describe our three-stage training
method in detail.

Training the Base Model In our architecture, the
tailor cross-attends to the output of the encoder to
adjust ground-truth based on source information.
As a result, before training the tailor module, we
need a well-trained SiMT model as the base model.
In our method, we choose the Wait-k policy (Ma
et al., 2019) and HMT model (Zhang and Feng,
2023b) as the base model for fixed policy and adap-
tive policy, respectively. The base model is trained
using the cross-entropy loss. Once the training
of the base model is completed, we optimize the
tailor module, which can provide the tailored refer-
ence for the SiMT models trained across different
latency settings.

Pre-training Tailor The tailor adopts the archi-
tecture of a non-autoregressive decoder (Gu et al.,
2018). The non-autoregressive architecture has
demonstrated excellent performance (Qian et al.,
2020; Huang et al., 2022). Importantly, it enables
the simultaneous generation of target tokens across
all positions, making it highly efficient for rein-
forcement learning. However, if we train the tailor
using reinforcement learning directly, it will con-
verge to a suboptimal state in which the tokens
at each position are some frequent tokens (Shao
et al., 2022). This behavior is attributed to the
exploration-based nature of reinforcement learning,
highlighting the need for a favorable initial state for
the model (Lopes et al., 2012). Since the tailored
reference is modified from ground-truth, we let it
learn from ground-truth during pre-training and
then fine-tune it using reinforcement learning. The
details of pre-training stage are introduced below.

To keep the output of the tailor from being lim-
ited by the length of ground-truth, the tailor upsam-
ples ground-truth to get the input of the tailor, de-
noted as y′. During training, CTC loss (Libovický
and Helcl, 2018) is used to optimize the tailor.

Denoting the output of the tailor as a =
(a1, ..., aT ), the probability distribution modeled
by the tailor can be presented as:

pa(a | x,y′) =

T∏
t=1

pa(at | x,y′), (5)

where T is the output length of tailor and is a multi-
ple of the length of y. Subsequently, we can get the
normal sequence s by applying collapse function
Γ−1 to a and the distribution of s is calculated by
considering all possible a:

ps(s | x,y′) =
∑

a∈Γ(s)

pa(a | x,y′). (6)

To make the tailor learn from ground-truth, the
tailor is optimized by minimizing the negative log-
likelihood:

Lpt = − log ps(y | x,y′), (7)

which can be efficiently calculated through dy-
namic programming (Graves et al., 2006).

RL Fine-tuning After completing the pre-
training, the tailor is already in a favorable initial
state. We quantify the requirements for tailored
reference as two rewards and fine-tune the tailor
using reinforcement learning. We then introduce
the two reward functions.

On the one hand, the tailored reference should
not force the model to predict the target tokens
before reading corresponding source information,
which means the SiMT model can handle the word
reorderings between the tailored reference and the
source sentence at that latency (Zhang et al., 2022).
Therefore, we make the tailor learn from non-
anticipatory reference yna, which is generated by
applying the corresponding Wait-k policy to the
Full-sentence model. It has the word order that
matches the latency and maintains the original se-
mantics (Chen et al., 2021). We employ reward
Rna to measure the similarity between the output
of tailor and non-anticipatory reference. On the
other hand, the tailored reference should remain
faithful to ground-truth. We introduce the reward
Rgt to measure the similarity between ground-truth
and the output of the tailor. By striking an appropri-
ate balance between Rna and Rgt, we can obtain
the tailored reference.

Given the output a of tailor, we can obtain the
normal sentence s by removing the repetitive and
blank tokens (Libovický and Helcl, 2018). We
use BLEU (Papineni et al., 2002) to measure the
similarity between two sequences. Therefore, Rna

and Rgt for the output of tailor is calculated as:

Rna(s) = BLEU(s,yna), (8)

Rgt(s) = BLEU(s,y). (9)
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Figure 3: Translation performance of different fixed policies on En→Vi, En→Ro and De→En tasks.
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Figure 4: Translation performance of different adaptive policies on En→Vi, En→Ro and De→En tasks.

Based on these two rewards, we can obtain the final
reward R by balancing Rna and Rgt:

R(s) = (1− α)Rna(s) + αRgt(s), (10)

where α ∈ [0, 1] is a hyperparameter. Subse-
quently, we use REINFORCE algorithm (Williams,
1992) to optimize the final reward R to obtain the
tailored reference:

∇θJ (θ) = ∇θ

∑
s

ps(s | x,y′, θ)R(s)

= E
s∼ps

[∇θ log ps(s | x,y′, θ)R(s)]

= E
a∼pa

[∇θ log ps(Γ
−1(a) | x,y′, θ)R(Γ−1(a)].

(11)
where Γ−1 represents the collapse function and θ
denotes the parameter of tailor. During training,
we sample the sequence a from the distribution
pa(a | x,y′, θ) using Monte Carlo method. As the
tailor adopts a non-autoregressive structure where
all positions are independent of each other, we
can concurrently sample tokens for all positions
from the distribution. We then apply collapse
function to sequence a to obtain the normal se-
quence s, which is used to compute the reward

R(s) and update the tailor with estimated gradient
∇θ log ps(s | x,y′, θ)R(s). In the calculation of
ps(s | x,y′, θ), we use dynamic programming to
accelerate the process. Additionally, we adopt the
baseline reward strategy to reduce the variance of
the estimated gradient (Weaver and Tao, 2001).

In this stage, we utilize reinforcement learning to
optimize the final reward R(s) and train the SiMT
model with tailored reference using Lt_simt. As a
result, the SiMT model and the tailor are jointly
optimized to enhance performance.

4 Experiments

4.1 Datasets
We evaluate our method on three translation tasks.

IWSLT152 English→Vietnamese (En→Vi)
(Cettolo et al., 2015) We use TED tst2012 as the
development set and TED tst2013 as the test set. In
line with Ma et al. (2020), we replace the tokens
occurring less than 5 with ⟨unk⟩. Consequently,
the vocabulary sizes of English and Vietnamese are
17K and 7.7K, respectively.

WMT163 English→Romanian (En→Ro) We
2https://nlp.stanford.edu/projects/nmt/
3www.statmt.org/wmt16/
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use newsdev-2016 as the development set and
newstest-2016 as the test set. The source and tar-
get languages employ a shared vocabulary. Other
settings are consistent with Gu et al. (2018).

WMT154 German→English (De→En) Fol-
lowing Ma et al. (2020), we use newstest2013 as
development set and newstest2015 as test set. We
apply BPE (Sennrich et al., 2016) with 32K sub-
word units and use a shared vocabulary between
source and target.

4.2 System Settings

Our experiments involve the following methods
and we briefly introduce them.

Full-sentence model is the conventional full-
sentence machine translation model.

Wait-k policy (Ma et al., 2019) initially reads
k tokens and then alternates between writing and
reading a source token.

Multi-path (Elbayad et al., 2020) introduces
the unidirectional encoder and trains the model by
sampling the latency k.

Adaptive Wait-k (Zheng et al., 2020) employs
multiple Wait-k models through heuristic method
to achieve adaptive policy.

MMA (Ma et al., 2020) makes each head de-
termine the translation policy by predicting the
Bernoulli variable.

MoE Wait-k (Zhang and Feng, 2021), the cur-
rent state-of-the-art fixed policy, treats each head as
an expert and integrates the decisions of all experts.

PED (Guo et al., 2022) implements the adaptive
policy via integrating post-evaluation into the fixed
translation policy.

BS-SiMT (Guo et al., 2023) constructs the opti-
mal policy online via binary search.

ITST (Zhang and Feng, 2022b) treats the transla-
tion as information transport from source to target.

HMT (Zhang and Feng, 2023b) models simul-
taneous machine translation as a Hidden Markov
Model, and achieves the current state-of-the-art
performance in SiMT.

*+100% Pseudo-Refs (Chen et al., 2021) trains
the Wait-k model with ground-truth and pseudo
reference, which is generated by applying Wait-k
policy to the Full-sentence model.

*+Top 40% Pseudo-Refs (Chen et al., 2021) fil-
ters out pseudo references in the top 40% of quality
to train the model with ground-truth.

Wait-k + Tailor applies our method on Wait-k.

4www.statmt.org/wmt15/
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Figure 5: Translation performance of different training
methods on Wait-k policy.

HMT + Tailor applies our method on HMT.
All systems are based on Transformer archi-

tecture (Vaswani et al., 2017) and adapted from
Fairseq Library (Ott et al., 2019). We apply
Transformer-Small (6 layers, 4 heads) for En→Vi
task and Transform-Base (6 layers, 8 heads) for
En→Ro and De→En tasks. Since PED and Adap-
tive Wait-k do not report the results on the En→Ro
task, we do not compare them in the experiment.
For our method, we adopt the non-regressive de-
coder structure with 2 layers for the tailor. We
empirically set the hyperparameter α as 0.2. The
non-anticipatory reference used for RL Fine-tuning
of SiMT model is generated by Test-time Wait-k
method (Ma et al., 2019) with corresponding la-
tency. Other system settings are consistent with
Ma et al. (2020) and Zhang and Feng (2023b). The
detailed settings are shown in Appendix C. We
use greedy search during inference and evaluate
all methods with translation quality estimated by
BLEU (Papineni et al., 2002) and latency measured
by Average Lagging (AL) (Ma et al., 2019).

4.3 Main Results

The performance comparison between our method
and other SiMT approaches on three translation
tasks is illustrated in Figure 3 and Figure 4. Our
method achieves state-of-the-art translation perfor-
mance in both fixed and adaptive policies. When
comparing with other training methods in Figure 5,
our approach also achieves superior performance.

When selecting the most commonly used Wait-
k policy as the base model, our method outper-
forms MoE Wait-k, which is the current state-of-
the-art fixed policy. Compared to Wait-k policy,

www.statmt.org/wmt15/


Nt 1 2 4

AL 1.50 1.89 1.84
BLEU 24.43 25.90 25.46

Table 2: Performance of the SiMT model when the tailor
has a different number of layers.

our method brings significant improvement, espe-
cially under low latency. Wait-k policy is trained
on ground-truth and cannot be adjusted, which may
force the model to predict tokens before reading
corresponding source information (Ma et al., 2019).
In contrast, our method provides a tailored refer-
ence for the SiMT model, thereby alleviating the
issue of forced anticipations. Our method also
exceeds Multi-path and MoE Wait-k. These two
methods are trained using multiple Wait-k policies
(Elbayad et al., 2020) and gain the ability to trans-
late under multiple latency (Zhang and Feng, 2021),
but they still utilize ground-truth at all latency, lead-
ing to lower performance.

Our method can further enhance the SiMT per-
formance by selecting adaptive policy as the base
model. As the current state-of-the-art adaptive pol-
icy, HMT possesses the ability to dynamically ad-
just policy to balance latency and translation quality
(Zhang and Feng, 2023b). However, it still relies
on ground-truth for training SiMT models across
different latency settings. By providing a tailored
reference that matches the latency, our method can
alleviate the latency burden of the SiMT model,
resulting in state-of-the-art performance.

Our method also surpasses other training ap-
proaches. Ground-truth is not suitable for incre-
mental input due to word reorderings, resulting in
performance degradation (Zhang and Feng, 2022b).
On the contrary, pseudo reference can avoid forced
anticipations during training (Chen et al., 2021).
However, it is constructed offline by applying the
Wait-k policy on the Full-sentence model. It im-
poses an upper bound on the performance of the
SiMT model. The tailored reference avoids forced
anticipations while maintaining high quality, lead-
ing to the best performance.

In addition to enhancing translation performance,
our method effectively narrows the gap between
fixed and adaptive policies. By leveraging our
method, the SiMT model can achieve compara-
ble performance to Full-sentence translation with
lower latency on En→Vi and De→En tasks.

Method α AL BLEU

0.1 1.72 24.82
Wait-k + Tailor 0.2 1.89 25.90

0.3 1.95 25.30

w/o Base Model 0.2 1.77 22.89

w/o Pre-training 0.2 1.80 24.66

w/o RL Fine-tuning 0.2 1.86 24.60

Table 3: Ablation study on training method of the tai-
lor and ratio between two rewards. ‘w/o Base Model’
removes the training stage of the base model. ‘w/o
Pre-training’ removes the pre-training stage. ‘w/o RL
Fine-tuning’ removes the RL fine-tuning stage.

5 Analysis

To gain a comprehensive understanding of our
method, we conducted multiple analyses. All of
the following results are reported on De→En task.

5.1 Ablation Study

We conduct ablation studies on the structure and
training method of tailor to investigate the influ-
ence of different settings. The experiments all use
Wait-k model as the base model with k set to 3. Ta-
ble 2 presents a comparison of different structures.
The best performance is achieved when the tailor
has 2 layers. The performance can be negatively
affected by both excessive layers and insufficient
layers. Table 3 illustrates the results of the ablation
study on the training method. Each stage of the
training method contributes to the performance of
the SiMT model and the training stage of the base
model has the most significant impact on the per-
formance. This can be attributed to the fact that a
well-trained encoder can provide accurate source
information to the tailor, enabling the generation of
appropriate tailored references. Additionally, when
α is selected as 0.2, our method yields the best per-
formance, indicating an optimal balance between
word order and quality for the tailor.

5.2 Analysis of Tailored Reference

Anticipation Rate Furthermore, we conduct an
analysis of the tailored reference to assess its influ-
ence. We first explore the rate of forced anticipa-
tions caused by using different references during
training. Using the anticipation rate (AR) (Chen
et al., 2021) as the metric, the results in Table 4
show that the tailored reference can effectively re-



k 1 3 5 7

Ground-Truth 28.17 8.68 3.49 1.12
Tailored Ref 19.84 8.29 2.98 0.90

Table 4: The anticipation rate (AR[%]) when applying
the Wait-k policy on different references, which are
based on De→En test set.

k 1 3 5 7

Tailored Ref 79.67 86.01 84.83 92.40
Non-Anti Ref 21.87 24.07 26.29 27.24

Table 5: The quality (BLEU) of difference references
compared to ground-truth for the training of Wait-k pol-
icy. ‘Non-Anti Ref’ represents the reference generated
by applying Wait-k policy on Full-sentence model.

duce the forced anticipations during the training
of the SiMT model under all latency. This implies
that, compared to ground-truth, the word reorder-
ings between the tailored reference and the source
sentence can be more effectively handled by the
SiMT model at different latency.

Quality However, one concern is whether the
quality of tailored reference will deteriorate like
non-anticipatory reference after adjusting the word
order. To assess this, we compare different ref-
erences with ground-truth to measure their qual-
ity. As shown in Table 5, we observe that the tai-
lored reference exhibits significantly higher quality
than the non-anticipatory reference. Therefore, our
method successfully reduces the rate of forced an-
ticipations during training while remaining faithful
to ground-truth. To provide a better understand-
ing of the tailored reference, we include several
illustrative cases in Appendix B.

5.3 Hallucination in Translation

If the SiMT model is forced to predict target tokens
before reading corresponding source information
during training, there is a high likelihood of gen-
erating hallucinations during inference (Ma et al.,
2019). To quantify the presence of hallucinations
in the translation, we introduce hallucination rate
(HR) (Chen et al., 2021) for evaluation. Figure 6
illustrates that the SiMT model trained with the
tailored reference demonstrates a reduced probabil-
ity of generating hallucinations. Moreover, even
though the adaptive policy can adjust its behavior
based on the translation status, our approach still ef-
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Figure 6: The hallucination rate (HR) (Chen et al., 2021)
of different methods. It measures the proportion of to-
kens in translation that cannot find corresponding source
information.

fectively mitigates the hallucinations by alleviating
the burden of latency. This signifies that minimiz-
ing forced predictions during training can enhance
the faithfulness of the translation to the source sen-
tence, thereby improving translation quality (Ma
et al., 2023).

6 Related Work

Simultaneous machine translation (SiMT) gener-
ates translation while reading the source sentence.
It requires a policy to determine the source informa-
tion read when translating each target token, thus
striking a balance between latency and translation
quality. Current research on SiMT mainly focuses
on two areas: policy improvement and adjustment
of the training method.

For policy improvement, it aims to provide suffi-
cient source information for translation while avoid-
ing unnecessary latency. Ma et al. (2019) propose
Wait-k policy, which initially reads k tokens and
alternates between writing and reading one token.
Zhang and Feng (2021) enable each head to obtain
the information with a different fixed latency and
integrate the decisions of multiple heads for trans-
lation. However, the fixed policy cannot be flexibly
adjusted based on context, resulting in suboptimal
performance. Ma et al. (2020) allow each head to
determine its own policy and make all heads decide
on the translation. Miao et al. (2021) propose a gen-
erative framework, which uses a re-parameterized
Poisson prior to regularising the policy. Zhang and
Feng (2023a) propose a segmentation policy for
the source input. Zhang and Feng (2023b) model
the simultaneous machine translation as a Hidden



Markov Model and achieve state-of-the-art perfor-
mance. However, these methods are all trained
with ground-truth, leading to forced predictions at
low latency.

For the adjustment of the training method, it
wants to supplement the missing full-sentence in-
formation or cater to the requirements of latency.
Zhang et al. (2021) shorten the distance of source
hidden states between the SiMT model and the
Full-sentence model. This makes the source hid-
den states implicitly embed future information, but
encourages data-driven prediction. On the other
hand, Chen et al. (2021) try to train the model
with non-anticipatory reference, which can be ef-
fectively handled by the SiMT model at that latency.
However, while non-anticipatory reference can al-
leviate forced predictions at low latency, it hinders
performance improvement at high latency.

Therefore, we want to provide a tailored ref-
erence for the SiMT models trained at different
latency. The tailored reference should avoid forced
anticipations and exhibit high quality. In view of
the good structure and superior performance of
the non-autoregressive model (Gu et al., 2018; Li-
bovický and Helcl, 2018), we utilize it to modify
the ground-truth to the tailored reference.

7 Conclusion

In this paper, we propose a novel method to pro-
vide a tailored reference for the training of SiMT
model. Experiments and extensive analyses demon-
strate that our method achieves state-of-the-art per-
formance in both fixed and adaptive policies and
effectively reduces the hallucinations in translation.

Limitations

Regarding the system settings, we investigate the
impact of the number of layers and training meth-
ods on performance. We think that further explo-
ration of system settings could potentially yield
even better results. Additionally, the tailor mod-
ule aims to avoid forced anticipations and main-
tain faithfulness to ground-truth. If we can add
language-related features to the SiMT model using
a heuristic method, it may produce more suitable
references for the SiMT model. We leave it for
future work.
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A Anticipation & Hallucination Rate

In our analyses, we evaluate the reference and trans-
lation using anticipation rate (AR) and hallucina-
tion rate (HR), respectively. We then introduce the
calculation method of these two evaluation metrics
in detail.

Given a sentence pair (x, y), there exists an
alignment set h, which is a set of source-target
index pairs (j, i) where jth source token xj aligns
to the ith target token yi. If we apply the policy g =
(g1, ..., gI) on this sentence pair, the target token yi
is forcibly anticipated (A(i,h,g) = 1) if it aligns
to least one source token xj where j > gi:

A(i,h,g)=1[{(j, i) ∈ h |j > gi} ≠ ∅]. (12)

Therefore, we can define the anticipation rate (AR)
of (x,y,h) under the policy g:

AR(x,y,h,g)=
1

|y|

|y|∑
i=1

A(i,h,g). (13)

The anticipation rate is a metric used to quantify
the degree to which the target token is predicted
before reading all relevant source tokens.

We then introduce the hallucination rate (HR).
We first define the translation as ŷ. A target token
ŷi in translation ŷ is a hallucination (H(i,h)=1) if
it can not be aligned to any source token:

H(i,h)=1[{(j, i) ∈ h} = ∅]. (14)

Therefore, the hallucination rate can be defined as:

HR(x, ŷ,h)=
1

|ŷ|

|ŷ|∑
i=1

H(i,h). (15)

B Case Study

We also provide two cases in the De→En test set
to understand our method. The cases are shown in
Figure 7 and Figure 8. It presents that the tailored
reference is more consistent with the word order
requirements of the specific latency.

In Figure 7, if we train the SiMT model on Wait-
1 policy with the ground-truth, it will be forced to
predict ‘with him’ before reading ‘mit ihm’ during
training. However, training the SiMT model with
tailored reference will eliminate forced predictions
by adjusting ‘like that’ to ‘such’ and positioning
it forward. Importantly, the tailored reference also
maintains the original semantics. This shows that
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Source 
Sentence 

Ground-Truth 

Tailored Ref 

ich    hatte     nie    ein    solches    Gespräch    mit    ihm    .
    (I)       (had)      (never)    (a)         (such)       (conversation)   (with)    (him) 

  I    never    had    a    conversation    with    him    like    that    .

  I     had    never    had    such    a    conversation    with    him    .

Figure 7: Case study of #319 in De→En test set. The tokens marked in the same color share the same semantics.
The tailored reference is more suitable when the model is trained with Wait-1 policy.

Source 
Sentence 

Ground-Truth 

Tailored Ref 

und   vor   einer   Online   @-@   Bestellung   sollte   man   prüfen   ,   so   

Gault   ,   ob     das   Buch   tatsächlich   vorrätig   ist .
  (and) (before)    (an)       (online)                           (order)           (should)   (you)      (check)         (so)

before   ordering   online   ,   Gault   says   ,   be   sure   to   check   if   the   book 
is   actually   in   stock   .
and   before   an   online   order   ,   Gault   says   ,   be   sure   to   check   if   the 
book   is   actually   in   stock .

   (Gault)         (if)       (the)    (book)        (actually)        (in stock)     (is)  

Figure 8: Case study of #1869 in De→En test set. The tokens marked in the same color share the same semantics.
The tailored reference is more suitable when the model is trained with Wait-1 policy.

the order of the source sentence and the tailored
sentence is consistent, which makes it suitable for
Wait-1 policy.

In Figure 8, using ground-truth as the training
target of Wait-1 policy also forces the model to pre-
dict ‘ordering online’ before reading ‘Online’ and
‘Bestellung’. In contrast, by replacing ‘ordering
online’ with ‘an online order’, the word order of
tailored reference is the same as the source sen-
tence, thereby avoiding forced anticipations during
the training of Wait-1 policy.

C Hyperparameters

The system settings on three translation tasks are
shown in Table 6. For more detailed implementa-
tion issues, please refer to our publicly available
code.

D Numerical Results

In addition to the translation performance compari-
son in Figure 3 and Figure 4, we also provide cor-
responding numerical results for reference. Table
7, 8, 9 respectively report the numerical results on
IWSLT15 En→Vi, WMT16 En→Ro and WMT15
De→En measured by AL (Ma et al., 2019) and
BLEU (Papineni et al., 2002).



Hyperparameter IWSLT15 En→Vi WMT16 En→Ro WMT15 De→En
encoder layers 6 6 6
encoder attention heads 4 8 8
encoder embed dim 512 512 512
encoder ffn embed dim 1024 2048 2048
decoder layers 6 6 6
decoder attention heads 4 8 8
decoder embed dim 512 512 512
decoder ffn embed dim 1024 2048 2048
tailor layers 2 2 2
tailor attention heads 8 8 8
tailor embed dim 512 512 512
tailor ffn embed dim 2048 2048 2048
dropout 0.1 0.3 0.3
optimizer adam adam adam
adam-β (0.9, 0.98) (0.9, 0.98) (0.9, 0.98)
clip-norm 0 0 0
lr 5e-4 5e-4 5e-4
lr scheduler inverse sqrt inverse sqrt inverse sqrt
warmup-updates 4000 4000 4000
warmup-init-lr 1e-7 1e-7 1e-7
weight decay 0.0001 0.0001 0.0001
label-smoothing 0.1 0.1 0.1
max tokens 16000 8192×4 8192×4

Table 6: Hyperparameters of our experiments.



IWSLT15 En→Vi

Full-sentence
AL BLEU

22.41 28.8

Wait-k
k AL BLEU
1 3.03 25.28
3 4.64 27.53
5 6.46 28.27
7 8.11 28.45
9 9.80 28.53

MoE Wait-k
k AL BLEU
1 3.19 26.56
3 4.70 28.43
5 6.43 28.73
7 8.19 28.81
9 9.86 28.88

Wait-k + Tailor
k AL BLEU
1 2.96 27.58
3 4.49 29.03
5 6.24 29.25
7 8.01 29.45
9 9.70 29.49

HMT
L,K AL BLEU
1, 2 3.05 28.02
2, 2 3.72 28.53
4, 2 4.92 28.59
5, 4 6.34 28.78
6, 4 8.15 28.86
7, 6 9.60 28.88

HMT + Tailor
L,K AL BLEU
1, 2 3.02 28.28
2, 2 3.70 29.02
4, 2 5.31 29.24
5, 4 6.28 29.39
6, 4 8.04 29.34
7, 6 9.78 29.39

Table 7: Numerical results of IWSLT15 En→Vi.

WMT16 En→Ro

Full-sentence
AL BLEU
n/a 32.74

Wait-k
k AL BLEU
1 2.09 20.67
3 3.01 25.69
5 5.09 29.28
7 7.21 30.50
9 9.03 30.87

MoE Wait-k
k AL BLEU
1 2.00 23.50
3 3.30 28.25
5 5.15 30.94
7 7.00 31.19
9 9.00 31.33

Wait-k + Tailor
k AL BLEU
1 1.48 23.72
3 3.07 28.30
5 4.93 31.04
7 7.02 32.13
9 8.85 31.97

HMT
L,K AL BLEU
2, 4 1.73 24.09
3, 6 3.34 28.92
5, 6 5.33 31.02
7, 6 7.46 31.97
9, 8 9.27 32.18

HMT + Tailor
L,K AL BLEU
2, 4 1.71 24.80
3, 6 3.27 29.11
5, 6 5.26 31.42
7, 6 7.34 32.16
9, 8 9.24 32.13

Table 8: Numerical results of WMT16 En→Ro.



WMT16 En→Ro

Full-sentence
AL BLEU
n/a 31.76

Wait-k
k AL BLEU
1 0.02 17.61
3 1.71 23.75
5 3.85 26.86
7 5.86 28.20
9 7.85 29.42

MoE Wait-k
k AL BLEU
1 -0.18 21.40
3 1.82 25.35
5 3.98 27.50
7 5.97 29.07
9 7.88 29.52

Wait-k + Tailor
k AL BLEU
1 -0.32 21.12
3 1.89 25.90
5 3.89 28.44
7 5.91 29.80
9 7.80 30.64

HMT
L,K AL BLEU
−1, 4 0.27 22.52
2, 4 2.20 27.60
3, 6 3.46 29.29
5, 6 4.74 30.29
7, 6 6.43 30.90
9, 8 8.36 31.45

HMT + Tailor
L,K AL BLEU
−1, 4 0.03 23.75
2, 4 2.10 28.12
3, 6 3.13 29.99
5, 6 4.60 30.74
7, 6 6.31 31.48
9, 8 8.18 31.87

Table 9: Numerical results of WMT15 De→En.


